20,395 research outputs found

    A consensus based network intrusion detection system

    Full text link
    Network intrusion detection is the process of identifying malicious behaviors that target a network and its resources. Current systems implementing intrusion detection processes observe traffic at several data collecting points in the network but analysis is often centralized or partly centralized. These systems are not scalable and suffer from the single point of failure, i.e. attackers only need to target the central node to compromise the whole system. This paper proposes an anomaly-based fully distributed network intrusion detection system where analysis is run at each data collecting point using a naive Bayes classifier. Probability values computed by each classifier are shared among nodes using an iterative average consensus protocol. The final analysis is performed redundantly and in parallel at the level of each data collecting point, thus avoiding the single point of failure issue. We run simulations focusing on DDoS attacks with several network configurations, comparing the accuracy of our fully distributed system with a hierarchical one. We also analyze communication costs and convergence speed during consensus phases.Comment: Presented at THE 5TH INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY 2015 IN KUALA LUMPUR, MALAYSI

    A Blockchain-Based Retribution Mechanism for Collaborative Intrusion Detection

    Get PDF
    Collaborative intrusion detection approach uses the shared detection signature between the collaborative participants to facilitate coordinated defense. In the context of collaborative intrusion detection system (CIDS), however, there is no research focusing on the efficiency of the shared detection signature. The inefficient detection signature costs not only the IDS resource but also the process of the peer-to-peer (P2P) network. In this paper, we therefore propose a blockchain-based retribution mechanism, which aims to incentivize the participants to contribute to verifying the efficiency of the detection signature in terms of certain distributed consensus. We implement a prototype using Ethereum blockchain, which instantiates a token-based retribution mechanism and a smart contract-enabled voting-based distributed consensus. We conduct a number of experiments built on the prototype, and the experimental results demonstrate the effectiveness of the proposed approach

    DeliveryCoin: An IDS and Blockchain-Based Delivery Framework for Drone-Delivered Services

    Get PDF
    In this paper, we propose an intrusion detection system (IDS) and Blockchain-based delivery framework, called DeliveryCoin, for drone-delivered services. The DeliveryCoin framework consists of four phases, including system initialization phase, creating the block, updating the blockchain, and intrusion detection phase. To achieve privacy-preservation, the DeliveryCoin framework employs hash functions and short signatures without random oracles and the Strong Diffie–Hellman (SDH) assumption in bilinear groups. To achieve consensus inside the blockchain-based delivery platform, we introduce a UAV-aided forwarding mechanism, named pBFTF. We also propose an IDS system in each macro eNB (5G) for detecting self-driving network attacks as well as false transactions between self-driving nodes. Furthermore, extensive simulations are conducted, and results confirm the efficiency of our proposed DeliveryCoin framework in terms of latency of blockchain consensus and accuracy

    Intrusion-aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks

    Get PDF
    Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.Comment: 19 pages, 7 figure

    An Architecture for Blockchain-based Collaborative Signature-based Intrusion Detection System

    Get PDF
    Collaborative intrusion detection system (CIDS), where IDS hosts work with each other and share resources, have been proposed to cope with the increasingly sophisticated cyberattacks. Despite the promising benefits such as expanded signature databases and alert data from multiple sites, trust management and consensus building remain as challenges for a CIDS to work effectively. The blockchain technology with built-in immutability and consensus building capability provides a viable solution to the issues of CIDS. In this paper, we introduce an architecture for a blockchain-enabled signature-based collaborative IDS, discuss the implementation strategy of the proposed architecture and developed a prototype using Hyperledger and Snort. Our preliminary evaluation on a bench mark showed the proposed architecture offers a solution by addressing the issues of trust, data sharing and insider attacks in the network environment of CIDSs. The implications and limitations of this study are also discussed

    Tracking advanced persistent threats in critical infrastructures through opinion dynamics

    Get PDF
    Advanced persistent threats pose a serious issue for modern industrial environments, due to their targeted and complex attack vectors that are difficult to detect. This is especially severe in critical infrastructures that are accelerating the integration of IT technologies. It is then essential to further develop effective monitoring and response systems that ensure the continuity of business to face the arising set of cyber-security threats. In this paper, we study the practical applicability of a novel technique based on opinion dynamics, that permits to trace the attack throughout all its stages along the network by correlating different anomalies measured over time, thereby taking the persistence of threats and the criticality of resources into consideration. The resulting information is of essential importance to monitor the overall health of the control system and cor- respondingly deploy accurate response procedures. Advanced Persistent Threat Detection Traceability Opinion Dynamics.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore