
Kennesaw State University
DigitalCommons@Kennesaw State University
Master of Science in Information Technology
Theses Department of Information Technology

Summer 7-9-2019

An Architecture for Blockchain-based
Collaborative Signature-based Intrusion Detection
System
Daniel Laufenberg

Follow this and additional works at: https://digitalcommons.kennesaw.edu/msit_etd

Part of the Databases and Information Systems Commons, Information Security Commons, and
the Systems Architecture Commons

This Thesis is brought to you for free and open access by the Department of Information Technology at DigitalCommons@Kennesaw State University.
It has been accepted for inclusion in Master of Science in Information Technology Theses by an authorized administrator of
DigitalCommons@Kennesaw State University. For more information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
Laufenberg, Daniel, "An Architecture for Blockchain-based Collaborative Signature-based Intrusion Detection System" (2019). Master
of Science in Information Technology Theses. 5.
https://digitalcommons.kennesaw.edu/msit_etd/5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231831686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/msit_etd?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/msit_etd?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/it?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/msit_etd?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/msit_etd/5?utm_source=digitalcommons.kennesaw.edu%2Fmsit_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Daniel Laufenberg

A Thesis in the Field of Information Technology

for the Degree of Master of Science in Information Technology

Kennesaw State University

July 2019

An Architecture for Blockchain-based Collaborative Signature-based Intrusion Detection System

Thesis/Dissertation Defense Outcome

An Architecture for Blockchain-based Collaborative Signature-based Intrusion

Detection System

Name

Email Phone Number

Program

Title

Daniel Laufenberg 000878174

dlaufenb@students.kennesaw.edu

MSIT

Thesis/Dissertation Defense: Date

Passed Failed Passed With Revisions (attach)

Signatures

Thesis Date

Thesis Co-Chai r Date

Committee Date

Committee Date

7/10/2019

✔

Lei Li
Digitally signed by Lei Li
Date: 2019.07.20 07:55:36 -04'00' 7/20/2019

Committee Date

Program Director Date

Department Date

Graduate Date

Lei Li
Digitally signed by Lei Li
Date: 2019.07.20 07:56:03 -04'00'

Acknowledgments

I would first like to thank my thesis advisors Dr. Lei Li, Dr. Hossain Shahriar and

Dr. Meng Han. Whenever I had a question about the research involved their doors were

always open to me and they consistently guided me and this paper in the right direction

whenever I needed it. Their validation and passionate participation and input allowed me

to glimpse the processes and nuances of complex research.

I would also like to express my profound gratitude to my wife Amber Lee for

providing me with unfailing support and continuous encouragement throughout my years

of study and the process of researching and writing this thesis. This would not have been

possible without her. Thank you.

This work is dedicated to my daughter Allison Laufenberg-Lee who was born

eleven days from the day of my thesis defense. I want to thank her for being patient and

waiting until then to arrive.

Abstract

Collaborative intrusion detection system (CIDS), where IDS hosts work with each

other and share resources, have been proposed to cope with the increasingly sophisticated

cyberattacks. Despite the promising benefits such as expanded signature databases and

alert data from multiple sites, trust management and consensus building remain as

challenges for a CIDS to work effectively. The blockchain technology with built-in

immutability and consensus building capability provides a viable solution to the issues of

CIDS. In this paper, we introduce an architecture for a blockchain-enabled signature-

based collaborative IDS, discuss the implementation strategy of the proposed architecture

and developed a prototype using Hyperledger and Snort. Our preliminary evaluation on a

bench mark showed the proposed architecture offers a solution by addressing the issues

of trust, data sharing and insider attacks in the network environment of CIDSs. The

implications and limitations of this study are also discussed.

Table of Contents

Acknowledgments.. iv

Chapter I. Introduction ...8

Chapter II. Background and Related Work ...10

2.1 Consensus Algorithms ...11

2.2 Blockchain Application ...13

2.3 Intrusion Detection System (IDS) ..13

2.4 Intersection of Blockchain and IDS ...15

Chapter III. The Proposed Architecture ...16

Chapter IV. Implementation...19

4.1 Prototype Environment ..22

4.1.2 Hardware ...22

4.1.3 Operating Systems ..23

4.1.4 HyperLedger ...23

4.1.5 Prerequisites ..24

4.2 Prototype Guide ...26

4.2.1 Setting up Blockchain ...27

4.3 YouTube Tutorial Videos ..36

Chapter V. Conclusions ...37

Appendix I BBids Prototype Code, using FabCar contract in HyperLedger38

Chaincode files: ..38

/lib/Fabcar.js...38

Startup Script: ..54

Contract files: ...57

enrollAdmin.js ...57

Invoke.js ...58

Query.js ..60

registerUser.js ..61

References ..64

Chapter I.

Introduction

Interconnected computer networks have been the engine for economic growth and

innovation for the past few decades. It has become increasingly important to protect the

digital infrastructure of our society against attacks. The intrusion detection system (IDS),

has been widely used by individuals, business and organizations for their computer

networks protection.

Working with existing firewalls and anti-virus systems, an IDS is a device or

software application which monitors network traffic, identifies attacks by building

normal network profiles (anomaly-based IDS) or matching the patterns of malicious

behavior or violations (signature-based IDS) that protects computer networks against

attacks [34]. An IDS can offer real-time, cross-platform, and pre-host protection and is a

viable solution to mitigate some malicious attacks [13, 29]. Anomaly-based IDSs are

prone to having many false positives [32]. Signature-based IDSs are generally better with

the precision rate but can often miss attacks if the signature database is outdated or

incomplete [28, 33].

As cyber-attacks are becoming more sophisticated and being launched at a larger

scale and across platforms [cite examples], an intrusion detection system would be more

effective if it works with other IDSs. For example, IDS hosts can exchange resources

such as network traffic, data alerts, signatures and share signature databases. [7, 10, 23,

30, 31]. Such a system is referred as a collaborative intrusion detection system (CIDS).

9

Despite promising benefits of CIDS, the underlying trust behind sharing of resources

remains a major concern. In particular, an attacker host may join in a collaborative IDS

system network and provide inaccurate or malicious signatures. Moreover, a host

environment may be tampered with to alter the data files that actually store signature s

(Snort IDS saves the rules in plain text files, which can be easily altered).

Recently, there has been a spike of interest in the blockchain technology where

distributed data structure is shared and replicated among the participants in a peer-to-peer

network [1, 2, 3, 4, 5, 8, 12]. The built-in immutability and consensus building make the

blockchain technology a viable solution to develop collaborative IDS and overcome trust

management and consensus building among IDS [26]. Alexopoulos et al. [23] proposed a

general framework for block-based collaborative IDS which is focused on using

blockchain for alert sharing and consensus building.

Inspired by the efforts of Alexopoulos et al.’s work, we introduce a blockchain-

enabled architecture for a signature-based IDS. In addition to alert exchange, we also

propose to use the blockchain technology for signature management such as signature

sharing, creation and verification among hosts in a CIDS. We also present the

implementation strategies of the architecture. Based on our knowledge, the proposed

architecture is the first kind for CIDSs.

The remainder of the paper is organized as follows: Section II introduces related

work on Blockchain and intrusion detection systems, Section III discusses an architecture

for a collaborative Signature-based IDS based on the blockchain technology. Section IV

presents the implementation consideration of the proposed architecture. Finally, Section

V concludes the paper.

10

Chapter II.

Background and Related Work

Blockchain can loosely be defined as a data structure, database, or a growing list

of records, called blocks, which are linked using cryptography [27]. There are three types

of blockchains: public, private and consortium [27].

A public blockchain such as Bitcoin is an open system [26] where anyone can join

and participate in the system. The two advantages of public blockchain are its

characteristics of Permission-less and immutability. Having a public blockchain removes

the necessity for a access control protocol. Applications can be added to the network

without approval, and blockchain becomes the transport layer of these applications [26].

A public blockchain is stored typically on a peer-to-peer network. This allows for the

data to be nigh unchangeable due to many computers storing the data and agreeing on

what is legitimate data and what could possibly be illegitimate.

A private blockchain is a closed system in which the use of the blockchain is

controlled. There is limited application of private blockchains as the central control

works against the decentralization aspect which is key to the blockchain concept.

In a consortium blockchain there is a mixture of both. Typically, a consortium is

public but the number of nodes who can change the data in the blocks is limited.

Consortium’s are sometimes invite-only for this purpose.

11

Blockchain tends to fall short when it comes to scalability, depending on the

consensus algorithm used. Speed is a big concern as well for any application of a

blockchain system.

2.1 Consensus Algorithms

As a distributed structure, consensus building is very important for blockchain

where nodes of the blockchain construct and support the decision that works best for the

rest of them. It’s a form of resolution on how to add blocks, data, or do anything to the

blockchain. There are many consensus algorithms, however, this paper will only cover

those pertinent to the paper: Proof of Work, Proof of Stake, Delegated Proof of Stake,

Proof of Authority, Byzantine Fault Tolerance, Proof of Elapsed Time.

Proof of work. In a proof of work system, the new blocks in the chain are created

by those that have the computational power to solve complex mathematical problems.

PoW has some problems with power consumption and inefficiency. This system is used

in Bitcoin and would not be ideal for the proposed IDS.

Proof of stake. In a proof of stake system, the new blocks are created in a

distributed consensus. The next block is chosen by combinations of random selection and

wealth range. Ethereum has a proof of stake currently in development called Casper.

Delegated Proof of Stake. In a delegated proof of stake, those that have ”stake” in

the blockchain can vote for others to have control of the chain. It isn’t all about who owns

12

the most cryptocurrency or most stake in the blocks, it is about having democratic votes

to mitigate the risks of the original proof of stake.

Proof of Authority (PoA). PoA consensus is built further off of Proof of Stake.

Instead of voting or allowing someone who was an early adopter of a blockchain to have

”stake” in it, the proof of authority puts the onus on those with the reputation to be in

control of the chain. These are trusted indiviudals within the community or network that

are well-respected.

Byzantine Fault Tolerance (BFT). Named after an old adage of Byazanine

General problems, this algorithm has been around for some time. The idea is that two

generals were attempting to communicate between enemy lines and can never be 100%

sure that their messages are received. BFT at its simplest form is a way to avoid nodes or

blocks in the chain doing something that they were not supposed to do. BFT can be found

in many popular consensus algorithms in blockchain.

Proof of Elapsed Time (PoET). The PoET consensus algorithm that is designed to

be a production-grade protocol capable of supporting large network populations. PoET

algorithm relies on secure consensus without the power consumption drawbacks of the

Proof of Work algorithm. Each person in the network waits a random amount of time,

whoever finishes waiting first becomes the leader of the new block in the chain[25].

13

2.2 Blockchain Application

There are many different applications being conceived by researchers in the field

of blockchain, such as consensus algorithm research Proof of Majority[2], supply chains,

ProductChain, a scalable blockchain framework for supply chains[16], AutoBotCatcher a

system proposed to protect the infrastructure of IoT devices[4], TickEth, a proposed

system for using blockchain to buy sporting event tickets[22], a package delivery system

[14], and a networking trading system [17]. There is also work showing how blockchain

can be used with machine learning in [21] where the ledger self-adapts to transaction

demands. As we can see there is a body of work done on how blockchain can be used for

things other than cryptocurrencies.

2.3 Intrusion Detection System (IDS)

There is a wealth of studies on Intrusion Detection System (IDS) because of its

impact on cybersecurity. IDSs can be categorized as host-based IDS and network-based

IDS. There are pros and cons for each type of IDS. In a host based system the IDS runs

on a single host, this allows for the IDS to directly monitor that host and which resources

were attacked. Host-based can make it difficult to analyze the intrusion attempts on

multiple computers and will be difficult to work in a large network environment. In a

14

network-based IDS a network sensor is installed on the network interface card and allows

for an entire network to be monitored. All of these packets are analyzed, however this can

take a lot of time and resources, and can miss packets going to a specific host.

IDSs can also be divided by the detection methods: signature-based intrusion

detection systems and anomaly-based intrusion detection systems. A signature-based IDS

relies on patterns of malicious behavior or violations to recognize the attacks. Signature-

based IDS could ideally identify 100% of the attacks with no false alarms as long as

signatures are specified ahead of time. However, each signature, even if it leads to the

same attack, has the potential to be unique from any other signatures. This is the most

commonly implemented IDS [34,35,36].

The other common type of IDS is an anomaly detection system. This type of IDS

focuses on the system’s normal behaviors instead of focusing on attack behaviors, as seen

with signature-based intrusion detection systems. To implement this type of IDS, the

approach is to use two phases. The first phase is the training phase where the systems

behavior is observed in the absence of any type of attack. Normal behavior for the system

is identified into a profile. After this, the second phase or detection phase, begins. In this

phase, the stored profile is compared to the way the system is currently behaving and

deviations from the profiles are considered potential attacks on the system. This can lead

to several false positives [37, 38, 39].

There has been a growing trend of research towards CIDS due to the speed and

efficiency of peer-to-peer networks[31][32]. As the Internet becomes faster the

shareability of an application becomes more likely. We are no longer bound to slower

speeds, or forced to store data locally, we can store and share data seamlessly among

15

many networks. CIDS is a part of this evolution and is a major reason why we chose this

in our research. There are many other new ideas being conceived, such as the research

done on securing Internet of Things devices with a blockchain-based collaborative

IDS[5]. There is promise for CIDS to aid in securing intelligent electronic devices (IED)

with intrusion detection[10]. Kademlia (a peer-to-peer overlay) also shows proof of

concept with a CIDs-like system in [19].

2.4 Intersection of Blockchain and IDS

Given the built-in immutability and consensus building of blockchain technology,

researchers [23, 26] have started to apply blockchain technology to tackle issues in

Collaborative IDSs.

Meng et al. [26] conducted comprehensive survey on applicability of blockchain

technology in intrusion detection and identified several open challenges in the field. Such

as Latency, Complexity, Security, Privacy, and Limited Signature Coverage, among

others, our work can address these challenges by establishing a peer-to-peer network of

signatures, implementing security and trust policies via consensus building, and showing

that the speed of networks has increased to allow for blockchain and peer-to-peer

networks to succeed where in the past the limitations of network speeds was a limiting

factor. Alexopoulous et al. [23] proposed a system that uses blockchain technology for

trust building and alarm data exchange in CIDSs and discussed some design

considerations.

16

Chapter III.

The Proposed Architecture

Building on Alexopoulus et al. [23]’s work, we introduce a more comprehensive

architecture specifically for a signature-based CIDS. We argue that signature/rule

exchange and protection are a critical part of a CIDS and blockchain technology can be

used to facilitate rule exchange and secure the ruleset of each host IDS (hence we label

each IDS as blockchain-IDS).

T

S

D

R

T

S

D

R

T

S

D

R

T

S

D

RP

S

D

R

Figure. 1: Architecture of blockchain-based IDS

17

S

D

R

Signature Excchange

T - Trusted Node

 P - Participant Node

-Sniffer

-Detection

Engine

- Rule

Manager
Consensus Building

Figure 1. Legend

As shown in Fig. 1, the proposed architecture applies consortium blockchain

infrastructure to build trust among participating IDS hosts and enable secure storage and

exchange of rule sets. Similarly, to a traditional IDS, there are three components inside of

a host in the proposed NIDS architecture: 1) a sniffer that reads and breaks down network

traffic and sends them to the detection engine; 2) a detection engine that compares the

packets received from the sniffer with rules/signature. 3) a rule manage that handles the

maintenance of the rules in a host and rule exchange with other hosts.

Each host IDS creates block to store its rule set and alarm data while in a

traditional IDS these rules are stored in ASCII format .txt files. Table 1 shows how an

IDS store rules in the blocks.

Genesis Block Previous Hash Previous Hash

Header Header Header

Rules Added Rules Added Rules

Block Hash Block Hash Block Hash

Figure. 2: Rule Storage in a Blockchain-based IDS

18

In the proposed architecture, there are two types of host IDS: trusted nodes (T)

and participating nodes (P). All nodes can make a request to change the rule set such as

adding new rules, modifying or deleting existing rules. However, only trusted nodes are

involved in consensus building process which approve or reject the change request. The

rule change approval process is illustrated in Figure 2.

Figure 3: Consensus Building Process

Below is the general flow for adding a new rule to the system. The process for updating

or removing a rule is similar to rule addition.

1. T or P node makes an add-rule request

2. Notifications are sent to all T nodes on the network that a new request needs to be

voted on.

3. T nodes analyze the pending request and vote within a predesignated time frame.

19

4. Votes are tallied automatically by the system and the request either is approved or

rejected.

5. Multiple requests can be voted on at once due to the blocks being immutable. The

approved requests are implemented in batch sequence.

Chapter IV.

Implementation

We built a preliminary prototype for the proposed architecture. The rule set is

adapted from Snort, an open-source, free and lightweight network intrusion detection

system (NIDS). In term of blockchain implementation, there are three popular options:

Ethereum Virtual Machine, Truffle Suite, HyperLedger.

Ethereum is best suited to cryptocurrency and would cost money to use the network.

Truffle Suite is only capable of development on the Ethereum network which would be

counterproductive to a prototype for this research paper[24][20] HyperLedger is an

umbrella project of open source blockchains and related tools, started in December 2015

by the Linux Foundation and supported by big industry players like IBM, Intel and SAP

to support the collaborative development of blockchain-based distributed ledgers [9].

There are many tools and frameworks available via HyperLedger. We want to have to an

open and consortium blockchain, hence the HyperLedger is a better choice to build our

prototype.

The HyperLedger Sawtooth or Fabric framework could work well for the

purposes of creating a blockchain-based IDS. The chaincode can initialize a ledger of

20

blockchain rules. We can then implement with javascript the following classes, this is not

an exhaustive list and can be added/remove as needed.

• CreateRule- Creates a rule in the blockchain.

• RemoveRule – Remove a rule from the blockchain.

• QueryAllRules – This query will return all rules currently in the blockchain.

• QueryRuleProperties – Will return the properties of a ruleID # such as

Port/Protocol/Owner/Etc

• UpdateRuleProperties – Allow update to the properties of a rule if something

changes.

• UpdateRuleOwner -Update the owner of a rule.

A snippet of the CreateRule function written in JavsScript for the HyperLedger

framework is listed as below.

 async createRule(ctx, ruleNumber, RuleAction, protocol, sourceIP,
sourcePort, Direction, destIP, destPort, msg
sid, Revision, ClassType, Reference, RuleOwner) {
 console.info('======== START : Create Rule ======');

 const rule = {
 RuleAction,
 docType: 'rule',
 protocol,
 sourceIP,
 sourcePort,
 Direction,
 destIP,
 destPort,
 msg,
 sid,
 Revision,
 ClassType,
 Reference,

21

 RuleOwner,
 };

 Await ctx.stub.putState(ruleNumber, Buffer.from(JSON.stringify(rule)));
 console.info('======= END : Create Rule ======');
 }

These classes can be used to manipulate the blockchain from the backend. The

frontend instantiates the consensus algorithm and allow for the consortium to take place

on a larger scale.

Our prototype is built on a machine with following configurations: Intel Core i7-

3630QM 2.4GHz with 6 MB L3 Cache, 8 GB DDR3 Memory, Dual NVIDIA GeForce

GT 650M SLI. Running LUbuntu 19.04.

Our prototype can be accessed from the Github repository,

https://github.com/delerak/bbids

The configuration used in our benchmark is known as a “simple” config included

with the Caliper framework. These config files define variables which are used during the

benchmark process. Some examples of the variables are txNumber, txDuration and

rateControl, these variables were left at default values for the tests that were run.

Once the benchmark test is run Caliper begins sending transactions to the

blockchain network. These transactions are simply communication packets being sent

between the network nodes and ensuring that the blockchain can function under network

stress. None of the blockchain data is altered during these tests.

The summary in Table. 2 shows several outputs. The name of the tests is

open/query these are simply labels that are used to differentiate testing variables that can

https://github.com/delerak/bbids

22

be defined in the configuration file. We defined open as opening an account within the

system, and query for querying the blockchain for transactions. The transaction send rate

is how many transactions are being sent per second, the latency are based on the time it

takes for a transaction or query from the submission by the client until it is processed and

written on the ledger. Throughput is the number of transactions or queries per second

(TPS) that was processed by the blockchain network itself.

Table 1.

Benchmark tests of preliminary prototype.

Test Name Send

Rate

Latency Throughput

Max Min Avg.

1 Open 50.3 78.16 1.26 42.43 10.3

2 Open 100.5 71.13 1.22 36.81 12.3

3 Open 149.5 74.63 1.08 38.10 12.3

4 Query 100.2 0.10 0.01 0.01 1002

5 Query 199.8 0.02 0.01 0.01 199.4

Note: 1) send rate and throughput are measured in transaction per seconds; 2) Latency is

measured in seconds.

4.1 Prototype Environment

The process by which I used to come to my results can be found here.

4.1.2 Hardware

23

The hardware used during the testing process was a Lenovo IdeaPad Y500 with the

following specs:

• 3rd Generation Intel Core i7-3630QM Processor(2.40GHz 6MB)

• NVIDIA GeForce GT650M 2GB

• 8.0GB PC3-12800 DDR3 SDRAM 1600 MHz

• 1TB 5400 rpm

This is clearly an older model and has no special hardware or functionality.

Running the HyperLedger and Caliper on a newer hardware would likely increase

speed and response times.

4.1.3 Operating Systems

The OS used during this is Lubuntu 19.04, a lightweight version of Ubuntu which

requires less memory, space, and processor usage. The Linux OS was chosen due its

speed and efficiency of the system and the ease of usage within the scope of software

development and testing. Lubuntu was specifically chosen for its fast, lightweight, clean

and easy-to-use interface. A full Ubuntu install would work just as well with a faster

computer.

4.1.4 HyperLedger

HyperLedger (HL) has a significant amount of documentation, the complexity of

which cannot be understated. I will detail as best I can how I was able to get

HyperLedger running on my machine and include the necessary links to the HyperLedger

docs themselves.

24

Firstly, HyperLedger is simply an umbrella term, what you will be installing and

building towards is one of the HL frameworks of which there are many. The two

frameworks used in my project are Fabric (for the blockchain) and Caliper (for the

benbchmark). Sawtooth is another option, however, Sawtooth was a much more complex

and confusing sort of blockchain. It should be noted that Sawtooth could conceptually

work as the blockchain but due to time constraints I decided that Fabric would be the best

option since it has a plug-n-play sort of setup, whereas Sawtooth is a customizable,

feature-rich framework which requires deep understanding of the setup.

4.1.5 Prerequisites

There are many prerequisites which can be timely to sort through. There is no easy way

to get these done, while some Linux distributions might already include these, it is very

likely that you will need to spend significant time simply setting up the environment so

that HyperLedger can work. I will state that there is a very concise and solid guide to do

this from the folks over at HyperLedger, I will include my own walkthrough, but I highly

recommend that the official site also be used. You can find the link below.

https://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html

cURL

The curl tool is necessary for some installs and typically comes preconfigured on most

Linux distros. If you don’t have it download it here: https://curl.haxx.se/download.html

Docker and Docker Compose

https://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html
https://curl.haxx.se/download.html

25

Docker and Docker Compose are required for HyperLedger to run. This is one of the

most difficult steps in the process because Docker in and of itself is a complex concept to

grasp. I highly recommend that at least some familiarization with containerization and

Docker fundamentals is understood before moving any further. This link is very helpful

to begin: https://www.docker.com/resources/what-container

Docker documentation: https://docs.docker.com/

Once you have Docker installed and have some familiarity with it, I recommend going

thru the Docker tutorials completely and running containers and learning how the

network nodes will work, this will save you a lot of headaches once you get to installing

HyperLedger. Once you feel you have a firm grasp of Docker begin with the next steps of

the prerequisites.

Go Programming Language

The Go programming language is required for HyperLedger to run. Thankfully this step

is straightforward and simple, you just need to download the package and install it.

Node.js runtime and Node Package Manger (NPM)

Node.js and NPM are required to use HyperLedger. Node.js comes prepackaged with

NPM. One of the major problems you may run into with Node/NPM is the version usage.

You really should consider using NVM (node version manager) and then downgrading to

what is required to run HyperLedger. HyperLedger runs on 8.0x Node/NPM therefore

you cannot simply sudo apt-get npm sudo apt-get node and have it work. You need to

install NVM and then use NVM to install a specific version of npm/node and go from

there.

https://www.docker.com/resources/what-container
https://docs.docker.com/

26

Python

Python is needed to use node.js. Simply download and install Python on your linux

distro.

Fabric

Ah finally we get to install the blockchain software. Hopefully we don’t get any errors

but that is highly unlikely. The HyperLedger documentation should suffice from this

point on found at:

https://hyperledger-fabric.readthedocs.io/en/latest/install.html

There were many points where I had to debug and the best resources if an error is

encountered is to use Google and find StackOverflow results.

4.2 Prototype Guide

This section will be used to display the blockchains features such as rule_add,

rule_alter, change_owner functions. There are several steps that are outlined to describe

and show how the prototype works from start to finish. The prototype is a proof of

concept and would require more work to finish it completely. There will be a TODO

section at the end of the prototype guide to show what work would be useful to have done

to simplify the process and make it more robust.

Below you will find a flowchart detailing the steps necessary to get the prototype

up and running.

https://hyperledger-fabric.readthedocs.io/en/latest/install.html

27

Install

Prerequisites

Download

HyperLedger

Fabric and

Fabric-

Samples

Download the

BBIDS code

from Github

Replace /

fabric-

samples/

fabcar with

BBIDS code

Run ./

startFabric

shell script

Blockchain

Runs?

Run

enrollAdmin

userRegistrati

on

scripts

Yes

Start

debugging

No

Admin and

user

registered

with

wallet?

Start

debugging

No

Invoke to add

rules, query

to see all

rules in

blockchain

Yes

See

blockchain

output or

add_rule,

alter_rule

outputs

4.2.1 Setting up Blockchain

Once the prerequisites are installed we begin by moving the BBIDS github code from

github.com/delerak/bbids, we can clone the repository from the command line.

28

Step 1: Clone github repo. Make sure you are in the directory you need to be.

Figure. 4: Cloning the git repository

HyperLedger uses Go and your $GOPATH will probably be /home/go/src/github.com/*

I recommend cloning into that path and then working from there or else you will have

path errors for the rest of the setup.

Step 2:

Start the network with the startFabric script as seen below.

29

Figure. 5: Starting the fabric blockchain network with javascript as the selected codebase

You will see output like the following:

30

Figure. 6: Blockchain startup output

It could take some time to initialize the ledger of rules. This current iteration only has 50

IDS rules and took 115 seconds:

Figure 7: Blockchain startup script complete.

Step 3:

Now we must install the Node packages that are required by the HyperLedger. These

packages will install all required Node modules so that the code will run properly.

We do this with the command npm install from the /javascript folder.

If you run into any errors double check that you are using NPM 8.0 and not the latest

version of 12.4, HyperLedger only works with 8.0x.

31

NVM:

Ensure you are using 8.0 or you will receive errors and will be unable to run the

HyperLedger framework.

Figure 8: Installing the node modules with npm.

Here is the output of the npm install:

Figure 9: NPM install output screenshot

Step 4: Enroll the users (trusted node and participating nodes).

The enrollAdmin and registerUser files are used to create the accounts used in the

querying and contract process. If these Node commands do not work, more than likely

you have a pathing problem with your $GOPATH and need to double-check that the code

is placed within /gopath/src/github.com/fabric-samples/fabcar

Enrolling the Trusted Node with enrollAdmin:

32

Figure 10: Creating the “Trusted Node”

Enrolling the Participating Node with registerUser:

Figure 11: Creating the “Participating Node”

Step 5: Now that we have the network up and running and both the trusted and participant

nodes installed we can query the ledger and see our rules with the ‘Node Query’

command:

The Query command returns all the rules stored in the blockchain. It is currently

unformatted.

33

Figure 12: IDS rules in Blockchain format.

Step 6: Adding a Rule, Altering a Rule, Querying a Specific Rule

At this point there are3 other functions available. Adding a rule, altering a rule, and

querying a specific rule. First we show adding, then altering, then querying a specific

rule. Note: Since everything is hardcoded you must change the source file in order to

make these queries as shown below.

34

Adding a rule:

Edit invoke.js and go to the addRule function line.

Figure 13: Creating a rule within invoke.js

You can see I’m adding a rule with a couple of test fields and KSU in one. Next let’s find

the rule with the following command: node query | grep test

And it should highlight the new rules that were added:

Figure 14: Output of the created ‘test’ rule.

Alter Rule:

35

We go into the source code for Invoke once more and call the function changeRuleOwner

from the fabcar.js ChainCode. See below:

Figure 15: Altering a rules ‘owner’ property.

Next, we run node invoke again.

Figure 16: Altering rule output.

Now we will try to find the new rule owner changed with node query | grep Dr.

Figure 17: Finding the new rule within the blockchain.

36

As we can see from the screenshot the RuleOwner was switched to Dr. Lei Li.

Querying a specific rule:

To query a specific rule # we have to edit the query.js file directly as shown below:

Figure 18: Querying for a specific rule number.

Comment out the QueryAllRules function and write in the queryRule function:

As we can see the query now only returns RULE54 in the blockchain.

Figure 19: Output of the query for RULE54.

This concludes the walkthrough for the Blockchain Based IDS prototype.

4.3 YouTube Tutorial Videos

You can find my YouTube tutorial videos at the following playlist link.

https://www.youtube.com/playlist?list=PLfobw40cSck2faRCNRK1inOt9mpF93R38

https://www.youtube.com/playlist?list=PLfobw40cSck2faRCNRK1inOt9mpF93R38

37

Chapter V.

Conclusions

Collaborative IDS (CIDS) has been proposed to detect increasingly complex

cyber-attacks. Overcoming the issue of trust and sharing of rulesets has remained to a

challenge. In this paper, we proposed a CIDS architecture leveraging blockchain

technology’s record immutability and tamper proof properties of stored data in the

distributed ledger. We provided details on various workflows for our CIDS including

how to add or update rulesets. We implemented our prototype using HyperLedger

frameworks and evaluated using an available benchmark. The initial results look

promising, including running over 1000 transactions on the blockchain, latency numbers

were low and acceptable range for a small peer-to-peer network.

Our future work plan includes applying our prototype within a real network,

testing with simulated attack network traffics, and evaluating the performance with many

IDS nodes in place.

38

Appendix I

BBids Prototype Code, using FabCar contract in HyperLedger

Chaincode files:

/lib/Fabcar.js

/*
 * SPDX-License-Identifier: Apache-2.0
 */

'use strict';

const { Contract } = require('fabric-contract-api');

class FabCar extends Contract {

 async initLedger(ctx) {
 console.info('============= START : Initialize Ledger

===========');
 const rules = [
 {
 ruleAction: 'alert',
 protocol: 'tcp',
 sourceIP: '$HOME_NET',
 sourcePort: '2589',
 Direction: '->',
 destIP: '$EXTERNAL_NET',
 destPort: 'any',
 msg: 'MALWARE-BACKDOOR - Dagger_1.4.0";

flow:to_client,established; content:"2|00 00 00 06 00 00 00|Drives|24

00|",depth 16',
 sid: '105',
 Revision: '14',

39

 ClassType: 'misc-activity',
 Reference: 'ruleset_community',
 RuleOwner: 'laufenberg',
 },
 {
 RuleAction: 'alert',
 protocol: 'tcp',
 sourceIP: '$EXTERNAL_NET',
 sourcePort: 'any',
 Direction: '->',
 destIP: '$HOME_NET',
 destPort: '7597',
 msg: 'MALWARE-BACKDOOR QAZ Worm Client Login access";

flow:to_server,established; content:"qazwsx.hsq"',
 sid: '108',
 Revision: '11',
 ClassType: 'misc-activity',
 Reference: 'ruleset_community',
 RuleOwner: 'mcafee,98775',
 },
 {
 RuleAction: 'alert',
 protocol: 'tcp',
 sourceIP: '$EXTERNAL_NET',
 sourcePort: 'any',
 Direction: '->',
 destIP: '$HOME_NET',
 destPort: 20034,
 msg: 'MALWARE-BACKDOOR NetBus Pro 2.0 connection

established"; flow:to_client,established;

flowbits:isset,backdoor.netbus_2.connect; content:"BN|10 00 02 00 "',
 sid: 115,
 Revision: '15',
 ClassType: 'misc-activity',
 Reference: 'ruleset_community',
 RuleOwner: 'none',
 },
 {
 RuleAction: 'alert',
 protocol: 'tcp',
 sourceIP: '$EXTERNAL_NET',
 sourcePort: 'any',
 Direction: '->',

40

 destIP: '$HOME_NET',
 destPort: '7597',
 msg: 'MALWARE-BACKDOOR Infector.1.x";

flow:established,to_client; content:"WHATISIT",depth 9;

metadata:impact_flag red,ruleset community; reference:nessus,11157',
 sid: '117',
 Revision: '17',
 ClassType: 'misc-activity',
 Reference: 'ruleset_community',
 RuleOwner: 'none',
 },
 {
 RuleAction: 'alert',
 protocol: 'tcp',
 sourceIP: '$HOME_NET',
 sourcePort: 'any',
 Direction: '->',
 destIP: '$EXTERNAL_NET',
 destPort: '666',
 msg: "MALWARE-BACKDOOR SatansBackdoor.2.0.Beta";

flow:to_client,established; content:"Remote|3A| ",depth 11,nocase;

content:"You are connected to me.|0D 0A|Remote|3A| Ready for commands',
 sid: '118',
 Revision: '12',
 ClassType: 'misc-activity',
 Reference: 'ruleset_community',
 RuleOwner: 'none',
 },
 {
 RuleAction: 'alert',
 protocol: 'tcp',
 sourceIP: '$EXTERNAL_NET',
 sourcePort: '12345',

 Direction: '->',
 destIP: '$HOME_NET',
 destPort: 12345,
 msg: 'MALWARE-BACKDOOR netbus getinfo";

flow:to_server,established; content:"GetInfo|0D| "',
 sid: '110',
 Revision: '10',
 ClassType: 'trojan-activity',
 Reference: 'ruleset_community',

41

 RuleOwner: 'none',
 },
 {
 RuleAction: 'alert',
 protocol: 'tcp',
 sourceIP: '$HOME_NET',
 sourcePort: 'any',
 Direction: '->',
 destIP: '$EXTERNAL_NET',
 destPort: '6789',
 msg: 'MALWARE-BACKDOOR Doly 2.0 access";

flow:established,to_client; content:"Wtzup Use "',
 sid: '119',
 Revision: '11',
 ClassType: 'misc-activity',
 Reference: 'ruleset_community',
 RuleOwner: 'none',
 },
 {
 RuleAction: 'alert',
 protocol: 'tcp',
 sourceIP: '$HOME_NET',
 sourcePort: 'any',
 Direction: '->',
 destIP: '$EXTERNAL_NET',
 destPort: '7597',
 msg: 'MALWARE-BACKDOOR Infector 1.6 Client to Server

Connection Request"; flow:to_server,established; content:"FC"',
 sid: '121',
 Revision: '14',
 ClassType: 'misc-activity',
 Reference: 'ruleset_community',
 RuleOwner: 'nessus,1157',
 },
 {
 RuleAction: 'alert',
 protocol: 'tcp',
 sourceIP: '$EXTERNAL_NET',
 sourcePort: '31785',
 Direction: '->',
 destIP: '$HOME_NET',
 destPort: 'any',

42

 msg: 'MALWARE-BACKDOOR HackAttack 1.20 Connect";

flow:established,to_client; content:"host"',
 sid: '141',
 Revision: '10',
 ClassType: 'misc-activity',
 Reference: 'ruleset_community',
 RuleOwner: 'none',
 },
 {
 RuleAction: 'alert',
 protocol: 'tcp',
 sourceIP: '$EXTERNAL_NET',
 sourcePort: 'any',
 Direction: '->',
 destIP: '$HOME_NET',
 destPort: '21',
 msg: 'PROTOCOL-FTP ADMw0rm ftp login attempt";

flow:to_server,established; content:"USER",nocase; content:"w0rm",distance

1,nocase; pcre:"/^USER\s+w0rm/smi"',
 sid: '144',
 Revision: '16',
 ClassType: 'misc-activity',
 Reference: 'ruleset_community',
 RuleOwner: 'mcafee,98775',
 },
 {
 RuleAction: 'alert',
 protocol: 'tcp',
 sourceIP: '$EXTERNAL_NET',
 sourcePort: 'any',
 Direction: '->',
 destIP: '$HOME_NET',
 destPort: '666',
 msg: '"MALWARE-BACKDOOR BackConstruction 2.1 Client FTP

Open Request"; flow:to_server,established; content:"FTPON "',
 sid: '157',
 Revision: '16',
 ClassType: 'misc-activity',
 Reference: 'ruleset_community',
 RuleOwner: 'mcafee,98775',
 },
 {
 RuleAction: 'alert',

43

 protocol: 'tcp',
 sourceIP: '$EXTERNAL_NET',
 sourcePort: 'any',
 Direction: '->',
 destIP: '$TELNET_SERVICES',
 destPort: '23',
 msg: 'MALWARE-BACKDOOR w00w00 attempt";

flow:to_server,established; content:"w00w00 "',
 sid: '209',
 Revision: '19',
 ClassType: 'attempted_admin',
 Reference: 'ruleset_community',
 RuleOwner: 'mcafee,98775',
 },

 {

 RuleAction: 'alert',

 protocol: 'tcp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$TELNET_SERVICES',

 destPort: '23',

 msg: 'MALWARE-BACKDOOR w00w00 attempt";

flow:to_server,established; content:"w00w00 "',

 sid: '210',

 Revision: '19',

 ClassType: 'attempted_admin',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'tcp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$TELNET_SERVICES',

 destPort: '23',

 msg: 'MALWARE-BACKDOOR w00w00 attempt";

flow:to_server,established; content:"w00w00 "',

 sid: '211',

 Revision: '19',

 ClassType: 'attempted_admin',

44

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'tcp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$TELNET_SERVICES',

 destPort: '23',

 msg: 'MALWARE-BACKDOOR w00w00 attempt";

flow:to_server,established; content:"w00w00 "',

 sid: '212',

 Revision: '19',

 ClassType: 'attempted_admin',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'tcp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$TELNET_SERVICES',

 destPort: '23',

 msg: 'MALWARE-BACKDOOR w00w00 attempt";

flow:to_server,established; content:"w00w00 "',

 sid: '213',

 Revision: '19',

 ClassType: 'attempted_admin',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'tcp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$TELNET_SERVICES',

 destPort: '23',

45

 msg: 'MALWARE-BACKDOOR w00w00 attempt";

flow:to_server,established; content:"w00w00 "',

 sid: '214',

 Revision: '19',

 ClassType: 'attempted_admin',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'tcp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$TELNET_SERVICES',

 destPort: '23',

 msg: 'MALWARE-BACKDOOR w00w00 attempt";

flow:to_server,established; content:"w00w00 "',

 sid: '215',

 Revision: '19',

 ClassType: 'attempted_admin',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'tcp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$TELNET_SERVICES',

 destPort: '23',

 msg: 'MALWARE-BACKDOOR r00t attempt";

flow:to_server,established; content:" r00t"',

 sid: '216',

 Revision: '19',

 ClassType: 'attempted_admin',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'tcp',

46

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$TELNET_SERVICES',

 destPort: '23',

 msg: 'MALWARE-BACKDOOR rewt attempt";

flow:to_server,established; content:" rewt"',

 sid: '217',

 Revision: '19',

 ClassType: 'attempted_admin',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'tcp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$TELNET_SERVICES',

 destPort: '23',

 msg: 'MALWARE-BACKDOOR attempt";

flow:to_server,established; content:" wh00t"',

 sid: '218',

 Revision: '19',

 ClassType: 'attempted_admin',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'tcp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$TELNET_SERVICES',

 destPort: '23',

 msg: 'MALWARE-BACKDOOR d13hh attempt";

flow:to_server,established; content:" d13hh"',

 sid: '219',

 Revision: '19',

 ClassType: 'attempted_admin',

 Reference: 'ruleset_community',

47

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'tcp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$TELNET_SERVICES',

 destPort: '23',

 msg: 'MALWARE-BACKDOOR lrkr0x attempt";

flow:to_server,established; content:" lrkr0x"',

 sid: '220',

 Revision: '19',

 ClassType: 'attempted_admin',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },
 {
 RuleAction: 'alert',
 protocol: 'udp',
 sourceIP: '$EXTERNAL_NET',
 sourcePort: 'any',
 Direction: '->',
 destIP: '$HOME_NET',
 destPort: '53',
 msg: 'PROTOCOL-DNS dns zone transfer via TCP detected";

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6;

byte_test:1,!&,0xF8,4"',
 sid: '255',
 Revision: '23',
 ClassType: 'attempted-recon',
 Reference: 'ruleset_community',
 RuleOwner: 'none',
 },

 {

 RuleAction: 'alert',

 protocol: 'udp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$HOME_NET',

 destPort: '53',

48

 msg: 'PROTOCOL-DNS dns zone transfer via TCP detected";

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6;

byte_test:1,!&,0xF8,4"',

 sid: '256',

 Revision: '12',

 ClassType: 'attempted-admin',

 Reference: 'ruleset_community',

 RuleOwner: 'none',

 },

 {

 RuleAction: 'alert',

 protocol: 'udp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$HOME_NET',

 destPort: '53',

 msg: 'PROTOCOL-DNS dns zone transfer via TCP detected";

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6;

byte_test:1,!&,0xF8,4"',

 sid: '257',

 Revision: '12',

 ClassType: 'misc-activity',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'udp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$HOME_NET',

 destPort: '53',

 msg: 'PROTOCOL-DNS dns zone transfer via TCP detected";

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6;

byte_test:1,!&,0xF8,4"',

 sid: '258',

 Revision: '22',

 ClassType: 'misc-activity',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

49

 {

 RuleAction: 'alert',

 protocol: 'udp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$HOME_NET',

 destPort: '53',

 msg: 'PROTOCOL-DNS dns zone transfer via TCP detected";

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6;

byte_test:1,!&,0xF8,4"',

 sid: '259',

 Revision: '5',

 ClassType: 'misc-activity',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'udp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$HOME_NET',

 destPort: '53',

 msg: 'PROTOCOL-DNS dns zone transfer via TCP detected";

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6;

byte_test:1,!&,0xF8,4"',

 sid: '260',

 Revision: '23',

 ClassType: 'misc-activity',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'udp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$HOME_NET',

 destPort: '53',

50

 msg: 'PROTOCOL-DNS dns zone transfer via TCP detected";

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6;

byte_test:1,!&,0xF8,4"',

 sid: '261',

 Revision: '23',

 ClassType: 'misc-activity',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'udp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$HOME_NET',

 destPort: '53',

 msg: 'PROTOCOL-DNS dns zone transfer via TCP detected";

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6;

byte_test:1,!&,0xF8,4"',

 sid: '262',

 Revision: '23',

 ClassType: 'misc-activity',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'udp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$HOME_NET',

 destPort: '53',

 msg: 'PROTOCOL-DNS dns zone transfer via TCP detected";

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6;

byte_test:1,!&,0xF8,4"',

 sid: '263',

 Revision: '23',

 ClassType: 'misc-activity',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

51

 {

 RuleAction: 'alert',

 protocol: 'udp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$HOME_NET',

 destPort: '53',

 msg: 'PROTOCOL-DNS dns zone transfer via TCP detected";

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6;

byte_test:1,!&,0xF8,4"',

 sid: '264',

 Revision: '23',

 ClassType: 'misc-activity',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'udp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$HOME_NET',

 destPort: '53',

 msg: 'PROTOCOL-DNS dns zone transfer via TCP detected";

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6;

byte_test:1,!&,0xF8,4"',

 sid: '265',

 Revision: '23',

 ClassType: 'misc-activity',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },

 {

 RuleAction: 'alert',

 protocol: 'udp',

 sourceIP: '$EXTERNAL_NET',

 sourcePort: 'any',

 Direction: '->',

 destIP: '$HOME_NET',

 destPort: '53',

52

 msg: 'PROTOCOL-DNS dns zone transfer via TCP detected";

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6;

byte_test:1,!&,0xF8,4"',

 sid: '266',

 Revision: '23',

 ClassType: 'misc-activity',

 Reference: 'ruleset_community',

 RuleOwner: 'mcafee,98775',

 },
];

 for (let i = 0; i < rules.length; i++) {
 rules[i].docType = 'rule';
 await ctx.stub.putState('RULE' + i,

Buffer.from(JSON.stringify(rules[i])));
 console.info('Added <--> ', rules[i]);
 }
 console.info('============= END : Initialize Ledger

===========');
 }

 async queryRule(ctx, ruleNumber) {
 const ruleAsBytes = await ctx.stub.getState(ruleNumber); // get the rule

from chaincode state
 if (!ruleAsBytes || ruleAsBytes.length === 0) {
 throw new Error(`${ruleNumber} does not exist`);
 }
 console.log(ruleAsBytes.toString());
 return ruleAsBytes.toString();
 }

 async createRule(ctx, ruleNumber, RuleAction, protocol, sourceIP,

sourcePort, Direction, destIP, destPort, msg, sid, Revision, ClassType,

Reference, RuleOwner) {
 console.info('============= START : Create Rule ===========');

 const rule = {
 RuleAction,
 docType: 'rule',
 sourceIP,
 protocol,
 sourcePort,
 Direction,

53

 destIP,
 destPort,
 msg,
 sid,
 Revision,
 ClassType,
 Reference,
 RuleOwner
 };

 await ctx.stub.putState(ruleNumber, Buffer.from(JSON.stringify(rule)));
 console.info('============= END : Create Rule ===========');
 }

 async queryAllRules(ctx) {
 const startKey = 'RULE0';
 const endKey = 'RULE999';

 const iterator = await ctx.stub.getStateByRange(startKey, endKey);

 const allResults = [];
 while (true) {
 const res = await iterator.next();

 if (res.value && res.value.value.toString()) {
 console.log(res.value.value.toString('utf8'));

 const Key = res.value.'{print $3}'key;
 let Record;
 try {
 Record = JSON.parse(res.value.value.toString('utf8'));
 } catch (err) {
 console.log(err);
 Record = res.value.value.toString('utf8');
 }
 allResults.push({ Key, Record });
 }
 if (res.done) {
 console.log('end of data');
 await iterator.close();
 console.info(allResults);
 return JSON.stringify(allResults);
 }

54

 }
 }

 async changeRuleOwner(ctx, ruleNumber, newOwner) {
 console.info('============= START : changeOwner

===========');

 const ruleAsBytes = await ctx.stub.getState(ruleNumber); // get the rule

from chaincode state
 if (!ruleAsBytes || ruleAsBytes.length === 0) {
 throw new Error(`${ruleNumber} does not exist`);
 }
 const rule = JSON.parse(ruleAsBytes.toString());
 rule.RuleOwner = newOwner;

 await ctx.stub.putState(ruleNumber, Buffer.from(JSON.stringify(rule)));
 console.info('============= END : changeOwner ===========');
 }

}

module.exports = FabCar;

Startup Script:

#!/bi

n/ba

sh

Copyright IBM Corp All Rights Reserved

SPDX-License-Identifier: Apache-2.0

Exit on first error
set -e

don't rewrite paths for Windows Git Bash users
export MSYS_NO_PATHCONV=1

55

starttime=$(date +%s)
CC_SRC_LANGUAGE=${1:-"go"}
CC_SRC_LANGUAGE=`echo "$CC_SRC_LANGUAGE" | tr [:upper:]

[:lower:]`
if ["$CC_SRC_LANGUAGE" = "go" -o "$CC_SRC_LANGUAGE" =

"golang"]; then
 CC_RUNTIME_LANGUAGE=golang
 CC_SRC_PATH=github.com/fabcar/go
elif ["$CC_SRC_LANGUAGE" = "javascript"]; then
 CC_RUNTIME_LANGUAGE=node # chaincode runtime language is

node.js
 CC_SRC_PATH=/opt/gopath/src/github.com/fabcar/javascript
elif ["$CC_SRC_LANGUAGE" = "typescript"]; then
 CC_RUNTIME_LANGUAGE=node # chaincode runtime language is

node.js
 CC_SRC_PATH=/opt/gopath/src/github.com/fabcar/typescript
 echo Compiling TypeScript code into JavaScript ...
 pushd ../chaincode/fabcar/typescript
 npm install
 npm run build
 popd
 echo Finished compiling TypeScript code into JavaScript
else
 echo The chaincode language ${CC_SRC_LANGUAGE} is not

supported by this script
 echo Supported chaincode languages are: go, javascript, and typescript
 exit 1
fi

clean the keystore
rm -rf ./hfc-key-store

launch network; create channel and join peer to channel
cd ../basic-network
./start.sh

Now launch the CLI container in order to install, instantiate chaincode
and prime the ledger with our 50 rules
docker-compose -f ./docker-compose.yml up -d cli
docker ps -a

56

docker exec -e "CORE_PEER_LOCALMSPID=Org1MSP" -e

"CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger

/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.

example.com/msp" cli peer chaincode install -n fabcar -v 1.0 -p

"$CC_SRC_PATH" -l "$CC_RUNTIME_LANGUAGE"
docker exec -e "CORE_PEER_LOCALMSPID=Org1MSP" -e

"CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger

/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.

example.com/msp" cli peer chaincode instantiate -o

orderer.example.com:7050 -C mychannel -n fabcar -l

"$CC_RUNTIME_LANGUAGE" -v 1.0 -c '{"Args":[]}' -P "OR

('Org1MSP.member','Org2MSP.member')"
sleep 10
docker exec -e "CORE_PEER_LOCALMSPID=Org1MSP" -e

"CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger

/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.

example.com/msp" cli peer chaincode invoke -o orderer.example.com:7050 -

C mychannel -n fabcar -c '{"function":"initLedger","Args":[]}'

cat <<EOF
Total setup execution time : $(($(date +%s) - starttime)) secs ...
Next, use the BBIDS applications to interact with the deployed BBIDS

contract.
 Start by changing into the "javascript" directory:
 cd javascript
 Next, install all required packages:
 npm install
 Then run the following applications to enroll the admin user, and register a

new user
 called user1 which will be used by the other applications to interact with the

deployed
 BBIDS contract:
 node enrollAdmin - this is considered the Trusted Node in the BBIDS

Architecture
 node registerUser - this is considered a Participating Node in the BBIDS

Architecture
 You can run the invoke application as follows. By default, the invoke

application will
 create a new rule, but you can update the application to submit other

transactions:
 node invoke
 You can run the query application as follows. By default, the query

application will

57

 return all rules, but you can update the application to evaluate other

transactions:
 node query
NOTE: Currently everything is hardcoded so you must go into the

query/invoke JavaScript
files in order to adjust their queries or invocations.
EOF

Contract files:

enrollAdmin.js

/*
 * SPDX-License-Identifier: Apache-2.0
 */

'use strict';

const FabricCAServices = require('fabric-ca-client');
const { FileSystemWallet, X509WalletMixin } = require('fabric-network');
const fs = require('fs');
const path = require('path');

const ccpPath = path.resolve(__dirname, '..', '..', 'basic-network',

'connection.json');
const ccpJSON = fs.readFileSync(ccpPath, 'utf8');
const ccp = JSON.parse(ccpJSON);

async function main() {
 try {

 // Create a new CA client for interacting with the CA.
 const caURL = ccp.certificateAuthorities['ca.example.com'].url;
 const ca = new FabricCAServices(caURL);

 // Create a new file system based wallet for managing identities.
 const walletPath = path.join(process.cwd(), 'wallet');
 const wallet = new FileSystemWallet(walletPath);
 console.log(`Wallet path: ${walletPath}`);

58

 // Check to see if we've already enrolled the admin user.
 const adminExists = await wallet.exists('admin');
 if (adminExists) {
 console.log('An identity for the admin user "admin" already exists in

the wallet');
 return;
 }

 // Enroll the admin user, and import the new identity into the wallet.
 const enrollment = await ca.enroll({ enrollmentID: 'admin',

enrollmentSecret: 'adminpw' });
 const identity = X509WalletMixin.createIdentity('Org1MSP',

enrollment.certificate, enrollment.key.toBytes());
 wallet.import('admin', identity);
 console.log('Successfully enrolled admin user "admin" and imported it

into the wallet');

 } catch (error) {
 console.error(`Failed to enroll admin user "admin": ${error}`);
 process.exit(1);
 }
}

main();

Invoke.js

/*
 * SPDX-License-Identifier: Apache-2.0
 */

'use strict';

const { FileSystemWallet, Gateway } = require('fabric-network');
const fs = require('fs');
const path = require('path');

const ccpPath = path.resolve(__dirname, '..', '..', 'basic-network',

'connection.json');
const ccpJSON = fs.readFileSync(ccpPath, 'utf8');
const ccp = JSON.parse(ccpJSON);

59

async function main() {
 try {

 // Create a new file system based wallet for managing identities.
 const walletPath = path.join(process.cwd(), 'wallet');
 const wallet = new FileSystemWallet(walletPath);
 console.log(`Wallet path: ${walletPath}`);

 // Check to see if we've already enrolled the user.
 const userExists = await wallet.exists('user1');
 if (!userExists) {
 console.log('An identity for the user "user1" does not exist in the

wallet');
 console.log('Run the registerUser.js application before retrying');
 return;
 }

 // Create a new gateway for connecting to our peer node.
 const gateway = new Gateway();
 await gateway.connect(ccp, { wallet, identity: 'user1', discovery: {

enabled: false } });

 // Get the network (channel) our contract is deployed to.
 const network = await gateway.getNetwork('mychannel');

 // Get the contract from the network.
 const contract = network.getContract('fabcar');

 // Submit the specified transaction.
 // createRule transaction - requires 5 argument, ex: ('createRule',

'RULE12', 'alert', 'tcp', 'source-port', 'source-ip')
 // changeRuleOwner transaction - requires 2 args , ex: ('Rule', 'RULE10',

'Daniel')
 await contract.submitTransaction('createRule', 'RULE53', 'Dr. Shahriar',

'test', 'test', 'test', 'test', 'test', 'test', 'test', 'test', 'test', 'test', 'test', 'test');
 console.log('Transaction has been submitted');

 // Disconnect from the gateway.
 await gateway.disconnect();

 } catch (error) {
 console.error(`Failed to submit transaction: ${error}`);
 process.exit(1);

60

 }
}

main();

Query.js

/*
 * SPDX-License-Identifier: Apache-2.0
 */

'use strict';

const { FileSystemWallet, Gateway } = require('fabric-network');
const fs = require('fs');
const path = require('path');

const ccpPath = path.resolve(__dirname, '..', '..', 'basic-network',

'connection.json');
const ccpJSON = fs.readFileSync(ccpPath, 'utf8');
const ccp = JSON.parse(ccpJSON);

async function main() {
 try {

 // Create a new file system based wallet for managing identities.
 const walletPath = path.join(process.cwd(), 'wallet');
 const wallet = new FileSystemWallet(walletPath);
 console.log(`Wallet path: ${walletPath}`);

 // Check to see if we've already enrolled the user.
 const userExists = await wallet.exists('user1');
 if (!userExists) {
 console.log('An identity for the user "user1" does not exist in the

wallet');
 console.log('Run the registerUser.js application before retrying');
 return;
 }

 // Create a new gateway for connecting to our peer node.

61

 const gateway = new Gateway();
 await gateway.connect(ccp, { wallet, identity: 'user1', discovery: {

enabled: false } });

 // Get the network (channel) our contract is deployed to.
 const network = await gateway.getNetwork('mychannel');

 // Get the contract from the network.
 const contract = network.getContract('fabcar');

 // Evaluate the specified transaction.
 // queryRule transaction - requires 1 argument, ex: ('queryRule', 'RULE4')
 // queryAllRules transaction - requires no arguments, ex:

('queryAllRules')
 const result = await contract.evaluateTransaction('queryAllRules');
 console.log(`Transaction has been evaluated, result is:

${result.toString()}`);

 } catch (error) {
 console.error(`Failed to evaluate transaction: ${error}`);
 process.exit(1);
 }
}

main();

registerUser.js

/*
 * SPDX-License-Identifier: Apache-2.0
 */

'use strict';

const { FileSystemWallet, Gateway, X509WalletMixin } = require('fabric-

network');
const fs = require('fs');
const path = require('path');

62

const ccpPath = path.resolve(__dirname, '..', '..', 'basic-network',

'connection.json');
const ccpJSON = fs.readFileSync(ccpPath, 'utf8');
const ccp = JSON.parse(ccpJSON);

async function main() {
 try {

 // Create a new file system based wallet for managing identities.
 const walletPath = path.join(process.cwd(), 'wallet');
 const wallet = new FileSystemWallet(walletPath);
 console.log(`Wallet path: ${walletPath}`);

 // Check to see if we've already enrolled the user.
 const userExists = await wallet.exists('user1');
 if (userExists) {
 console.log('An identity for the user "user1" already exists in the

wallet');
 return;
 }

 // Check to see if we've already enrolled the admin user.
 const adminExists = await wallet.exists('admin');
 if (!adminExists) {
 console.log('An identity for the admin user "admin" does not exist in

the wallet');
 console.log('Run the enrollAdmin.js application before retrying');
 return;
 }

 // Create a new gateway for connecting to our peer node.
 const gateway = new Gateway();
 await gateway.connect(ccp, { wallet, identity: 'admin', discovery: {

enabled: false } });

 // Get the CA client object from the gateway for interacting with the CA.
 const ca = gateway.getClient().getCertificateAuthority();
 const adminIdentity = gateway.getCurrentIdentity();

 // Register the user, enroll the user, and import the new identity into the

wallet.
 const secret = await ca.register({ affiliation: 'org1.department1',

enrollmentID: 'user1', role: 'client' }, adminIdentity);

63

 const enrollment = await ca.enroll({ enrollmentID: 'user1',

enrollmentSecret: secret });
 const userIdentity = X509WalletMixin.createIdentity('Org1MSP',

enrollment.certificate, enrollment.key.toBytes());
 wallet.import('user1', userIdentity);
 console.log('Successfully registered and enrolled admin user "user1" and

imported it into the wallet');

 } catch (error) {
 console.error(`Failed to register user "user1": ${error}`);
 process.exit(1);
 }
}

main();

References

[1] Ranganthan, V.P. et al. 2018. “A Decentralized Marketplace Application on the

Ethereum Blockchain.,” 2018 IEEE 4th International Conference on

Collaboration and Internet Computing (CIC) (Philadelphia, PA, Oct. 2018), 90–

97.

 [2] Kim, J.-T. et al. 2018. “A study on an energy-effective and secure consensus

algorithm for private blockchain systems (PoM: Proof of Majority).,” 2018

International Conference on Information and Communication Technology

Convergence (ICTC) (Jeju, Oct. 2018), 932–935.

[3] Xu, J.J. 2016. “Are blockchains immune to all malicious attacks?,” Financial

Innovation. 2, 1 (Dec. 2016). DOI:https://doi.org/10.1186/s40854-016-0046-5.

[4] Sagirlar, G. et al. 2018. “AutoBotCatcher: Blockchain-Based P2P Botnet Detection

for the Internet of Things.,” 2018 IEEE 4th International Conference on

Collaboration and Internet Computing (CIC) (Philadelphia, PA, Oct. 2018), 1–8.

[5] Singla, A. and Bertino, E. 2018. “Blockchain-Based PKI Solutions for IoT.,” 2018

IEEE 4th International Conference on Collaboration and Internet Computing

(CIC) (Philadelphia, PA, Oct. 2018), 9–15.

[6] Dannen, C. 2017. “Bridging the Blockchain Knowledge Gap.,” Introducing Ethereum

and Solidity. Apress. 1–20.

[7] Golomb, T. et al. 2018. “CIoTA: Collaborative Anomaly Detection via Blockchain.,”

Proceedings 2018 Workshop on Decentralized IoT Security and Standards (San

Diego, CA, 2018).

[8] Pop, C. et al. 2018. “Decentralizing the Stock Exchange using Blockchain An

Ethereum-based implementation of the Bucharest Stock Exchange.,” 2018 IEEE

14th International Conference on Intelligent Computer Communication and

Processing (ICCP) (Cluj-Napoca, Sep. 2018), 459–466.

[9] “Hyperledger - Open Source Blockchain Technologies,” Hyperledger. [Online].

Available: https://www.hyperledger.org/. [Accessed: 20-Feb-2019].

[10] J. Hong and C.-C. Liu, ”Intelligent Electronic Devices With Collaborative Intrusion

Detection Systems,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 271–

281, Jan. 2019.

https://doi.org/10.1186/s40854-016-0046-5

65

[11] K. A. Al-Utaibi and E.-S. M. El-Alfy, “Intrusion detection taxonomy and data

preprocessing mechanisms,” Journal of Intelligent and Fuzzy Systems, vol. 34,

no. 3, pp. 1369–1383, Mar. 2018.

[12] Xin, W. et al. 2017. “On Scaling and Accelerating Decentralized Private

Blockchains.,” 2017 IEEE 3rd International Conference on Big Data Security on

Cloud (BigDataSecurity), IEEE International Conference on High Performance

and Smart Computing, (HPSC) and IEEE International Conference on Intelligent

Data and Security (IDS) (Beijing, China, May 2017), 267–271.

[13] Czirkos, Z. and Hosszú, G. 2019. “P2P based intrusion detection,” Encyclopedia of

Information Communication Technology

[14] Ngamsuriyaroj, S. et al. 2018. “Package Delivery System Based on Blockchain

Infrastructure.,” 2018 Seventh ICT International Student Project Conference

(ICT-ISPC) (Nakhonpathom, Jul. 2018), 1–6.

[15] L. Junjoewong, S. Sangnapachai, T. Sunetnanta, ”ProCircle: A promotion platform

using crowdsourcing and web data scraping technique,” 2018 Seventh ICT

International Student Project Conference (ICT-ISPC), pp. 1–5, 2018.

[16] Malik, S. et al. 2018. “ProductChain: Scalable Blockchain Framework to Support

Provenance in Supply Chains.,” 2018 IEEE 17th International Symposium on

Network Computing and Applications (NCA) (Cambridge, MA, Nov. 2018), 1–10.

[17]Wanjun, Y. and Yuan, W. 2018. “Research on Network Trading System Using

Blockchain Technology.,” 2018 International Conference on Intelligent

Informatics and Biomedical Sciences (ICIIBMS) (Bangkok, Oct. 2018), 93–97.

[18] P.-F. Marteau, “Sequence Covering for Efficient Host-Based Intrusion Detection,”

IEEE Transactions on Information Forensics and Security, vol. 14, no. 4, pp.

994–1006, Apr. 2019.

[19]Czirkos, Z. and Hosszú, G. 2013. “Solution for the broadcasting in the Kademlia

peer-to-peer overlay.,” Computer Networks. 57, 8 (Jun. 2013), 1853–1862.

DOI:https://doi.org/10.1016/j.comnet.2013.02.021.

[20] “State of the DApps A list of 2,551 blockchainˇ apps for Ethereum, Steem, EOS, and

more.” [Online]. Available: https://www.stateofthedapps.com/. [Accessed: 20-

Feb-2019].

[21]Anceaume, E. et al. 2018. “Sycomore: A Permissionless Distributed Ledger that Self-

Adapts to Transactions Demand.,” National Institute of Information and

Automation, France(2018), 1–8.

[22] Corsi, P. et al. 2019. “TickEth, a Ticketing System built on Ethereum.,” Association

for Computing Machinery. (Apr. 2019).

https://www.igi-global.com/book/encyclopedia-information-communication-technology/359
https://www.igi-global.com/book/encyclopedia-information-communication-technology/359
https://doi.org/10.1016/j.comnet.2013.02.021

66

[23] Alexopoulos, N. et al. 2018. “Towards Blockchain-Based Collaborative Intrusion

Detection Systems.,” Critical Information Infrastructures Security (2018), 107–

118.

[24] H. Carmen, “UNDERSTANDING BLOCKCHAIN OPPORTUNITIES AND

CHALLENGES.,” eLearning & Software for Education . 2018, Vol. 4, p275-

283. 9p.,2018.

[25] Rilee, K. 2018. “Understanding Hyperledger Sawtooth — Proof of Elapsed Time.,”

Medium.

[26] Meng, W. et al. 2018. “When Intrusion Detection Meets Blockchain Technology: A

Review.,” IEEE Access. 6, (2018), 10179–10188.

DOI:https://doi.org/10.1109/ACCESS.2018.2799854.

[27] Yli-Huumo, J. et al. 2016. Where Is Current Research on Blockchain Technology?—

A Systematic Review. PLOS ONE. 11, 10 (Oct. 2016), e0163477.

DOI:https://doi.org/10.1371/journal.pone.0163477.

[28] A. Warzynski and G. Kolaczek, ”Intrusion detection systems vulnerability on

adversarial examples,” in 2018 Innovations in Intelligent Systems and

Applications (INISTA), Thessaloniki, 2018, pp. 1-4.

[29] ”Intrusion Detection Systems - Techotopia.” [Online].

Available: https://www.techotopia.com/index.php/Intrusion Detection Systems

[Accessed: 04-Mar-2019].

[30] E. Vasilomanolakis, M. Stahn, C. G. Cordero, and M. Muhlhauser, ”On probe-

response attacks in Collaborative Intrusion Detection Systems,” in 2016 IEEE

Conference on Communications and Network Security (CNS), Philadelphia, PA,

2016, pp. 279–286.

[31] R. Jin, X. He, and H. Dai, ”Collaborative IDS Configuration: A Two-Layer Game-

Theoretic Approach,” IEEE Transactions on Cognitive Communications and

Networking, vol. 4, no. 4, pp. 803–815, Dec. 2018.

[32] E. Ficke, K. M. Schweitzer, R. M. Bateman, and S. Xu, ”Characterizing the

Effectiveness of Network-Based Intrusion Detection Systems,” in MILCOM 2018

- 2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA,

2018, pp. 76–81.

[33] F. Massicotte and Y. Labiche, ”On the Verification and Validation of Signature-

Based, Network Intrusion Detection Systems,” in 2012 IEEE 23rd International

Symposium on Software Reliability Engineering, Dallas, TX, USA, 2012, pp. 61–

70.

https://doi.org/10.1109/ACCESS.2018.2799854
https://doi.org/10.1371/journal.pone.0163477

67

[34] G. Vigna, W. Robertson, and D. Balzarotti, ”Testing network-based intrusion

detection signatures using mutant exploits,” in Proceedings of the 11th ACM

conference on Computer and communications security - CCS ’04, Washington

DC, USA, 2004, p. 21.

[35] Accorsi, R., Stocker, T. and MAijller, G. 2013. “On the exploitation of process

mining for security audits: the process discovery case.,” ACM Symposium of

Applied Computing (SAC), Coimbra, Protugal, pp. 1462-1468.

[36] J. King and L. Williams, “Log your CRUD: design principles for software logging

mechanisms,” in Proceedings of the 2014 Symposium and Bootcamp on the

Science of Security - HotSoS ’14, Raleigh, North Carolina, 2014, pp. 1-10.

[37] R. Sekar et al., “Specification-based anomaly detection: a new approach for

detecting network intrusions,” in Proceedings of the 9th ACM conference on

Computer and communications security - CCS ’02, Washington, DC, USA, 2002,

p. 265.

[38] Mashima D. and Ahamad, M. 2009. “Using identity credential usage logs to detect

anomalous service accesses,”. Proceedings of the 5th ACM workshop on Digital

identity management (DIM), Chicago, Illinois, USA, pp. 73–79.

[39] Liu, Y., Zhang, L. and Guan, Y. 2009. “A distributed data streaming algorithm for

network-wide traffic anomaly detection.,” ACM SIGMETRICS Performance

Evaluation Review, 37, 2, pp. 81–82.

[40] A. de Vries, ”Bitcoin’s Growing Energy Problem,” Joule, Cell Press , vol. 2, no. 5,

pp. 801–805, May 2018.

[41] Hyperledger Caliper. (2019). Architecture. [online] Available at:

https://hyperledger.github.io/caliper/docs/2_Architecture.html [Accessed 16 Jun.

2019].

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Summer 7-9-2019

	An Architecture for Blockchain-based Collaborative Signature-based Intrusion Detection System
	Daniel Laufenberg
	Recommended Citation

	tmp.1564422570.pdf.9Zh5f

