1,275 research outputs found

    Heuristic Solutions for Loading in Flexible Manufacturing Systems

    Get PDF
    Production planning in flexible manufacturing system deals with the efficient organization of the production resources in order to meet a given production schedule. It is a complex problem and typically leads to several hierarchical subproblems that need to be solved sequentially or simultaneously. Loading is one of the planning subproblems that has to addressed. It involves assigning the necessary operations and tools among the various machines in some optimal fashion to achieve the production of all selected part types. In this paper, we first formulate the loading problem as a 0-1 mixed integer program and then propose heuristic procedures based on Lagrangian relaxation and tabu search to solve the problem. Computational results are presented for all the algorithms and finally, conclusions drawn based on the results are discussed

    Constraint logic programming for fault-tolerant distributed systems

    Get PDF
    This paper presents key notions of Constraint Logic Programming (CLP), which is a young programming paradigm oriented toward solving difficult discrete highly combinatorial problems by making active use of constraints on the basis of mechanisms of Logic Programming. Being the subject of intensive research all over the world, CLP has already been used successfully in a large variety of application areas. As one of the important applications where CLP demonstrates its potential, we propose CLP-based procedures of solving the problems of optimal resource and task allocation at the stages of design and operation of Fault-Tolerant Distributed Technical Systems.Peer Reviewe

    The investigation of the effect of scheduling rules on FMS performance

    Get PDF
    The application of Flexible Manufacturing Systems (FMSs) has an effect in competitiveness, not only of individual companies but of those countries whose manufactured exports play a significant part in their economy (Hartley, 1984). However, the increasing use of FM Ss to effectively provide customers with diversified products has created a significant set of operational challenges for managers (Mahmoodi et al., 1999). In more recent years therefore, there has been a concentration of effort on FMS scheduling without which the benefits of an FMS cannot be realized. The objective of the reported research is to investigate and extend the contribution which can be made to the FMS scheduling problem through the implementation of computer-based experiments that consider real-time situations. [Continues.

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    Analusis and Modeling of Flexible Manufacturing System

    Get PDF
    Analysis and modeling of flexible manufacturing system (FMS) consists of scheduling of the system and optimization of FMS objectives. Flexible manufacturing system (FMS) scheduling problems become extremely complex when it comes to accommodate frequent variations in the part designs of incoming jobs. This research focuses on scheduling of variety of incoming jobs into the system efficiently and maximizing system utilization and throughput of system where machines are equipped with different tools and tool magazines but multiple machines can be assigned to single operation. Jobs have been scheduled according to shortest processing time (SPT) rule. Shortest processing time (SPT) scheduling rule is simple, fast, and generally a superior rule in terms of minimizing completion time through the system, minimizing the average number of jobs in the system, usually lower in-process inventories (less shop congestion) and downstream idle time (higher resource utilization). Simulation is better than experiment with the real world system because the system as yet does not exist and experimentation with the system is expensive, too time consuming, too dangerous. In this research, Taguchi philosophy and genetic algorithm have been used for optimization. Genetic algorithm (GA) approach is one of the most efficient algorithms that aim at converging and giving optimal solution in a shorter time. Therefore, in this work, a suitable fitness function is designed to generate optimum values of factors affecting FMS objectives (maximization of system utilization and maximization of throughput of system by Genetic Algorithm (GA) approach

    Short Software Descriptions

    Get PDF
    This paper briefly presents the software for interactive decision support that was developed in 1990-1991 within the Contracted Study Agreement between the System and Decision Sciences Program at IIASA and several Polish scientific institutions, namely: Institute of Automatic Control (Warsaw University of Technology); Institute of Computing Science (Technical University of Poznaii); Institute of Informatics (Warsaw University); and Systems Research Institute of the Polish Academy of Sciences. This Contracted Study Agreement has been a continuation of the same type of activity conducted since 1985. Therefore many of the software packages are actually improved versions of the programs developed in 1985-1989. The theoretical part of the results developed within this scientific activity is presented in the IIASA Collaborative Paper CP-90-008 by A. Ruszczynski, T. Rogowski and A.P. Wierzbicki entitled "Contributions to Methodology and Techniques of Decision Analysis (First Stage)." Detailed descriptions of the methodology and the user guide for each particular software package are published in separate Collaborative Papers. Each software package described here is available in executable form for non-profit educational and scientific purposes, however, any profit-oriented or commercial application requires a written agreement with IIASA. Inquires about the software should be directed to the System and Decision Sciences Program at IIASA, Methodology of Decisions Analysis Project

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    FMS loading with reliability consideration.

    Get PDF
    corecore