57 research outputs found

    Analysis of a benchmark suite to evaluate mixed numeric and symbolic processing

    Get PDF
    The suite of programs that formed the benchmark for a proposed advanced computer is described and analyzed. The features of the processor and its operating system that are tested by the benchmark are discussed. The computer codes and the supporting data for the analysis are given as appendices

    Space Station Freedom data management system growth and evolution report

    Get PDF
    The Information Sciences Division at the NASA Ames Research Center has completed a 6-month study of portions of the Space Station Freedom Data Management System (DMS). This study looked at the present capabilities and future growth potential of the DMS, and the results are documented in this report. Issues have been raised that were discussed with the appropriate Johnson Space Center (JSC) management and Work Package-2 contractor organizations. Areas requiring additional study have been identified and suggestions for long-term upgrades have been proposed. This activity has allowed the Ames personnel to develop a rapport with the JSC civil service and contractor teams that does permit an independent check and balance technique for the DMS

    A Hardware Architecture for Scheduling Complex Real-Time Task Sets

    Get PDF
    The problem of jointly scheduling both hard deadline periodic tasks and soft aperiodic tasks has been the subject of considerable research in real-time systems. One of the most widely accepted solutions for this problem are slack stealing algorithms. However, these algorithms are rather impractical, since they all imply a considerable scheduler overhead. This paper faces the overhead problem by introducing a complete hardware architecture that implements slack stealing in hardware using an optimal algorithm redesigned to be implemented efficiently in hardware. The proposed solution is a circuit that behaves as a kind of sophisticated interrupt controller taking the task workload and the interrupts as inputs, and providing the highest priority task to be executed in the CPU. From the point of view of hardware design, the algorithm involves two main problems: first, to select the highest priority task at every moment and, second, to locate a set of slack gaps in a real-time computation. Locating slack gaps in a real-time computation is a problem that requires to “look forward in time” into the forecast schedule of a given workload. This paper analyses the different approaches for solving this problem and presents a novel architecture to solve it efficiently using a technique based on an event-driven simulation of the future of a real-time computation. A timing analysis of the proposed design is also presented

    Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    Get PDF
    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented

    The Watchdog Task: Concurrent error detection using assertions

    Get PDF
    The Watchdog Task, a software abstraction of the Watchdog-processor, is shown to be a powerful error detection tool with a great deal of flexibility and the advantages of watchdog techniques. A Watchdog Task system in Ada is presented; issues of recovery, latency, efficiency (communication) and preprocessing are discussed. Different applications, one of which is error detection on a single processor, are examined

    Ada (trademark) projects at NASA. Runtime environment issues and recommendations

    Get PDF
    Ada practitioners should use this document to discuss and establish common short term requirements for Ada runtime environments. The major current Ada runtime environment issues are identified through the analysis of some of the Ada efforts at NASA and other research centers. The runtime environment characteristics of major compilers are compared while alternate runtime implementations are reviewed. Modifications and extensions to the Ada Language Reference Manual to address some of these runtime issues are proposed. Three classes of projects focusing on the most critical runtime features of Ada are recommended, including a range of immediately feasible full scale Ada development projects. Also, a list of runtime features and procurement issues is proposed for consideration by the vendors, contractors and the government

    The Ravenscar-compliant hardware run-time (Ravenhart) kernel

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2004.Includes bibliographical references (leaves 69-71).Real-time embedded systems are increasingly becoming the foundation of control systems in both the aerospace and automotive worlds. This class of systems has to meet three requirements: strict timing constraints on operational behavior, limited resource availability, and stringent certification standards. The heart of any embedded system is its run-time system (RTS), which provides resource management, task creation and deletion, and manages inter-task communication. The traditional Ada RTS does not provide deterministic behavior. In order to meet the requirement of a minimal, deterministic RTS, a formal model based on the Ravenscar profile of Ada95 was developed by Professor Kristina Lundqvist in 2000. This formal model forms the basis of the work carried out in this thesis. This thesis aims to leverage the reliability and efficiency of programmable hardware to implement a run-time kernel called RavenHaRT. The kernel was designed to support Ravenscar compliant Ada95 code and provides task creation, task scheduling and inter-task communication capabilities. The timing properties embedded in the formal model are captured in terms of kernel performance within the hardware. The kernel was implemented using a Xilinx Virtex-II Pro FPGA. The results from testing demonstrate that the hardware kernel has the expected behavior and can interface correctly with software code.by Anna Silbovitz.S.M

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    Digital signal processor fundamentals and system design

    Get PDF
    Digital Signal Processors (DSPs) have been used in accelerator systems for more than fifteen years and have largely contributed to the evolution towards digital technology of many accelerator systems, such as machine protection, diagnostics and control of beams, power supply and motors. This paper aims at familiarising the reader with DSP fundamentals, namely DSP characteristics and processing development. Several DSP examples are given, in particular on Texas Instruments DSPs, as they are used in the DSP laboratory companion of the lectures this paper is based upon. The typical system design flow is described; common difficulties, problems and choices faced by DSP developers are outlined; and hints are given on the best solution
    corecore