
THE RAVENSCAR-COMPLIANT HARDWARE RUN-TIME (RAVENHART) KERNEL

by

ANNA SILBOVITZ

Sc.B., Electrical Engineering
Brown University, 2001

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2004

@ 2004 Massachusetts Institute of Technology, All rights reserved.

Signature of Author:
D partment of Aeronautics and Astronautics

Jan 7 r 30, 2004

Certified by: , A .4

I. Kristina Lundqvist
Charles S. Draper Assistant Professor of Aeronautics and Astronautics

Thesis Supervisor

Accepted by:
Edward M. Greitzer

H.N. Slater Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

MASSACHUSETTS INST170TE
OF TECHNOLOGY

JUL 0 1 2004

LIBRARIES

ARCHIVES

The Ravenscar-compliant Hardware Run-Time (RavenHaRT)
Kernel

by

Anna Silbovitz

Submitted to the Department of Aeronautics and Astronautics
on January 30, 2004 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in
Aeronautics and Astronautics

ABSTRACT

Real-time embedded systems are increasingly becoming the foundation of control systems in
both the aerospace and automotive worlds. This class of systems has to meet three requirements:
strict timing constraints on operational behavior, limited resource availability, and stringent
certification standards. The heart of any embedded system is its run-time system (RTS), which
provides resource management, task creation and deletion, and manages inter-task
communication. The traditional Ada RTS does not provide deterministic behavior. In order to
meet the requirement of a minimal, deterministic RTS, a formal model based on the Ravenscar
profile of Ada95 was developed by Professor Kristina Lundqvist in 2000. This formal model
forms the basis of the work carried out in this thesis.

This thesis aims to leverage the reliability and efficiency of programmable hardware to
implement a run-time kernel called RavenHaRT. The kernel was designed to support Ravenscar
compliant Ada95 code and provides task creation, task scheduling and inter-task communication
capabilities. The timing properties embedded in the formal model are captured in terms of kernel
performance within the hardware.

The kernel was implemented using a Xilinx Virtex-JI Pro FPGA. The results from testing
demonstrate that the hardware kernel has the expected behavior and can interface correctly with
software code.

Thesis Supervisor: I. Kristina Lundqvist
Title: Charles S. Draper Assistant Professor of Aeronautics and Astronautics

2

Acknowledgements

I would first like to thank my advisor Professor Kristina Lundqvist, for all of the

guidance and support you have given me. You encouraged me to consider ideas and problems I

would not have otherwise, and I appreciate all of our discussions and what they have taught me.

Thanks also to MIT Lincoln Laboratory for making it possible for me to complete this

degree through the Lincoln Scholars Program. I especially would like to thank my Lincoln

advisor Herb Viggh, and everyone else in my group at work who allowed me to make my thesis

my top priority.

I also received lots of support from the members of our team in Sweden. Thanks to Lars

Asplund and his family for sharing their home with me when I visited. And a big thanks to

Johan Furunas: I probably couldn't have finished this thesis without your expertise. Thank you

for answering my endless stream of questions.

Lastly, I would like to thank all of my family and friends, for putting up with me during

this process. A special thanks to Katie, for all of the great conversations we've had, related to

schoolwork or otherwise. And also to Justin - you have always been there willing to listen,

giving support and advice. Thank you!

3

Table of Contents

Chapter 1 Introduction 6

Chapter 2 The Gurkh Project 8

Chapter 3 Software Development in Ada 11
3.1 Ada in Real-Time Safety-Critical Systems 11
3.2 The Ravenscar Profile 12

Chapter 4 Hardware Real-Time Kernels 15
4.1 Summary of Related Work 15
4.2 Evaluation of Performance 17

Chapter 5 Modeling the Kernel 19
5.1 UPPAAL 19
5.2 The Ravenscar-compliant Kernel Model in UPPAAL 21

5.2.1 The Ready Queue 21
5.2.2 The Delay Queue 22
5.2.3 Protected Objects 24
5.2.4 System Time 26
5.2.5 Idle Task 27
5.2.6 Example Tasks and Verification 27

5.3 Issues in Refining the Model to VHDL 28
5.3.1 Timing 29
5.3.2 State Machine Synchronization 31
5.3.3 Interface With Tasks 32

Chapter 6 The RavenHaRT Kernel 33
6.1 Interface 36
6.2 Main Kernel 43
6.3 The Ready Queue 43
6.4 The Delay Queue 47
6.5 Protected Objects 50
6.6 Task Arbitration 57
6.7 Ada Time 58

Chapter 7 Testing and Implementation 59
7.1 Kernel Testing 59
7.2 System Testing 62

Chapter 8 Future Work 65
8.1 Use of Tools 65
8.2 Code Changes
8.3 Testing and Analysis

66
68

4

Appendix A VHDL Kernel Code 72
A.1 Interface 72
A.2 Main Kernel 84
A.3 Ready Queue 90
A.4 Delay Queue 105
A.5 Timing 116
A.6 Protected Objects 118
A.7 Task Arbitration 139
A.8 Variables and Constants 140
A.9 Constraints 142

Appendix B Kernel Tests 145
B.1 ISE Tests 145
B.2 EDK Tests 146

5

69References

Chapter 1
Introduction

An embedded system consists of computer hardware and software components that have

a dedicated purpose within the context of a larger engineered system. Embedded systems are

used in a wide variety of applications, including those that are safety-critical or mission-critical.

Both safety- and mission-critical systems are systems that will result in a loss event if they fail,

that may include equipment, money, or human life. Safety-critical systems typically have hard

real-time constraints; a missed deadline may result in system failure. Therefore, these systems

must be thoroughly analyzed, to ensure that all necessary deadlines can be met.

The heart of an embedded system is the run-time system, also called a real-time kernel

(RTK). The RTK handles the scheduling of the software tasks that run on the processor. The

timing properties of the RTK directly influence the timing properties of the embedded system.

Therefore, it is essential that the RTK be thoroughly analyzed and designed so that it is

deterministic and predictable.

Designing embedded systems for safety-critical applications is a difficult task. Such a

system involves many aspects: deciding on an RTK that will suit the system, determining how to

model and analyze the system, and planning how to do fault tolerance and fault recovery while

the system is running. To aid in the design of safety-critical systems, the Gurkh environment is

being developed. It includes a custom Ravenscar-compliant hardware RTK that is suitable for

use in safety-critical applications, support tools for system analysis, and a component that aids in

fault recovery.

The term Ravenscar-compliant refers to the Ravenscar profile of Ada95. Ada95

(hereafter referred to just as Ada) is a software language that can easily be restricted into subsets

that are suited for different applications, such as safety-critical systems. The Ravenscar profile is

a subset of the language that, when used, will ensure deterministic software behavior.

A Ravenscar-compliant hardware RTK, called the RavenHaRT Kernel (Ravenscar-

compliant Hardware Run-Time Kernel), has been designed for use in safety-critical systems that

use the Ravenscar profile. RavenHaRT is implemented in the hardware description language

VHDL, so that it can be implemented on a Field Programmable Gate Array (FPGA). It is

therefore very different from traditional RTKs, which are implemented in a software language

6

and run directly on the processor, and are typically not fully predictable. The hardware

implementation should provide faster response times, greater reliability and predictability, and

better utilization of available power resources.

This thesis is organized as follows. The next three chapters provide additional

background and motivation for the project. Chapter 2 describes the Gurkh project, including the

different tools being developed to support the design and implementation of embedded systems

using the Ravenscar profile, and how the RavenHaRT Kernel fits into the process. In chapter 3,

the motivation for choosing Ada and Ravenscar is provided, along with a summary of the

features of the Ravenscar profile that influence the RavenHaRT Kernel's design. Chapter 4

discusses hardware RTKs, the benefits of using them instead of software RTKs, and examples of

hardware RTKs implemented as part of other projects.

Chapters 5 through 7 deal with the different stages of designing and implementing the

RavenHaRT Kernel. Chapter 5 explains formal modeling, and why it is an important part of

analysis. A formal model of the kernel is presented, which was used as the basis for the

implementation in VHDL. However, there are many differences between how a model behaves

and how VHDL code behaves, and several of these issues are also addressed. Chapter 6 provides

a complete description of the VHDL RavenHaRT Kernel, including technical documentation of

the code. Chapter 7 explains the tests that were performed on the kernel.

Chapter 8 contains a discussion of future work that could be carried out to design a more

optimized version of the kernel. The Appendix holds all the RavenHaRT Kernel VHDL code.

7

Chapter 2
The Gurkh Project

The Gurkh project [AL03] is a joint effort between the Massachusetts Institute of

Technology and Malardalen University in Sweden. The aim of the project is to provide an

integrated environment for implementing embedded systems for use in safety-critical

applications. An overview of the environment is shown in Figure 1.

Figure 1. Overview of the Gurkh project

The project is composed of tools to support analysis of a design, and a system to support

implementation. It has been created to be used with code written in either VHDL or the

Ravenscar profile of Ada. The Ravenscar profile is chosen because of its usefulness in safety-

critical systems; this decision will be discussed in more detail in chapter 3. At the current time,

the Gurkh environment supports a single-processor system, but future work includes expanding

it to support systems with multiple processors.

To take advantage of the Gurkh environment, users could start with specifications for a

new project and develop Ada and/or VHDL code to satisfy those specifications. Alternatively, if

8

they have a system that is already implemented, they could use Gurkh to analyze the design to

confirm that it has correct behavior (or rewrite the code if it does not). Previously written code

must be annotated with best and worst case execution times so that its timing behavior can be

analyzed by the tools in Gurkh. Once the code has been developed, it must be thoroughly tested

for correct functional behavior. To verify correct non-functional behavior, such as timing

properties, the entire system (application tasks and the RTK) should be analyzed by using formal

methods. The benefits of using formal methods and verification tools such as model checkers

are described in chapter 5. A goal of the Gurkh project is to provide tools that automatically

converts VHDL or Ada code into syntax for the input languages for different verification tools.

At the current time, tools are being developed for the model checker UPPAAL [Upp], but future

work will include conversion to additional verification tools such as Kronos [Yov97] and Times

[AFM+02]. The conversion from VHDL or Ada code to a formal model usable in a verification

tool is a two-step process. First, the code is translated into a readable intermediate format, so

that users can easily visually analyze the behavior of their system. The second step is to convert

the readable models into a syntax that can be read by verification tools. The decision was made

to include different verification tools so that users will have flexibility, and also so that different

verifications can be performed. Different tools verify different properties of the system. If

multiple tools are used for analysis, and if they all agree on the validity of the system, users can

have more confidence that the system is behaving as expected than if they had used just one tool.

Note that in Figure 1, there is an arrow going from the block labeled 'Ada/VHDL' to the block

labeled 'Model', but also one from the verification tools back to 'Ada/VHDL'. This is because

writing code and modeling and verifying it is an iterative process. Errors could be found in the

model, and then the code would need to be changed. Whenever changes are made, model

verification (and testing) must be performed again.

Once the system model has been shown to be correct, the RTK can be extracted from it.

For a hardware implementation of the RTK, VHDL code is written. This process is discussed in

chapter 5. Note that different design projects do not necessarily need different, unique RTKs. If

users have an application that will work with an RTK that has been previously designed,

analyzed, and implemented in VHDL using the Gurkh process, it can be reused. The modeling

step must be adjusted so that the new application is analyzed together with the existing kernel

model, ensuring that the whole system still has the desired behavior. The RavenHaRT Kernel is

9

being designed as part of the Gurkh project, so that users will already have an RTK that has been

modeled and shown to be suitable for use in safety-critical systems.

The physical system is shown in the 'System' block in Figure 1. A specialized board will

be developed to support the implemented design. The board will contain a Xilinx Virtex-II Pro

FPGA [Xil02], which has both FPGA logic and an IBM PowerPC 405 (PPC) [PPCO] on-chip.

The board will also contain whatever other peripherals are needed for the application, such as

additional RAM. At Malardalen University, a custom board has already been designed for use in

the Gurkh project development. At MIT, the Memec Design Virtex-II Pro Development Kit

[Mem03] is being used.

The application is compiled into machine code (or, if the processes are written in VHDL,

they are synthesized and implemented on an FPGA). The machine code must run on the PPC.

The RavenHaRT Kernel, which is the main focus of this thesis, is written in VHDL and

implemented on the FPGA. When the application must make system calls, instead of making

them to a traditional software operating system running on the PPC, it makes them to the

RavenHaRT Kernel. The RavenHaRT Kernel manages the different software processes, and

determines what tasks the PPC should run at any given time.

The final part of the system is the Safety Chip. The Safety Chip will monitor the other

parts of the system (application and RavenHaRT Kernel) to ensure that all processes execute

within their specified execution time limits. It raises a flag if unexpected system behavior

occurs. The Safety Chip is developed from the formal models of the system. Using software

tools, the necessary characteristics of the formal models can be extracted and VHDL for the

Safety Chip can be generated. The Safety Chip should know what all valid system states are as

well as system timing properties, so that it can identify any unexpected behavior, from any

source. The design of the Safety Chip is still under development.

10

Chapter 3
Software Development in Ada

As discussed in [Shaw0l], real-time software languages need features that other

languages do not have. These include support for handling time and concurrency and exception

handling. Also, the code produced should be predictable. The language must be able to perform

actions such as setting and reading a timer, and delaying a task until an absolute or a relative

time. It must support communication and scheduling among parallel processes. Predictability

should exist with respect to both timing and functional behavior.

Ada was specifically developed with these features in mind. It has been proven effective

over years of use, and is therefore a good choice for safety-critical embedded systems,

particularly when a subset is used. This chapter discusses the features of Ada in general, and

then the Ravenscar profile specifically.

3.1 Ada in Real-Time Safety-Critical Systems

Information concerning the history and use of the Ada language can be found at the Ada

Information Clearinghouse [Ada]. In the mid-70s, the United States Department of Defense

sponsored a competition to design a software language to be used in their applications. The

result was Ada83, which became accepted as an ANSI standard in 1983. Ada95 was later

released as an update to the language, with additions such as object-oriented properties and more

tasking functionality. When Ada95 was approved by the International Organization of Standards

(ISO), it became the first object-oriented language to be accepted as a standard.

Ada was designed to be a widely applicable programming language, with a large range of

functionality. It was also designed to be highly reliable; errors are automatically caught in

compiling, linking, and in the Ada Run Time Environment [Rei97]. The compilers undergo

thorough testing using the Ada Compiler Validation Capability test suites so that they are

verified to work correctly. Ada is structurally safe, and unlike other commonly used languages

like C and FORTRAN it is type safe. It also has well defined semantics. These are all desirable

features for a language used in safety-critical systems, but they still do not ensure a predictable

system. To achieve this goal, Ada was designed to be easily reduced into subsets, or profiles. A

11

profile restricts the features of the language that can be used. When chosen correctly, a profile

can retain the needed functionality for a specific system and make the system predictable. More

information on how to use Ada can be found in [Ada99].

When compared to other languages, Ada has been shown to be highly suitable in safety-

critical applications [CGW91]. It satisfies many of the requirements for safety-critical systems,

such as those listed above. It has also shown to be more cost-effective in terms of both time and

money when compared with C [Zei95]. Ada has been used successfully in many projects,

including the Boeing 777, the New York City Subway system, various banking systems, and

space systems designed by NASA and the European Space Agency [Ada]. Since it has proven

through use to improve reliability and reduce software and maintenance costs, it is an ideal

choice for safety-critical systems and the Gurkh project.

3.2 The Ravenscar Profile

Despite the success of Ada, it has many features that are complex and are not predictable.

Hard real-time systems must be proven to be predictable. Ada can be restricted into profiles, that

when used produce predictable, deterministic code. Restricted profiles can provide the following

benefits [BDR98]:

* increased efficiency from removing features with high overhead

" reduced non-determinacy

* simplified RTK

e only has features with a formal underpinning

* only has features that allow timing analysis

To allow for tasking and concurrency in safety-critical applications, a profile was defined at the

Eighth International Real-Time Ada Workshop in 1997 for high-integrity, efficient, real-time

systems [BDR98]. It is called the Ravenscar profile.

The Ravenscar profile allows for systems that use tasking to express concurrency. The

complete definition of the Ravenscar profile is found in papers such as [BDR98] and [BDV03],

but the characteristics important to the kernel design are summarized here. In a system using

12

Ravenscar, there are a fixed number of tasks. Tasks cannot be dynamically allocated, and they

cannot terminate, so each is designed as an infinite loop. Each task has a single invocation event,

but can be invoked an infinite number of times. Task invocations can either be time-triggered

(periodic delays) or event-triggered (started by a signal from another task). Tasks can only

interact through shared data. Either preemptive or non-preemptive fixed priority scheduling can

be used, and the system can be analyzed for both functional and timing behavior. [BDR98]

The Ravenscar profile uses the Real-Time package instead of the Calendar package, so a

high-fidelity real-time clock can be used. Only absolute delays are used for periodic time-

triggered tasks: the delay until statement is valid, but the delay statement is not.

Protected Objects are used to share data between tasks, and to synchronize tasks.

Protected Objects may have three different parts, the Protected Procedure, the Protected

Function, and the Protected Entry. Protected Objects may have multiple Procedures and

Functions, but in Ravenscar they may only have one Entry. The Entry is used for event-triggered

task invocation. A task may become suspended when calling an Entry, depending on the value

of a Boolean Barrier signal. When this occurs, the task is put on an Entry queue. In Ravenscar,

only one task is allowed to queue on an Entry at a time, so a simple signal can be used instead of

an actual queue. When a different task calls a Procedure routine, the Barrier signal of that

Protected Object is checked before it exits. If a task is on the same Protected Object's Entry

queue, and the Barrier value is correct, the remainder of the Entry code is executed in the

context of the task calling the Procedure, and the task suspended on the Entry queue is released.

The Procedure and the Function have the same properties in terms of timing behavior and

execution handling, but the Function does not evaluate the Barrier or change the value of it and

therefore cannot release a task on the Entry.

All tasks and Protected Objects have priorities, and scheduling of tasks in the

RavenHaRT Kernel is done using priority based preemptive scheduling. For tasks with the same

priority, FIFO within priority is used. Protected Objects have Ceiling Locking. This means that

any task able to call a Protected Object must have a priority equal to or lesser than the priority of

the Protected Object. When the Protected Object is called, the calling task's priority is raised to

that of the Protected Object. This ensures that once one task has access to a Protected Object, no

other task is capable of performing an interrupt and then accessing that same Protected Object.

13

This prevents deadlocks between tasks using the same Protected Object. This is also the only

case where task priority is allowed to change.

Static timing analysis can be performed on code written using the Ravenscar profile, and

so can schedulability analysis. Use of the profile allows for the design of deterministic hard real-

time systems. Additionally, the Ravenscar profile can be mapped to a small RTK that can be

used instead of Ada's full run-time system. This small RTK would only support the restricted

behavior of the Ravenscar profile. The RavenHaRT Kernel is such a kernel, and will be

described in more detail in the following chapters.

14

Chapter 4
Hardware Real-Time Kernels

Real-time embedded systems have strict timing requirements, and they must be both

predictable and deterministic. This creates a problem when using a traditional software

operating system (OS), particularly when multitasking must be done in a system with a single

processor. The OS itself also runs on the processor. If multiple tasks exist, the OS interrupts the

processor at regular intervals by performing a clock-tick interrupt. When interrupted in this

manner, the processor must stop the task it was running so that the OS can check to see if another

task should be running instead, and then resume. Even if the same task continues to run, the

interrupt still must be made. This results in less processor time for actually running tasks

[Ke103]. Additionally, the time taken for actions such as scheduling varies with the number of

tasks, which makes the system less deterministic.

To save processor time and increase determinism, many of the behaviors of a software

OS can be implemented in hardware. Good actions to place in hardware include: task handling

(such as creation, deletion, and scheduling), synchronization (such as semaphores, flags, and

resource sharing), and timing (such as delays, periodic starts, watchdogs, and interrupts). When

all task management is performed in hardware, scheduling is done while the processor is running

tasks, so scheduling does not occupy processor time. The only processor interrupts that need to

be made occur when a task is actually changing (a 'task-switch' interrupt). This eliminates the

need for clock-tick interrupts, and this change alone can give the processor up to 20 percent more

time for running tasks [Ke103]. This potential speed increase, and the desire for a more

deterministic system, resulted in the decision of implementing the RavenHaRT Kernel in

hardware.

4.1 Summary of Related Work

Other research groups and organizations have implemented hardware RTKs. These

RTKs include FASTCHART (A Fast Time Deterministic CPU and Hardware Based Real-Time

Kernel), FASTHARD (A Fast Time Deterministic Hardware Based Real-Time Kernel), RTU

(the Real-Time Unit), ATAC (Ada Tasking Coprocessor), and Silicon TRON.

15

FASTCHART [Lin91][LS91][LSF95], FASTHARD [Lin92][LSF95], and RTU

[AFLS96][LSF+98][LSF95] are a series of deterministic hardware RTKs developed by research

groups in Sweden under the direction of Lennart Lindh. All three have similar properties.

FASTCHART includes a specialized deterministic processor with its own instruction set as well

as an RTK, while FASTHARD is only an RTK that is designed to be used with almost any

standard processor. The RTU is also a hardware RTK designed similarly to FASTHARD, except

that it can support multiple processors. All of these RTKs are implemented on either an FPGA

or an Application Specific Integrated Circuit (ASIC). Tasks running on these systems can only

have four states: waiting to execute, executing, in delay, and terminated. Therefore the only

task-related system calls are activate, terminate, and delay, and these calls are handled by the

RTKs. Other behaviors of the RTKs include scheduling tasks and performing task switches.

ATAC [Roo91][ATAC95] was originally developed by Joakim Roos, and then further

improved (ATAC 2.0) in conjunction with the European Space Agency. The original goal of the

first version was to move the support for rendezvous from the Ada83 run-time system into a

VLSI coprocessor. However, to reduce the passing of parameters between software and

hardware parts and achieve the desired speed-up, all tasking functionality and support was

incorporated into the hardware. A custom instruction set was developed for interfacing with a

processor. ATAC 2.0 uses an ASIC to implement the complete Ada83 tasking semantic and also

includes semaphores, delay until, priority inheritance, interrupts, and task scheduling among

other functions.

The Silicon TRON [NUI+95] is a VLSI RTK chip. The goal of the design was to speed

up system calls and scheduling. Hardware functions include task management, task-dependent

synchronization, synchronization communication, and interrupt management. Functions such as

timing and system management are still in software. The RTK can work with any processor.

The RavenHaRT Kernel has features similar to these previous designs. The decision was

made to implement it on an FPGA because FPGAs can be easily reprogrammed, as opposed to

using an ASIC or VLSI technology. ATAC provides a good example of how the Ada83 run-

time system can be transferred to hardware; the RavenHaRT Kernel is similar except that it only

supports the Ravenscar tasking profile of the updated Ada95 language. Even though

FASTCHART, FASTHARD, and RTU are not Ada-specific, they show how a system with

restrictions on task behavior works. The RavenHaRT Kernel is even more restricted; tasks

16

cannot terminate, and can only be activated during elaboration. It currently is designed to

support single processor systems, but future work may make it capable of supporting multiple

processors. Investigating the functionality of the RTU would help with this design.

4.2 Evaluation of Hardware RTKs

When implementing an RTK in hardware, time can be saved in scheduling and with the

removal of clock-tick interrupts, but the overhead from buses, hardware arbitration, and

hardware interrupt latency is important [AFLS96]. For example, a scheduler in hardware saves

processor time and is more deterministic, since only the time for the task-switch needs to be

considered, not the time for the scheduling itself. However, the time for the task-switch is bus

dependent.

Several of the RTKs mentioned in section 4.1 have been examined for timing, and

compared with similar software systems. A hardware coprocessor (a scheduler only) based on

the RTU underwent benchmarking tests [FurOO]. The coprocessor was located on a PCI bus, and

the results showed that the PCI bus accesses were costly in terms of time. However, this

problem could be solved by putting the coprocessor in a better location, such as integrating it

with the processor, or putting it directly on the processor bus. Overall, the comparison showed

that speed-ups were due to the faster hardware scheduler and lack of clock-tick interrupts, while

system calls were still quicker in software because of the slow bus accesses.

Similar results have been found examining multiprocessor systems, such as the SARA

system [SAN+03][LK99]. The SARA system uses an RTU similar to the one described in

section 4.1. The hardware RTK was up to 2.6 times faster than the same implementation in

software (using Assembler, C and C++). Comparisons were made for creating tasks, task-

switch, communication bandwidth, and communication latency. Results showed that creating

tasks was faster in hardware, and in software the time also increased with increasing number of

tasks. Task-switch time was faster in hardware. Communication bandwidth was quicker in

software between two tasks on the master node, but faster in hardware for communication across

node boundaries. Communication latency was consistent in hardware, and in software was either

slower or faster depending on the location of tasks.

17

The RavenHaRT Kernel handles scheduling, task creation and delay, sending interrupts

to the processor for a task-switch, and it keeps track of resource use (Protected Objects) for

monitoring and timing analysis. All of these actions are more deterministic in hardware, so the

kernel has been implemented in VHDL. Bus access time is an issue, but as mentioned in chapter

2, the kernel will be implemented on a Xilinx Virtex-II Pro, which contains both FPGA logic and

an IBM PPC on-chip. This setup allows the kernel to be placed directly on the processor local

bus (PLB), which was one of the suggested improvements in the benchmark tests on other

systems. In the future, the RavenHaRT Kernel may also be used in a multiprocessor system, and

the benefits of using hardware will be advantageous in that situation as well, as shown in the

analysis of the SARA system.

18

Chapter 5
Modeling the Kernel

Formal methods are mathematically based languages, techniques, and tools for specifying

and verifying software and hardware systems [CW96]. They are used to evaluate system

properties, such as functionality and timing. According to [CW96], there are two main

techniques for applying formal methods, model checking and theorem proving.

In model checking, a finite model of the system is created. Then, the model is checked to

see if certain properties hold. The check is done by performing a search of the entire state space.

This can create state space explosion problems in very large systems, although many model

checking tools can handle hundreds of state variables. Model checkers typically use one of two

approaches. The first is temporal model checking, where specifications are given in temporal

logic, and systems are modeled as finite state systems. In the second approach, both the

specifications and the system are modeled as automata. They are compared to determine correct

behavior. Many tools exist today that perform model checking automatically and quickly, and

the process produces counter-examples for when a property fails.

In theorem proving, the system and its properties are expressed as logical formulas.

Infinite state spaces are allowed, and automatic tools exist to aid in analysis. However, even the

automatic tools require human interaction, so the process can be slow and error-prone.

A Ravenscar-compliant kernel was first modeled in previous work [LA03], and this

model was then refined into the RavenHaRT Kernel in VHDL. The model is a collection of

automata in the correct syntax for the model checker UPPAAL. Model checking was chosen to

analyze the system since UPPAAL provides a fast, automatic way to check system properties.

The first part of this chapter provides an overview of the UPPAAL tool, and the second part

describes the kernel model in detail. The third section highlights several of the issues that were

addressed when refining the model into VHDL code.

5.1 UPPAAL

The model checker UPPAAL [Upp] was developed jointly by Uppsala University and

Aalborg University. UPPAAL is a tool for modeling, simulating, and verifying real-time

19

systems. It can be used to analyze systems that can be modeled as a collection of non-

deterministic processes with finite control structure and real-valued clocks [PLO0] [LPY97].

As described in [LPY97], UPPAAL actually consists of three parts: a description

language, a simulator, and a model checker. The model checker checks for invariant and

reachability properties of the system. Reachability testing determines whether certain

combinations of control-nodes and constraints are reachable from an initial configuration.

UPPAAL produces diagnostic traces to show how properties are (or are not) satisfied.

A x>2, C!, x:=0 x>=5 -

y>= 4 , c?, i:1
B B0 B1 iB

Figure 2. Example UPPAAL Automata

Models are created using timed automata, which are finite state machines with clocks.

They communicate through channels and shared variables. All channels and variables are global

in UPPAAL. An example of two UPPAAL automata, A and B, is shown in Figure 2. There are

two clocks, x and y, one channel c, and one variable i. Clocks in LPPAAL are synchronous and

count up from zero. A channel provides synchronization between two automata; the transition

can only be made when both automata can transition. The channel c appears as c! on automaton

A and c? on automaton B. A guard is a condition on either a clock or integer variable that must

be satisfied for a transition to occur. In automaton A, the transition from AG to Al can only be

made if x is greater than or equal to 2 and if synchronization can occur on channel c. Automata

are able to transition when guards are satisfied or channels are valid. If a transition has a guard

and a channel, both conditions must be met for the transition to occur. Assignments can also be

made to either clocks or integer variables. A state can be declared as either committed or urgent;

committed states are marked with a 'c' and urgent states with a 'u'. When an automaton is in a

committed state, time cannot progress if it is possible for control to leave that state, and any

action that occurs must involve that component (the component is 'committed' to continue). An

urgent state is similar to a committed in that if control can leave the state, it must before time

20

progresses, but other actions that do not involve that state (and that happen in zero time) may

occur first [LPY97].

A model is checked by creating assertions. Assertions are statements declaring properties

that are or are not valid in the system. For example, an assertion may declare that a certain

combination of states is never to be reached. Or it may specify valid combinations of states at

certain points in time. UPPAAL automatically checks if all assertions made are true for the

modeled system; it produces counter-examples for those that are not true. A drawback to this

method is that it involves human interaction; the user must determine the list of assertions for

UPPAAL to check. So UPPAAL's check for correct behavior is limited to what the user

believes is correct behavior for the system being modeled.

5.2 The Ravenscar-compliant Kernel Model in UPPAAL

The model of the kernel [LA03] in UPPAAL (Figures 3-9) supports only Ravenscar-

compliant operations. The automata created include the Ready Queue, the Delay Queue, one

Protected Object consisting of a Protected Entry and one Protected Procedure, a System Clock,

and an Idle Task. The Protected Function routine was not modeled since its behavior is almost

identical to that of the Protected Procedure, as discussed in section 3.2. Three tasks are modeled

as well, so a system model can be analyzed.

5.2.1 The Ready Queue

The Ready Queue automaton handles creation of tasks and priority based preemptive

scheduling (described in section 3.2). When tasks are created, they are placed in an array called

RQ. The array is indexed by the task's identification number. For suspended tasks, the array

holds a zero; otherwise, it holds the task's priority.

Figure 3 shows the Ready Queue automaton. Tasks are created by synchronizing on the

channel Runable during the elaboration phase, which is modeled to occur in zero time. During

this elaboration, tasks synchronize on Run as they are created. The variable Tcpu holds the ID of

the task currently running, and Pcpu holds the priority of that task. If a new task of higher

priority is created, it will preempt (on the channel Preempt) the most recent task to synchronize

21

on Run. At the end of elaboration, the highest priority task has synchronized on Run and would

begin to execute. If a task becomes suspended, either by calling a Protected Entry under the

right conditions (see section 5.3.3) or by making a delay until call, it will synchronize on the

channel Suspend. Then the Ready Queue automaton searches through the array RQ to find the

highest priority task to run. Note that this search is done through the use of urgent states

(marked with a 'u' on the state node), so that the process of looping through the array can be

performed without the passage of time.

ir-0, RQ[ir]==0 ir>0, RQ[ir]<pr

Suspend? ir:=ir- 1 ir:=ir-1

ir:=Number Ofrasin,

5 tr:=0, pr:=, ir0, RQ~r> o5 RQ[ir]>r
S9 Run! S pr:=RQ[ir], tr:=i"r -ir:=ir-1 pr:=RQ[ir], tr:=1r 5

Pcpu:=pr p Tcpu:=tr,
Tcpu:=tr, Go? Runq Pcpu:=pr
Pcpu:=pr Pr<Pcpu Runable?

RQ[tr]:- ir:=NumberOfTask,
tr:=PidNoRQ,
pr:=PriRQ

RQ [tr]:-=p

Suspend?
RQ[Tcpu]:=0

Figure 3. The Ready Queue in UPPAAL

5.2.2 The Delay Queue

The Delay Queue automaton, shown in Figure 4, handles delay until calls. Control

remains in state SO until a task makes a delay until call. The task making the call has its ID

stored in PidNoDQ and the time to which it will delay stored in DUntil. The task synchronizes

with the Delay Queue automaton on channel Q. The variable len keeps track of how many tasks

are currently delayed. If none are already delayed, PidDQ is set to PidNoDQ, t is set to DUntil,

and control returns to state SO. If at least one task is already delayed, a new delay until call

brings control to the urgent state S2. If DUntil holds a later time than the value in t, DUntil is

22

placed into the Delay Queue array DQ. Like the RQ array, the DQ array is indexed by the task's

ID. If DUntil represents a time sooner than that in t, the value in t and its associated task ID are

put into the DQ array; the new task and its delay time are saved in the variables PidDQ and t.

This method makes sure that the task with the shortest delay time is always held in the variables

PidDQ and t. The automaton can easily check these variables, to determine when the delay time

is up, without having to access the array DQ.

As described in the previous section, a task making a delay until call will not only

activate the Delay Queue automaton, but the task will also synchronize on the channel Suspend

with the Ready Queue automaton (Ready Queue states SO or S7) so that the Ready Queue knows

that it should not run.

S1

t:=Mn '- 'len>0, DUntil<t

QI PidNL DQ, DQ[PidDQ-1]:=t len>0, Dntil>t
len:.=len+1 I52 DQ[Pid1NoDQ-1]:=DUntil

len> len:=len+1I
Qe? QQE
len==0D5Q

PidDQ:=PidNoDQ, DQ[i]<j,
len:=len+1 GoD? DQ[i]>

t<=Time, DQ [i]== PidDQ:=i+1,

len=-= I:=j t:=DQ[i]
P'E:=Pi S

When! a ak'<elytie i , he taksnhoieswtVual.n h ed uu

len:=Ole Wi:=i+1a

DQ[PidDQ-1]:=C i=0, j:=, Pd Q:=i+1, pQiO Qi-

PE:=PidDQ, DQ=ni] j:=DQ[i]

DQ[PidDQ-1]-

DQi==, 54 5 5 S6 DQ[i]==0,
DQi==,QE! DQKi]> Z9a i:=i+1 iVa

au ad aPidD Qe=i+ ,gi:
i:=+1j:=DQ[i] i:=i+1

ie~max,

DQ[i]>=j

Figure 4. The Delay Queue in UPPAAL

When a task's delay time is up, the task synchronizes with Runable in the Ready Queue
automaton (Ready Queue state SO) so that the Ready Queue knows that it can run again. Also, in

the Delay Queue automaton, the values in PidDQ and t must be changed. If no other tasks are

delayed (len == 1), the Delay Queue automaton transitions from state SO to S3 and then back to

23

SO, and in the process sets PidDQ and t equal to zero. If other tasks are delayed (len > 1), the

Delay Queue automaton takes the path begun by the transition to S4. It must search the DQ

array for the task that will next wake up from a delay. When it finds this task, the task's ID and

delay time are removed from the DQ array and placed in the variables PidDQ and t. The Delay

Queue automaton returns to state SO to wait for the new delay time to be reached, or for another

task to delay.

5.2.3 Protected Objects

Calls to a Protected Object (PO) are handled by automata representing the different

routines in a PO. A PO can consist of one Entry, any number of Procedures, and any number of

Functions. The kernel model includes a PO with one Procedure (Figure 5) and one Entry (Figure

6). A system with multiple Protected Objects would need to be modeled with duplicates of these

automata, with different variable names to distinguish between them (any variable in the pictured

automata with a '1' in the name would need to be changed to have a '2' for the second PO, a '3'

for the third, etc). There would be identical Entry automata for each Entry in the system, and

identical Procedure automata for each Procedure in the system. If Functions are desired as well,

either Function automata would need to be added, or the Procedure automata would need to be

modified to account for the small differences between them.

The Protected Procedure call begins when the task and the Protected Procedure

automaton synchronize on channel Ps. Section 3.2 contained a discussion of Protected Objects

and how they affect task priorities. As mentioned in that section, the task calling a PO will

inherit the ceiling priority of that PO, preventing any other tasks from interrupting it and

accessing the same PO. Changing the calling task's priority is the first activity of the Procedure

automaton. It stores the task's normal priority level in the variable OldTaskPrioPO1, and then

changes the task's priority to the PO's ceiling priority, Ppolc, by changing the priority value in

the RQ array. After that, the Procedure waits to synchronize with the task again, either on UPe

or UPx. UPe represents normal execution of the Procedure, and UPx (followed by UPxe)

handles the case of an exception occurring. In either case, the Procedure must then check if a

task is on the Protected Entry queue (ECount == 1) and if the Barrier variable is set to true

(Barrier == True). If this is the case, the Entry code is executed within the context of the task

24

that had been executing the Procedure code; this causes the task that had been suspended while

calling the Entry to become active again. Finally, the task leaves the Procedure (on either Pe or

Px), and the priority of the task is set back to its original value.

CalingPid1:=Tcpu
8 Barrier==True,

ECount1

PSEf? g

oPO==PO1 S RQ[Tcpu]J=Ppolc?

Figure 5. TpP he PrrtectdPoeur nUPA

UPe?

RQTcepu]:=OldTash throPO1 ECount=0 E 3

Ef? S4 gC
BarriexeTrue,
ECount==1
Ca~ingPid1:=Tcpu

Figure 5. The Protected Procedure in UPPAAL

The Protected Entry call begins when the task and the Protected Entry automaton

synchronize on channel Es. The Entry also changes the value of the task's priority in the RQ

array to be the PO's ceiling priority, but it also immediately checks the Barrier value. If the

Barrier has a value of true (Barrier == True), the Entry executes, with exceptions handled if

they occur. If the Barrier has a value of false (Barrier == False), the task is placed on the

Protected Entry queue (ECount := 1) and the task is suspended. The remainder of the Entry code

can only be executed within the context of another task calling the Procedure as described above,

with Barrier set to true. The task remains suspended at state S5 until the Entry completes in this

manner.

25

52

Figure 6. The Protected Entry in UPPAAL

5.2.4 System Time

Figure 7 shows the clock automaton. The variable Time increments by 1 every time unit.

Time is used for delay until calls, keeping track of execution time of tasks, and for system

verification. The channel Go is used to force transitions on other automata that would not

otherwise be taken.

stop

Go!
Clk:=0, Timne:=Timn-e+1
Clk=1, Time<=Stop Time

Clh-=1

Figure 7. System Time in UPPAAL

26

5.2.5 Idle Task

An Idle Task, show in Figure 8, is also part of the model. It has the lowest priority of any

task in the system. It runs at startup, or when there is no other task available to run. Having an

idle task ensures that there is always a task running.

so Preempt? 51

Tcpu==PidO

Figure 8. Idle Task in UPPAAL

5.2.6 Example Tasks and Verification

Three task automata are part of the model. Each of these automata represents an Ada

task. An Ada program contains a section of sequential code (with no kernel calls), and this code

is annotated with a Best Case Execution Time (BCET) and a Worst Case Execution Time

(WCET). When modeling a task, all of the sequential code is condensed into a single preemtable

state, and the execution time is included in the model. Other sections of an Ada program contain

all calls to the RTK, such as delay until and PO calls, and these calls are included in the

automaton model of a task. They become channels that synchronize with the different parts of

the kernel model described above. An example of a task that repeatedly makes delay until and

protected procedure calls is shown in Figure 9.

Verification of the model was performed using UPPAAL. Properties to be verified are

specified using a formal syntax. There are four main properties of the model that must always be

true for a single processor system:

1. Only one task may execute the body of a given PO at a given time.

2. A task on the Entry queue will always execute if Barrier == True when a Protected

Procedure has finished executing.

3. When a task's delay is up, Time must be larger than or equal to what the tasks delay

time was.

4. The highest priority task available to run will synchronize with the Run channel in the

Ready Queue automaton.

27

These constraints were turned into queries for UPPAAL. UPPAAL then checked for safety and

liveness of the system, and verified that all properties were satisfied. In addition, all possible

system states were checked, and a total of 9000 verifications were done, with the model running

until Time equaled 120.

Runable!

Tc :=Tc1+Time-Al Run? Tcpu==Pid1

Figure 9. Task in UPPAAL

5.3 Issues in Refining the Model to VHDL

Analysis of the kernel model in UPPAAL provides a thorough description of what both

the behavioral and timing properties of the RavenHaRT Kernel should be. To implement the

RavenHaRT Kernel, the model had to be refined into VHDL code. The VHDL kernel should

obey the same properties that have been formally verified in the model. However, the UPPAAL

model is meant to be an abstraction of the real design. Certain features of UPPAAL were used in

the model, but the way in which they were used create behavior that cannot be implemented in

VHDL. These features include channels and urgent states, and also the method used for how

tasks are allowed to interact with the kernel automata. This section discusses the different issues

28

that arose when determining how best to refine the model into VHDL, and describes how the

issues were handled.

5.3.1 Timing

A model in UPPAAL is an abstraction of the complexity of the actual implementation.

One of the most critical mappings is the modeling of time. UPPAAL uses a unitless clock,

which for the purposes of this discussion will be referred to as UCik (it was the variable Time in

Figure 7). UCik counts up from zero. It is an abstraction of the Ada clock, which keeps track of

real time and increments at a user specified resolution. The Ada clock and UCik are used for

delay until calls. In Ada code, a task would delay until a particular point in time. In UPPAAL, a

task would delay until a UClk number value, such as, delay until UClk equals 10. UPPAAL also

uses UClk in analysis. As mentioned earlier in the chapter, assertions can be checked at certain

points in time. Verification of the model included checking that the system state is valid at

certain values of UClk.

In addition, automata transitions in UPPAAL occur in zero time. They do not need to

transition with respect to any clock. An infinite number of transitions can occur between each

increment of UClk, and UClk does not advance regularly with respect to real time. For example,
in the model, a task may be created and add itself to the RQ array; a second task may add itself;
the task with the highest priority will be found, begin to run, and possibly make other calls, all

before UClk advances. Urgent states even force multiple transitions to occur before UClk

changes. Only one transition might occur between changes in UClk, or 100 might; a transition

does not take a finite amount of time with respect to UClk. This behavior of the model is
consistent with respect to the critical timing behavior that the model captures, but it cannot be
implemented.

The RavenHaRT Kernel is a collection of synchronous state machines, and since it is
implemented in VHDL, it has a different type of clock. The main clock is a clock that is on the
FPGA (referred to as FClk). FClk controls when the logic on the FPGA is evaluated; each state
machine is evaluated simultaneously and may transition at most once each clock cycle. A clock
can be created in VHDL that captures the behavior of UClk. It is essentially a counter, called

29

VCounter, that keeps track of time at the same resolution as specified in Ada, and it is used to

check time for delay until calls.

Analysis of the RavenHaRT Kernel must consider both when VCounter changes and

when FClk changes. Various logical equations are calculated in between each rising edge of

FClk. It is necessary to determine that all the needed logic can physically be evaluated on the

FPGA, and that it is evaluated accurately, during each cycle of FClk. Xilinx tools such as ISE

Foundation are used to analyze the VHDL code. The tools determine what speed FClk can run at

to successfully evaluate the logic.

Unlike UClk, VCounter does increment regularly with respect to real time, so that while it

serves the same purpose as UClk, the system state at certain values of VCounter may not

correspond to the model's system state at the same values of UClk. Each state machine

transition takes a finite amount of time. Because of this, certain timing behaviors in the model

cannot be followed in the implementation. One of these behaviors is the use of urgent states; the

way in which they were used in the model cannot be implemented VHDL. The model of the

Delay Queue was described in section 5.3.2 and is shown in Figure 4. When the automaton

performs a search to find the task with the smallest delay time, it loops through many states. As

it does this, variables are assigned, evaluated, and reassigned. In VHDL, a signal can be

assigned a value during one FClk clock cycle, but then that signal cannot be used until the next

clock cycle. All of the states (except SO) in the Delay Queue model are urgent, so in the model

the search always completes before UClk advances. Since no time passes, tasks are able to wake

up from a delay exactly when they are supposed to. However, in the VHDL implementation,

FClk must advance at each state machine transition so that the signals are used and evaluated

appropriately. VCounter is advancing as well, at a rate equal to or slower than FClk. Since the

implementation of VCounter is dependent on FClk, it may (or may not) advance while the Delay

Queue is searching for a task. The result is that a task may awaken after its specified time.

Fortunately, in this case the difference in timing between the model and the actual

implementation is not a problem, because the delay until command dictates that a task will delay

at least until the specified time. Waking after that time is acceptable [BW98]. There may be

other cases similar to this, where there are discrepancies between UClk and VCounter, and they

must be evaluated thoroughly to ensure that the timing behavior of the implementation is still

acceptable.

30

5.3.2 State Machine Synchronization

UPPAAL uses channels and shared variables to model communication between

automata. These communication models need to be translated into actual VHDL constructs.

Channels do not exist in VHDL, but can be created by setting a signal to only be true when the

two state machines can transition, and then using that signal as a guard in each state machine.

An example UPPAAL automaton was shown in section 5.1, in Figure 2. In that example, a

channel c and the guards x and y control the transitions from AO to Al and BO to B . The

corresponding VHDL code for this transition is shown in Figure 10.

c <= '1' when(stateA=AO and stateB=BO and x>=2 and y>=4) else '0';
...... // channel c is now a guard
if(clk'event and clk=1) then

case stateA; // state machine A
when AO => // when in state AO

if(c=l) then / if guard c is true (c==1)
stateA <= Al; // can transition to AO
x <= 0;

else // if guard c is not true (c==0)
stateA <= AO; // must stay in AO

end if;

end case;
case stateB; // state machine B

when BO => // when in state BO
if(c=l) then // if guard c is true (c==1)

stateB <= B 1; / can transition to BO
i <= 1;

else // if guard c is not true (c==0)
stateB <= BO; // must stay in BO

end if;

end case;
end if;

Figure 10. VHDL Code for part of Figure 2

Channel c is now a guard that equals 1 only when control of state machine A is in state

AO, control of state machine B is in state BO, x is greater than or equal to 2, and y is greater than

31

or equal to 4. Otherwise, c equals 0. The guard c is set asynchronously and will therefore

change whenever its conditions change, but the state machines can only transition on the rising

edge of the clock. Both state machines, when in states AO and BO, check to see that c is equal to

1 before they transition.

5.3.3 Interface With Tasks

As described in section 5.2, tasks are modeled so that a complete system model can be

analyzed. The tasks are modeled as if they behave in the same way as the kernel. The tasks and

kernel can synchronize on channels, and they can access shared variables. This system makes

analysis of the model easier, but it cannot be implemented. Tasks will be Ravenscar-compliant

Ada code running on the PPC, and the kernel will be located on an FPGA. Figure 11 shows how

the various components are connected. After compilation, the code communicates with the

RavenHaRT Kernel over a bus by sending instructions and parameters. Instructions are any

system calls that the kernel handles, such as task creation, or delay until. The RavenHaRT

Kernel has a specialized instruction set, so the Ada compiler needs to be modified in order to

produce the right instructions in the right format. Parameters are defined as any variables that

both the tasks and the RavenHaRT Kernel use, such as a task's priority and ID number; this data

must be passed to the kernel over the bus. The bus protocol, instruction set, required parameters,

and methods for creating the instructions will be discussed in the next chapter.

External
RAM

Other
Peripherals

Figure 11. Components Connected by a Bus

32

Chapter 6
The RavenHaRT Kernel

This chapter presents a detailed description of the code for the kernel in VHDL, including

the interface and instructions used for communicating with the PPC. Examples of pseudo-code

are given to show what the corresponding software behavior should be for given situations.

The RavenHaRT Kernel is designed to support code written using the Ravenscar profile

of Ada, with an appropriately modified Ada compiler, in a single processor system. As

described in chapter 3, intertask communication is done via Protected Objects (POs) when using

the Ravenscar profile. Tasks are allowed to make calls to POs and to use the delay until

statement, and the kernel supports these actions. It determines what task should be running using

priority based preemptive scheduling. To do scheduling correctly, the kernel keeps track of

delays that have been made and all calls made to POs. PO calls can be calls to the Protected

Entry, Protected Procedure, and Protected Function.

Task Task ---.................. Task

Interface to

47 PPC
.......................... ..

Interface State FPGA

Task
Arbitratio

Protecte
Objects: Ready Delay

Procedures Queu Queu
Functions,

[VCount~

Main Kernel

Figure 12. Architecture of Kernel and Application

33

Figure 12 shows the architecture of the kernel, and how it relates to the application. The

application level involves everything above the dividing line between PPC and kernel. At the

top are the software tasks, which are compiled code that has been loaded onto the PPC. Below

that is the interface to the kernel, where instructions which are based on the compiled code are

sent to the kernel, and where data from the kernel (such as what task to run) is read. This block

may eventually consist of the modified Ada compiler, but is still under development.

The different components inside the FPGA that comprise the kernel are listed in Table 1.

The first column shows the name of the kernel component that corresponds to the different

FPGA blocks in Figure 12. The second column indicates the name of the piece of code the

routines are located in, as well as where the code can be found in the Appendix. The third

column briefly summarizes the behavior of that component.

There is one more important VHDL file that is used by all of the kernel components. It is

a package file called myvariables.vhd (Appendix A.8), and in it all constants are defined, as well

as the state types and state names for most of the state machines. Here, values such as the

number of tasks or Protected Objects in the system can be changed. Also located in this file are

all the bit sequences that are the instructions the kernel expects to receive for each command.

Values in this file can be changed, if, for example, a kernel that can handle more tasks is needed.

However, the FPGA would then need to be reprogrammed.

The following sections of this chapter describe each piece of the VHDL code, including

how it was designed, how it functions and how it should be used. Most kernel tests were

performed on a kernel with four tasks and four POs, so those values are used throughout this

chapter. A diagram of each state machine in the kernel is shown. Note that in each diagram,

both conditions and signal assignments are shown on many state transitions. Any assignments

occur only after all transition conditions have been met.

As mentioned in section 5.3.3, a bus is used for communication between the kernel and

the compiled tasks running on the PPC. The compiler will be altered in a way such that the

compiled code creates the correct instructions for the kernel, and so that the PPC appropriately

responds to data provided by the kernel. For simplicity, the 'compiled task code running on the

PPC' will in this chapter be referred to just as 'tasks'.

34

Interface State interfaceppc.vhd Handles PPC instructions, writes to data

Machine (Appendix A. 1) registers for PPC to read, generates PPC

interrupts

Main Kernel kernelinternal.vhd Connects internal kernel components

Functions (Appendix A.2) together

Ready Queue rqstateandramandarbit.vhd Ready Queue routines; creation of tasks,

rq_ram.vhd scheduling, maintenance of task

rqstate.vhd priorities and their status

arbitraterq_ram.vhd

(Appendix A.3)

Delay Queue dq_stateandram.vhd Delay Queue routines; tracks task delays

dq_ram.vhd

dq_state.vhd

(Appendix A.4)

VCounter timer.vhd Manages signal VCounter (used by

(Appendix A.5) Delay Queue)

Protected Objects multipo.vhd All Protected Object routines

po-one.vhd

channelcontrollerpo l.vhd

entry.vhd

procfunc.vhd

(Appendix A.6)

Task Arbitration arbitrate cpu.vhd Works with Ready Queue and POs to

(Appendix A.7) help determine what task should be

running

Table 1. Kernel Components

Examples are given in each section below for what code would need to be running on the

PPC to send and receive information to the kernel. These examples are intended to be pseudo-

code. They include information on what commands and parameters to send in certain situations.

35

Component Code Behavior

They also demonstrate the handshaking between the kernel and the PPC, since after commands

are sent the task running must usually wait for a status signal from the kernel before it can

proceed. Note that the examples assume that the correct, expected status will be sent, and do not

include example code for handling a status value that shows otherwise (although this would be

needed in the actual implementation). Also, the examples do not show how the task would

recover if it receives an interrupt after sending a command and does not receive a status message

indicating that command has been finished. Whenever the task resumes, it would need to resend

the command, so additional loops would be needed in the compiled task code so that action

occurs. This handshaking behavior will be explained in more detail in section 6.1.

6.1 Interface

The interface code really consists of two different parts. The first handles reading from

and writing to registers for communication over the bus (called BISM, for Bus Interface State

Machine). The second handles the high level acknowledgement and processing of instructions

and data read from these registers, and the generation of any interrupts to the PPC or other data

that will need to be placed in registers for the tasks to read (called KISM, for Kernel Interface

State Machine).

csn==O
read or write to address
ackn=O

waitstate ackstate

cs n==1
ack n=1

Figure 13. Bus Interface State Machine

The bus has a 32-bit input register (din) and a 32-bit output register (dout). The BISM,
shown in Figure 13, has only two states, waitstate and ackstate. When in waitstate, the

36

BISM waits for the running task to provide an address, and the task either sets the write n signal

low if it wants to write to the bus or high if it wants to read from it. The address indicates which

hardware register it will read from or write to. In order for this read or write to occur, the chip

select signal csn, set by the task, must be low. Figure 13 does not fully show all of the actions

taken for the different possible reads and writes. For a read, the appropriate data must be placed

in the specified register for the PPC to read. For a write, the kernel must read the data the PPC

has placed in the specified register, and follow through with any commands that data implies.

After a read or write is performed, the output ack-n is set low by the BISM and the BISM

transitions to ackstate. Setting ack n low provides an acknowledge signal to the task indicating

that the read or write has occurred. This acknowledge must be sent for both a write and read

since the PPC is the bus master, and must know that either the data it wanted to write has

actually be received by the kernel or that the data it wanted to read is available.

There are currently eight registers, and they are shown in Figures 14-21 with the

corresponding addresses the VHDL code uses to uniquely identify the registers. The address

values correspond to the actual location in memory the registers are located. All registers have

only one possible configuration, except for the Lower Parameter/Barrier Register, which will

contain different information in the different cases shown. In each figure, the numbers represent

the number of register bits needed for representing that register's information. The figures

assume a system with four tasks, four POs, and eight priority levels. The least significant bits of

the register should be used when not all 32 bits are.

27 5
Don't Care Command

Figure 14. Command Register (Input), Address 00000100

31 1
Don't Care Ack

Figure 15. Interrupt Acknowledge Register (Input), Address 00010000

32
Higher Bits of Delay Until Time

Figure 16. Higher Parameter Register (Input), Address 00001100

37

Following a Create Command:

27 2 3
Don't Care TaskID Task Priority

Following a SetFreq Command:

24 8
Don't Care VCounter Frequency

Following a PO Command:

27 3 2
Don't Care CeilingPrio PO ID

Following a DelayUntil Command or a Barrier Request:

32
Lower Bits of Delay Until Time / Barrier Values

Figure 17. Lower Parameter/Barrier Register (Input), Address 00001000

29 3
Don't Care Status

Figure 18. Status Register (Output), Address 00010100

30 2
Don't Care Task ID

Figure 19. New Task ID Register (Output), Address 00011000

32
Lower Bits of Kernel Time (VCounter)

Figure 20. Lower Time Register (Output), Address 00011100

32
Higher Bits of Kernel Time (VCounter)

Figure 21. Higher Time Register (Output), Address 00100000

The KISM acts as an interface between the bus registers and the main functions of the

kernel itself. This state machine is shown in Figure 22. It has 11 states, iO through i10. It waits

in state iO until a task sends a new command to the Command Register. All of the valid

38

commands are listed in Table 2 with the expected bit sequence that defines that instruction. The

KISM knows when a command is received because the BISM has set the signal newcmd to 1.

The KISM then knows that there is valid command data held in cmd and so it enters state i3. In

state i3, the KISM waits for the task to send data to the Parameter Register if there is data

associated with the received command. Most commands only have enough associated data to

use the Lower Parameter Register; the exceptions are GetTime and FindTask, which have no

associated data, and DelayUntil, which must use both the Lower and Higher Parameter Registers.

The KISM is aware of these circumstances. If the values in cmd indicate either the command

GetTime or FindTask, it proceeds directly to state i4. Otherwise, it waits in state i3 until valid

data is placed in the Lower Parameter Register. It knows this has occurred when the BISM sets

the signal newparam low high. If the values in cmd do not indicate the command DelayUntil,

the KISM goes go state i4; otherwise, it goes to state i5 to wait for data to arrive in the Higher

Parameter Register, which it knows has occurred when BISM sets the signal newparamhigh to

1. Then it finally proceeds to state 14.

Pcpu!=N
Pcpu=Pc
status=N

S Tcpu!=NTcpu

T interrupt=1
i

interrupt ack==1 taskout==1
Tcpu=NTcpu
Pcpu=NPcpu
newtask=NTcpu stat-o

A

Pcpu
:pu
OSTAT

ut==1

new -cmd==1 - cmd-=DelayUntil
Tcpu==NTcpu-*(i new param ow=1
nterrupt=0

cmd==GetTime OR FindTask
OR

(new-param low=1 AND cmd==other)

i5

crdmetTimne new-param high==1

__status=CMDDONE
OR
cmd==unknown
status=BADCMD if(cmd== eate)

create1
kernelstatus==1 elsfdcmd==delayuntil)

status=CMDDONE d6layuntil=1
create=O etc...

delayuntil=0 i6 _ et==1
etc...status- GETBARR -

i8
110

new-paramlow==1 stat_out==1
barrier=param Iow(POld)

barrierNew=1- 9 4

Figure 22. Kernel Interface State Machine

39

After a task sends a command (and possibly a parameter), it must wait for the kernel to

respond by placing a message in the Status Register. Messages that can be put in the Status

Register are listed in Table 3. This way, the task knows if the command was carried out, or if

something else occurred. The KISM places the value in the Status Register, and then the BISM

signals back to the KISM by setting stat out to 1 when the task has completed the read of the

Status Register. Figure 23 shows the handshaking that occurs between the PPC and the kernel

for a typical command sequence. It shows how each PPC read or write must be acknowledged

by the BISM, and how the PPC must receive a valid status after each command sequence before

continuing.

Command Instruction Bits

Create 10000

DelayUntil 00001

GetTime 01101

SetFreq 01110

FindTask 01111

FPs 00010

UPe 00011

UFe 10001

FPe 00100

UFPx 00101

UPxe 00110

UFxe 10010

FPx 00111

Es 01000

UEb 01001

UEe 01010

UEx 01011

Ex 01100

Table 2. Commands and Instruction Bits

40

PPC

Status Register Bits

No Status 000

Bad Command 001

Command Done 010

Barrier Request 100

Table 3. Status Signals

command

acknowledge

parameter

acknowledge
4-

status
4 --

acknowledge

if no status

resend command- 10

Kernel

time

Figure 23. Handshaking Between PPC and Kernel

In state i4 the kernel begins to carry out the received command. If the command is not

valid, it sends the message 'Bad Command' to the Status Register. If the command is a GetTime

command, the current time if the kernel counter VCounter is written to the Higher and Lower

Time Registers, the status is set to 'Command Done', and control returns back to iO. For all

other commands, the appropriate signals are sent to other parts of the kernel, and the KISM

transitions to state i6. It waits here until one of two actions occurs. A PO may make a Barrier

41

request, which will be described in more detail in the PO section below. When this happens, the

status is set to 'Barrier Request', and the KISM waits for the task to write the Barrier values to

the Lower Parameter Register. Since the Lower Parameter Register is being used, two important

items must be noted: values must be written for all 32 bits, even those that do not correspond to a

valid PO (zeros should be used in this case), and no more than 32 POs can be used in the system

without changing this code. When the Barrier values have been received, the KISM returns to

i6. The only other way to leave state i6 is when the main section of the kernel sends a signal

indicating the command has been completed. Then the KISM writes 'Command Done' to the

Status Register, goes to state i7 to wait until it knows the task has read the status, and then

returns to iO.

The kernel is able to interrupt the PPC for a task-switch using a dedicated interrupt

signal. The KISM generates this interrupt signal. It keeps track of what task is currently

running, and what its priority is. It is alerted when the kernel changes the priority of a task, or

finds a task to run of higher priority. These changes are only handled in state iO. This ensures

that once a command is sent to the main kernel routines, it will not be interrupted. The task that

sent the command will also always have the opportunity to read the status when a command has

been completed before it receives an interrupt signal; this is done by checking that statout is set

to 1 before transitioning to iO as described above. However, since new commands are also

looked for in iO, it may happen that the task sends a command at the same time an interrupt

occurs. The task must assume that the command it sent has not been done unless it receives the

'Command Done' status. So, if the task sends a command and the PPC receives an interrupt

before the status is set to 'Command Done', the task must resend that command whenever it

becomes active again.

The priority of a task may change because the priority was raised to the ceiling priority of

a PO it calls. This does not create an interrupt because the task does not change. When the task

itself changes, which may occur because a task wakes from a delay and has higher priority than

the one running, an interrupt is sent to the PPC and the KISM transfers to state i1. The PPC must

first send an interrupt acknowledge signal to the Interrupt Acknowledge Register. When this

happens, the ID of the new task is put in the New Task ID Register and the KISM transfers to

state i2. Once the New Task ID Register has been read, the KISM returns to iO to await the next

command or interrupt.

42

6.2 The Main Kernel

The rest of the kernel code is considered to be the 'main' kernel. As mentioned above,

the different parts of the main kernel are connected in the code kernelinternal.vhd, and then the

main kernel is connected to the interface code. In addition, several signals are arbitrated here.

The kernel status signal is set high if any of the lower level routines have set it. This signal

indicates that any command made has been completed. Also, all of the signals from the multiple

POs in the system are handled internally as an array of data. When a PO is accessed, the ID of

the PO (POId) to be accessed enters the kernel as parameter data. The KISM passes POId down

into this top-level main kernel code, so the correct PO signals are selected and accessed. Also,
two channel signals are defined here. Channels are implemented in the kernel as described in

section 5.3.2. The channels defined here, QE and SuspendTask, have dependencies on state

machines in different pieces of lower level code, so they must be determined at this level. The

uses of these channels will be described in later sections.

6.3 The Ready Queue

The Ready Queue keeps track of all tasks. It determines what tasks are capable of

running, and makes sure the highest priority task is sent to the interface to request to be run. The

Ready Queue state machine (RQSM) manages all of the tasks and acts as a scheduler. It has

three main branches: one to create tasks and store their data, one to search for a task to run, and

one to acknowledge and revalidate newly awakened tasks. The RQSM is shown in Figure 24.

When the system first starts up, an elaboration phase occurs. The elaboration phase

occurs before any 'real' tasks start running; code is run on the PPC that tells the kernel what

tasks exist in the system. The kernel must know each task's ID number and its priority. The first

task should be task number one, the second task number two, etc. Task zero is reserved for the

null task. Each task's information is sent individually to the kernel through the use of the Create

command. First the instruction for Create is sent, and then the ID and priority information are

put in the Lower Parameter Register.

43

create==1 QE?
r1)" Q-addr=TaskD RQen=1

R assign = {TaskPrioTaskValid) RQ-addr=PE

RQ_ n=1
RQ e=1 RQ
status 1

status=O

rO

Suspend?
tr=O
pr=O
ir=NumTasks
RQen=1

FindNew? addr=Tcpu
tr=O

pr=0
ir=NumTasks

r3

RQ ack==1
RQ en=1
RQ we=1

RQ_assign={RQread,}

r4 -

ir>O
RQen=1
addr=ir

RQack==1
RQ_read(5:1)==O
OR RQ-read(O)==O
ir- r5

~r2

RQ ack==1
RQread(5:1)<=Pcpu

RQ en=1
RQwe=1

_assign={RQ_read(5:1),1)

RQack==1
RQ read(5:1)>Pcpu
RQen=1
RQwe=1
RQassign={RQread(5:1),1}
NTcpu=RQ addr
NPcpu=RQOread(5:1)

status=O

r8

ir==0
NTcpu=tr

Pcpu=pr
tatus=1

ir==0
NTcpu=O
NPcpu=O
status=1

r6)

RQ ack==1
RQ-read(5:1)>O
AND RQ-read(0)==1
pr=RQ read(5:1)
tr=addr
ir-

ir>O RQack==1
RQ en=1 RQ read(5:1)<=pr
addr=ir OR RQ read()==O

ir-- RQack==1
RQread(5:1)>pr

AND RQread()=1
r7 pr=RQ read(5:1)

tr=addr
ir--

Figure 24. Ready Queue State Machine

For a system that allows four tasks (including the null task) and up to eight priority levels

(including zero, which is also reserved for the null task), the Lower Parameter Register holds the

task's priority in the lowest three bits and the task's ID number in the fourth and fifth bits (as

shown in Figure 17). To create task of ID number two that has a priority of four, the following

code sequence would be used:

Write Create, Command Register
Write Ox0000014, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register

44

During elaboration, the RQSM waits at state rO until it receives the Create command

(create == 1). Then, it transfers to state ri and writes the task data that is in the Lower

Parameter Register into the Ready Queue RAM (RQ_ RAM). Simulating RAM in VHDL

provides a good method of storing data while minimizing the amount of space needed on the

FPGA. To access a task's data in the RQRAM, it is addressed with its ID number. The total

number of tasks in the system, including the null task, should always be a power of two.

Following this rule will ensure that the number of bits needed to define all ID numbers actually

corresponds to valid tasks, and valid RQRAM locations. The RQ RAM has one enable signal

and one write enable signal, both of which are enabled when high. For each task, the RQRAM

stores whether or not it is valid to run in the lowest bit; the remaining bits store the task's

priority. The RQRAM is first populated during the elaboration phase, but it can also be altered

during normal kernel operation. For example, when a task becomes suspended, its valid bit is

changed from 1 to 0. Also, when a task has its priority raised to the ceiling priority of the PO it

is calling, the priority for that task is changed in the RQRAM.

The clock counter VCounter is also set during elaboration, and that will be discussed in

section 6.7. The last action of the elaboration phase is for the elaboration code to tell the kernel

to find the first task to run using the FindTask command. Whenever the kernel finds a new task

to run, an interrupt is made, even if no task is currently running. The FindTask command has no

parameter, and the code for using it, including handling the interrupt, is as follows:

Write FindTask, Command Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register
--- Interrupt to PPC here ---
Write OxOOOOOOO 1, Interrupt Acknowledge Register
Read NextTask, New Task ID Register

When the FindTask command is made, the channel FindNew in the RQSM is activated.

This causes the RQSM to transition from state r1 to state r4, and then it proceeds to search the

RQRAM for the highest priority task. To do this, it reads each RQRAM entry one at a time,

checking for the priority and ensuring that the task is valid. It holds the priority and task values

in the temporary variables tr and pr, and when the search finds a task with a higher priority, the

values in the variables are changed. When the entire RQRAM has been searched, NTcpu is set

45

to tr and NPcpu to pr. NTcpu represents the next task ID to run on the PPC, and NPcpu

represents the priority of that next task. This data is passed up to the interface code (by way of

the task arbitration code, which will be discussed in section 6.6) so that an interrupt can be

performed.

The section of the RQSM that finds new tasks can be entered at other times besides

elaboration. Whenever a PO exits, it lowers the task's priority back to its original priority, and

synchronizes with the RQSM on the channel FindNew. The RQSM does a search as described

above, because a task may be valid to run that had lower priority than the PO's ceiling priority

but higher than that of the current task.

This branch is also used whenever a task is suspended. A task may be suspended because

it made a delay until call, or because it made a Protected Entry call with the Barrier equal to

false (see 6.5 for more information). In either case, the RQSM synchronizes on the channel

Suspend and first goes to state r3 before continuing to r4, because it must set the valid bit in the

RQRAM4 for the suspended task to 0. Then it searches for the task to run next.

The final branch synchronizes on the channel QE with the Delay Queue whenever a task

wakes up from a delay until call. The RQSM transitions to r2 and sets the valid bit for that task

back to 1. If the newly valid task has a higher priority than the task currently running, NTcpu

and NPcpu are set accordingly so an interrupt can be made. If this is not the case, then nothing

else occurs.

The RQRAM can only be read from or written to by one state machine at a time.

However, there are multiple state machines that are capable of accessing it. The RQSM both

reads from and writes to it, and POs are capable of writing to it to change a task's priority.

Problems may arise when two state machines attempt to access the RQRAM at the exact same

time, so arbitration code is needed.

The only times that conflicts can possibly occur is when a task wakes up from a delay

(causing the QE branch of the RQSM to be taken) at the same time a PO changes a task's

priority. All other RQRAM accesses in the RQSM occur when no other processes are actively

transitioning. Since only one PO can be active at a time, and also only one routine in that PO can

be actively transitioning, the number of POs is not a concern; the arbitration routine only cares

that any given PC) is accessing the RQRAM. So no more than two accesses, one by a PO and

one by the RQSM, are ever attempted at the same time. In this dual access case, all that needs to

46

be determined is which access should occur first. The one that occurs second will never conflict

with an additional access because of the nature of the interacting state machines, so the dual

access case is the only one that needs to be accounted for.

Two interacting state machines are used for the arbitration, one to handle the different

dual access cases and one to handle reads to the RQRAM. Whenever a read is done, an

acknowledge signal is sent back to the process requesting the read, to notify it when the read is

complete and valid data is available. Whenever a PO tries to write at the same time the RQSM

tries to do any access, the PO always writes first. Both requests are stored in the arbitration

code, and both will be performed before any interrupts can occur. This method ensures that the

PO accurately completes its current command (like changing the running task's priority) before a

newly awakened task can be allowed to even check to see if it can interrupt. This method

provides a simple and safe way to control access to the RQRAM.

6.4 The Delay Queue

The Delay Queue keeps track of what tasks have made a delay until call, and checks to

see when they should become active again. A task that calls delay until in Ada must make two

commands to the kernel. First it must send GetTime, to get the current time of the counter

VCounter. After reading the status to know that the GetTime command has been performed, the

task must read from the two time registers, Lower Time and Higher Time, which now hold the

value of VCounter. Then once the task calculates what the delay time is relative to VCounter, it

sends the Delay Until command. Both Parameter Registers are used to send the delay until time,

to ensure that the full delay time is accurately given to the kernel. The lower delay time bits

must always be sent first, in the Lower Parameter Register. The code would be as follows.

Since a DelayUntil always results in an interrupt being performed so a new task can be run, that

is included.

Write Get-Time, Command Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register
Read VCounter[31:0], Lower Time Register
Read VCounter[63:32], Higher Time Register

47

Write Delay Until, Command Register
Write DelayTime[31:0], Lower Parameter Register
Write DelayTime[63:32], Higher Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register
--- Interrupt to PPC here ---
Write OxOOOOOOO 1, Interrupt Acknowledge Register
Read NextTask, New Task ID Register

Delay data is stored in RAM simulated in VHDL (DQ RAM), and the design is similar

to the RQRAM. The DQRAM has an entry for each task, and the data is accessed by task ID

number in the same way as the RQRAM. The DQ RAM holds zeros for each task unless that

task has made a delay until call, in which case it holds the time (relative to VCounter) at which

the delay is up. Only the Delay Queue routines can access the DQ RAM, so no arbitration code

is needed like it was with the RQRAM. The DQRAM still does send an acknowledge signal

whenever a read is performed, to let the Delay Queue know when valid data has been returned.

There are actually two state machines that interact to handle delays. Two are used so that

certain actions can be performed in parallel. The first state machine, the Delay Queue

Acknowledge state machine (DQASM) responds directly to commands from the interface,

triggers the RQSM to find a new task, and triggers the second state machine, the Delay Queue

Organize state machine (DQOSM). The DQOSM keeps track of what tasks have been delayed,

and checks for when a task's delay time is up.

DelayUntil==1
PidNoDQ=Tcpu
DUntil={paramreg Q!

aO (a2

status fromRQ==1

-~
Suspend!

Figure 25. Delay Queue Acknowledge State Machine

The DQASM, seen in Figure 25, only has four states. When it receives the DelayUntil

command from the kernel interface, it saves the ID of the current task and gets that task's delay

time from the Parameter Registers. Then it synchronizes with the DQOSM on channel Q. This

48

causes the DQOSM to record the delay information. Next, the DQASM synchronizes with the

RQSM on the channel Suspend, so that the task can be made invalid and the next task to run can

be found. When the RQSM has found the next task, the DQASM returns back to state aO to

await the next Delay Until command.

Q?
len==0
t=DUntil
PidDQ=Pid
len++

t<=VCounter
len==1
PE=PidDQ

02

<Nur
DO a
DQ-e

01
len>0, DUntil<t

tDUntPi DQwe=1, DQen=1,DQ addr=PidDQ, DQ-assign=t
PidDQ=PidNoDQ -

len++ Q
len>0, DUntil>t
DQwe=1, DQen=1,DQaddr=PidNoDQ,
DQ-assign=DUntil

NoDQ 00 en++

DQ readack=1
t=DQ-read
DQ en=1, DQ we=1 DQ_readack==1
DOaddr=PidDQ DQ-read==0 D read ac
DQ~assign=0 OR DQ read>=j DQ read<j,

QE t<=VCounter t=j Pid Q=i, t=D
len=0 len>1\ DQen=l, DQ-we=1 D(_en=1, D
t0 i=0, j=0 DQaddr=PidDQ D addr=i

len-- DQ-assign=0 ~assign=
PE=PidDQ
t=0 05

o3 09

QE! DQrea
DQrea

i==NumTasks DQrea
PidDQ=i/ PidDQ=

o4 DQaddr=i j=DQ-r
ddrsks DO en=1 +

DQden=1 i==NumTasks
n=1 DQaddr=i

DQ read ack==1 DQen=1
DQread==0

++ DQ read
DQread
DQ read'

DQreadack==1 7
DQ read>077-

o6 PidDQ=DQ addr
j=DQ read

i++ <Num
DQ_a
DO_e

k==1
DQread>0
Qread

QOwe=l

0

d_ack==1
d>0
d<j
DQaddr
ead

ack==1
=0 OR

o8

iTasks
ddr=i-
n=1

Figure 26. Delay Queue Organize State Machine

The DQOSM, in Figure 26, both keeps track of delay information with help from the

DQRAM, and it checks to see when a task's delay is up. It keeps track of how many tasks are

currently delayed with the variable len. When it synchronizes with the DQASM on Q, there are

three cases that cause different behavior by the state machine.

1. No tasks currently delayed (len == 0): DQOSM saves task's ID in the variable PidDQ, its

delay time in the variable t.

49

2. At least one task is currently delayed (len>O), new task being delayed has a delay time

greater than (or equal to) t: new task being delayed and its time are entered into the

DQRAM.

3. At least one task is currently delayed (len>O), new task being delayed has a delay time

less than t: the data held in PidDQ and t is put into the DQ RAM, the new task's ID is

put into PidDQ, and the new task's delay time is put into t.

This method ensures that the task with the smallest delay time (i.e., the one that will be made

active again the soonest) is being held in PidDQ and t. This makes it easy to check for when the

delay is up, without having to constantly access the DQ_RAM.

The DQOSM also checks for when VCounter has reached (or passed) the delay time t. If

only one task is currently delayed, t is set back to zero and the DQOSM synchronizes with the

RQSM on QE so that the task can be made valid again. If more than one task is currently

delayed, the synchronization with QE is still performed, but then the DQRAM needs to be

searched for the task with the next smallest delay time. The search is made in a similar way to

the search made in the RQSM when a new task to run must be found. When the next task is

found, it is removed from the DQ RAM and put in the variables PidDQ and t.

Making a delay until call in Ada ensures that the task will not run again until at least the

time specified. However, it may end up running later than that time. The DQOSM can only

check to see if the time t has been reached when it is in state oO, so it is possible that while the

DQOSM is in the process of searching the DQRAM for the next task due to end its delay, the

time may be reached. But as soon as the DQOSM returns to state oO, this will be acknowledged,
and if needed a task-switch interrupt will be made.

6.5 Protected Objects

Even though the number of POs that can be declared is variable, each PO routine only

needs to be written in VHDL code once. Additionally, since the Protected Procedure and

Protected Function routines have such similar behavior, and since only one Procedure or one

Function in a given PO can be accessed at one time, one state machine can account for both

types of calls. The routines are combined to create one Protected Object. Some signal

arbitration must be done, since the different PO routines are able to set the same signals, such as

50

those used to access the RQRAM. Since only one PO routine is active at a time, if any routine

that is part of the PO sets any of these signals, it can be said that the PO in general is setting

them. From the single PO, the total number of POs needed is generated. The number of POs

should always be a power of two. This is because the signals from all the POs, as described

earlier, are combined into arrays, and values in the arrays that correspond to the current PO being

used is accessed by an index, POId. POId should only be able to access valid POs; if the total

number of POs is not a power of two, an error somewhere (such as a bit flip) could result in an

access of invalid data. Also, PO(O) is reserved as a null PO. This is because POId uses a default

value of zero. It is unsafe for this default value to access a valid PO, because then the PO could

be accessed unintentionally. So if four POs are created, three can be validly accessed by tasks,

and they are numbered PO(l), PO(2) and PO(3).

The channel controller code determines when channels related to a single PO are valid.

Two channels used are FindNew and Suspend, which are also used elsewhere, but if they were

resolved at a higher level in the code then the state bits for every PO would have to passed up to

that higher level code, which would create a more complicated design. By evaluating these here,

a FindNew signal and a Suspend signal for each PO must still be passed to higher level code, but

the number of signals passed is still much smaller. The channel Ef is also determined here,

which is a signal internal to the PO. It is the only exception to the rule that no more than one PO

routine cannot transition at once. It is used in the case where a task calling the Procedure routine

releases the Entry routine, and will be discussed more below. The two routines transitioning

together on Ef do not cause a conflict on any of the signals they are both capable of driving; the

channel is used here to save one clock cycle.

The first PO state machine handles a Protected Entry call, and it is shown in Figure 27.

To start an Entry call, the task sends the Es command followed by data in the Lower Parameter

Register that tells the kernel the PO's ID and the PO's ceiling priority. For a system with four

POs and eight priority levels, the PO's ID would be in the lower two bits of the Lower Parameter

Register and the ceiling priority of that PO would be in the third, fourth and fifth bits, as shown

in Figure 17.

When the Entry state machine (ESM) receives the Es command, it transitions from EQ to

El and sets BarrierReq equal to 1 to request that the calling task supply the value of the Barrier

for that PO. The interface code coordinates the Barrier request as described in section 6.1. If the

51

Barrier is true (Barrier == 1), the ESM raises the calling task's priority to the ceiling priority by

writing to the RQ_RAM. Then it continues to process the rest of the Entry commands, including

the case of an exception occurring (states El through E6). When the Entry call is completed, the

RQRAM is written to again, to lower the priority of the task back to what it was. Because of

this priority change, the ESM synchronizes with the RQSM on FindNew, so that the RQSM can

check if a task of higher priority is valid to run. This would occur if a task that had been delayed

woke up while the Entry was executing, and that task has a higher priority than the running

task's normal priority but a lower priority than the Entry's ceiling priority. When the running

task's priority is lowered back to normal, it would be interrupted.

UEe==1
FindNew!

RQ-en=l, RQ-we=1
RQ addr=Tcpu
RQassign={Ep,1}
NPcpu=O E5

E6

Ex==1 status=1
FindNew!
status=O E4
RQ en=l, RQ we=l
RQ addr=Tcpu

_assgn={Ep,1} BarierNew==1 UEb==1
Barrier==1 status=1
BarrierReq=O

Es==l Ep=Pcpu
E0 BarerReq=1 NPcpu=Ppolc E2 status E3

RQ en=l, RQ we=l

E1 RQ addr=Tcpu
RQ-assign=Ppolc
status=l

BarrierNew==l
Baier==0
BarrierReq=0
ECount=l
Et=Tcpu K E 1
Ep=Pcpu E7 Suspend!- E8 Count1 =o E9

Ef!
status=0 UEb==l
RQ en=l status=l
RQ we=l
RQ_addr=Et
RQassign={Ep,1}

UEe--l
E14 Eli1 status=0 E10

Ex==l UEx==1
status=l status=l

E13 status=0 E12

Figure 27. Protected Entry State Machine

52

The task receives a status back after each Entry command that it sends. All commands

after Es have a parameter that just has the PO's ID in it (the ceiling priority is no longer needed).

After the command to conclude the Entry call, the status indicating the command is complete is

not sent until after the FindNew branch of the RQSM has been completed. This keeps the task

from continuing with another call until it has been determined whether or not an interrupt should

occur.

If the result of the Barrier request shows that the Barrier value is false (Barrier == 0),

then the task calling the Entry suspends itself and adds itself to the entry queue (ECount := 1).

When this happens, the ESM synchronizes with the RQSM on Suspend, the current task is made

invalid, a new one to run is found and an interrupt is sent to the PPC. The only way for the Entry

to be completed is for the Procedure routine of the same PO to be called with the Barrier set to

true. When this happens, the task calling the Procedure code finishes calling the Entry code.

Upon completion of the Entry in this manner, the original task that called the Entry is made valid

again.

Code that would call the Entry of PO(2) with ceiling priority four is below. The

exception code is included (jump to exceptionE if an exception occurs), as well as the behavior

for different values of the Barrier signal. Note that after making the Es command, the task

should expect the returning status to indicate a Barrier request. After the Barrier request is

complete, it looks for a status indicating that the command has been completed.

Write Es, Command Register
Write Ox0000012, Lower Parameter Register
Read status, Status Register
While status != 'Barrier Request'

Read status, Status Register
Write Barrier[31:0], Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register
If(Barrier[POId] == True)

Write UEb, Command Register
Write 0x00000002, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register
Set long jump (exceptionE)

53

Jump Entry
Write UEe, Command Register
Write 0x00000002, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register

exceptionE:
Write UEx, Command Register
Write 0x00000002, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register
Write Ex, Command Register
Write 0x00000002, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register

If(Barrier[POd] == False)
-- Interrupt to PPC here ---
Write OxOOOOOOO, Interrupt Acknowledge Register
Read NextTask, New Task ID Register

The second PO state machine handles both Protected Procedure and Protected Function

calls, and it is shown in Figure 28.

To start either a Procedure or Function call, the task sends the command FPs and a

parameter containing the PO's ID and the ceiling priority in the same manner as when an Entry

call is made. The Function/Procedure state machine (FPSM) raises the priority of the calling

task to the PO ceiling priority by accessing the RQ RAM and then moves to state P2. The

FPSM routine handles both normal and exception cases; for normal, it next transitions to state

P3, and for exception it transitions to state P7. After each command, the status is sent indicating

the command has been completed. When the command is made to exit the Procedure or

Function, the FPSM lowers the task's priority back to what it originally was and synchronizes

with the RQSM on FindNew to see if a higher priority task exists. The status is set to indicate

the exit command has been completed only after the FindNew sequence is complete. At states

P3 and P9 (depending on regular execution or exception), different commands must be sent

depending on the type of call, Function (UFe and UFxe) or Procedure (UPe and UPxe). For a

Procedure call, the FPSM checks to see if the ECount variable is set to 1. If it is, then that means

54

there is a task on the entry queue as described earlier. A Barrier request must be made. If the

Barrier is true, then the calling task first completes the Entry call before exiting the Procedure.

If the ECount variable is set to 0, or it is 1 but the Barrier is false, then the Procedure continues

without calling Entry code. For a Function call, the ECount variable is not checked and a Barrier

request is not made. The FPSM just continues to state P6 or P12 to wait for the command to exit

the Function.

BarierNew==1
Barier==1

P11 4-Eg=1- P10
BarrierReq=0
status=1

BarrirNew==1 ECount==1
Ef? Banier==O BarrierReq=1/BamierReq=O

status=1

P12 P9
FNew- ECount==0
F N ew!stu=1
status=O
RQ en=1, RQwe=1 UPxe==1
RQ addr=Tcpu UFxe==l status=O
RQ_assign={Pp,1} status=1
NPcpu=O P8

status=O

P7

UFPx==1

FPs==1
status=1

Pp=Pcpu
NPcpu=Ppoc

PO RQen=1, RQ_we=1 P1 -status=0 P2
RQ-addr=Tcpu
RQ_assign=Ppoc
status=1

FPe==1
FindNew!
status=O
RQen=1, RQwe=l
RQ addr=Tcpu
RQ-assign={Pp,1}
NPcpu=0

UFe==1
status=1 UPe==1

ECount==0
status=1

P6 4 P3)

BamrerNew==1
BamNer==O ECount==1

BarrierReq=O BarrierReq=1
E? status=1

BarrierNew==1
Barrier==1

P5)* g=| -4P4
BarrierReq=0
status=1

Figure 28. Protected Function/Procedure State Machine

The code used to call the Procedure routine of PO(2) with ceiling priority four is as

follows. Again both exception code and code for different Barrier values is shown (so it can be

seen how the task finishes calling the Entry under certain conditions before completing the

55

Procedure). The code for calling the Function routine would be similar but much simpler; the

status would never return a request for the Barrier values.

Write FPs, Command Register
Write 0x00000012, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register
Set long jump (exceptionP)
Jump Procedure
Write UPe, Command Register
Write 0x00000002, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register
If(status == 'Barrier Request')

Write Barrier[31:0], Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register
If(Barrier[POId] == True)

Write UEb, Command Register
Write 0x00000002, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register
Set long jump (exceptionE)
Jump Entry
Write UEe, Command Register
Write 0x00000002, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register

exceptionE:
Write UEx, Command Register
Write 0x00000002, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register
Write Ex, Command Register
Write 0x00000002, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register

56

Write FPe, Command Register
Write 0x00000002, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register

exceptionP:
Write UFPx, Command Register
Write 0x00000002, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register
Write UPxe, Command Register
Write 0x00000002, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register
If(status == 'Barrier Request')

---REPEAT CODE FROM SAME 'IF' STATEMENT ABOVE---
Write FPx, Command Register
Write 0x00000002, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register

6.6 Task Arbitration

Different state machines in the kernel may request that different tasks run at the same

time. For example, a high-priority task may wake up from a delay, so the Ready Queue requests

that it be run; at the same time, the running task may be calling a PO that changes its priority.

Even though a PO will make the priority change by actually changing the value in the RQRAM

as described above, the Ready Queue may not get this change immediately, if it is busy doing

something else. So, additional code is needed to arbitrate the different requests for what should

be run on the PPC. This code checks to see what the priorities are of the different tasks that

different processes are requesting to run. Whichever task has the highest priority is declared to

be the 'next' task to run, NTcpu, and its priority is the 'next' priority, NPcpu. (Note that these

variable names are used elsewhere, such as in the Ready Queue. Variable names are local to the

routines they are in, so they can be reused without conflict.) This task and priority information is

57

passed up to the KISM. If NPcpu is greater than the priority of the currently running task

(Pcpu), and NTcpu and the current task (Tcpu) are different, than an interrupt occurs. Often

NTcpu will equal Tcpu even if the priorities are not equal; this occurs in the case mentioned of a

PO changing the priority of the running task. In this routine, NTcpu and NPcpu are determined

from data from both the PO state machines and the Ready Queue.

6.7 Ada Time

When a delay until call is made in Ada, the time is specified at a resolution of the users'

choice. This resolution can be as fast as the FPGA clock, or some fraction of it. It is kept track

of in the code as a counter VCounter, as described in section 6.1. The kernel must be aware of

the resolution specified in Ada in order to accurately determine when a delay until time is up.

This is set during the elaboration phase using the SetFreq command, after all tasks are sent to the

kernel (using the Create command). The frequency is set by sending data in the lower eight bits

of the Lower Parameter Register (the higher 24 bits must be zeros). A parameter of one

(00000001) sets the VCounter resolution equal to that of the kernel clock; a parameter of two

(00000010) sets it to half the kernel clock, a parameter of 3 (00000011) set it to one third of the

kernel clock, etc., When this value is set, the kernel begins to count up from zero. An example

of the compiled code used to set the frequency to one quarter of the kernel clock speed is:

Write SetFreq, Command Register
Write 0x00000004, Lower Parameter Register
Read status, Status Register
While status == 'No Status'

Read status, Status Register

The counter cannot be restarted or stopped once it is set in the elaboration phase. With

variables set as they are now, VCounter can currently count up to 64 bits. At one microsecond

resolution, the counter will be useful for over 500,000 years.

58

Chapter 7
Testing and Implementation

The RavenHaRT Kernel has been tested for a very small design, one with only four tasks

and four POs. The results of these tests, and of attempts made to implement the design so that it

can be run on the development board, demonstrate its functionality but were hindered by

problems with the Xilinx tools. A summary of the test files is included in Appendix B.

7.1 Kernel Testing

The VHDL code for the kernel was written using the Xilinx tool ISE Foundation 5.2i.

ISE can be linked to Model Technology's tool ModelSim so that both behavioral and timing

testing can be performed. ModelSim 5.8 PE with the SWIFT interface [Mod] was used. Testing

done in ISE examines the kernel as a stand-alone unit. It is simpler to first test it this way before

integrating it into a larger system (with other components such as the PPC). Two types of tests

were performed:

" Behavioral tests, which demonstrate that the code has the correct logical functionality.

e Timing tests, which are performed after the tool attempts to place-and-route the design on

the target FPGA. They help evaluate whether the logic is still valid at certain clock

speeds given the current design layout.

Note though that the on-chip layout will change when the kernel is integrated into a system.

Variances in the clock speed and design implementation for when the full system is discussed in

the next section.

For behavioral testing, each VHDL state machine was first tested individually. As

different parts of the kernel were combined, incremental tests were done. After the incremental

tests demonstrated correct behavior, a number of top-level tests were performed. The tests were

all written in VHDL. A sample result waveform for a behavioral test in ModelSim is shown in

Figure 29.

59

Figure 29. Example Waveform From Test of Entry Routine in ISE

Timing analysis was performed after ISE implemented the design. For implementation, a

number of settings in ISE can be adjusted. Any setting that required the tool to optimize the

design for speed was set, as well as any that had the tool use extra effort in determining the chip

layout. Additionally, hierarchy was kept so that the general structure of the VHDL code was

retained and so that signals could be easily identified in testing. The remainder of the settings

were kept at the tool's default values. Additionally, the file myconstraints.ucf (in Appendix A.9)

had to be used for implementation. In this file, constraints such as the clock speed and input and

output offsets can be specified. After some experimentation, it was discovered that the tool

could not make the clock run faster than 80 MHz. That is listed as the clock speed currently in

the file, and some offsets are constrained as well. However, pin constraints were not declared

since the kemel was considered in this phase of testing to be a stand-alone unit, so the offset

constraints do not have much meaning. More information on the Xilinx tools and timing can be

found in chapter 8.

For simplicity, all timing tests were run with a clock speed of 50 MHz. Only top-level

timing tests were performed, and the set of tests is identical to those used for behavioral testing.

A summary of all top-level tests is as follows:

* Elaboration: creates tasks, sets VCounter, and finds the highest priority task to run

60

" Entry: elaboration occurs, then a task calls the Entry with Barrier == 1, for normal case

and exception

* Procedure: elaboration occurs, then a task calls the Procedure with ECount == 0, for

normal case and exception

" Function: elaboration occurs, then a task calls the Function for normal case and exception

" Delay Until: elaboration occurs, then each task periodically delays

" Procedure-calling-Entry: elaboration occurs, then a task calls the Entry with Barrier == 0

so that it suspends. A second task calls the Procedure and from there the Entry is

completed and the first task is released

* Interrupt Entry (multiple tests): elaboration occurs, then a task is delayed for varying

lengths of time. A second task calls the Entry with Barrier == 1, and it is interrupted by

the first task

e Interrupt Procedure (multiple tests): elaboration occurs, then a task is delayed for varying

lengths of time. A second task calls the Procedure with ECount == 0, and it is interrupted

by the first task

* Interrupt Procedure-calling-Entry (multiple tests): elaboration occurs, then a task is

delayed for various lengths of time. A second task calls the Entry with Barrier == 0 so

that it also suspends. A third task calls the Procedure and then completes the Entry, but

this is interrupted by the first task

The purpose of these tests was to see if the kernel behaved correctly when tasks would

perform various calls, such as making a delay or calling a PO. Various cases of one task

interrupting another were tested to make sure that the system recovered correctly from an

interrupt. The tests all demonstrate that the kernel works accurately, but they of course do not

account for every possible case. Exhaustive testing in general is not possible, and even longer

tests (that represent a system running for hours or days or longer) are not feasible because of the

time they would take, and because it would be nearly impossible to verify the correctness of the

waveforms they produce through manual examination. Tests with incorrect inputs could be

performed; however, it has been assumed in this design that the Ada code will be written

correctly and the Ada compiler modified correctly so that incorrect commands and parameters

are not sent, and so that certain incorrect and unexpected cases cannot occur.

61

7.2 System Testing

After kernel tests in ISE were complete, the kernel was tested and implemented as part of

a larger system. This was done using Xilinx's Embedded Development Kit 3.2 (EDK). In EDK,

a project can be set up that contains the VHDL kernel, the PPC, buses, and any other peripherals

desired in the system, such as external RAM. Code can then be written for the PPC, and the

system can be simulated in ModelSim to make sure that all peripheral devices, including the

kernel, are behaving correctly.

The PPC provides two options for communication with peripheral devices. One is the

On-Chip Peripheral Bus (OPB), the other is the Processor Local Bus (PLB). The PLB is faster,

since the peripheral would be directly on the processor bus. The OPB is slower, since the

processor is connected to it by a PLB-to-OPB bridge. The OPB is more commonly used, and

was therefore easier to set up in EDK since support code for the OPB bus was provided as part of

the tool. The kernel should eventually run on the PLB, but for testing purposes the OPB was

determined to be satisfactory.

Tests were written in C code similar to the tests listed in the previous section in VHDL.

C code was chosen because EDK has a built in C compiler; a cross-compiler will be needed to

compile Ada code for the PPC, and this has not yet been developed. C code can be written that

mimics the behavior of the compiled Ada code. It sends kernel commands to various registers,

and handles interrupts to the PPC. As in ISE, there is an option to run either behavioral or timing

tests. All behavioral tests worked successfully and demonstrated correct functionality. An

example result waveform is shown in Figure 30.

Performing timing tests was problematic because of the difficulties in using EDK.

Although many of the same implementation settings available in ISE appeared to be available in

EDK, they were more difficult to find and change. When possible, the settings were adjusted to

optimize for speed and to have to tool use highest effort. Also, settings were changed to keep the

code hierarchy, but this did not appear to work correctly. Unlike in ISE, original signal names

were not retained in ModelSim when the system was analyzed for timing. Instead, the signal

names seemed to indicate that the design had been flattened, making it nearly impossible to

determine which signals to examine to ascertain correct behavior.

62

Figure 30. Example Waveform From Test of Entry Routine in EDK

An alternative to running timing simulations was to run actual tests on the development

board. EDK provides means to program the Virtex-II Pro Chip, so that the C code written as test

code can be run as if it were code in an actual system. Edits are made to the code so that data is

printed to the computer's screen giving notification that it has reached certain points.

To run the system correctly on the development board, the kernel was implemented with

the setting described. A constraints file is also needed, although a different one is used than in

ISE. This constraints file, system.ucf (Appendix A.9), has both a clock constraint, as well as all

the pin constraints. The clock constraint indicates that the clock should run at 100 MHz. When

the EDK implementation tool was run, the results showed that this constraint was not met.

However, where in ISE the tool could not implement the design at a faster clock than 80 MHz, in

EDK the design works at approximately 95 MHz. This result is unexpected since a larger design

is implemented in EDK, because additional VHDL code (most supplied by EDK) is needed to

integrate the FPGA with the other system components.

63

The development board tests were run with the clock left at 100 MHz, since that is the

speed of the PPC clock. The tests worked at this speed, most likely because the tests were

simple and the tool determined the actual clock to be close to that speed. More complicated tests

were not possible, since the only way to determine correct execution was to examine any data

printed back to the computer screen. Running real Ada programs would give more indication of

long-term, correct kernel behavior.

64

Chapter 8
Future Work

As described in chapter 7, tests of the basic kernel functionality show that it works

correctly. However, there are many improvements that can be made. These include optimizing

the implementation through use of the Xilinx tools and changes to the VHDL code itself. Also,

more extensive testing could be performed to further prove its correct functional and timing

behavior.

8.1 Use of Tools

As mentioned in chapter 7, attempts to perform timing tests resulted in difficulties

specifying and determining the clock speed of the FPGA in both ISE and EDK. Implementation

in each tool provided different and unexpected results. EDK results are more important to

analyze, since these are the ones that determine what is actually loaded onto the FPGA.

However, the two tools are closely related and use many of the same internal tools in design

implementation, so the differences should be investigated.

A design implemented in either ISE or EDK can be examined using the Timing Analyzer,

which is an associated Xilinx tool. This tool will identify worst-case timing paths, which can

then be constrained appropriately. Repeated analysis in this way may allow the FPGA clock to

run faster.

Additionally, there may be more implementation settings that could be changed,

particularly in EDK. Changing settings in EDK is not straightforward, and requires editing files

that are not typically accessed by users. All available settings that can be changed can be found

in [Xil03].

In general, the Xilinx tools could be further used to optimize the kernel design, but this

would require a very thorough understanding of how best to use them. Also, minor bugs were

discovered in using the tools, which may or may not have affected results. Newer versions may

solve these problems, and perhaps prove easier to use.

65

8.2 Code Changes

Various code changes may or may not affect the implementation and speed of the design.

The first of these possible changes concerns how task-switch interrupts are handled. Currently,

an interrupt is always performed when a new task is found to run. However, the commands

FindTask and DelayUntil always result in a new task being found. The design could be

simplified by having the hardware not perform an interrupt after these tasks, and instead just

requiring that the task look at the new task register after the status shows the FindTask or

DelayUntil command has been completed. Also, the interruptack signal from the task could

probably be eliminated. The hardware already waits and makes sure the PPC has read the new

task, so the interrupt acknowledge signal does not add any new information. These two changes

will reduce the number of clock cycles needed to perform the interrupt operations, and may

possibly create simpler, faster code.

Another possible code change concerns how data is stored and searched for in the RAMs.

There are many different software (and VHDL) methods for sorting and storing large amounts of

data, and for searching through arrays for information. The kernel uses these types of algorithms

in handling task data in the Ready Queue and the Delay Queue. When determining how to

translate the kernel model into VHDL, the decision was made to use the algorithms that were

used in the model for consistency, and so that the VHDL kernel would be as similar to the model

as possible.

The RAM associated with the Ready Queue is filled during elaboration, as was described

in chapter 7. The RQRAM is indexed by the task's ID values, and the tasks and their data are

entered into the RQRAM in the order in which they are sent to the kernel by the Create

instruction. This makes filling it during elaboration very simple. However, when a search needs

to be made during normal operation to find the task with the highest priority that is able to run, a

brute-force search is done. The Ready Queue always must search through every element in the

RQRAM to make sure it has found the highest priority task. While this search is deterministic,

it is potentially slow, and could take many clock cycles.

A possible alternative to this method would be to sort the tasks better during elaboration.

Instead of being left in the RQRAM in the order in which they were created, the tasks could be

sorted by priority. Then, when the Ready Queue needs to find a task to run, it just needs to start

66

at the beginning of the RQRAM and find the first task that is valid to run. Searches would take

varying amounts of time, with the longest search being equal to that of the current method. Of

course, there are other situations that need to be accounted for if this method is used. For

instance, calling a PO changes the priority of the calling task, and this would need to be handled

somehow, either by resorting the RQ_RAM, or by altering the search method.

The Delay Queue faces a similar problem. The DQRAM is also set up in the order that

tasks are created. It could possibly be sorted according to delay time, although then it would

constantly need to be resorted every time a task makes a delay until call, and every time a task's

delay time is up.

Changing the sorting and searching strategies may or may not be beneficial. The

methods mentioned, as well as others, could be implemented and analyzed to determine what

algorithms are the best to use. Besides looking at just the average and worst-case number of

clock cycles to do something such as complete a search or resort data, the way that each

algorithm affects the timing of the whole system must be considered. Resorting the data may

make search times shorter, but if the resort causes a delay in executing a task, it may not be

beneficial to do.

Also, the Delay Queue currently does not take task priority into consideration, and this

could possibly cause a problem in the case that two tasks delay until the exact same time. For

example, take a system with two tasks, Task A with a priority of 5 and Task B with a priority of

7. Task B is suspended for some reason, so Task A runs and delays until time T. Task B

becomes active to run, and also delays until time T. Since their relative priorities are not

considered by the Delay Queue, at time T Task A will first wake up and possibly begin to run on

the PPC. Then, Task B will wake up. There is a chance in this case that Task A will begin to

run before Task B interrupts. If the Delay Queue checked task priorities, Task B would correctly

run first. This is a very specific case but it should be accounted for in the design.

Lastly, the Ready Queue could be altered to contain more information about the tasks.

Ada stores task information in Task Control Blocks (TCB). This information includes the

location in memory where the task is actually stored. The memory location of each task could be

given to the kernel and stored in the RQRAM. Then, when a task-switch occurs, instead of the

PPC receiving the new task's ID from the kernel, it could receive the memory location of the

task and could immediately start running that task.

67

8.3 Testing and Analysis

The tests performed to this point demonstrate basic behavior, but most are behavioral and

all only mimic the actions of real code. More extensive real-time tests will be easier to develop

once the Ada compiler is modified to work with the RavenHaRT Kernel. Then, real Ada

programs that have real functionality (as opposed to just imitating kernel calls as the C code

does) can be written, and tested to see if they execute on the kernel correctly.

Also, the differences between the timing properties of the implemented kernel and the

timing properties of the UPPAAL model have not been examined. It is expected that the

implemented kernel will have very different timing properties than the original model of the

kernel, because of reasons described earlier in this paper (such as the use of urgent states in

UPPAAL). However, many of these differences might be acceptable. They can also be easily

measured. Since all state transitions in the implementation occur on the rising edge of the

FPGA's clock, the amount of time taken for different actions can be determined if the number of

state transitions needed to perform them is known (assuming the state machine will not wait at

any state for external data). The worst-case times for searches for new tasks can be found, as

well as for a task waking up from delay. Data such as this, combined with statistics for

communication over the bus, will tell how long, for example, the delay is from when a task

should be running (the time when it has become valid and has become the highest priority task)

to when it actually begins to run. From this information, it can be seen if timing behavior is

acceptable, or if changes need to be made to the VHDL code.

Alternatively, to check that the implementation has acceptable timing behavior, the

assertions used in the model could be analyzed, and timing tests of the VHDL kernel could be

developed based on the assertions. While doing this would be very beneficial, it is very tedious

and prone to human error. Another solution would be to use one of the tools developed as part of

the Gurkh project. This tool [NL03] automatically converts VHDL code into formal models that

can be understood by UPPAAL. The implemented RavenHaRT Kernel should be converted

back to a model using this tool. It can then be compared with the original model, and checked

using UPPAAL to make sure that it has the expected properties.

68

References

[Ada] www.adaic.org

[Ada99] "Programming Languages - Guide for the Use of Ada Programming Language in
High Integrity Systems", 1999, ISO/IEC JTC1 /SC 22/WG 9 N 359r, ISO/IEC
DTR 15942.

[ALO3] L. Asplund, K. Lundqvist, "The Gurkh Project: A Framework for Verification and
Execution of Mission Critical Applications", 2 2"d Digital Avionics Systems
Conference, 2003.

[AFLS96] J. Adomat, J. Furunas, L. Lindh, J. Starner, "Real-Time Kernel in Hardware RTU:
A step toward deterministic and high performance real-time systems", 8 th

Euromicro Workshop on Real-Time Systems, 1996, pp 164-168.

[AFM+02] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, W. Yi, "TIMES - A Tool for
Modeling and Implementation of Embedded Systems", 8th International
Conference, TACAS 2002, part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2002, LNCS 2280, pp 460-464.

[ATAC95] http://www.estec.esa.nl/wsmwww/components/atac/atac.htm.l

[BDR98] A. Bums, B. Dobbing, G. Romanski, "The Ravensccar Tasking Profile for High

Integrity Real-Time Programs", Ada-Europe 98, LNCS 1411, 1998, pp 263-275.

[BDV03] A. Bums, B. Dobbing, T. Vardanega, "Guide for the Use of the Ada Ravenscar
Profile in High Integrity Systems", University of York Technical Report YCS-
2003-348, 2003.

[BW98] A. Bums, A. Wellings, "Concurrency in Ada", Second Edition, Cambridge
University Press, New York, 1998.

[CGW91] W.J. Cullyer, S.J. Goodenough, B.A. Wichmann, "The Choice of Computer
Languages for Use in Safety-Critical Systems", Software Engineering Journal,
19991.

[CW96] E. Clarke, J. Wing, "Formal Methods: State of the Art and Future Directions",
ACM Computing Surveys, 1996.

[FurO0] J. Furunas, "Benchmarking of a Real-Time System that utilizes a booster",
International Conference on Parallel and Distributed Processing Techniques and
Applications, 2000.

[Kel03] T. Klevin, "Multitasking Operations Require More Hardware Based RTOSes",
EE Times, 2003, www.eetimes.com/story/OEG20030221S0027

69

[LA03] K. Lundqvist, L. Asplund, "A Ravenscar Compliant Run-Time Kernel for Safety-
Critical Systems", Real-Time Systems Volume 24, 2003, pp 29-54.

[Lin91] L. Lindh, "FASTCHART - A Fast Time Deterministic CPU and Hardware Based
Real-Time-Kernel", IEEE Press, Euromicro Workshop on Real Time Systems,
1991, pp 36-40.

[Lin92] L. Lindh, "FASTHARD - A Fast Time Deterministic HARDware Based Real-
time Kernel", 4 th Euromicro Workshop on Real-Time Systems, 1992, pp 21-25.

[LK99] L. Lindh, T. Kelvin, "Scalable Architecture for Real-time Applications and use of
bus-monitoring", Proceedings of Sixth International Conference on Real-Time
Computing Systems ad Applications, 1999, pp 208-211.

[LPY97] K.. Larsen, P. Pettersson, W. Yi, "UPPAAL in a Nutshell", Springer International
Journal of Software Tools for Technology Transfer, 1997.

[LS91] L. Lindh, F. Stanischewski, "FASTCHART - Idea and Implementation", IEEE
Press, International Conference on Computer Design (ICCD), 1991, pp 401-404.

[LSF95] L. Lindh, J. Starner, J. Furunas, "From Single to Multiprocessor Real-Time
Kernels in Hardware", IEEE Press, Real-Time Technology and Applications
Symposium, 1995, pp 42-43.

[LSF+98] L. Lindh, J. Starner, J. Furunas, J. Adomat, M. El Shobaki, "Hardware
Accelerator for Single and Mulitprocessor Real-Time Operating Systems", 7 th

Swedish Workshop on computer Systems Architecture, 1998.

[Mem03] "Virtex-II Pro (P4/P7) Development Board User's Guide", version 3.0, Memec
Design, 2003,
http://www.memec.co.jp/html/xilinx/eboard/docs/dskit2v/v2pro board users gui
de 1 0.pdf

[Mod] www.model.com

[NL03] C. Nehme, K. Lundqvist, "A Tool for Translating VHDL to Finite State
Machines", 2 2nd Digital Avionics System Conference, 2003.

[NUI+95] T. Nakano, A. Utama, M. Itabashi, A. Shiomi, M. Imai, "Hardware
Implementation of a Real-Time Operating System", IEEE Press, 12th TRON
Project International Symposium, 1995.

[PL00] P. Pettersson, K. Larsen, "Uppaal2K", Bulletin of the European Association for
Theoretical Computer Science Volume 70, 2000, pp 40-44.

70

[PPC01] "PowerPC 405 Embedded Processor Core User's Manual", Fifth Edition, 2001,
http://www-
3. ibm.com/chips/techlib/techlib.nsf/techdocs/D060DB54BD4DC4F2872569D200
4A30D6/$file/405 um.pdf

[Rei97] R. Reihle, "Can Software Be Safe? - An Ada Viewpoint", Embedded Systems
Programming, 1997, www.embedded.com/97/feat9612.htm

[Roo9l] J. Roos, "Designing a Real-Time Coprocessor for Ada Tasking", IEEE Press,
Design and Test of Computers, Volume 8, Issue 1, 1991, pp 67-79.

[SAN+03] T. Samuelsson, M. Akerholm, P. Nygren, J. Starner, L. Lindh, "A Comparison of
Multiprocessor Real-Time Operating Systems Implemented in Hardware and
Software", International Workshop on Advanced Real-Time Operating System
Services, 2003.

[ShawO1] A. Shaw, "Real-Time Systems and Software", John Wiley and Sons, Inc, New
York, 2001.

[Upp] www.uppaal.com

[Xil02] "Virtex-II Pro Platform FPGA Handbook", v1.0, 2002, www.xilinx.com

[Xil03] "Development System Reference Guide", 2003,
http://toolbox.xilinx.com/docsan/xilinx6/books/manuals.htm

[Yov97] S. Yovine, "Kronos: A Verification Tool for Real-Time Systems", Springer
International Journal on Software Tools for Technology Transfer, 1997, pp 134-
152.

[Zei95] S. Zeigler, "Comparing Development Costs of C and Ada", Rational Software
Corporation, 1995, www.adaic.com/whyada/ada-vs-c/cada art.html

71

Appendix A
VHDL Kernel Code

A.1 Interface

- NAME: interfaceppc.vhd

-- INPUTS: clk FPGA clock
- resetn FPGA reset, active low
-- writen PPC reading (high) or writing (low)
-- cs_n PPC chip select, active low

addr address of register PPC is reading from or writing too
-- din input data

- OUPUTS: dout output data
-- ackn acknowledge that read or write occurred

interrupt task switch interrupt to PPC

- DESCRIPTION: top leveL kernel code. Contains the Bus Interface State Machine (BISM)
-- and the Kernel Interface State Machine (KISM), and code to connect to rest of kernel

-- NOTES:
-- this scheme works for up to 32 POs, and 32 bits must be sent over bus (or set to zero)
-- when barrier is sent, regardless of NUMPO (total number of POs, defined in
-- myvariables.vhd)

-- SW assumes cmd given is NOT done until it receives status = CMDDONE, so if it gets
-- an interrupt right after sending a cmd, and hasn't yet gotten the CMDDONE, then it will
-- need to resend command when that tasks resumes later

-- all params should be addressed to paramlow
-- except for DelayUntil: first low bits must be sent on paramlow, then high on
-- param high

-- on create: param low(BITPRIO-1 downto 0) holds TaskPrio (BITPRIO is number of bits
-- needed to represent the priority, defined in myvariables.vhd)
- param low(BITTASKS+BITPRIO-1 downto BITPRIO) holds TaskID (BITTASKS is
-- number of bits needed to represent the task, defined in myvariables.vhd)

- on fps and es: param low(BITPO-1 downto 0) holds POId (BITPO is number of bits
-- needed to represent the PO ID, defined in myvariables.vhd)
-- param low(BITPO+BITPRIO-1 downto BITPO) holds Ceil Prio
-- on other PO cmds: paramlow(BITPO-1 downto 0) holds POId

-- on setfreq: param low(FREQREG-1 downto 0) holds fractional frequency (FREQREG is
-- the register size allowed for setting the frequency, defined in myvariables.vhd)

72

-- on gettime: sw should first check for status=CMDDONE, then read from the curtime regs

library IEEE;
use IEEE.STDLOGIC_1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity interfaceppc is
Port (clk : in std logic;

resetn : in std logic;
writen : in std logic;
cs_n : in std logic;
addr : in std logic vector(NREGS-1 downto 0);
din : in std logic vector(REGLENGTH-1 downto 0);
dout : out std logicvector(REGLENGTH-1 downto 0);
ackn : out std logic;
interrupt : out std logic);

end interface-ppe;

architecture Behavioral of interfaceppc is

------- state variables for bus interface --------------
type busstatetype is (waitstate, ack state);
signal busstate : bus_state type;

------ regs holding input from bus ------------------
signal cmd std_logic vector(CMDREG-1 downto 0);
signal param high : stdlogic vector(PARAMREG-1 downto 0);
signal paramlow stdlogic vector(PARAMREG-1 downto 0);
signal interrupt ack stdlogic;

------ signals set when above regs are filled ------
signal newcmd : stdlogic;
signal newparam high : stdlogic;
signal newparamlow : stdlogic;
signal statout : stdlogic;
signal taskout : stdlogic;

------ regs holding output to bus -----------------
signal status : std logic vector(STATREG-1 downto 0);
signal newtask : stdlogic vector(BITTASKS-1 downto 0);
signal curTimehigh : stdlogic vector(REGLENGTH-I downto 0);
signal curTime low stdlogic vector(REGLENGTH-1 downto 0);

73

------- signals interface gets from kernel ---------------
signal NTcpu stdlogic vector(BITTASKS-1 downto 0);
signal NPcpu stdlogic vector(BITPRIO-1 downto 0);
signal kernelstatus stdlogic;
signal BarrierGet stdlogic;
signal sTime stdlogic vector(MAXTIME-1 downto 0);

------- signals interface sends to kernel ----------------
signal barrier : stdlogic;
signal barrierNew : std__logic;
signal create : stdlogic;
signal findtask : stdlogic;
signal delayuntil : stdlogic;
signal setfreq : stdlogic;
signal freq : stdlogic vector(FREQREG-1 downto 0);
signal fps : stdlogic vector(NUMPO-1 downto 0);
signal upe : stdlogic vector(NUMPO-1 downto 0);
signal ufe : stdlogic vector(NUMPO-1 downto 0);
signal fpe : stdlogic vector(NUMPO-1 downto 0);
signal ufpx : stdlogic vector(NUMPO-1 downto 0);
signal upxe : stdlogic vector(NUMPO-1 downto 0);
signal ufxe : stdlogic vector(NUMPO-1 downto 0);
signal fpx : stdlogic vector(NUMPO-1 downto 0);
signal es : stdlogic vector(NUMPO-1 downto 0);
signal ueb : stdlogic vector(NUMPO-1 downto 0);
signal uee : stdlogic vector(NUMPO-1 downto 0);
signal uex : stdlogic vector(NUMPO-1 downto 0);
signal ex : stdlogic vector(NUMPO-1 downto 0);
signal Tcpu : stdlogic vector(BITTASKS-1 downto 0);
signal Pcpu : stdlogic vector(BITPRIO-1 downto 0);
signal DUntil : stdlogic vector(MAXDUNTIL-l downto 0);
signal TaskID : stdlogic vector(BITTASKS-1 downto 0);
signal TaskPrio : stdlogic vector(BITPRIO-1 downto 0);
signal CeilPrio : std_ logic vector(BITPRIO-1 downto 0);
signal POLd : stdlogic vector(BITPO-1 downto 0);

------- state variables for interface --------------------
type state type is (iO, il, i2, i3, i4, i5, i6, i7, i8, i9, ilO);
signal state : statetype;

-- connection to rest of kernel
component kernel internal

port (clk : in std logic;
resetn : in std-logic;
DelayUntil : in std-logic;
SetFreq : in std logic;

74

Freq
DUntil
Tcpu
Pcpu
CeilPrio
FPs
Upe
Ufe
Ufpx
UPxe
UFxe
Barrier
BarrierNew
FPe
FPx
Es
UEb
UEe
UEx
Ex
Create
FindTask
POId
TaskId
TaskPrio
BarrierGet
NPcpu
NTcpu
Status
sTime

end component;

: in std logic vector(FREQREG-1 downto 0);
: in std logic vector(MAXDUNTIL-1 downto 0);
: in std logic vector(BITTASKS-1 downto 0);
: in std logic vector(BITPRIO-1 downto 0);
: in std logic vector(BITPRIO-1 downto 0);
: in std logic vector(NUMPO-1 downto 0);
: in std logic vector(NUMPO-1 downto 0);
: in std logicvector(NUMPO-1 downto 0);
: in std logic vector(NUMPO-1 downto 0);
: in std logic vector(NUMPO-1 downto 0);
: in std logic vector(NUMPO-1 downto 0);
: in std logic;
: in std-logic;
: in std logic vector(NUMPO-1 downto 0);
: in std logic vector(NUMPO-1 downto 0);
: in std logic vector(NUMPO-1 downto 0);
: in std logic vector(NUMPO-1 downto 0);
: in std logic vector(NUMPO-1 downto 0);
: in std logic vector(NUMPO-1 downto 0);
: in std logic vector(NUMPO-1 downto 0);
: in std _logic;
: in std logic;
: in std logic vector(BITPO-1 downto 0);
: in std logic vector(BITTASKS-1 downto 0);
: in stdlogic vector(BITPRIO-1 downto 0);
: out std-logic;
: out stdlogic vector(BITPRIO-1 downto 0);
: out std logic vector(BITTASKS-1 downto 0);
: out std logic;
: out std logicvector(MAXTIME-1 downto 0));

begin
kernelmain: kernelinternal

port map (clk=>clk, resetn=>reset_n, DelayUntil=>delayuntil, SetFreq=>setfreq,
Freq=>freq, DUntil=>Duntil, Tcpu=>Tcpu, Pcpu=>Pcpu,
CeilPrio=>CeilPrio, FPs=>fps, Upe=>upe, Ufe=>ufe, Ufpx=>ufpx,
UPxe=>upxe, UFxe=>ufxe, Barrier=>barrier, BarrierNew=>barrierNew,
FPe=>fpe, FPx=>fpx, Es=>es, UEb=>ueb, UEe=>uee, UEx=>uex,
Ex=>ex, Create=>create, FindTask=>findtask, POId=>POId,
TaskId=>Taskld, TaskPrio=>TaskPrio,BarrierGet=>BarrierGet,
NPcpu=>NPcpu, NTcpu=>NTcpu, Status=>kernelstatus,
sTime=>sTime);

-- Bus Interface State Machine
BISM : process(clk, resetn)

75

begin
if(resetn='O') then

busstate <= waitstate;
dout <= (others => '0');
ack-n <='1';
cmd <= (others => '0');
param high <= (others =>'0');
paramlow <= (others =>'0');
interrupt ack <= '0';
newcmd <='0';
newparam high <= '0';
newparamlow <= '0';
stat out <='0';
taskout <= '0';

elsif(clk'event and clk='1') then
case bus-state is

when waitstate =>
if(cs-n='0') then

-- sw writes to cmd reg
if(addr = addr regl and write n ='0') then

cmd <= din(CMDREG-1 downto 0);
newcmd <='1';
ack n <='0';
busstate <= ackstate;

-- sw writes to lower param reg: param or barrier
elsif(addr = addrreg2 and write n ='0') then

paramlow <= din;
new-param low <='1';
ack n <='o';
busstate <= ackstate;

-- sw writes to higher param reg (for delay until)
elsif(addr = addrreg3 and writen ='0') then

param high <= din;
newparam high <= '1';
ack_ n <='0';
busstate <= ackstate;

-- sw writes to interrupt acknowledge signal
elsif(addr = addrreg4 and write n ='0') then

interrupt ack <= din(0);
ack_n <='o';
bus_ state <= ackstate;

-- hw writes status reg out; all sigs are set low
elsif(addr = addr reg5 and write n = '1') then

dout(STATREG-1 downto 0) <= status;
dout(REG LENGTH-1 downto STATREG)

<= (others => '0');

76

newcmd <='0';
new-param low <='0';
newparam high <='0';
interrupt ack <= '0';
if(status /= NOSTAT) then

statout <='1';
end if;
ack_n <='0';
busstate <= ackstate;

-- hw writes newtask reg out
-- set newcmd low, in case it was set high right
-- before interrupt -> no cmd done, no status sent
elsif(addr = addrreg6 and write n ='1') then

dout(BITTASKS-1 downto 0) <= newtask;
dout(REG LENGTH-I downto

BITTASKS) <= (others => '0');
taskout <='1';
new cmd <= '0';
ack_n <= '0';
busstate <= ackstate;

-- hw writes curTime low out
elsif(addr = addrreg7 and write n ='1') then

dout <= curTimelow;
ack n <='O';
busstate <= ackstate;

-- hw writes curTime high out
elsif(addr = addrreg8 and write n ='1') then

dout <= curTime high;
ack_n <='';
bus state <= ack-state;

-- error state
else

ack_n <= '0';
busstate <= ackstate;

end if;
else

ack n <='1';
busstate <= waitstate;

end if;

when ackstate =>
if(cs-n = '1') then

ack-n <='l';
statout <='0';
taskout <= '0';
interrupt-ack <= '0';

77

busstate <= waitstate;
else

ack_n <='O';
busstate <= ack state;

end if;

when others =>
-- error state
busstate <= waitstate;

end case;
end if;

end process BISM;

-- Kernel Interface State Machine
KISM process(clk, resetn)
begin

if(reset-n='O') then
state <= iO;
interrupt <= '0';
status <= NOSTAT;
newtask <= (others => '0');
curTime high <= (others =>'0');
curTimelow <= (others => '0');
barrier <= '0';
barrierNew <='0';
create <= '0';
findtask <= '0';
delayuntil <='0';
setfreq <= '0';
freq <= (others => '0');
fps <= (others =>'0');
upe <= (others => '0');
ufe <= (others =>'0');
fpe <= (others =>'0');
ufpx <= (others =>'0');
upxe <= (others =>'0');
ufxe <= (others => '0');
fpx <= (others => '0');
es <= (others =>'0');
ueb <= (others => '0');
uee <= (others =>'0');
uex <= (others => '0');
ex <= (others =>'0');
Tcpu <= (others => '0');
Pcpu <= (others => '0');
DUntil <= (others =>'0');

78

TaskID <= (others =>'0');
TaskPrio <= (others =>'0');
CeilPrio <= (others => '0');
POId <= (others =>'0');

elsif(clk'event and clk='1') then
case state is

when 10 =>
-- new cmd, no interrupt
status <= NOSTAT;
if(new-cmd='1' and Tcpu=NTcpu) then

interrupt <= '0';
state <= i3;

-- interrupt occurs - don't care if new _cmd or not
-- sw just needs to know if it sent one, and got
-- interrupt before CMDDONE
elsif(Tcpu/=NTcpu) then

POID <= (others => '0');
interrupt <='1';
state <= il;

else
interrupt <= '0';
state <= iO;

end if;
-- if Prio changed due to Ceil Prio change, but same task
if(Pcpu/=NPcpu) then

Pcpu <= NPcpu;
end if;

when il =>
if(interrupt-ack='1') then

interrupt <= '0';
-- sw check for newtask after it acks
newtask <= NTcpu;
Tcpu <= NTcpu;
Pcpu <= NPcpu;
state <= i2;

else
interrupt <= '1';
state <= iI;

end if;
when i2 =>

if(task-out='1') then
state <= 10;

else
state <= i2;

end if;
when i3 =>

79

if(newparam-low='1') then
if(cmd=DELAYUNTILi) then

state <= i5;
else

state <= i4;
end if;

-- these don't have params
elsif(cmd=FINDTASKi or cmd=GETTIMEi) then

state <= i4;
else

state <= i3;
end if;

when i4 =>
if(cmd=CREATEi) then

create <= '1';
TaskPrio <= param low(BITPRIO-1 downto 0);
TaskID <= param low(BITTASKS+BITPRIO-1

downto BITPRIO);
state <= i6;

elsif(cmd=FINDTASKi) then
findtask <='1';
state <= i6;

elsif(cmd=DELAYUNTILi) then
delayuntil <='1';
-- **this assumes MAXTIME = 2*paramreg
DUntil(PARAMREG-1 downto 0) <= paramlow;
DUntil(MAXTIME-1 downto PARAMREG) <=

param high;
state <= i6;

-- for all PO cmds, set bit corresponding to POId high
elsif(cmd=FPSi) then

CeilPrio <= param low(BITPO+BITPRIO-1
downto BITPO);

POId <= paramlow(BITPO-1 downto 0);
fps(convinteger(param-low(BITPO-1 downto 0)))

<= '1';
state <= i6;

elsif(cmd=UPEi) then
POId <= paramlow(BITPO-1 downto 0);
upe(conv integer(paramlow(BITPO-1 downto 0)))

<= '1'
state <= i6;

elsif(cmd=UFEi) then
POId <= paramlow(BITPO-1 downto 0);
ufe(convinteger(param-low(BITPO-1 downto 0)))

<= '1';

80

state <= i6;
elsif(cmd=FPEi) then

POId <= paramlow(BITPO-1 downto 0);
fpe(convinteger(param-low(BITPO-1 downto 0)))

<= '1';
state <= i6;

elsif(cmd=UFPXi) then
POId <= paramlow(BITPO-1 downto 0);
ufpx(conv integer(paramlow(BITPO-1 downto

0))) <= '1';
state <= i6;

elsif(cmd=UPXEi) then
POId <= paramlow(BITPO-1 downto 0);
upxe(conv__integer(param-low(BITPO-1 downto

0))) <= '1';
state <= i6;

elsif(cmd=UFXEi) then
POId <= paramlow(BITPO-1 downto 0);
ufxe(conv integer(paramlow(BITPO-1 downto

0))) <= '1';
state <= i6;

elsif(cmd=FPXi) then
POId <= paramlow(BITPO-1 downto 0);
fpx(conv integer(param-low(BITPO-1 downto 0)))

<= '1';
state <= i6;

elsif(cmd=ESi) then
CeilPrio <= param low(BITPO+BITPRIO-1

downto BITPO);
POId <= paramlow(BITPO-1 downto 0);
es(convinteger(param-low(BITPO-1 downto 0)))

<= '1';
state <= i6;

elsif(cmd=UEBi) then
POId <= paramlow(BITPO-1 downto 0);
ueb(convinteger(paramlow(BITPO-1 downto 0)))

<='1';
state <= i6;

elsif(cmd=UEEi) then
POId <= paramlow(BITPO-1 downto 0);
uee(conv-integer(param-low(BITPO-1 downto 0)))

<= '1';
state <= i6;

elsif(cmd=UEXi) then
POId <= paramlow(BITPO-1 downto 0);
uex(conv-integer(paramlow(BITPO-1 downto 0)))

81

<= '1';
state <= i6;

elsif(cmd=EXi) then
POId <= param low(BITPO-1 downto 0);
ex(conv-integer(param-low(BITPO-1 downto 0)))

<= '1';
state <= i6;

elsif(cmd=SETFREQi) then
setfreq <= '1';
freq <= paramlow(FREQREG-1 downto 0);
state <= i6;

elsif(cmd=GETTIMEi) then
-- again, this assumes sizes work right...
curTimelow <= sTime(PARAMREG-1 downto 0);
curTimehigh <= sTime(MAXTIME- 1 downto

PARAMREG);
status <= CMDDONE;
state <= i7;

else
state <= i7;
status <= BADCMD;

end if;
when i5 =>

if(newparamhigh='1') then
state <= i4;

else
state <= i5;

end if;
when i6 =>

if(barrierGet='1') then
status <= GETBARR;
state <= i8;

elsif(kernelstatus='1') then
barrierNew <='0';
create <= '0';
findtask <= '0';
delayuntil <='0';
setfreq <= '0';
freq <= (others => '0');
fps(conv integer(POId)) <='0';
upe(conv integer(POld)) <='0';
ufe(conv integer(POId)) <= '0';
fpe(conv integer(POId)) <= '0';
ufpx(conv integer(POld)) <='0';
upxe(conv integer(POld)) <='0';
ufxe(conv-integer(POld)) <='0';

82

fpx(conv _integer(POld)) <='0';
es(conv integer(POId)) <='0';
ueb(conv integer(POId)) <='0';
uee(conv integer(POId)) <='0';
uex(conv integer(POId)) <='0';
ex(conv integer(POId)) <= '0';
TaskID <= (others => '0');
TaskPrio <= (others =>'0');
DUntil <= (others =>'0');
CeilPrio <= (others => '0');
status <= CMDDONE;
state <= i7;

else
state <= i6;

end if;
when i7 =>

if(stat-out='1') then
state <= iO;

else
state <= i7;

end if;
when i8 => -- wait for barrier stat to be read

if(stat-out='1') then
state <= i9;

else
state <= i8;

end if;
when i9 =>

-- got barrier
if(newparam low='1') then

barrier <= param low(conv-integer(POId));
barrierNew <= '1';
status <= NOSTAT;
state <= il0;

else
state <= i9;

end if;
when ilO =>

-- let BarrierGet be reset so barr req isn't made again
state <= i6;

when others =>
state <= i0;

end case;
end if;

end process KISM;
end Behavioral;

83

A.2 Main Kernel

-- NAME: kernel internal.vhd

-- INPUTS:

-- OUTPUTS:

clk
reset_n
DelayUntil
SetFreq
Freq

DUntil

Tcpu
Pcpu
CeilPrio

FPs
Upe
Ufe
Ufpx
UPxe
UFxe
Barrier

BarrierNew
FPe
FPx
Es
UEb
UEe
UEx
Ex
Create
FindTask
POId

Taskld

TaskPrio

BamerGet
NPcpu
NTcpu
Status
sTime

FPGA clock
FPGA reset, active low
signal specifyng delay until command has been made
signal specifying a set frequency command has been made
the frequency to set the clock at
(only has data when SetFreq==1)
the time to which a task will delay until
(only has data when DelayUntil==l)
the ID of the task currently running
the priority of the task currently running
the ceiling priority of the PO
(only has data when FPs(POld)==1 or Es(POId)==1)
array of signals specifying FPs commands for POs
array of signals specifying Upe commands for POs
array of signals specifying Ufe commands for POs
array of signals specifying Ufpx commands for POs
array of signals specifying UPxe commands for POs
array of signals specifying UFxe commands for POs
barrier value of current PO
(only valid if BarrierNew==1)
signal indicating if Barrier holds a current value
array of signals specifying FPe commands for POs
array of signals specifying FPx commands for POs
array of signals specifying Es commands for POs
array of signals specifying UEb commands for POs
array of signals specifying UEe commands for POs
array of signals specifying UEx commands for POs
array of signals specifying Ex commands for POs
signal specifying create command has been made
signal specifying find task command has been made
ID of PO being called
(only valid when a task is calling a PO)
ID of task being created
(only has data when Create==1)
priority of task being created
(only has data when Create==1)

signal to request the PO's barrier value from the PPC
priority of the task that should now run on the PPC
ID of the task that should now run on the PPC
signal indicating command has been completed
value of VCounter

84

-- DESCRIPTION: connects all the kernel components except interface routines. Evaluates
-- channels that multiple components need, and determines kernel status. Passes up to
-- interface new task to run, or a barrier request, and the current VCounter time

library IEEE;
use IEEE.STDLOGIC_1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity kernel internal is
Port (clk in std logic;

resetn in std-logic;
DelayUntil : in std logic;
SetFreq in std-logic;
Freq in std logic _vector(FREQREG-1 downto 0);
DUntil in stdlogicvector (MAXDUNTIL-1 downto 0);
Tcpu in std-logic vector(BITTASKS-1 downto 0);
Pcpu : in std logic vector(BITPRIO-1 downto 0);
CeilPrio in std logic vector(BITPRIO-1 downto 0);
FPs in std logic vector(NUMPO-1 downto 0);
Upe : in std logic vector(NUMPO-1 downto 0);
Ufe in std logic vector(NUMPO-1 downto 0);
Ufpx in std logic vector(NUMPO-1 downto 0);
UPxe in std logic vector(NUMPO-1 downto 0);
UFxe : in std logic vector(NUMPO-1 downto 0);
Barrier in std logic;
BarrierNew : in std logic;
FPe : in std logic vector(NUMPO-1 downto 0);
FPx : in std logic vector(NUMPO-1 downto 0);
Es : in std logic vector(NUMPO-1 downto 0);
UEb : in std logic _vector(NUMPO-1 downto 0);
UEe : in std logicvector(NUMPO-1 downto 0);
UEx : in std logic vector(NUMPO-1 downto 0);
Ex : in std logic vector(NUMPO-1 downto 0);
Create : in std logic;
FindTask : in std logic;
POId : in std logic vector(BITPO-1 downto 0);
Taskld : in std logic vector(BITTASKS-1 downto 0);
TaskPrio : in std logic vector(BITPRIO-1 downto 0);
BarrierGet : out std logic;
NPcpu : out std logicvector(BITPRIO-1 downto 0);
NTcpu : out std logic vector(BITTASKS- 1 downto 0);
Status : out std logic;
sTime : out std logic vector(MAXTIME-1 downto 0));

85

end kernel internal;

architecture Behavioral of kernel internal is
signal NPcpu fromPO
signal NPcpu fromPOall
signal NPcpu fromRQ
signal NTcpu-fromRQ
signal QE
signal system time
signal SuspendTask
signal Suspend fromPO
signal DQAState
signal DQO_State
signal AwakeTask
signal RQState
signal FindNew
signal FindNewall
signal POen
signal PO_en_all
signal POwe
signal POweall
signal POaddr
signal PO_addrall
signal PO_assign
signal PO_assign_all
signal POStatus
signal RQStatus
signal timerStatus
signal BarrierReq
signal DQstatus

-- all of the kernel components
component arbitrate cpu

port (NPcpu-po
Tcpu
NPcpu_rq
NTcpu_rq
NPcpu
NTcpu

end component;

: stdlogic vector(BITPRIO-1 downto 0);
: allNPcpu;
: stdlogic vector(BITPRIO-1 downto 0);
: std_logicvector(BITTASKS-1 downto 0);
: stdlogic; -- channel QE
: stdlogic vector(MAXTIME-1 downto 0);
: stdlogic; -- channel Suspend
: stdlogic vector(NUMPO-1 downto 0);
: dqa;
: dqo;
: stdlogic vector(BITTASKS-1 downto 0); -- PE
: rqs;
: stdlogic; -- sig to readyqueue
: stdlogic vector(NUMPO-1 downto 0);
: std_ logic;
: stdlogicvector(NUMPO-1 downto 0);
: stdlogic;
: stdlogic vector(NUMPO-1 downto 0);
: stdlogicvector(BITTASKS-1 downto 0);
: allRQaddr;
: stdlogic vector(RQDATASIZE-1 downto 0);
: allRQassign;
: stdlogic vector(NUMPO-1 downto 0);
: stdlogic;
: stdlogic;
: std__logic vector(NUMPO-1 downto 0);
: stdlogic;

in std logic vector(BITPRIO-1 downto 0);
in std logic vector(BITTASKS-1 downto 0);
in std logic vector(BITPRIO-1 downto 0);
in stdlogic vector(BITTASKS-1 downto 0);
out std logic vector(BITPRIO-1 downto 0);
out std logic vector(BITTASKS- 1 downto 0));

component dcLstate _andram
port (clk : in stdlogic;

resetn : in std_logic;
delayuntil : in std_ logic;
param-reg : in std logicvector (MAXDUNTIL-1 downto 0);

86

qe
foundnext
stime
suspend
tcpu
dqackstate
dqorgstate
pe
status

end component;

component multiPO
port(clk

reset_n
Pcpu
Tcpu
CeilPrio
FPs
Upe
Ufe
Ufpx
UPxe
UFxe
Barrier
BarrierNew
FPe
FPx
Es
UEb
UEe
UEx
Ex
RQState
BarrierReq
Suspend
FindNew
NPcpu
RQen
RQ-we
RQaddr
RQassign
POStatus

end component;

in std logic;
in std logic;
in std logic vector(MAXTIME-1 downto 0);
in std logic;
in std logic vector(BITTASKS-1 downto 0);
out dqa;
out dqo;
out std logic _vector(BITTASKS-1 downto 0);
out stdlogic);

in std logic;
in std-logic;
in std logic vector(BITPRIO-1 downto 0);
in std logic vector(BITTASKS-1 downto 0);
in std logic vector(BITPRIO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic;
in std logic;
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in rqs;
out std logic vector(NUMPO-1 downto 0);
out std logic vector(NUMPO-1 downto 0);
out std logicvector(NUMPO-1 downto 0);
out allNPcpu;
out std logic vector(NUMPO-1 downto 0);
out std logic vector(NUMPO-1 downto 0);
out allRQaddr;
out all RQassign;
out std logic vector(NUMPO-1 downto 0));

component rcLstateandramandarbit
port (clk in std logic;

87

reset_n
create
POaddr
PO_assign
POen
PO we
findnew
pcpu
pe
qe
suspend
task id
task_prio
tcpu
npcpu
ntcpu
rqstate
status

end component;

component timer
port (clk

resetn
setfreq
freq
status
VCounter

end component;

in std logic;
in std logic;
in std logic vector(BITTASKS-1 downto 0);
in std logic vector(RQDATASIZE-1 downto 0);
in std logic;
in std logic;
in std logic;
in std logic vector(BITPRIO-1 downto 0);
in std logicvector(BITTASKS-1 downto 0);
in std logic;
in std logic;
in std logic vector(BITTASKS-1 downto 0);
in std logic vector(BITPRIO-1 downto 0);
in std logic vector(BITTASKS-1 downto 0);
out std logic vector(BITPRIO-1 downto 0);
out std logic vector(BITTASKS-1 downto 0);
out rqs;
out std logic);

in std logic;
in std-logic;
in std logic;
in std logic vector(FREQREG-1 downto 0);
out std logic;
out std logic vector(MAXTIME-1 downto 0));

begin
-- channels
QE <='1' when (RQState=r0 and (DQOState=o2 or DQOState=o3)) else '0';
-- the or'd things CAN'T happen at same time
SuspendTask <='1' when (Suspend fromPO(conv integer(POId))='1'

or (DQAState=a2 and RQState=rO)) else '0';

-- status
Status <= POStatus(conv-integer(POd)) or RQ_Status or timerStatus or DQstatus;

-- barrier request
BarrierGet <= BarrierReq(conv-integer(POId));

-- assigning sigs from multi POs
NPcpu fromPO <= NPcpufromPOall(conv-integer(POld));
FindNew <= FindNewall(conv_integer(POld)) OR FindTask;
POen <= PO-en-all(conv-integer(POld));

88

POwe <= PO we all(conv-integer(POId));
POaddr = POaddr all(conv integer(POId));
POassign <= PO_assignall(conv-integer(POId));

-- pass time array up
sTime <= system-time;

arbcpu: arbitrate cpu
port map (NPcpupo=>NPcpufromPO, Tcpu=>Tcpu,

NPcpurq=>NPcpu fromRQ, NTcpu-rq=>NTcpu-fromRQ,
NPcpu=>NPcpu, NTcpu=>NTcpu);

dqall: dqstate andram
port map (clk=>clk, resetn=>reset_n, delayuntil=>DelayUntil,

param-reg=>DUntil, qe=>QE, foundnext=>RQStatus,
stime=>system time, suspend=>SuspendTask, tcpu=>Tcpu,
dqackstate=>DQAState, dqorgstate=>DQOState, pe=>AwakeTask,
status=>DQstatus);

POall: multiPO
port map (clk=>clk, resetn=>reset_n, Pcpu=>Pcpu, Tcpu=>Tcpu,

CeilPrio=>CeilPrio, FPs=>FPs, Upe=>Upe, Ufe=>Ufe,
Ufpx=>Ufpx, UPxe=>UPxe, UFxe=>UFxe, Barrier->Barrier,
BarrierNew=>BarrierNew, FPe=>FPe, FPx=>FPx, Es=>Es,
UEb=>UEb, UEe=>UEe, UEx=>UEx, Ex=>Ex,
RQState=>RQState, BarrierReq=>BarrierReq,
Suspend=>Suspend fromPO, FindNew=>FindNewall,
NPcpu=>NPcpu fromPOall, RQen=>POenall, RQ we=>POweall,
RQ_addr->POaddrall, RQ_assign=>PO assignall,
POStatus=>POStatus);

RQall: rcLstate andramandarbit
port map (clk=>clk, resetn=>reset n, create=>Create, POaddr->POaddr,

POassign=>PO_assign, POen=>PO_en, POwe=>POwe,
findnew=>FindNew, pcpu=>Pcpu, pe=>AwakeTask, qe=>QE,
suspend=>SuspendTask, taskid=>Taskld, taskprio=>TaskPrio,
tcpu=>Tcpu, npcpu=>Npcpu-fromRQ,
ntcpu=>NTcpu-fromRQ, rqstate=>RQState, status=>RQStatus);

timerroutine: timer
port map(clk=>clk, resetn=>reset n, setfreq=>SetFreq, freq=>Freq,

status=>timerStatus, VCounter=>system time);

end Behavioral;

89

A.3 Ready Queue

-- NAME: rq_stateandramandarbit.vhd

-- INPUTS:

-- OUTPUTS:

clk
reset_n
create
POaddr
PO assign
POen
POwe
findnew
pcpu
Pe

qe
suspend
taskid

taskprio

tcpu

npcpu
ntcpu
rqstate
status

FPGA clock
FPGA reset, active low
signal specifying create command has been made
address location in the RQ RAM a PO wants to access
data a PO wants to put in the RQRAM
enable signal for the RQRAM, activated by a PO
write enable signal for the RQ RAM, activated by a PO
signal specifying find new command has been made
priority of task running on PPC
from delay queue, ID of a task that has awoken from delay
(only has valid data when qe==1)
channel indicating a task has awoken from delay
signal indicating the current task has suspended
ID of task being created
(only has data when create==1)
priority of task being created
(only has data when create==1)
ID of currently running task

priority of task that should now run on PPC
ID of task that should now run on PPC
state of the RQSM
status of this component

-- DESCRIPTION: this combines the rq state machine, the rq ram, and the ram arbitrator

library IEEE;
use IEEE.STDLOGIC_1 164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity rq_stateandramandarbit is
Port (clk : in std logic;

resetn : in std logic;
create : in std logic;
POaddr : in std logic vector(BITTASKS-1 downto 0);
POassign : in std logic vector(RQDATASIZE-1 downto 0);
PO_ en : in std logic;
POwe : in std logic;
findnew : in std logic;

90

pcpu : in std logic vector(BITPRIO-1 downto 0);
pe : in std logic vector(BITTASKS-1 downto 0);
qe : in std logic;
suspend : in std logic;
taskid : in std logic vector(BITTASKS-1 downto 0);
taskprio : in std logic vector(BITPRIO-1 downto 0);
tcpu : in std logic vector(BITTASKS-1 downto 0);
npcpu : out std logicvector(BITPRIO-1 downto 0);
ntcpu : out std logicvector(BITTASKS-1 downto 0);
rqstate : out rqs;
status : out std logic);

end rq_stateandramandarbit;

architecture Behavioral of rqstateandramandarbit is
signal addr std logic-vector (BITTASKS-1 downto 0);
signal en std logic;
signal ram assign std logic-vector (RQDATASIZE-1 downto 0);
signal ramout std logic-vector (RQDATASIZE-1 downto 0);
signal readack std-logic;
signal readdata std logic vector (RQDATASIZE-1 downto 0);
signal rqaddr std-logic vector (BITTASKS-1 downto 0);
signal rq__assign std logic-vector (RQDATASIZE-1 downto 0);
signal rq_en std-logic;
signal rqwe std logic;
signal we std logic;

component rq_state
port (clk

reset_n
create
qe
suspend
findnew
rqack
taskid
taskprio
pe
tcpu
pcpu
rq_read
rq_en
rqwe
status
rq_addr
rqassign
ntcpu

: in std logic;
: in std-logic;
: in STDLOGIC;
: in std logic;
: in std logic;
: in std logic;
: in std logic;
: in std _logic vector(BITTASKS-1 downto 0);
: in std logic vector(BITPRIO-1 downto 0);
: in std logic vector(BITTASKS-1 downto 0);
: in std logic vector(BITTASKS-1 downto 0);
: in std logic vector(BITPRIO-1 downto 0);
: in stdlogic vector(RQDATASIZE-1 downto 0);
: out std-logic;
: out std logic;
: out std-logic;
: out std logicvector(BITTASKS-1 downto 0);
: out std logic vector(RQDATASIZE-1 downto 0);
: out std logic vector(BITTASKS-1 downto 0);

91

npcpu
rqstate

end component;

component rq_ram
port (clk

en
we
addr
din
dout

end component;

component arbitraterq
port (clk

reset_n
rq_en
rqwe
POen
PO-we
rq_addr
rqassigi
POaddr
PO-assi
ramrea
ramen
ramwe
readack
ramadd
ram assi
readdat

end component;

out std logic vector(BITPRIO-1 downto 0);
out rqs);

in std logic;
in stdlogic;
in std logic;
in std logic vector(BITTASKS-1 downto 0);
in std logic vector(RQDATASIZE-1 downto 0);
out std logic vector(RQDATASIZE-1 downto 0));

ram
in std logic;
in std logic;
in std logic;
in std logic;
in std logic;
in std logic;
in std logic vector(BITTASKS-1 downto 0);

n in std logic vector(RQDATASIZE-1 downto 0);
: in stdlogic vector(BITTASKS-1 downto 0);

gn : in std logic vector(RQDATASIZE-1 downto 0);
I : in std logic vector(RQDATASIZE-1 downto 0);

: out std-logic;
: out std logic;
: out std logic;

r : out std logic vector(BITTASKS-1 downto 0);
gn : out std logic vector(RQDATASIZE-1 downto 0);
a : out std logic vector(RQDATASIZE-1 downto 0));

begin
rqstateroutine : rq_state

port map (clk=>clk, resetn=>reset_n, create=>create, qe=>qe,
suspend=>suspend, findnew=>findnew, rq-ack=>readack,
taskid=>task id, taskprio=>task_prio, pe=>pe, tcpu=>tcpu, pcpu=>pcpu,
rq_read=>readdata, rqen=>rgen, rq_we=>rq_we, status=>status,
rq_addr->rqaddr, rqassign=>rqassign, ntcpu=>ntcpu, npcpu=>npcpu,
rqstate=>rqstate);

rqramroutine : rq_ram
port map (clk=>clk, en=>en, we=>we, addr=>addr, din=>ram assign,

dout=>ram out);

92

rqarbitrator : arbitrate rq_ram
port map (clk=>clk, resetn=>reset n, rqen=>rq_en, rqwe=>rq_we,

po_en=>poen, po we=>po we, rqaddr=>rqaddr,
rq_assign=>rqassign, poaddr=>poaddr, poassign=>poassign,
ramread=>ramout, ramen=>en, ram we=>we, readack=>readack,
ram_addr=>addr, ram assign=>ramassign, read data=>readdata);

end Behavioral;

-- NAME: rq_ram.vhd

-- INPUTS: clk
en
we
addr
din

FPGA clock
RAM enable
RAM write enable - write high, read low
location in RAM being accessed
data to put in RAM addr (for write)

-- OUTPUT: dout data in RAM addr (for read)

-- DESCRIPTION: this simulates RAM to hold the ready queue data. It size is defined by the
-- variables NUMTASKS and RQDATASIZE, which are both defined in myvariables.vhd

library IEEE;
use IEEE.STDLOGIC__1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity RQRAM is
Port (clk : in stdlogic;

en : in stdlogic;
we : in stdlogic;
addr : in stdlogic vector(BITTASKS-1 downto 0);
din : in stdlogic vector(RQDATASIZE-1 downto 0);
dout : out stdlogic vector(RQDATASIZE-1 downto 0));

end RQRAM;

architecture Behavioral of RQ RAM is
type ram type is array (NUMTASKS- 1 downto 0) of std logic vector(RQDATASIZE- 1

downto 0);
signal ramarray: ramtype;

93

begin
process(clk)
begin

if(clk'event and clk='1') then
if(en='1') then

if(we='1') then
ramarray(conv integer(addr))<=din;
dout <= din;

else
dout <= ram-array(convinteger(addr));

end if;
end if;

end if;
end process;

end Behavioral;

-- NAME: rq_state

-- INPUTS:

-- OUTPUTS:

clk
reset_n
create
TaskID

TaskPrio

PEB

Tcpu
Pcpu
QE
Suspend
FindNew
RQread
RQack

RQen
RQ_we
RQaddr
RQassign
Status
NTcpu
NPcpu
RQstate

FPGA clock
FPGA reset, active low
signal specifying create command has been made
ID of task being created
(only has valid data when create==1)
priority of task being created
(only has valid data when create==1)
from delay queue, ID of a task that has awoken from delay
(only has valid data when QE==1)
ID of currently running task
priority of currently running task
channel indicating that a task has awoken
signal indicating current task has suspended
signal indicating a new task must be found to run
data from the RQRAM
signal from RQRAM arbitrator indicating RAM access occurred

enable signal for accessing RQRAM
write enable signal for accessing RQRAM
location in RQ_RAM to access
data to write to RQ addr location in RQRAM
status of this component
ID of task that should now run on PPC
priority of task that should now run on PPC
state of the RQSM

-- DESCRIPTION: this is the state machine for the ready queue. It handles creation of tasks,

94

-- and finds the task that should run after elaboration, after a task has suspended, or after a
-- task wakes from a delay

library IEEE;
use IEEE.STDLOGIC_1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity rq_state is
Port (clk : in std logic;

resetn : in std-logic;
create : in std logic;
TaskID : in std logic vector(BITTASKS-1 downto 0);
TaskPrio : in std logic vector(BITPRIO-1 downto 0);
PE : in std logic vector(BITTASKS-1 downto 0);
Tcpu : in std logic vector(BITTASKS-1 downto 0);
Pcpu : in std logic vector(BITPRIO-1 downto 0);
QE : in std logic;
Suspend : in std logic;
FindNew : in std logic;
RQ-read : in std logic vector(RQDATASIZE-1 downto 0);
RQack : in std logic;
RQen : out std logic;
RQ-we : out std-logic;
RQaddr : out std logicvector(BITTASKS-1 downto 0);
RQassign : out std logicvector(RQDATASIZE-1 downto 0);
Status : out std logic;
NTcpu : out std logicvector(BITTASKS-1 downto 0);
NPcpu : out std logicvector(BITPRIO-1 downto 0);
RQstate : out rqs);

end rq_state;

architecture Behavioral of rqstate is
signal RQ : rqs;
signal addr : std logic vector(BITTASKS-1 downto 0);
NPcpuinternal : std-logicvector(BITPRIO-1 downto 0);

begin
NPcpu <== NPcpuinternal;

process(clk,
variable tr
variable ir
variable pr

reset n)
std logic vector(BITTASKS-1 downto 0);
std logic vector(BITTASKS-1 downto 0);
std logic vector(BITPRIO-1 downto 0);

95

begin
if(reset_n='O') then

status <= '0';
NTcpu <= (others =>'0');
NPcpu internal <= (others =>'0');
RQ-en <= '1';
RQwe <= '1';
addr <= (others => '0');
RQassign <= (others =>'0');
tr : (others => '0');
pr (others => '0');
ir : (others => '0');
RQ <= reset ram;

elsif(clk'event and clk='1') then
case RQ is

when resetram =>
if(addr < (NUMTASKS-1)) then

-- RQ assign has already been set to 0
-- enable and write are set
addr <= addr + 1;
RQ <= reset-ram;

else
RQ <= rO;

end if;
when r0 =>

if(create='1') then
Status <='1';
RQ-en <= '1';
RQ-we <='1';
addr <= TaskID;
RQassign(RQDATASIZE-1 downto 1) <=

TaskPrio;
RQassign(O) <='1';
RQ <= rl;

elsif(QE='1') then
-- A TASK HAS AWOKEN FROM DELAY
-- MAKE IT VALID AGAIN
Status <='0';
RQ-en <='1';
RQ we <= '0';
addr <= PE;
RQ <= r2;

elsif(Suspend='1') then
-- CURRENT TASK HAS BEEN SUSPENDED
-- MAKE INVALID, SEARCH NEXT TO RUN
Status <= '0';

96

RQ-en <='1';
RQ we <='0';
addr <= Tcpu;
tr:= (others =>'0');
pr:= (others =>'0');
ir := conv std logic vector(NUMTASKS-1,

BITTASKS);
RQ <= r3;

elsif(FindNew='1') then
-- A TASK HAS COMPLETED
-- NEED TO FIND A NEW ONE
-- SAME ROUTINE AS SUSPEND, BUT NO
-- NEED TO CHANGE VALID BITS
Status <= '0';
RQ-en <='0';
RQ we <= '0';
tr:= (others =>'0');
pr:= (others =>'0');
ir conv std logic vector(NUMTASKS-1,

BITTASKS);
RQ <= r4;

else
Status <= '0';
RQ-en <= '0';
RQ-we <= '0';
RQ <= r0;

end if;
when rl =>

RQ-en <='0';
RQwe <='0';
Status <='0';
RQ <= rO;

-- PATH FOR MAKING TASK VALID AGAIN
when r2 =>

if(RQack='1') then
RQ-en <='1';
RQ we <= '1';
-- ADDR IS STILL PE
RQassign(RQDATASIZE-1 downto 1) <=

RQ read(RQDATASIZE-1 downto 1);
-- SETS VALID BIT BACK TO 1
RQassign(0) <= '1';
RQ <= r0;
if(RQ read(RQDATASIZE-1 downto 1)>Pcpu

or RQread(RQDATASIZE-1 downto 1 >
NPcpu internal) then

97

NPcpu internal <=
RQ_read(RQDATASIZE-1 downto 1);

NTcpu <= addr;
end if;

else
RQ-en <= 'O';
RQ-we <='0';
RQ <= r2;

end if;

-- PATH FOR MAKING A TASK INVALID (r4 and r5), AND
- FINDING ONE WITH NEXT HIGHEST PRIO (r6 on)
when r3 =>

if(RQack='1') then
RQ-en <= '1';
RQ-we <= '1';
-- ADDR IS STILL TCPU
RQassign(RQDATASIZE-1 downto 1) <=

RQread(RQDATASIZE-1 downto 1);
RQassign(O) <='0'; -- SETS VALID BIT TO 0
RQ <= r4;

else
RQ-en <='0';
RQ we <= '0';
RQ <= r3;

end if;
when r4 =>

if(ir>0) then
RQ-en <= '1';
RQ we <='0';
addr <= ir;
Status <= '0';
RQ <= r5;

else
-- if no other tasks can run, run null
RQ-en <='0';
RQ we <='0';
NTcpu <= (others => '0');
NPcpu internal <= (others => '0');
Status <='1';
RQ <= r8;

end if;
when r5 =>

if(RQack='1') then
RQ-en <= 'O';
RQwe <= '0';

98

ir := ir-1;
if((RQ-read(RQDATASIZE-1 downto 1)>O) AND

(RQ read(O)='1')) then
pr:= RQread(RQDATASIZE-1 downto 1);
tr := addr;
RQ <= r6;

else
RQ <= r4;

end if;
else

RQ-en <= '0';
RQ-we <= '0';
RQ <= r5;

end if;
when r6 =>

RQ we <='0';
if(ir>0) then

RQ-en <='1';
addr <= ir;
Status <= '0';
RQ <= r7;

else
RQ-en <='0';
NTcpu <= tr;
NPcpu internal <= pr;
Status <='1';
RQ <= r8;

end if;
when r7 =>

if(RQ_ack='1') then
RQ-en <= '0';
RQ-we <='0';
ir:= ir-1;
RQ <= r6;
if((RQ-read(RQDATASIZE- 1 downto 1) > pr)

AND (RQ read(O)='1')) then
pr:= RQread(RQDATASIZE-1 downto 1);
-- ADDR IS STILL IR
tr := addr;

end if;
else

RQ-en <='0';
RQ-we <= '0';
RQ <= r7;

end if;
when r8 =>

99

RQ en <='0';
RQ-we <= '0';
Status <= '0';
RQ <= rO;

when others =>
RQ <= rO;

end case;
end if;

end process;

-- ASSIGN STATE BITS, RAM ADDRESS TO OUTPUT
RQState <= RQ;
RQaddr <= addr;

end Behavioral;

-- NAME: arbitrate rq_ram.vhd

-- INPUTS:

-- OUTPUTS:

clk
reset_n
RQ en
RQ we
RQ addr
RQ assign
PC)_en
PC) _we
PC)_addr
POassign
rainread

ramen.
ramwe
ram_addr
ram assign
readdata
readack

FPGA clock
FPGA reset, active low
RAM enable from RQSM
RAM write enable from RQSM
RAM address RQSM wants to access
data RQSM wants to assign to RAM
RAM enable from a PO
RAM write enable from a PO
RAM address a PO wants to access
data a PO wants to assign to RAM
data output from the RQRAM

enable sent to RAM
write enable sent to RAM
address sent to RAM
data to assign sent to RAM
data read from RAM to redirect to RQSM or PO
acknowledge that RAM read has occurred

- DESCRIPTION: this arbitrates simultaneous access to the RQ_RAM, by the RQSM and a PO

-- NOTES:
-- conflicts will only occur between the QE branch of the readyqueue, and any one entry or
-- function/procedure process
-- assumes that create branch of readyqueue is ONLY called at initialization
-- cases:
-- 1) readyqueue tries to read at rO, entry tries to write at E0

100

-- entry should write first, readyqueue will stall while waiting for read results; no
-- issues with access the immediate cycles after
- 2) readyqueue tries to read at rO, entry tries to write at E15
-- entry should write first, readyqueue will stall while waiting for read results; no
-- issues with access the immediate cycles after, because even though after entry

writes, control goes to proc, and immedaitely wants to write again, it must synch
-- on FindNew, which means it must wait for readyqueue to return to rO
-- 3) readyqueue tries to read at rO, procedure tries to write at PO
-- procedure should write first, readyqueue will stall while waiting for read results;
-- no issues with access the immediate cycles after
-- 4) readyqueue tries to write at r2, entry tries to write at E0
-- let entry write first, but doesn't matter; no issues with access the immediate cycles

after
- 5) readyqueue tries to write at r2, entry tries to write at E15
-- let entry write first, but doesn't matter; no issues
-- 6) readyqueue tries to write at r2, procedure tries to write at PO

let proc write first, but doesn't matter; same issues as case 4 though

-- SUMMARY: only have to deal with two things happening at once, but nothing
-- happening the immediate cycle after - so we won't get a back up, we can
-- use a state machine with a branch for each double command
- for ease, always have the entry/proc write first

-- have a seperate machine to handle reads - since we need to wait an extra
-- cycle for valid read, and send acknowledge, but a write could occur while
-- waiting (ie readyqueue sends read, waiting at r2 for ack, entry now writes)

library IEEE;
use IEEE.STDLOGIC_1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity arbitrate_rq_ram is
Port (clk : in std logic;

resetn : in std logic;
RQen : in std logic;
RQ-we : in std logic;
RQaddr : in std logic vector(BITTASKS-1 downto 0);
RQassign : in std logic vector(RQDATASIZE-1 downto 0);
POen : in std logic;
POwe : in std _logic;
POaddr : in std logic vector(BITTASKS-1 downto 0);
POassign : in std logic vector(RQDATASIZE-1 downto 0);
ram-read : in std logic vector(RQDATASIZE-1 downto 0);

101

ramen
ramwe
ramaddr
ramassign
readdata
readack

end arbitrate_rq_ram;

out std-logic;
out std logic;
out std logic vector(BITTASKS-1 downto 0);
out std logic vector(RQDATASIZE-1 downto 0);
out std logic vector(RQDATASIZE-1 downto 0);
out std-logic);

architecture Behavioral of arbitraterq_ram is
type state type is (sO, s1, s2);
signal state : state-type;
type read__states is (rO, rl);
signal r : readstates;
signal read : std logic;
signal tempaddr : std logic vector(BITTASKS-1 downto 0);
signal tempassign : std logic vector(RQDATASIZE-1 downto 0);

begin
-- synch machines, on read
reading : process(clk, reset-n)
begin

if(reset-n='O') then
readdata <= (others => '0');
readack <= '0';
r <= rO;

elsif(clk'event and clk='1') then
case r is

when rO =>
readdata <= (others => '0');
readack <= '0';
if(read='1') then

r <= rl;
else

r <= rO;
end if;

when r1 =>
readdata <= ramread;
readack <= '1';
r <= rO;

when others =>
r <= rO;

end case;
end if;

end process reading;

arbitrate : process(clk, reset-n)

102

begin
if(reset-n='0') then

ram en <='0;
ram we <='0;
ram__addr <= (others => '0');
ram-assign <= (others =>'0');
tempaddr <= (others =>'0');
tempassign <= (others =>'0');
read <= '0';
state <= sO;

elsif(clk'event and clk='1') then
case state is

when sO =>
-- case: only 1 process (readyqueue) is trying to write
if(RQen='1' and RQ we='1' and POen='0' and

PO we='O') then
ramen <='1';
ramwe <='1';
ramaddr <= RQaddr;
ram_assign <= RQassign;
read <= '0';
state <= sO;

-- case: only 1 process (entry/procedure) is trying to write
elsif(RQen='0' and RQ we='0' and POen='1' and

PO we='1') then
ramen <='1';
ramwe <='1;
ramaddr <= POaddr;
ramassign <= PO_assign;
read <= '0';
state <= sO;

-- case: readyqueue is trying to read - calls reading
elsif(RQen='1' and RQ we='O' and POen='O' and

PO we='O') then
ramen <='1';
ramwe <= '0';
ramaddr <= RQaddr;
read <='1';
state <= sO;

-- case: readyqueue tries read, entry/procedure tries to write
elsif(RQen='1' and RQ we='O' and POen='1' and

PO we='1') then
tempaddr <= RQaddr;
ramen <=';
ramwe <= ';
ramaddr <= POaddr;

103

ramassign <= P0_assign;
read <= '0';
state <= s1;

-- case: readyqueue tries write, entry/procedure tries write
elsif(RQen='1' and RQ we='1' and POen='1' and

PO we='1') then
tempaddr <= RQaddr;
tempassign <= RQassign;
ramen <='1';
ramwe <= '1';
ramaddr <= POaddr;
ramassign <= PO_assign;
read <= '0';
state <= s2;

else
ramen <='0';
ramwe <= '0';
ramaddr <= (others => '0');
ramassign <= (others =>'0');
read <= '0';
state <= sO;

end if;
when sI =>

ramen <='1';
ramwe <='0';
ramaddr <= tempaddr;
read <= '1';
state <= sO;

when s2 =>
ramen <='1';
ramwe <= '1';
ramaddr <= temp addr;
ramassign <= tempassign;
read <= '0';
state <= sO;

when others =>
state <= sO;

end case;
end if;

end process arbitrate;

end Behavioral;

104

A.4 Delay Queue

-- NAME: dqstateandram.vhd

-- INPUTS:

-- OUTPUTS:

clk
resetIn
del ayuntil
param-reg

qe
foundnext
stime
suspend
tcpu
dqackstate
dqorgstate

pe
status

FPGA clock
FPGA reset, active low
signal specifying a delay until command has been made
the time to which the task will delay until
(only valid when delayuntil==1)
channel indicating a task has awoken from delay
status signal from RQ, indicating next task to run has been found
value of VCounter
signal indicating a task has been suspended
ID of task running on PPC
state of DQASM
state of DQOSM

ID of task that has awoken from a delay
status of this component

-- DESCRIPTION: This combines the delay queue state machine, and the associated RAM

library IEEE;
use IEEE.STDLOGIC_1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity DQstateandram is
Port (clk : in std logic;

resetn : in std logic;
delayuntil : in std logic;
param-reg : in std-logic vector (MAXDUNTIL-1 downto 0);
qe : in std logic;
foundnext : in std logic;
stime : in std logic vector(MAXTIME-1 downto 0);
suspend : in std-logic;
tcpu : in std logic vector(BITTASKS-1 downto 0);
dqackstate : out dqa;
dqorgstate : out dqo;
pe : out std logic vector(BITTASKS-1 downto 0);
status : out stdlogic);

end dq_state andram;

architecture Behavioral of dqstateandram is

105

signal dq_addr : std logic vector(BITTASKS-1 downto 0);
signal dq_assign : std logic vector(MAXDUNTIL-1 downto 0);
signal dq_en : stdlogic;
signal dq_read : std logic vector(MAXDUNTIL-1 downto 0);
signal dq_we : stdlogic;
signal readack : std logic;

component dq_state
port (clk in std logic;

resetn in stdlogic;
delayuntil in std logic;
suspend in stdlogic;
qe in std logic;
foundnext : in std-logic;
dq_read-ack : in std logic;
stime : in std logicvector(MAXTIME-1 downto 0);
tcpu : in std logic vector(BITTASKS-1 downto 0);
param-reg : in stdlogic vector(MAXDUNTIL- 1 downto 0);
dq_read : in std logic vector(MAXDUNTIL- 1 downto 0);
dqen : out std logic;
dq_we : out std logic;
dqaddr : out std logic vector(BITTASKS-1 downto 0);
dqassign : out std logic vector(MAXDUNTIL-1 downto 0);
pe : out std logic vector(BITTASKS-1 downto 0);
Status : out std logic;
dqackstate : out dqa;
dqorgstate : out dqo);

end component;

component dq_ram
port (clk : in std logic;

resetn : in std-logic;
en : in std logic;
we : in std logic;
addr : in std logic vector(BITTASKS-1 downto 0);
din : in std logic vector(MAXDUNTIL- 1 downto 0);
readack : out std logic;
dout : out std logic vector(MAXDUNTIL-1 downto 0));

end component;

dqstateroutine dqstate
port map (clk=>clk, resetn=>reset_n, delayuntil=>delayuntil,

suspend=>suspend, qe=>qe, foundnext=>foundnext,
dq_read-ack=>readack, stime=>stime, tcpu=>tcpu,
param-reg=>param-reg, dq_read=>dq_read, dqen=>dq_en,

106

begin

dq_we=>dqwe, dqaddr->dq_addr, dq_assign=>dqassign, pe=>pe,
Status=>status, dqackstate=>dqackstate, dqorgstate=>dqorgstate);

dq_ramroutine dq_ram
port map (clk=>clk, resetn=>resetn, en=>dqen, we=>dqwe, addr=>dqaddr,

din=>dq_assign, read ack=>readack, dout=>dqread);

end Behavioral;

- --
-- NAME: dqram

-- INPUTS: clk
reset_n
en
we
addr
din

- OUTPUTS: dout
-- readack

FPGA clock
FPGA reset, active low
enable signal for the RAM
write enable signal for the RAM, write high, read low
location in RAM to access
data to put in addr on write

data from addr on read
notifies state machine accessing RAM that read data is available

-- DESCRIPTION: This simulates RAM to hold the delay queue data

library IEEE;
use IEEE.STDLOGIC_1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity DQ RAM is
Port (clk

reset_n
en
we
addr
din
dout
readack

end DQRAM;

in std-logic;
in std logic;
in std-logic;
in std-logic;
in stdlogic vector(BITTASKS-1 downto 0);
in std logic vector(MAXDUNTIL-1 downto 0);
out std logicvector(MAXDUNTIL-1 downto 0);
out std-logic);

architecture Behavioral of DQ RAM is
type ram type is array (NUMTASKS-1 downto 0) of std logic vector(MAXDUNTIL-1

downto 0);
signal ram array: ramtype;

107

begin
process(clk)
begin

if(clk'event and clk='l') then
if(en='l') then

if(we='1') then
ram _array(conv integer(addr))<=din;
dout <= din;

else
dout <= ram-array(conv-integer(addr));

end if;
end if;

end if;
end process;

ackproc : process(clk, reset-n)
begin

if(reset-n='O') then
readack <= '0';

elsif(clk'event and clk='1') then
if(en='1' and we='O') then

readack <='1';
else

read ack <= '0';
end if;

end if;
end process ackproc;

end Behavioral;

-- NAME: dqstate.vhd

-- INPUTS: clk
reset_n
sTime
DelayUntil
Tcpu
param-reg
Suspend
QE
FoundNext
DQread
DQ-readack

FPGA clock
FPGA reset, active low
value of VCounter
signal specifying that a delay until command has been made
ID of running task
time to which the task will delay until
signal indicating that the current task is being suspended
channel indicating that a task has awoken from a delay
signal indicating that a new task to run has been found
data read from the DQRAM
signal indicating valid data is in DQ-read

-- OUTPUTS: DQen enable for RAM

108

DQ-we
DQaddr
DQassign
PE
Status
DQackState
DQorgState

write enable for RAM
address of RAM
data to write to RAM
ID of task that has awoken from delay
status of this component
state of DQASM
state of DQOSM

-- DESCRIPTION: the state machines to control the delay queue. DQASM gets delay
-- information from the interface, and the DQOSM keeps track of tasks that have delayed

library IEEE;
use IEEE.STDLOGIC_1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity dqstate is
Port (clk in std logic;

resetn in std logic;
sTime in std logic vector(MAXTIME-1 downto 0);
DelayUntil : in std logic;
Tcpu : in stdlogic vector(BITTASKS-1 downto 0);
param reg in std logic vector(MAXDUNTIL-1 downto 0);
Suspend in std logic;
QE in std-logic;
FoundNext : in std logic;
DQ-read : in std_ logic vector(MAXDUNTIL-1 downto 0);
DQ-readack : in std logic;
DQen : out std logic;
DQ-we : out std logic;
DQaddr : out std logicvector(BITTASKS-1 downto 0);
DQassign : out std logicvector(MAXDUNTIL-1 downto 0);
PE : out std logicvector(BITTASKS-1 downto 0);
Status : out std logic;
DQackState : out dqa;
DQorgState : out dqo);

end dq_state;

architecture Behavioral of dqstate is
signal DQack : dqa;
signal DQorg : dqo;
signal PidNoDQ std logic vector(BITTASKS-1 downto 0);
signal PidDQ std-logic vector(BITTASKS-1 downto 0);
signal DUntil std logicvector(MAXDUNTIL-1 downto 0);

109

signal len
signal t
signal Q
signal addr

stdlogic vector(BITTASKS-1 downto 0);
std_logic vector(MAXTIME-1 downto 0);
stdlogic;
stdlogic vector(BITTASKS-1 downto 0);

begin
-- INTERNAL CHANNEL Q
Q <='1' when (DQack=al and DQorg=oO) else '0';

-- THIS PROCESS IS ACTIVATED BY THE INTERFACE, WHEN A TASK

-- SENDS A NEW DELAY UNTIL COMMAND
ack interface : process(clk, reset-n)
begin

if(reset-n='0') then
DQack <= aO;
PidNoDQ <= (others =>'0');
DUntil <= (others =>'0');
Status <= '0';

elsif(clk'event and clk='1') then
case DQack is

when aO =>
-- CHECK IF RECEIVE NEW DELAY UNTIL
if(DelayUntil='1' and param reg > sTime) then

PidNoDQ <= Tcpu;
DUntil <= param reg;
Status <= '0';
DQack <= al;

elsif(DelayUntil='1' and sTime >= param reg) then
Status <= '1';
DQack <= a0;

else
Status <= '0';
DQack <= a0;

end if;
when al =>

-- WAIT UNTIL WE SYNCH ON INTERNAL Q
if(Q='1') then

DQack <= a2;
else

DQack <= al;
end if;

when a2 =>
-- WAIT UNTIL WE SYNCH ON CHANNEL SUSPEND
if(Suspend='1') then

DQack <= a3;
else

110

DQack <= a2;
end if;

when a3 =>
-- WAIT UNTIL READYQUEUE FINDS NEXT TASK
if(FoundNext='1') then

DQack <= a0;
else

DQack <= a3;
end if;

when others =>
DQack <= aO;

end case;
end if;

end process ackinterface;

-- THIS PROCESS ORGANIZES THE DELAY QUEUE: ADDS ELEMENTS TO RAM
-- CHECKS TO SEE IF DELAY TIME IS UP FOR A TASK
dqorganize : process(clk, reset-n)
variable i : stdlogic vector(BITTASKS-1 downto 0);
variable j : std logic vector(MAXDUNTIL-1 downto 0);
begin

if(reset-n='0') then
PE <= (others =>'0');
DQ-we <='1';
DQ-en <='1';
DQassign <= (others =>'0');
addr <= (others =>'0');
len <= (others =>'0');
t <= (others =>'0');
PidDQ <= (others =>'0');
i := (others => '0');
j := (others =>'0');
DQorg <= resetramDQ;

elsif(clk'event and clk='1') then
case DQorg is

when resetramDQ =>
if(addr < (NUMTASKS-1)) then

-- DQassign has already been set to 0
addr <= addr+l;
DQorg <= resetramDQ;

else
DQ-en <= '0';
DQ-we <= '0';
DQorg <= o0;

end if;
when oO =>

111

if(Q='1' and len=O) then
DQ-we <='0';
DQ-en <='0';
t <= DUntil;
PidDQ <= PidNoDQ;
len <= len+1;
DQorg <= oO;

elsif(Q='1' and len>0 and DUntil>=t) then
DQwe <='1';
DQ-en <= '1';
addr <= PidNoDQ;
DQassign <= DUntil;
len <= len+1;
DQorg <= oO;

elsif(Q='1' and len>0 and DUntil<t) then
DQ_we <='1';
DQ-en <='1';
addr <= PidDQ;
DQassign <= t;
DQorg <= ol;

elsif(t<=sTime and len=l) then
DQ-we <= '0';
DQen <= '0';
PE <= PidDQ;
DQorg <= o2;

elsif(t<=sTime and len>1) then
DQ-we <='0';
DQen <= '0';
t <= (others =>'0');
PE <= PidDQ;
i (others => '0');
j (others =>'0');
len <= len-1;
DQorg <= o3;

else
DQwe <= '0';
DQen <= '0';
DQorg <= o0;

end if;
when ol =>

DQ-we <= '0';
DQ-en <= '0';
t <= DUntil;
PidDQ <= PidNoDQ;
len <= len+1;
DQorg <= o0;

112

when o2 =>
DQ-we <='0';
DQ-en <= '0';
if(QE='1') then

len <= (others =>'0');
t <= (others =>'0');
DQorg <= o0;

else
DQorg <= o2;

end if;
when o3 =>

DQ-we <='0';
DQ-en <='0';
if(QE='1') then

DQorg <= o4;
else

DQorg <= o3;
end if;

when o4 =>
if(i=NUMTASKS-1) then

DQ-we <='0';
DQen <='1';
PidDQ <= i;
addr <= i;
DQorg <= o5;

elsif(i<NUMTASKS-1) then
DQ-we <='0';
DQen <='1';
addr <= i;
DQorg <= o6;

else
DQ-we <='0';
DQ-en <= 'O';
DQorg <= o4;

end if;
when o5 =>

if(DQ_readack='1') then
t <= DQread;
DQwe <='1';
DQ-en <='1';
addr <= PidDQ;
DQassign <= (others =>'0');
DQorg <= o0;

else
DQ-we <='0';
DQ-en <='0';

113

DQorg <= o5;
end if;

when o6 =>
DQ-we <='0';
DQ-en <= '0';
if(DQ read ack='1') then

i := i+1;
if(DQread>O) then

PidDQ <= addr;
j := DQ_read;
DQorg <= o7;

else
DQorg <= o4;

end if;
else

DQorg <= o6;
end if;

when o7=>
DQ-we <='0';
DQ en <= '1';
addr <= i;
if(i<NUMTASKS-1) then

DQorg <= o8;
else

DQorg <= o9;
end if;

when o8 =>
DQ-we <='0';
DQ-en <= '0';
if(DQreadack='1') then

i := i+1;
DQorg <= o7;
if(DQread>0 and DQ read<j) then

PidDQ <= addr;
j := DQread;

end if;
else

DQorg <= o8;
end if;

when o9 =>
if(DQ readack='1') then

DQorg <= o0;
DQ-we <= '1';
DQen <= '1';
DQassign <= (others =>'0');
if(DQ_read>0 and DQ read<j) then

114

PidDQ <= i;
t <= DQ-read;
addr <= i;

else
t <=j;
addr <= PidDQ;

end if;
else

DQorg <= o9;
end if;

when others =>
DQorg <= oO;

end case;
end if;

end process dq_organize;

-- ASSIGN STATE BITS TO OUTPUT
DQackState <= DQack;
DQorgState <= DQorg;
DQaddr <= addr;

end Behavioral;

115

A.5 Timing
--
-- NAME: timer.vhd

-- INPUTS: clk
- reset_n
-- setfreq
-- freq

-- OUTPUTS: status
VCounter

FPGA clock
FPGA reset, active low
signal specifying that set frequency command has been made
frequency at which VCounter should increment at

status of this component
counter value

- DESCRIPTION: This is the Ada time counter. VCounter increases once every 'freq' clk
-- cycles

library IEEE;
use IEEE.STDLOGIC_ 1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGIC__UNSIGNED.ALL;
use work.variables.ALL;

entity timer is
Port (clk

reset_n
setfreq
freq
status
VCounter

end timer;

in std logic;
in std logic;
in std logic;
in std logic vector(FREQREG-1 downto 0);
out std logic;
out std logicvector(MAXTIME-1 downto 0));

architecture Behavioral of timer is
signal int_cntr: std logic vector(FREQREG-1 downto 0);
signal int-freq: std logic vector(FREQREG-1 downto 0);
signal int_time: std logic vector(MAXTIME-1 downto 0);

begin
VCounter <= int time;

process(clk, resetn)
begin

if(reset-n='0') then
int_time <= (others => '0');
int_cntr <= STARTFREQ;
int-freq <= (others => '0');
status <= '0';

116

elsif(clk'event and clk='1') then
if(setfreq='1') then

status <='1';
int_cntr <= STARTFREQ;
int_freq <= freq;
int_time <= (others =>'0');

elsif(int-cntr-int-freq) then
status <= '0';
int_cntr <= STARTFREQ;
int_time <= int_time+1;

else
status <= '0';
int_cntr <= int_cntr+1;

end if;
end if;

end process;

end Behavioral;

117

A.6 Protected Objects

-- NAME: multipo.vhd

-- INPUTS:

-- OUTPUTS:

clk
reset_n
Pcpu
Tcpu
CeilPrio
FPs
Upe
Ufe
Ufpx
UPxe
UFxe
Barrier
BarrierNew
FPe
FPx
Es
UEb
UEe
UEx
Ex
RQState

BarrierReq
Suspend
FindNew
NPcpu
RQen
RQwe
RQaddr
RQassign
POStatus

FPGA clock
FPGA reset, active low
priority of task running on PPC
ID of task running on PPC
ceiling priority of PO being accessed
array of FPs commands for all POs
array of Upe commands for all POs
array of Ufe commands for all POs
array of Ufpx commands for all POs
array of UPxe commands for all POs
array of UFxe commands for all POs
barrier value of PO being accessed
signal indicating that the Barrier value is valid
array of FPe commands for all POs
array of FPx commands for all POs
array of Es commands for all POs
array of UEb commands for all POs
array of UEe commands for all POs
array of UEx commands for all POs
array of Ex commands for all POs
state of RQSM

request to get PO barrier values
signal that task calling Entry must suspend itself
signal to RQSM that a new task to run must be found
what priority should now be of task running on PPC
enable access to RQRAM
write enable to RQRAM
address to access in RQRAM
data to write to RQRAM
status of this component

-- DESCRIPTION: generates NUMPO protected objects from a single protected object, where
-- NUMPO is the total number of protected object, defined in myvariables.vhd

library IEEE;
use IEEE.STDLOGIC_1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

118

entity multiPO is
Port (clk

resetIn
Pcpu
Tcpu
CeilPrio
FPs
Upe
Ufe
Ufpx
UPxe
UFxe
Barrier
BarrierNew
FPe
FPx
Es
UEb
UEe
UEx
Ex
RQState
BarrierReq
Suspend
FindNew
NPcpu
RQen
RQ_we
RQaddr
RQassign
PO _Status

end multiPO;

in std logic;
in std logic;
in std logic vector(BITPRIO-1 downto 0);
in std logic vector(BITTASKS-1 downto 0);
in std logic vector(BITPRIO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in stdlogic vector(NUMPO-1 downto 0);
in std logicvector(NUMPO-1 downto 0);
in stdlogic vector(NUMPO-1 downto 0);
in std_ logic vector(NUMPO-1 downto 0);
in stdlogic vector(NUMPO-1 downto 0);
in std _logic;
in std-logic;
in std logic vector(NUMPO-1 downto 0);
in stdlogic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in std logic vector(NUMPO-1 downto 0);
in rqs;
out std logicvector(NUMPO-1 downto 0);
out std logicvector(NUMPO-1 downto 0);
out std logicvector(NUMPO-1 downto 0);
out allNPcpu;
out std logicvector(NUMPO-1 downto 0);
out std logicvector(NUMPO-1 downto 0);
out all RQaddr;
out all RQassign;
out std logic_vector(NUMPO-1 downto 0));

architecture Behavioral of multiPO is
component POone

port (clk
reset_n
Pcpu
Tcpu
CeilPrio
FPs
Upe
Ufe
Ufpx
UPxe
UFxe

in
in
in
in
in
in
in
in
in
in
in

std-logic;
std logic;
std logic vector(BITPRIO-1 downto 0);
std _logic vector(BITTASKS-1 downto 0);
std logic vector(BITPRIO-1 downto 0);
std logic;
stdlogic;
std logic;
std logic;
std logic;
std logic;

119

Barrier
BarrierNew
FPe
FPx
Es
UEb
UEe
UEx
Ex
RQState
BarrierReq
Suspend
FindNew
NPcpu
RQen
RQ-we
RQaddr
RQassign
POStatus

: in stdlogic;
: in stdlogic;
: in std logic;
: in stdlogic;
: in stdlogic;
: in std logic;
: in stdlogic;
: in std logic;
: in std logic;
: in rqs;
: out std logic;
: out std logic;
: out stdlogic;
: out std logic vector(BITPRIO-1 downto 0);
: out stdlogic;
: out std-logic;
: out std logic vector(BITTASKS-1 downto 0);
: out std logic vector(RQDATASIZE-1 downto 0);
: out stdlogic);

end component;

for all: POone use entity work.PO_one(Behavioral);
begin

POgen: for i in 0 to NUMPO-1 generate
PO: POone

port map (clk, resetn, Pcpu(BITPRIO-1 downto 0),
Tcpu(BITTASKS-1 downto 0), CeilPrio(BITPRIO-1 downto 0),
FPs(i), Upe(i), Ufe(i), Ufpx(i), UPxe(i), UFxe(i),
Barrier, BarrierNew, FPe(i), FPx(i), Es(i), UEb(i),
UEe(i), UEx(i), Ex(i), RQState, BarrierReq(i),
Suspend(i), FindNew(i), NPcpu(i), RQen(i), RQ-we(i),
RQaddr(i), RQassign(i), POStatus(i));

end generate PO_gen;

end Behavioral;

-- NAME: poone.vhd

-- INPUTS: clk
reset_n
Pcpu
Tcpu
CeilPrio
FPs

FPGA clock
FPGA reset, active low
priority of task running on PPC
ID of task running on PPC
ceiling priority of PO being accessed
array of FPs commands for all POs

120

-- OUTPUTS:

Upe
Ufe
Ufpx
UPxe
UFxe
Barrier
BarrierNew
FPe
FPx
Es
UEb
UEe
UEx
Ex
RQState

BarrierReq
Suspend
FindNew
NPcpu
RQen
RQ-we
RQaddr
R(assign
POStatus

array of Upe commands for all POs
array of Ufe commands for all POs
array of Ufpx commands for all POs
array of UPxe commands for all POs
array of UFxe commands for all POs
barrier value of PO being accessed
signal indicating that the Barrier value is valid
array of FPe commands for all POs
array of FPx commands for all POs
array of Es commands for all POs
array of UEb commands for all POs
array of UEe commands for all POs
array of UEx commands for all POs
array of Ex commands for all POs
state of RQSM

request to get PO barrier values
signal that task calling Entry must suspend itself
signal to RQSM that a new task to run must be found
what priority should now be of task running on PPC
enable access to RQRAM
write enable to RQRAM
address to access in RQRAM
data to write to RQRAM
status of this component

-- DESCRIPTION: combines the elements of one PO: entry, procedure/function, and channel
-- controller

library IEEE;
use IEEE.STDLOGIC_1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity PO_one is
Port (clk

reset_n
Pcpu
Tcpu
CeilPrio
FPs
Upe
Ufe
Ufpx

in std logic;
in std-logic;
in std logic vector(BITPRIO-1 downto 0);
in std logic vector(BITTASKS-1 downto 0);
in std logicvector(BITPRIO-1 downto 0);
in std logic;
in std logic;
in std logic;
in std-logic;

121

UPxe : in std logic;
UFxe : in std logic;
Barrier : in std logic;
BarrierNew : in std logic;
FPe : in std logic;
FPx : in std logic;
Es : in std logic;
UEb : in std logic;
UEe : in std logic;
UEx : in std logic;
Ex : in std logic;
RQState : in rqs;
BarrierReq : out std logic;
Suspend : out std logic;
FindNew : out std logic;
NPcpu : out std logic vector(BITPRIO-1 downto 0);
RQen : out std logic;
RQ-we : out std logic;
RQaddr : out std logicvector(BITTASKS-1 downto 0);
RQassign : out std logicvector(RQDATASIZE-1 downto 0);
POStatus : out std logic);

end POone;

architecture Behavioral of POone is
signal ecount : std logic;
signal Een : stdlogic;
signal P en : std logic;
signal Ewe : std-logic;
signal Pwe : std logic;
signal Eaddr : std logic vector(BITTASKS-1 downto 0);
signal Paddr : std logic vector(BITTASKS-1 downto 0);
signal E assign : std logic vector(RQDATASIZE-1 downto 0);
signal P assign : std-logic vector(RQDATASIZE-1 downto 0);
signal E_ npcpu : std logicvector(BITPRIO-1 downto 0);
signal P-npcpu : std logic vector(BITPRIO-1 downto 0);
signal Estatus : stdlogic;
signal Pstatus : std logic;
signal Eg : std logic;
signal Ef : std logic;
signal ProcState : pstate;
signal EntryState : estate;
signal FindNewint : stdlogic;
signal Suspendint : std logic;
signal BarrierReqP : std logic;
signal BarrierReqE : std logic;

122

component ProcFunc
port (clk

reset_n
Pcpu
Tcpu
CeilPrio
FPs
Upe
Ufe
Ufpx
UPxe
UFxe
Barrier
BarrierNew
ECount
Ef
FindNew
Status
BarrierReq
Eg
NPcpu
RQen
RQ_we
RQaddr
RQassign
ProcState

end component;

component entry
port (clk

reset_n
Tcpu
Pcpu
CeilPrio
Es
Barrier
BarrierNew
UEb
UEx
UEe
Ex
FindNew
Suspend
Eg
Ef
BarrierReq

in stdlogic;
in stdlogic;
in std logic vector(BITPRIO-1 downto 0);
in std logic vector(BITTASKS-1 downto 0);
in std logic vector(BITPRIO-1 downto 0);
in std logic;
in std logic;
in stdlogic;
in stdlogic;
in stdlogic;
in std logic;
in std logic;
in std logic;
in stdlogic;
in stdlogic;
in std logic;
out std logic;
out stdlogic;
out stdlogic;
out std logic vector(BITPRIO-1 downto 0);
out std logic;
out std logic;
out std logic vector(BITTASKS-1 downto 0);
out std logic vector(RQDATASIZE-1 downto 0);
out pstate);

in std logic;
in std logic;
in std logic vector(BITTASKS-1 downto 0);
in std logic vector(BITPRIO-1 downto 0);
in std logic vector(BITPRIO-1 downto 0);
in std logic;
in std logic;
in std-logic;
in std logic;
in std logic;
in std logic;
in std logic;
in std-logic;
in std-logic;
in std logic;
in std logic;
out std logic;

123

ECount out stdlogic;
Status out stdlogic;
NPcpu out std logic vector(BITPRIO-1 downto 0);
RQen out stdlogic;
RQwe out stdlogic;
RQaddr : out std logic vector(BITTASKS-1 downto 0);
RQassign : out std logic vector(RQDATASIZE-1 downto 0);
EntryState : out estate);

end component;

component channelcontrollerpo 1
port (ProcState in pstate;

EntryState in estate;
RQState in rqs;
FPe in stdlogic;
FPx in std__logic;
Ex in stdlogic;
UEe in std logic;
Ef out std logic;
Suspend out std logic;
FindNew out stdlogic);

end component;

begin
proc routine : ProcFunc

port map (clk=>clk, resetn=>reset n, pcpu=>Pcpu, tcpu=>Tcpu,
ceilprio=>CeilPrio, fps=>FPs, upe=>Upe, ufe=>Ufe, ufpx=>Ufpx,
upxe=>Upxe, ufxe=>Ufxe, barrier=>Barrier, barrierNew=>BarrierNew,
ecount=>ecount, ef=>Ef, findnew=>FindNewint, status=>Pstatus,
barrierReq=>BarrierReqP, eg=>Eg, npcpu=>Pnpcpu, rq_en=>P_en,
rq_we=>Pwe, rq_addr=>Paddr, rq_assign=>Passign,
procstate=>ProcState);

entryroutine : entry
port map (clk=>clk, resetn=>reset_n, tcpu=>Tcpu, pcpu=>Pcpu,

ceilprio=>CeilPrio, es=>Es, barrier=>Barrier, barrierNew=>BarrierNew,
ueb=>Ueb, uex=>Uex, uee=>Uee, ex=>Ex, findnew=>FindNew int,
suspend=>Suspend int, eg=>Eg, ef=>Ef, barrierReq=>barrierReqE,
ecount=>ecount, status=>E _status, npcpu=>Enpcpu, rqen=>Een,
rqwe=>Ewe, rq_addr->Eaddr, rq_assign=>Eassign,
entrystate=>EntryState);

channels: channelcontroller_PO1
port map (ProcState=>ProcState, EntryState=>EntryState, RQState=>RQState,

FPe=>FPe, FPx=>FPx, Ex=>Ex, UEe=>UEe, Ef=>Ef,
Suspend=>Suspend int, FindNew=>FindNewint);

124

-- assign internal findnew and suspend to output, so readyqueue can access
FindNew <= FindNewint;
Suspend <= Suspendint;

-- OR status lines to get POstatus
POstatus <= P status OR Estatus;

- MUX RQ ram lines to determine which is valid - use enable lines

-- since design won't any two PO or any parts to access RAM at once
- (only 1 task runs at a time)
RQ_en <='1' when (P en='1' or Een='1') else '0';
RQ-we <= '1' when (P we='1' or Ewe='1') else '0';
RQaddr <= Paddr when P en='1' else Eaddr when Een='1' else (others => '0');
RQassign <= Passign when (P en='1' and Pwe='1') else

E_assign when (Een='1' and Ewe='1') else (others => '0');

-- which NPcpu is valid:
- in one PO, they will never be set at same time.

NPcpu <== Pnpcpu when (Pnpcpu >= E_npcpu) else E_npcpu;

-- barrier request line
BarrierReq <= BarrierReqP OR BarrierReqE;

end Behavioral;

-NAh--
-- NAME: channel-controllerP01 .vhd

-- INPUTS:

-- OUTPUTS:

ProcState
EntryState
RQState
FPe
FPx
Ex
UEe

Ef
Suspend
FindNew

state of FPSM
state of ESM
state of RQSM
signal that FPe command has been made
signal that FPx command has been made
signal that Ex command has been made
signal that UEe command has been made

channel use by ESM and FPSM
channel indicating that a task is suspending
signal to RQSM that a new task to run needs

-- DESCRIPTION: determines channels in a single PO

library IEEE;
use IEEE.STDLOGIC_1 164.ALL;

125

to be found

use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity channelcontroller_PO1 is
Port (ProcState : in pstate;

EntryState : in estate;
RQState : in rqs;
FPe : in std logic;
FPx : in std logic;
Ex : in std logic;
UEe : in std logic;
Ef : out std logic;
Suspend : out std logic;
FindNew : out std logic);

end channelcontroller_PO1;

architecture Behavioral of channelcontrollerPO1 is

begin
Ef <= '1' when ((ProcState=P 11 or ProcState=P5) and EntryState=E 14) else '0';
Suspend <= '1' when (EntryState=E7 and RQState=rO) else '0';
FindNew <='1' when (((EntryState=E5 and UEe='1') or

(EntryState=E6 and Ex='1') or
(ProcState=P6 and FPe='1') or
(ProcState=P12 and FPx='1')) and RQState=rO) else '0';

end Behavioral;

-- NAME: entry.vhd

-- INPUTS: clk
-- reset_n
-- Pcpu
-- Tcpu
-- CeilPrio
-- Es
-- Barrier
-- BarrierNew
-- UEb
-- UEe
-- UEx
-- Ex

-- FindNew
-- Suspend

FPGA clock
FPGA reset, active low
priority of task running on PPC
ID of task running on PPC
ceiling priority of PO being accessed
signal that Es command has been made
barrier value of PO being accessed
signal indicating that the Barrier value is valid
signal that UEb command has been made
signal that UEe command has been made
signal that UEx command has been made
signal that Ex command has been made
signal that indicates exit of PO routine, a new task must be found
signal that task calling Entry must suspend itself

126

Eg
Ef

-- OUTPUTS: BarrierReq
ECount
Status status
NPcpu
RQen
RQwe
RQaddr
RQassign
EntryState

signal from FPSM to signal entry code should be executed
channel used between ESM and FPSM to return control back to
FPSM after entry code is executed

request to get PO barrier value
signal indicating a task is suspended on the entry queue

of this component
what priority should now be of task running on PPC
enable access to RQ_RAM
write enable to RQRAM
address to access in RQRAM
data to write to RQRAM
state of ESM

-- DESCRIPTION: this is a protected entry routine. Checks barrier value at first; if equal to 1,
-- entry executes. If equal to 0, task suspends itself and adds itself to entry queue
-- (ECount=1), and procedure must continue execution of code later

library IEEE;
use IEEE.STDLOGIC_1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity Entry is
Port (clk

reset_n
Tcpu
Pcpu
CeilPrio
Es
Barrier
BarrierNew
UEb
UEx
UEe
Ex
FindNew
Suspend
Eg
Ef
BarrierReq
ECount
Status
NPcpu

in std logic;
in std logic;
in stdlogic vector(BITTASKS-1 downto 0);
in stdlogic vector(BITPRIO-1 downto 0);
in std _logic vector(BITPRIO-1 downto 0);
in std logic;
in std logic;
in std logic;
in std logic;
in std logic;
in std logic;
in std logic;
in std logic;
in std logic;
in std logic;
in std _logic;
out std logic;
out std logic;
out std logic;
out std-logic vector(BITPRIO-1 downto 0);

127

RQen : out std logic;
RQwe : out std logic;
RQaddr : out std logicvector(BITTASKS-1 downto 0);
RQassign : out std logic_vector(RQDATASIZE-1 downto 0);
EntryState : out estate);

end Entry;

architecture Behavioral of Entry is
signal E : estate;

begin
process(clk, reset n)
variable Ep std logic vector(BITPRIO-1 downto 0);
variable Et: stdlogicvector(BITTASKS-1 downto 0);
begin

if(reset-n='0') then
Status <= '0';
RQ en <= '0';
RQwe <='0';
RQaddr <= (others =>'0');
RQassign <= (others =>'0');
NPcpu <= (others =>'0');
Ep (others =>'0');
Et (others => '0');
BarrierReq <='0';
ECount <='0';
E <= E0;

elsif(clk'event and clk='1') then
case E is

when EO =>
RQ-en <= '0';
RQwe <= '0';
Status <= '0';
NPcpu <= (others =>'0');
-- check barrier
if(Es='1') then

BarrierReq <= '1';
E <= El;

else
BarrierReq <='0';
E <= EO;

end if;
when E l =>

if(BarrierNew='1') then
-- entry is executed
BarrierReq <= '0';

128

if(Barrier-'1') then
Status <='1';
RQ-en <= '1';
RQwe <= '1';
RQaddr <= Tcpu;
RQassign(RQDATASIZE-1 downto 1) <=

CeilPrio;
RQassign(O) <='1';
Ep := Pcpu;
NPcpu <= CeilPrio;
E <= E2;

else -- Barrier-'O', entry is suspended
Status <= '0';
RQ-en <='0';
RQwe <= '0';
ECount <='1';
Et Tcpu;
Ep Pcpu;
E <= E7;

end if;
else

RQ-en <= '0';
RQ-we <= '0';
Status <= '0';
NPcpu <= (others => '0');
E <= E1;

end if;
when E2 =>

RQen <='0';
RQ-we <='0';
Status <= '0';
E <= E3;

when E3 =>
RQ-en <='0';
RQwe <='0';
if(UEb='1') then

Status <='1';
E <= E4;

else

Status <='0';
E <= E3;

end if;
when E4 =>

RQen <= '0';
RQwe <= '0';
Status <= '0';

129

E <= E5;
when E5 =>

if(UEx='1') then
RQen <='0';
RQ we <='0';
Status <='1';
E <= E6;

elsif(FindNew='1') then
Status <= '0';
RQen <= '1';
RQwe <= '1';
RQaddr <= Tcpu;
RQassign(RQDATASIZE-1 downto 1) <= Ep;
RQassign(0) <='1';
E <= E0;

else
RQ-en <='0';
RQwe <='0';
Status <= '0';
E <= E5;

end if;
when E6 =>

Status <='0';
if(FindNew='1') then

RQ-en <='1';
RQwe <= '1';
RQ-addr <= Tcpu;
RQassign(RQDATASIZE-1 downto 1) <= Ep;
RQassign(0) <='1';
E <= EO;

else
RQ-en <='0';
RQwe <='0';
E <= E6;

end if;
when E7 =>

RQ-en <='0';
RQ-we <='0';
Status <= '0';
if(Suspend='1') then

E <= E8;
else

E <= E7;
end if;

when E8 =>
RQen <= '0';

130

RQ-we <='0';
Status <= '0';
if(Eg='1') then

ECount <='0';
E <= E9;

else
E <= E8;

end if;
when E9 =>

RQ-en <= '0';
RQwe <='0';
if(UEb='1') then

Status <='1';
E <= E1O;

else
Status <= '0';
E <= E9;

end if;
when E10 =>

RQ-en <= '0';
RQ we <='0';
Status <= '0';
E <= El1;

when ElI =>
RQ-en <= '0';
RQwe <= '0';
if(UEx='1') then

Status <='1';
E <= E12;

elsif(UEe='1') then
Status <='1';
E <= E14;

else
Status <= '0';
E <= El1;

end if;
when E12 =>

RQ-en <= '0';
RQ we <= '0';
Status <='0';
E <= E13;

when E13 =>
RQ-en <= '';
RQ-we <= '0';
if(Ex='1') then

Status <='1';

131

E <= E14;
else

Status <= '0';
E <= E13;

end if;
when E14 =>

Status <='0';
if(Ef='1') then

RQen <= '1';
RQwe <= '1';
RQaddr <= Et;
RQassign(RQDATASIZE-1 downto 1) <= Ep;
-- make suspended task valid again here
RQassign(0) <= '1';
E <= EO;

else
RQ-en <='0';
RQ we <='1';
E <= E14;

end if;
when others =>

E <= EO;
end case;

end if;
end process;

-- ASSIGN STATE BITS TO OUTPUT
EntryState <= E;

end Behavioral;

--
-- NAME: procfunc.vhd

-- INPUTS: clk
reset_n
Pcpu
Tcpu
CeilPrio
FPs
Upe
Ufe
Ufpx
UPxe
UFxe
Barrier
BarrierNew

FPGA clock
FPGA reset, active low
priority of task running on PPC
ID of task running on PPC
ceiling priority of PO being accessed
signal that FPs command has been made
signal that Upe command has been made
signal that Ufe command has been made
signal that Ufpx command has been made
signal that UPxe command has been made
signal that UFxe command has been made
barrier value of PO being accessed
signal indicating that the Barrier value is valid

132

-- OUTPUTS:

ECount
Ef

FindNew

Status
BarrierReq
Eg
NPcpu
RQen
RQwe
RQaddr
RQassign
ProcState

signal indicating if a task is suspended on the entry queue
channel used between ESM and FPSM to return control back to
FPSM after entry code is executed
signal indicating that a PO is finishing, new task must be found

status of this component
request to get PO barrier values
signal to ESM that entry code should be executed
what priority should now be of task running on PPC
enable access to RQ_RAM
write enable to RQRAM
address to access in RQRAM
data to write to RQRAM
state of FPSM

-- DESCRIPTION: This is a protected procedure/protected function routine. Monitors
-- execution of procedure or function. Difference between them is that before exit,
-- procedure checks barrier value and executes entry code if a task is on the entry queue
-- function does not do this

library IEEE;
use IEEE.STDLOGIC_1 164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity ProcFunc is
Port (clk

reset_n
Pcpu
Tcpu
CeilPrio
FPs
Upe
Ufe
Ufpx
UPxe
UFxe
Barrier
BarrierNew
ECount
Ef
FindNew
Status
BarrierReq

in std logic;
in std logic;
in std logicvector(BITPRIO-1 downto 0);
in std logic vector(BITTASKS-1 downto 0);
in std logic vector(BITPRIO-1 downto 0);
in std logic;
in std logic;
in std logic;
in std logic;
in stdlogic;
in std logic;
in std logic;
in std _logic;
in std logic;
in std-logic;
in std logic;
out std logic;
out std logic;

133

Eg out std logic;
NPcpu out std _logic_vector(BITPRIO-1 downto 0);
RQen out std logic;
RQwe out std logic;
RQaddr out std logicvector(BITTASKS-1 downto 0);
RQassign out stdlogic_vector(RQDATASIZE-1 downto 0);
ProcState out pstate);

end ProcFunc;

architecture Behavioral of ProcFunc is
signal P : pstate;

begin
process(clk, reset n)
variable prio : std logicvector(BITPRIO-1 downto 0);
begin

if(reset-n='0') then
status <= '0';
BarrierReq <='0';
RQ-en <= '0';
RQ-we <='0';
RQaddr <= (others => '0');
RQassign <= (others => '0');
NPcpu <= (others => '0');
BarrierReq <= '';
Eg <= '0' ;
prio := (others => '0');
P <= PO;

elsif(clk'event and clk='1') then
case P is

when PO =>
if(FPs='1') then

RQ en <='1';
RQwe <= '1';
RQaddr <= Tcpu;
RQassign(RQDATASIZE-1 downto 1) <=

CeilPrio;
-- must be valid, or wouldn't be running
RQassign(O) <= '1';
prio := Pcpu;
NPcpu <= CeilPrio;
Status <='1';
P <= P1;

else
RQ en <= '0';
RQ-we <= '0';

134

Status <= '0';
NPcpu <= (others =>'0');
P <= PO;

end if;
when P1 =>

Status <= '0';
RQ-en <= '0';
RQwe <= '0';
P <= P2;

when P2 =>
RQen <= '0';
RQ-we <= '0';
if(UPe='1') then

Status <= '0';
P <= P3;

elsif(UFe='1') then
Status <='1';
P <= P6;

elsif(Ufpx='1') then
Status <='1';
P <= P7;

else
Status <= '0';
P <= P2;

end if;
when P3 =>

RQ-en <= '0';
RQ-we <= '0';
if(ECount='0') then

P <= P6;
Status <='1';

else
BarrierReq <='1';
Status <= '0';
P <= P4;

end if;

when P4 =>
if(BarrierNew='1') then

BarrierReq <= '0';
Status <='1';
if(Barrier-'0') then

P <= P6;
else

P <= P5;
Eg <= '1';

135

end if;
else

P <= P4;
BarrierReq <='1';
Status <= '0';

end if;
when P5 =>

Eg <='0';
RQ-en <= '0';
RQ-we <='0';
Status <= '0';
if(Ef='1') then

P <= P6;
else

P <= P5;
end if;

when P6 =>
Status <='0';
if(FindNew='1') then

RQen <= '1';
RQ-we <= '1';
RQ-addr <= Tcpu;
RQassign(RQDATASIZE-1 downto 1) <= prio;
RQ_assign(O) <='1';
P <= PO;

else
RQ en <= '0';
RQ-we <='0';
P <= P6;

end if;
when P7 =>

RQ-en <='0';
RQ-we <= '0';
Status <='0';
P <= P8;

when P8 =>
RQ-en <= '0';
RQ-we <= '0';
if(UPxe='1') then

Status <='0';
P <= P9;

elsif(UFxe='1') then
Status <='1';
P <= P12;

else
Status <= '0';

136

end if;
when P9 =>

RQ-en <= '0';
RQ-we <='0';
if(ECount='0') then

P <= P12;
Status <='1';

else
BarrierReq <='1';
Status <='0';
P <= Plo;

end if;
when P1O =>

if(BarrierNew='1') then
BarrierReq <='0';
Status <='1';
if(Barrier-'O') then

P <= P12;
else

P <= P11;
Eg <='1';

end if;
else

P <= P10;
BarrierReq <= '1';
Status <= '0';

end if;
when P11 =>

Eg <='0';
RQen <= '0';
RQ we <= '0';
Status <= '0';
if(Ef='1') then

P <= P12;
else

P <= P11;
end if;

when P12 =>
Status <= '0';
if(FindNew='1') then

RQ-en <= '1';
RQwe <= '1';
RQaddr <= Tcpu;
RQassign(RQDATASIZE-1 downto 1) <= prio;
RQassign(O) <= '1';

137

P <= PO;
else

RQ-en <= '0';
RQ-we <='0';
P <= P12;

end if;
when others =>

P <= PO;
end case;

end if;
end process;

-- ASSIGN STATE BITS TO OUTPUT
ProcState <= P;

end Behavioral;

138

A.7 Task Arbitration
--
-- NAME: arbitrate cpu.vhd

-- INPUTS: NPcpupo
Tcpu
NPcpu-rq
NTcpu-rq

-- OUTPUTS: NPcpu
-- NTcpu

priority of the task the PO thinks should be running
ID of the running task
priority of the task the RQSM thinks should be running
ID of the task the RQSM thinks should be running

priority of task to run on the PPC
ID of the task to run on the PPC

- DESCRIPTION: this checks to see what process is requesting to run a task of highest priority,
-- in the case that the readyqueue wants to run a task that just woke from a delay at the same
-- time an entry or procedure routine starts and raises pcpu to ceilprio. only need to account
-- for PO because only one PO process can occur at once. kernelinternal passes to this the
-- data from the current PO being used, based on POId

-- for equal prio, PO always gets preference -- since it's already running, and task
-- from readyqueue is just waking up.

library IEEE;
use IEEE.STDLOGIC_ 1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;
use work.variables.ALL;

entity arbitratecpu is
Port (NPcpupo

Tcpu
NPcpu rq
NTcpu_rq
NPcpu
NTcpu

end arbitratecpu,

in std logic vector(BITPRIO-1 downto 0);
in std logic vector(BITTASKS-1 downto 0);
in std-logic vector(BITPRIO-1 downto 0);
in std logicvector(BITTASKS-1 downto 0);
out std logic vector(BITPRIO-1 downto 0);
out std logic vector(BITTASKS-1 downto 0));

architecture Behavioral of arbitrate cpu is

begin
NPcpu <= NPcpupo when (NPcpupo >= NPcpu_rq) else NPcpurq;
NTcpu <= Tcpu when ((NPcpupo >= NPcpu rq) and NPcpupo/=O) else NTcpu_rq;

end Behavioral;

139

A.8 Variables and Constants

-- package file of user specified variables, constants (myvariables.vhd)

library IEEE;
use IEEE.STDLOGIC_1 164.all;

package variables is

-- BUS interface constants

-- length of actual in/out reg
constant REGLENGTH: integer:= 32;

-- number of registers
constant NREGS : integer:= 8;

-- register addresses
constant addr regl
constant addr reg2
constant addr reg3
constant addr reg4
constant addr reg5
constant addr-reg6
constant addr reg7
constant addr-reg8

std logic vector(7
std logic vector(7
std _logic vector(7
std logic vector(7
std logic vector(7
std-logic vector(7
std logicvector(7
std logicvector(7

downto
downto
downto
downto
downto
downto
downto
downto

0)
0)
0)
0)
0)
0)
0)
0)

"00000100";
"00001000";
"00001100";
"00010000";
"00010100";
"00011000";
"00011100";
"00100000";

constant NUMTASKS : integer:= 4;
constant BITTASKS : integer:= 2;
constant BITPRIO : integer:= 3;

constant MAXDUNTIL : integer:= 64;
constant MAXTIME : integer:= 64;
constant RQDATASIZE : integer:= 4;

constant
constant
constant
constant
constant
constant
constant

NUMPO: integer:= 4;
BITPO : integer:= 2;
CMDREG: integer:= 5;
PARAMREG: integer:= 32;
STATREG: integer := 3;
FREQREG: integer := 8;
STARTFREQ : stdlogicvector

- TOTAL NUMBER OF TASKS
-- BITS NEEDED TO REPRESENT NUMTASKS
-- BITS NEEDED TO REPRESENT TOTAL
-- NUMBER OF PRIORITIES
-- SIZE OF THE PARAMETER REGISTER
-- MAX BITS TIME WILL COUNT TO
- SIZE OF DATA HELD IN RQ RAM, should be
- BITPRIO+1 (for valid bit)
-- number of PROTECTED OBJECTS routines
- number of BITS to idx POs
- number of BITS in COMMAND REGISTER
-- number of BITS in EACH PARAM REGISTER
-- number of BITS in status reg, output to software
- number of BITS in freq reg

"00000001"; - what to initialize freq cntr at
-- need to put here, since FREQREG
- might be variable - this changes

140

-- 4
-- 8
-- C
-- 10
-- 14
-- 18
- 1C
-- 20

-- commands:
constant CREATEi
constant DELAYUNTILi
constant FPSi
constant UPEi
constant UFEi
constant FPEi
constant UFPXi.
constant UPXEi
constant UFXEi
constant FPXi
constant ESi
constant UEBi
constant UEEi
constant UEXi
constant EXi
constant GETTIMEi
constant SETFREQi
constant FINDTASKi

-- status bits:
constant NOSTAT
constant BADCMD
constant CMDDONE
constant GETBARR

std logic-vector := "10000";
std logic vector := "00001";
std logic-vector := "00010";
std logic-vector := "00011";
std logic-vector := "10001";
std logic-vector := "00100";
std logic vector := "00101";
std logic-vector := "00110";
std logic vector := "10010";
std logic-vector := "00111 ";
std logic-vector := "01000";
std logic vector := "01001";
std _logic-vector := "01010";
std logic vector := "01011";
std logic-vector := "01100";
std logic _vector := "01101";
std logic-vector := "01110";
std logic vector := "0111 1";

std logic vector
std logic vector
stdlogic-vector
stdlogicvector

"000";
"001";
"010";
="100";

-- to pass state bits between entities
type pstate is (PO, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12);
type estate is (EO, E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14);
type rqs is (resetram, rO, rl, r2, r3, r4, r5, r6, r7, r8);
type dqa is (aO, al, a2, a3);
type dqo is (resetramDQ, oO, ol, o2, o3, o4, o5, o6, o7, o8, o9);

-- to pass 2-d arrays----------
subtype rqdata is stdlogic vector(RQDATASIZE-1 downto 0);
type allRQassign is array(NUMPO-1 downto 0) of rqdata;

subtype taskaddr is std logicvector(BITTASKS-1 downto 0);
type allRQaddr is array(NUMPO-1 downto 0) of taskaddr;

subtype newpcpu is stdlogic vector(BITPRIO-1 downto 0);
type allNPcpu is array(NUMPO-1 downto 0) of newpcpu;

end variables;

141

A.9 Constraints

-- constraints file (myconstraints.ucf) used for implementation and testing in ISE -----------

OFFSET = IN 6 ns BEFORE "clk";
OFFSET = OUT 9 ns AFTER "clk";
NET "clk" TNM NET = "clk";
TIMESPEC "TS_clk" = PERIOD "clk" 80 MHz HIGH 50 %;
INST "addr<0>" TNM = "addrs";
INST "addr<1>" TNM = "addrs";
INST "addr<2>" TNM = "addrs";
INST "addr<3>" TNM = "addrs";
INST "addr<4>" TNM = "addrs";
INST "addr<5>" TNM = "addrs";
INST "addr<6>" TNM = "addrs";
INST "addr<7>" TNM = "addrs";
TIMEGRP "addrs" OFFSET = IN 6 ns BEFORE "clk";
INST "write n" TNM = "write n";
TIMEGRP "writen" OFFSET = IN 6 ns BEFORE "clk";

- constraints file system.ucf, used in EDK for specifying clock and pin constraints

#
#---

Constraints For Virtex II - Pro Design
#

CONFIG PROHIBIT = RAMB16_XOYO;

#--- -
H Timing Ignore Constraints
#--- ----

#--
Clock Period Constraints
#--

100 MHz Ref Clk to DCM Produces PLB(lX), CPU(FX=3X)
(Over-Constrain Period by 250 ps to allow for Jitter, Skew, Noise, Etc)
NET "sys-clk" PERIOD = 10.00;

#H.................-------------------------
Multicycle Path Constraints for DCR

142

--
IO Pad Location Constraints (2VP4/7 AFX Board)

NET "sys_clk"
NET "sys-rst"

#UART
NET rx
NET tx

LOC = v12;
LOC = v15;

LOC = U9;
LOC = W7:

NET "plbsdram_1_sdrambankaddr<O>" LOC = L4;
NET "plbsdram_1_sdrambankaddr<1>" LOC = R4;
NET "plbsdram_1_sdramcasn" LOC = K3;
NET "plb-sdram_1_sdramcke" LOC = J3;
NET "plbsdram_1_ sdram_clk" LOC = E3;
NET "plb sdram_1_sdram csn" LOC = P3;
NET "plbsdram_1_sdram dqm<O>" LOC = T3;
NET "plbsdram_1_ sdramdqm<1>" LOC = F4;
NET "plbsdram_1_sdramrasn" LOC = T4;
NET "plbsdram_1_sdramwen" LOC = R3;

NET "plbsdram_1_sdramaddr<13>" LOC = E4;
NET "plbsdram_1_sdramaddr<12>" LOC = G4;
NET "plbsdram_1_sdramaddr<1 1>" LOC = F3;
NET "plbsdram_1_sdramaddr<10>" LOC = N3;
NET "plb_sdram 1_sdramaddr<9>" LOC = K4;
NET "plbsdram 1__sdramaddr<8>" LOC = H4;
NET "plb_sdram _1_sdramaddr<7>" LOC = G3;
NET "plbsdram__1_sdramaddr<6>" LOC = L3;
NET "plbsdram 1_sdramaddr<5>" LOC = H3;
NET "plbsdram_1_sdramaddr<4>" LOC = J4;
NET "plbsdram_1_sdramaddr<3>" LOC = M3;
NET "plbsdram_1_sdramaddr<2>" LOC = N4;
NET "plb_sdram_1_ sdramaddr<1>" LOC = P4;
NET "plbsdram_1_sdramaddr<O>" LOC = M4;
NET "plbsdram_1_sdram-dq<31>" LOC = RI;
NET "plbsdram 1_sdram dq<30>" LOC = P2;
NET "plbsdram_1_sdram-dq<29>" LOC = R2;
NET "plbsdram_1_sdram-dq<28>" LOC = Pl;
NET "plb_sdram_ 1_sdram-dq<27>" LOC = TI;
NET "plbsdram_1_ sdram dq<26>" LOC = N2;
NET "plbsdram_1_sdram-dq<25>" LOC = T2;
NET "plbsdram_ 1_sdram-dq<24>" LOC = NI;
NET "plbsdram_1_sdram-dq<23>" LOC = Y2;

143

NET "plbsdram_1_sdram dq<22>" LOC = W2;
NET "plbsdram_1_sdram dq<2 1>" LOC = Y 1;
NET "plbsdram_1_sdram dq<20>" LOC = V2;
NET "plbsdram_1_ sdram-dq<19>" LOC = WI;
NET "plbsdram_1_sdram dq<18>" LOC = U2;
NET "plbsdram_1_sdram dq<17>" LOC = VI;
NET "plbsdram_ 1_sdram-dq<16>" LOC = Ul;
NET "plbsdram_1_sdram-dq<15>" LOC = E2;
NET "plbsdram_1_sdram dq<14>" LOC = D1;
NET "plbsdram_1_sdram-dq<13>" LOC = El;
NET "plbsdram_1_sdram-dq<12>" LOC = D2;
NET "plbsdram_1_sdram-dq<1 1>" LOC = F2;
NET "plbsdram_1_sdram-dq<10>" LOC = G5;
NET "plbsdram_1_sdram-dq<9>" LOC = F 1;
NET "plbsdram_1_sdram-dq<8>" LOC = F5;
NET "plbsdram_1_sdram-dq<7>" LOC = Ki;
NET "plbsdram_1_ sdram-dq<6>" LOC = Ji;
NET "plbsdram_1_sdram-dq<5>" LOC = K2;
NET "plbsdram_1_sdram-dq<4>" LOC = Hi;
NET "plbsdram_1_sdram dq<3>" LOC = J2;
NET "plbsdram_1_sdram-dq<2>" LOC = GI;
NET "plbsdram 1_sdram-dq<l>" LOC = H2;
NET "plbsdram_1_sdram-dq<O>" LOC = G2;

144

Appendix B
Kernel Tests

B.1 ISE Tests

located in: ~kernel/

Test code name (or series of tests)

145

Purpose

create3.vhd Creates 3 tasks

testtimer.vhd Sets VCounter and gets the time

tfunction.vhd Executes protected function

tprocedure.vhd Executes protected procedure

tentry.vhd Executes protected entry

tdq_l.vhd Tests multiple tasks making delay until calls

tpcallinge.vhd Entry causes task to suspends; Procedure calls

entry code

int-proc_1.vhd through intproc_4.vhd Procedure executes and is interrupted at

various points

int_entry_1.vhd through int entry_3.vhd Entry executes and is interrupted at various

points

intpcallinge_ .vhd through Entry causes task to suspend; Procedure calls

intpcallinge_7.vhd entry code, and is interrupted at various points

B.2 EDK Tests

located in: -/gurkh/sw/

Test code name (or series of tests) Purpose

Create3.c Creates 3 tasks

Test_func.c Executes protected function

Testproc.c Executes protected procedure

Test entry.c Executes protected entry

Delay.c Tests multiple tasks making delay until calls

Pcallinge.c Entry causes task to suspends; Procedure calls

entry code

Intproc_1.c through intproc_3.c Procedure executes and is interrupted at

various points

Int_entry_1.c through int-entry_3.c Entry executes and is interrupted at various

points

Intpcallingel.c through inpcallinge_7.c Entry causes task to suspend; Procedure calls

entry code, and is interrupted at various points

Test-proc-board.c Executes protected procedure, and writes data

to the computer screen

Testentryboard.c Executes protected entry, and writes data to the

computer screen

146

