57 research outputs found

    Algorithms to Approximate Column-Sparse Packing Problems

    Full text link
    Column-sparse packing problems arise in several contexts in both deterministic and stochastic discrete optimization. We present two unifying ideas, (non-uniform) attenuation and multiple-chance algorithms, to obtain improved approximation algorithms for some well-known families of such problems. As three main examples, we attain the integrality gap, up to lower-order terms, for known LP relaxations for k-column sparse packing integer programs (Bansal et al., Theory of Computing, 2012) and stochastic k-set packing (Bansal et al., Algorithmica, 2012), and go "half the remaining distance" to optimal for a major integrality-gap conjecture of Furedi, Kahn and Seymour on hypergraph matching (Combinatorica, 1993).Comment: Extended abstract appeared in SODA 2018. Full version in ACM Transactions of Algorithm

    Distributed Dominating Set Approximations beyond Planar Graphs

    Full text link
    The Minimum Dominating Set (MDS) problem is one of the most fundamental and challenging problems in distributed computing. While it is well-known that minimum dominating sets cannot be approximated locally on general graphs, over the last years, there has been much progress on computing local approximations on sparse graphs, and in particular planar graphs. In this paper we study distributed and deterministic MDS approximation algorithms for graph classes beyond planar graphs. In particular, we show that existing approximation bounds for planar graphs can be lifted to bounded genus graphs, and present (1) a local constant-time, constant-factor MDS approximation algorithm and (2) a local O(logn)\mathcal{O}(\log^*{n})-time approximation scheme. Our main technical contribution is a new analysis of a slightly modified variant of an existing algorithm by Lenzen et al. Interestingly, unlike existing proofs for planar graphs, our analysis does not rely on direct topological arguments.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0299

    Inapproximability of maximal strip recovery

    Get PDF
    In comparative genomic, the first step of sequence analysis is usually to decompose two or more genomes into syntenic blocks that are segments of homologous chromosomes. For the reliable recovery of syntenic blocks, noise and ambiguities in the genomic maps need to be removed first. Maximal Strip Recovery (MSR) is an optimization problem proposed by Zheng, Zhu, and Sankoff for reliably recovering syntenic blocks from genomic maps in the midst of noise and ambiguities. Given dd genomic maps as sequences of gene markers, the objective of \msr{d} is to find dd subsequences, one subsequence of each genomic map, such that the total length of syntenic blocks in these subsequences is maximized. For any constant d2d \ge 2, a polynomial-time 2d-approximation for \msr{d} was previously known. In this paper, we show that for any d2d \ge 2, \msr{d} is APX-hard, even for the most basic version of the problem in which all gene markers are distinct and appear in positive orientation in each genomic map. Moreover, we provide the first explicit lower bounds on approximating \msr{d} for all d2d \ge 2. In particular, we show that \msr{d} is NP-hard to approximate within Ω(d/logd)\Omega(d/\log d). From the other direction, we show that the previous 2d-approximation for \msr{d} can be optimized into a polynomial-time algorithm even if dd is not a constant but is part of the input. We then extend our inapproximability results to several related problems including \cmsr{d}, \gapmsr{\delta}{d}, and \gapcmsr{\delta}{d}.Comment: A preliminary version of this paper appeared in two parts in the Proceedings of the 20th International Symposium on Algorithms and Computation (ISAAC 2009) and the Proceedings of the 4th International Frontiers of Algorithmics Workshop (FAW 2010

    Adaptive Out-Orientations with Applications

    Full text link
    We give simple algorithms for maintaining edge-orientations of a fully-dynamic graph, such that the out-degree of each vertex is bounded. On one hand, we show how to orient the edges such that the out-degree of each vertex is proportional to the arboricity α\alpha of the graph, in a worst-case update time of O(log2nlogα)O(\log^2 n \log \alpha). On the other hand, motivated by applications in dynamic maximal matching, we obtain a different trade-off, namely the improved worst case update time of O(lognlogα)O(\log n \log \alpha) for the problem of maintaining an edge-orientation with at most O(α+logn)O(\alpha + \log n) out-edges per vertex. Since our algorithms have update times with worst-case guarantees, the number of changes to the solution (i.e. the recourse) is naturally limited. Our algorithms make choices based entirely on local information, which makes them automatically adaptive to the current arboricity of the graph. In other words, they are arboricity-oblivious, while they are arboricity-sensitive. This both simplifies and improves upon previous work, by having fewer assumptions or better asymptotic guarantees. As a consequence, one obtains an algorithm with improved efficiency for maintaining a (1+ε)(1+\varepsilon) approximation of the maximum subgraph density, and an algorithm for dynamic maximal matching whose worst-case update time is guaranteed to be upper bounded by O(α+lognlogα)O(\alpha + \log n\log \alpha), where α\alpha is the arboricity at the time of the update

    An overview of the lowest outdegree orientation problem

    Get PDF
    Στο πρόβλημα εύρεσης προσανατολισμού ελάχιστου βαθμού, διερευνούμε πώς να βρούμε έναν προσανατολισμό ενός δεδομένου γραφήματος, τέτοιο ώστε να ελαχιστοποιεί τον έξω- βαθμό του γραφήματος. Το πρόβλημα σχετίζεται στενά με μια σειρά από άλλα προβλήματα, όπως η δημιουργία συστημάτων επισήμανσης (labeling schemes) και η προσέγγιση των μέτρων πυκνότητας ενός γραφήματος.In the lowest outdegree orientation problem, we investigate how to find an orientation of a given graph that minimizes the outdegree, or maximum number of edges leaving a vertex. The problem is closely related to a number of other problems, such as creating labeling schemes and approximating graph density measures

    Distributed CONGEST Approximation of Weighted Vertex Covers and Matchings

    Get PDF
    We provide CONGEST model algorithms for approximating minimum weighted vertex cover and the maximum weighted matching. For bipartite graphs, we show that a (1+ε)(1+\varepsilon)-approximate weighted vertex cover can be computed deterministically in polylogarithmic time. This generalizes a corresponding result for the unweighted vertex cover problem shown in [Faour, Kuhn; OPODIS '20]. Moreover, we show that in general weighted graph families that are closed under taking subgraphs and in which we can compute an independent set of weight at least a λ\lambda-fraction of the total weight, one can compute a (22λ+ε)(2-2\lambda +\varepsilon)-approximate weighted vertex cover in polylogarithmic time in the CONGEST model. Our result in particular implies that in graphs of arboricity aa, one can compute a (21/a+ε)(2-1/a+\varepsilon)-approximate weighted vertex cover. For maximum weighted matchings, we show that a (1ε)(1-\varepsilon)-approximate solution can be computed deterministically in polylogarithmic CONGEST rounds (for constant ε\varepsilon). We also provide a more efficient randomized algorithm. Our algorithm generalizes results of [Lotker, Patt-Shamir, Pettie; SPAA '08] and [Bar-Yehuda, Hillel, Ghaffari, Schwartzman; PODC '17] for the unweighted case. Finally, we show that even in the LOCAL model and in bipartite graphs of degree 3\leq 3, if ε<ε0\varepsilon<\varepsilon_0 for some constant ε0>0\varepsilon_0>0, then computing a (1+ε)(1+\varepsilon)-approximation for the unweighted minimum vertex cover problem requires Ω(lognε)\Omega\big(\frac{\log n}{\varepsilon}\big) rounds. This generalizes aresult of [G\"o\"os, Suomela; DISC '12], who showed that computing a (1+ε0)(1+\varepsilon_0)-approximation in such graphs requires Ω(logn)\Omega(\log n) rounds

    Local Multicoloring Algorithms: Computing a Nearly-Optimal TDMA Schedule in Constant Time

    Get PDF
    The described multicoloring problem has direct applications in the context of wireless ad hoc and sensor networks. In order to coordinate the access to the shared wireless medium, the nodes of such a network need to employ some medium access control (MAC) protocol. Typical MAC protocols control the access to the shared channel by time (TDMA), frequency (FDMA), or code division multiple access (CDMA) schemes. Many channel access schemes assign a fixed set of time slots, frequencies, or (orthogonal) codes to the nodes of a network such that nodes that interfere with each other receive disjoint sets of time slots, frequencies, or code sets. Finding a valid assignment of time slots, frequencies, or codes hence directly corresponds to computing a multicoloring of a graph GG. The scarcity of bandwidth, energy, and computing resources in ad hoc and sensor networks, as well as the often highly dynamic nature of these networks require that the multicoloring can be computed based on as little and as local information as possible
    corecore