89 research outputs found

    A Robust Image Hashing Algorithm Resistant Against Geometrical Attacks

    Get PDF
    This paper proposes a robust image hashing method which is robust against common image processing attacks and geometric distortion attacks. In order to resist against geometric attacks, the log-polar mapping (LPM) and contourlet transform are employed to obtain the low frequency sub-band image. Then the sub-band image is divided into some non-overlapping blocks, and low and middle frequency coefficients are selected from each block after discrete cosine transform. The singular value decomposition (SVD) is applied in each block to obtain the first digit of the maximum singular value. Finally, the features are scrambled and quantized as the safe hash bits. Experimental results show that the algorithm is not only resistant against common image processing attacks and geometric distortion attacks, but also discriminative to content changes

    A dual adaptive watermarking scheme in contourlet domain for DICOM images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nowadays, medical imaging equipments produce digital form of medical images. In a modern health care environment, new systems such as PACS (picture archiving and communication systems), use the digital form of medical image too. The digital form of medical images has lots of advantages over its analog form such as ease in storage and transmission. Medical images in digital form must be stored in a secured environment to preserve patient privacy. It is also important to detect modifications on the image. These objectives are obtained by watermarking in medical image.</p> <p>Methods</p> <p>In this paper, we present a dual and oblivious (blind) watermarking scheme in the contourlet domain. Because of importance of ROI (region of interest) in interpretation by medical doctors rather than RONI (region of non-interest), we propose an adaptive dual watermarking scheme with different embedding strength in ROI and RONI. We embed watermark bits in singular value vectors of the embedded blocks within lowpass subband in contourlet domain.</p> <p>Results</p> <p>The values of PSNR (peak signal-to-noise ratio) and SSIM (structural similarity measure) index of ROI for proposed DICOM (digital imaging and communications in medicine) images in this paper are respectively larger than 64 and 0.997. These values confirm that our algorithm has good transparency. Because of different embedding strength, BER (bit error rate) values of signature watermark are less than BER values of caption watermark. Our results show that watermarked images in contourlet domain have greater robustness against attacks than wavelet domain. In addition, the qualitative analysis of our method shows it has good invisibility.</p> <p>Conclusions</p> <p>The proposed contourlet-based watermarking algorithm in this paper uses an automatically selection for ROI and embeds the watermark in the singular values of contourlet subbands that makes the algorithm more efficient, and robust against noise attacks than other transform domains. The embedded watermark bits can be extracted without the original image, the proposed method has high PSNR and SSIM, and the watermarked image has high transparency and can still conform to the DICOM format.</p

    Multiple Content Adaptive Intelligent Watermarking Schemes for the Protection of Blocks of a Document Image

    Get PDF
    Most of the documents contain different types of information such as white space, static information and dynamic information or mix of static and dynamic information. In this paper, multiple watermarking schemes are proposed for protection of the information content. The proposed approach comprises of three phases. In Phase-1, the edges of the source document image are extracted and the edge image is decomposed into blocks of uniform size. In Phase-2, GLCM features like energy, homogeneity, contrast and correlation are extracted from each block and the blocks are classified as no-information, static, dynamic and mix of static and dynamic information content blocks. The adjacent blocks of same type are merged together into a single block. Each block is watermarked in Phase-3. The type and amount of watermarking applied is decided intelligently and adaptively based on the classification of the blocks which results in improving embedding capacity and reducing time complexity incurred during watermarking. Experiments are conducted exhaustively on all the images in the corpus. The experimental evaluations exhibit better classification of segments based on information content in the block. The proposed technique also outperforms the existing watermarking schemes on document images in terms of robustness, accuracy of tamper detection and recovery

    Robust watermarking for magnetic resonance images with automatic region of interest detection

    Get PDF
    Medical image watermarking requires special considerations compared to ordinary watermarking methods. The first issue is the detection of an important area of the image called the Region of Interest (ROI) prior to starting the watermarking process. Most existing ROI detection procedures use manual-based methods, while in automated methods the robustness against intentional or unintentional attacks has not been considered extensively. The second issue is the robustness of the embedded watermark against different attacks. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this thesis addresses these issues of having automatic ROI detection for magnetic resonance images that are robust against attacks particularly the salt and pepper noise and designing a new watermarking method that can withstand high density salt and pepper noise. In the ROI detection part, combinations of several algorithms such as morphological reconstruction, adaptive thresholding and labelling are utilized. The noise-filtering algorithm and window size correction block are then introduced for further enhancement. The performance of the proposed ROI detection is evaluated by computing the Comparative Accuracy (CA). In the watermarking part, a combination of spatial method, channel coding and noise filtering schemes are used to increase the robustness against salt and pepper noise. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER). Based on experiments, the CA under eight different attacks (speckle noise, average filter, median filter, Wiener filter, Gaussian filter, sharpening filter, motion, and salt and pepper noise) is between 97.8% and 100%. The CA under different densities of salt and pepper noise (10%-90%) is in the range of 75.13% to 98.99%. In the watermarking part, the performance of the proposed method under different densities of salt and pepper noise measured by total PSNR, ROI PSNR, total SSIM and ROI SSIM has improved in the ranges of 3.48-23.03 (dB), 3.5-23.05 (dB), 0-0.4620 and 0-0.5335 to 21.75-42.08 (dB), 20.55-40.83 (dB), 0.5775-0.8874 and 0.4104-0.9742 respectively. In addition, the BER is reduced to the range of 0.02% to 41.7%. To conclude, the proposed method has managed to significantly improve the performance of existing medical image watermarking methods

    Forensic Technique for Detection of Image Forgery

    Full text link
    Todays digital image plays an important role in all areas such as baking, communication, business etc. Due to the availability of manipulation software it is very easy to manipulate the original image. The contents in an original image can be copy-paste to hide some information or to create tampering. The new area introduces to detect the forgery is an image forensic. In this paper proposes the new image forensic technique to detect the presence of forgery in the compressed images and in other format images. The proposed method is based on the no subsampled contoured transform (NSCT). The proposed method is made up of three parts as preprocessing, nsct transform and forgery detection. The proposed forensic method is flexible, multiscale, multidirectional, and image decomposition is shift invariant that can be efficiently implemented via the à trous algorithm. The proposed a design framework based on the mapping approach. This method allows for a fast implementation based on a lifting or ladder structure. The proposed method ensures that the frame elements are regular, symmetric, and the frame is close to a tight one. The NSCT compares with and dct method in this paper

    Study on high Performance and Effective Watermarking Scheme using Hybrid Transform (DCT-DWT)

    Get PDF
    Nowadays healthcare infrastructure depends on Hospital Information Systems (HIS), Radiology Information Systems (RIS),Picture archiving and Communication Systems (PACS) as these provide new ways to store, access and distribute medical data . It eliminates the security risk. Conversely, these developments have introduced new risks for unsuitable deployment of medical information flowing in open networks, provided the effortlessness with which digital content can be manipulated. It is renowned that the integrity and confidentiality of medical data is a serious topic for ethical and legal reasons. Medical images need to be kept intact in any condition and prior to any operation as well need to be checked for integrity and verification. Watermarking is a budding technology that is capable of assisting this aim. In recent times, frequency domain watermarking algorithms have gained immense importance due to their widespread use. Subsequently, the watermark embedding and extraction are performed in frequency domain using the presented scheme. The proposed watermarking scheme, the watermark extraction compared with the original image for calculating SSIM.The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results

    Directional edge and texture representations for image processing

    Get PDF
    An efficient representation for natural images is of fundamental importance in image processing and analysis. The commonly used separable transforms such as wavelets axe not best suited for images due to their inability to exploit directional regularities such as edges and oriented textural patterns; while most of the recently proposed directional schemes cannot represent these two types of features in a unified transform. This thesis focuses on the development of directional representations for images which can capture both edges and textures in a multiresolution manner. The thesis first considers the problem of extracting linear features with the multiresolution Fourier transform (MFT). Based on a previous MFT-based linear feature model, the work extends the extraction method into the situation when the image is corrupted by noise. The problem is tackled by the combination of a "Signal+Noise" frequency model, a refinement stage and a robust classification scheme. As a result, the MFT is able to perform linear feature analysis on noisy images on which previous methods failed. A new set of transforms called the multiscale polar cosine transforms (MPCT) are also proposed in order to represent textures. The MPCT can be regarded as real-valued MFT with similar basis functions of oriented sinusoids. It is shown that the transform can represent textural patches more efficiently than the conventional Fourier basis. With a directional best cosine basis, the MPCT packet (MPCPT) is shown to be an efficient representation for edges and textures, despite its high computational burden. The problem of representing edges and textures in a fixed transform with less complexity is then considered. This is achieved by applying a Gaussian frequency filter, which matches the disperson of the magnitude spectrum, on the local MFT coefficients. This is particularly effective in denoising natural images, due to its ability to preserve both types of feature. Further improvements can be made by employing the information given by the linear feature extraction process in the filter's configuration. The denoising results compare favourably against other state-of-the-art directional representations

    Digital Painting Analysis:Authentication and Artistic Style from Digital Reproductions

    Get PDF

    Robust Watermarking Using FFT and Cordic QR Techniques

    Get PDF
    Digital media sharing and access in today’s world of the internet is very frequent for every user. The management of digital rights may come into threat easily as the accessibility of data through the internet become wide. Sharing digital information under security procedures can be easily compromised due to the various vulnerabilities floating over the internet. Existing research has been tied to protecting internet channels to ensure the safety of digital data. Researchers have investigated various encryption techniques to prevent digital rights management but certain challenges including external potential attacks cannot be avoided that may give unauthorized access to digital media. The proposed model endorsed the concept of watermarking in digital data to uplift media security and ensure digital rights management. The system provides an efficient procedure to conduct over-watermarking in digital audio signals and confirm the avoidance of ownership of the host data. The proposed technique uses a watermark picture as a signature that has been initially encrypted with Arnold's cat map and cyclic encoding before being embedded. The upper triangular R-matrix component of the energy band was then created by using the Fast Fourier transform and Cordic QR procedures to the host audio stream. Using PN random sequences, the encrypted watermarking image has been embedded in the host audio component of the R-matrix. The same procedure has been applied to extract the watermark image from the watermarked audio. The proposed model evaluates the quality of the watermarked audio and extracted watermark image. The average PSNR of the watermarked audio is found to be 37.01 dB. It has also been seen that the average PSNR, Normal cross-correlation, BER, SSMI (structure similarity index matric) value for the extracted watermark image is found to be 96.30 dB, 0.9042 units, 0.1033 units, and 0.9836 units respectively. Further, the model has been tested using various attacks to check its robustness. After applying attacks such as noising, filtering, cropping, and resampling on the watermarked audio, the watermark image has been extricated and its quality has been checked under the standard parameters. It has been found that the quality of the recovered watermark image satisfying enough to justify the digital ownership of the host audio. Hence, the proposed watermarking model attains a perfect balance between imperceptibility, payload, and robustness

    A Novel DWT-CT approach in Digital Watermarking using PSO

    Get PDF
    The importance of watermarking is dramatically enhanced due to the promising technologies like Internet of Things (IoT), Data analysis, and automation of identification in many sectors. Due to these reasons, systems are inter-connected through networking and internet and huge amounts of information is generated, distributed and transmitted over the World Wide Web. Thus authentication of the information is a challenging task. The algorithm developed for the watermarking needs to be robust against various attack such as salt & peppers, filtering, compression and cropping etc. This paper focuses on the robustness of the algorithm by using a hybrid approach of two transforms such as Contourlet, Discrete Wavelet Transform (DWT). Also, the Particle Swarm Optimization (PSO) is used to optimize the embedding strength factor. The proposed digital watermarking algorithm has been tested against common types of image attacks. Experiment results for the proposed algorithm gives better performance by using similarity metrics such as NCC (Normalized Cross Correlation value) and PSNR (Peak Signal to Noise Ratio)
    corecore