2,891 research outputs found

    Test Derivation from Timed Automata

    Get PDF
    A real-time system is a discrete system whose state changes occur in real-numbered time [AH97]. For testing real-time systems, specification languages must be extended with constructs for expressing real-time constraints, the implementation relation must be generalized to consider the temporal dimension, and the data structures and algorithms used to generate tests must be revised to operate on a potentially infinite set of states

    Answer Set Planning Under Action Costs

    Full text link
    Recently, planning based on answer set programming has been proposed as an approach towards realizing declarative planning systems. In this paper, we present the language Kc, which extends the declarative planning language K by action costs. Kc provides the notion of admissible and optimal plans, which are plans whose overall action costs are within a given limit resp. minimum over all plans (i.e., cheapest plans). As we demonstrate, this novel language allows for expressing some nontrivial planning tasks in a declarative way. Furthermore, it can be utilized for representing planning problems under other optimality criteria, such as computing ``shortest'' plans (with the least number of steps), and refinement combinations of cheapest and fastest plans. We study complexity aspects of the language Kc and provide a transformation to logic programs, such that planning problems are solved via answer set programming. Furthermore, we report experimental results on selected problems. Our experience is encouraging that answer set planning may be a valuable approach to expressive planning systems in which intricate planning problems can be naturally specified and solved

    Verifying the Interplay of Authorization Policies and Workflow in Service-Oriented Architectures (Full version)

    Full text link
    A widespread design approach in distributed applications based on the service-oriented paradigm, such as web-services, consists of clearly separating the enforcement of authorization policies and the workflow of the applications, so that the interplay between the policy level and the workflow level is abstracted away. While such an approach is attractive because it is quite simple and permits one to reason about crucial properties of the policies under consideration, it does not provide the right level of abstraction to specify and reason about the way the workflow may interfere with the policies, and vice versa. For example, the creation of a certificate as a side effect of a workflow operation may enable a policy rule to fire and grant access to a certain resource; without executing the operation, the policy rule should remain inactive. Similarly, policy queries may be used as guards for workflow transitions. In this paper, we present a two-level formal verification framework to overcome these problems and formally reason about the interplay of authorization policies and workflow in service-oriented architectures. This allows us to define and investigate some verification problems for SO applications and give sufficient conditions for their decidability.Comment: 16 pages, 4 figures, full version of paper at Symposium on Secure Computing (SecureCom09

    A Representation for Serial Robotic Tasks

    Get PDF
    The representation for serial robotic tasks proposed in this thesis is a language of temporal constraints derived directly from a model of the space of serial plans. It was specifically designed to encompass problems that include disjunctive ordering constraints. This guarantees that the proposed language can completely and, to a certain extent, compactly represent all possible serial robotic tasks. The generality of this language carries a penalty. The proposed language of temporal constraints is NP-Complete. Specific methods have been demonstrated for normalizing constraints posed in this language in order to make subsequent sequencing and analysis more tractable. Using this language, the planner can specify necessary and alternative orderings to control undesirable interactions between steps of a plan. For purposes of analysis, the planner can factor a plan into strategies, and decompose those strategies into essential components. Using properly normalized constraint expressions the sequencer can derive admissible sequences and admissible next operations. Using these facilities, a robot can be given the specification of a task and it can adapt its sequence of operations according to run-time events and the constraints on the operations to be performed

    Timed Transition Automata as Numerical Planning Domain

    Get PDF
    A general technique for transforming a timed finite state automaton into an equivalent automated planning domain based on a numerical parameter model is introduced. Timed transition automata have many applications in control systems and agents models; they are used to describe sequential processes, where actions are labelling by automaton transitions subject to temporal constraints. The language of timed words accepted by a timed automaton, the possible sequences of system or agent behaviour, can be described in term of an appropriate planning domain encapsulating the timed actions patterns and constraints. The time words recognition problem is then posed as a planning problem where the goal is to reach a final state by a sequence of actions, which corresponds to the timed symbols labeling the automaton transitions. The transformation is proved to be correct and complete and it is space/time linear on the automaton size. Experimental results shows that the performance of the planning domain obtained by transformation is scalable for real world applications. A major advantage of the planning based approach, beside of the solving the parsing problem, is to represent in a single automated reasoning framework problems of plan recognitions, plan synthesis and plan optimisation

    Event structures for Petri nets with persistence

    Get PDF
    Event structures are a well-accepted model of concurrency. In a seminal paper by Nielsen, Plotkin and Winskel, they are used to establish a bridge between the theory of domains and the approach to concurrency proposed by Petri. A basic role is played by an unfolding construction that maps (safe) Petri nets into a subclass of event structures, called prime event structures, where each event has a uniquely determined set of causes. Prime event structures, in turn, can be identified with their domain of configurations. At a categorical level, this is nicely formalised by Winskel as a chain of coreflections. Contrary to prime event structures, general event structures allow for the presence of disjunctive causes, i.e., events can be enabled by distinct minimal sets of events. In this paper, we extend the connection between Petri nets and event structures in order to include disjunctive causes. In particular, we show that, at the level of nets, disjunctive causes are well accounted for by persistent places. These are places where tokens, once generated, can be used several times without being consumed and where multiple tokens are interpreted collectively, i.e., their histories are inessential. Generalising the work on ordinary nets, Petri nets with persistence are related to a new subclass of general event structures, called locally connected, by means of a chain of coreflections relying on an unfolding construction

    PDDL2.1: An extension of PDDL for expressing temporal planning domains

    Get PDF
    In recent years research in the planning community has moved increasingly towards application of planners to realistic problems involving both time and many types of resources. For example, interest in planning demonstrated by the space research community has inspired work in observation scheduling, planetary rover ex ploration and spacecraft control domains. Other temporal and resource-intensive domains including logistics planning, plant control and manufacturing have also helped to focus the community on the modelling and reasoning issues that must be confronted to make planning technology meet the challenges of application. The International Planning Competitions have acted as an important motivating force behind the progress that has been made in planning since 1998. The third competition (held in 2002) set the planning community the challenge of handling time and numeric resources. This necessitated the development of a modelling language capable of expressing temporal and numeric properties of planning domains. In this paper we describe the language, PDDL2.1, that was used in the competition. We describe the syntax of the language, its formal semantics and the validation of concurrent plans. We observe that PDDL2.1 has considerable modelling power --- exceeding the capabilities of current planning technology --- and presents a number of important challenges to the research community

    Parameterized Model-Checking for Timed-Systems with Conjunctive Guards (Extended Version)

    Full text link
    In this work we extend the Emerson and Kahlon's cutoff theorems for process skeletons with conjunctive guards to Parameterized Networks of Timed Automata, i.e. systems obtained by an \emph{apriori} unknown number of Timed Automata instantiated from a finite set U1,ā€¦,UnU_1, \dots, U_n of Timed Automata templates. In this way we aim at giving a tool to universally verify software systems where an unknown number of software components (i.e. processes) interact with continuous time temporal constraints. It is often the case, indeed, that distributed algorithms show an heterogeneous nature, combining dynamic aspects with real-time aspects. In the paper we will also show how to model check a protocol that uses special variables storing identifiers of the participating processes (i.e. PIDs) in Timed Automata with conjunctive guards. This is non-trivial, since solutions to the parameterized verification problem often relies on the processes to be symmetric, i.e. indistinguishable. On the other side, many popular distributed algorithms make use of PIDs and thus cannot directly apply those solutions
    • ā€¦
    corecore