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Abstract 

Collaborative intrusion detection system (CIDS), where IDS hosts work with each 

other and share resources, have been proposed to cope with the increasingly sophisticated 

cyberattacks. Despite the promising benefits such as expanded signature databases and 

alert data from multiple sites, trust management and consensus building remain as 

challenges for a CIDS to work effectively. The blockchain technology with built-in 

immutability and consensus building capability provides a viable solution to the issues of 

CIDS. In this paper, we introduce an architecture for a blockchain-enabled signature-

based collaborative IDS, discuss the implementation strategy of the proposed architecture 

and developed a prototype using Hyperledger and Snort. Our preliminary evaluation on a 

bench mark showed the proposed architecture offers a solution by addressing the issues 

of trust, data sharing and insider attacks in the network environment of CIDSs. The 

implications and limitations of this study are also discussed. 
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Chapter I. 

Introduction 

Interconnected computer networks have been the engine for economic growth and 

innovation for the past few decades. It has become increasingly important to protect the 

digital infrastructure of our society against attacks. The intrusion detection system (IDS), 

has been widely used by individuals, business and organizations for their computer 

networks protection. 

Working with existing firewalls and anti-virus systems, an IDS is a device or 

software application which monitors network traffic, identifies attacks by building 

normal network profiles (anomaly-based IDS) or matching the patterns of malicious 

behavior or violations (signature-based IDS) that protects computer networks against 

attacks [34]. An IDS can offer real-time, cross-platform, and pre-host protection and is a 

viable solution to mitigate some malicious attacks [13, 29]. Anomaly-based IDSs are 

prone to having many false positives [32]. Signature-based IDSs are generally better with 

the precision rate but can often miss attacks if the signature database is outdated or 

incomplete [28, 33].  

As cyber-attacks are becoming more sophisticated and being launched at a larger 

scale and across platforms [cite examples], an intrusion detection system would be more 

effective if it works with other IDSs. For example, IDS hosts can exchange resources 

such as network traffic, data alerts, signatures and share signature databases. [7, 10, 23, 

30, 31]. Such a system is referred as a collaborative intrusion detection system (CIDS). 
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Despite promising benefits of CIDS, the underlying trust behind sharing of resources 

remains a major concern. In particular, an attacker host may join in a collaborative IDS 

system network and provide inaccurate or malicious signatures. Moreover, a host 

environment may be tampered with to alter the data files that actually store signature s 

(Snort IDS saves the rules in plain text files, which can be easily altered). 

Recently, there has been a spike of interest in the blockchain technology where 

distributed data structure is shared and replicated among the participants in a peer-to-peer 

network [1, 2, 3, 4, 5, 8, 12]. The built-in immutability and consensus building make the 

blockchain technology a viable solution to develop collaborative IDS and overcome trust 

management and consensus building among IDS [26]. Alexopoulos et al. [23] proposed a 

general framework for block-based collaborative IDS which is focused on using 

blockchain for alert sharing and consensus building.  

Inspired by the efforts of Alexopoulos et al.’s work, we introduce a blockchain-

enabled architecture for a signature-based IDS. In addition to alert exchange, we also 

propose to use the blockchain technology for signature management such as signature 

sharing, creation and verification among hosts in a CIDS. We also present the 

implementation strategies of the architecture. Based on our knowledge, the proposed 

architecture is the first kind for CIDSs. 

The remainder of the paper is organized as follows: Section II introduces related 

work on Blockchain and intrusion detection systems, Section III discusses an architecture 

for a collaborative Signature-based IDS based on the blockchain technology. Section IV 

presents the implementation consideration of the proposed architecture. Finally, Section 

V concludes the paper. 
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Chapter II. 

Background and Related Work 

 

Blockchain can loosely be defined as a data structure, database, or a growing list 

of records, called blocks, which are linked using cryptography [27]. There are three types 

of blockchains: public, private and consortium [27]. 

A public blockchain such as Bitcoin is an open system [26] where anyone can join 

and participate in the system. The two advantages of public blockchain are its 

characteristics of Permission-less and immutability. Having a public blockchain removes 

the necessity for a access control protocol. Applications can be added to the network 

without approval, and blockchain becomes the transport layer of these applications [26]. 

A public blockchain is stored typically on a peer-to-peer network. This allows for the 

data to be nigh unchangeable due to many computers storing the data and agreeing on 

what is legitimate data and what could possibly be illegitimate. 

A private blockchain is a closed system in which the use of the blockchain is 

controlled. There is limited application of private blockchains as the central control 

works against the decentralization aspect which is key to the blockchain concept. 

In a consortium blockchain there is a mixture of both. Typically, a consortium is 

public but the number of nodes who can change the data in the blocks is limited. 

Consortium’s are sometimes invite-only for this purpose. 
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Blockchain tends to fall short when it comes to scalability, depending on the 

consensus algorithm used. Speed is a big concern as well for any application of a 

blockchain system.  

 

2.1 Consensus Algorithms 

As a distributed structure, consensus building is very important for blockchain 

where nodes of the blockchain construct and support the decision that works best for the 

rest of them. It’s a form of resolution on how to add blocks, data, or do anything to the 

blockchain. There are many consensus algorithms, however, this paper will only cover 

those pertinent to the paper: Proof of Work, Proof of Stake, Delegated Proof of Stake, 

Proof of Authority, Byzantine Fault Tolerance, Proof of Elapsed Time. 

Proof of work. In a proof of work system, the new blocks in the chain are created 

by those that have the computational power to solve complex mathematical problems. 

PoW has some problems with power consumption and inefficiency. This system is used 

in Bitcoin and would not be ideal for the proposed IDS. 

 

Proof of stake. In a proof of stake system, the new blocks are created in a 

distributed consensus. The next block is chosen by combinations of random selection and 

wealth range. Ethereum has a proof of stake currently in development called Casper. 

 

Delegated Proof of Stake. In a delegated proof of stake, those that have ”stake” in 

the blockchain can vote for others to have control of the chain. It isn’t all about who owns 
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the most cryptocurrency or most stake in the blocks, it is about having democratic votes 

to mitigate the risks of the original proof of stake. 

 

Proof of Authority (PoA). PoA consensus is built further off of Proof of Stake. 

Instead of voting or allowing someone who was an early adopter of a blockchain to have 

”stake” in it, the proof of authority puts the onus on those with the reputation to be in 

control of the chain. These are trusted indiviudals within the community or network that 

are well-respected. 

 

Byzantine Fault Tolerance (BFT). Named after an old adage of Byazanine 

General problems, this algorithm has been around for some time. The idea is that two 

generals were attempting to communicate between enemy lines and can never be 100% 

sure that their messages are received. BFT at its simplest form is a way to avoid nodes or 

blocks in the chain doing something that they were not supposed to do. BFT can be found 

in many popular consensus algorithms in blockchain. 

 

Proof of Elapsed Time (PoET). The PoET consensus algorithm that is designed to 

be a production-grade protocol capable of supporting large network populations. PoET 

algorithm relies on secure consensus without the power consumption drawbacks of the 

Proof of Work algorithm. Each person in the network waits a random amount of time, 

whoever finishes waiting first becomes the leader of the new block in the chain[25]. 
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2.2 Blockchain Application 

 

There are many different applications being conceived by researchers in the field 

of blockchain, such as consensus algorithm research Proof of Majority[2], supply chains, 

ProductChain, a scalable blockchain framework for supply chains[16], AutoBotCatcher a 

system proposed to protect the infrastructure of IoT devices[4], TickEth, a proposed 

system for using blockchain to buy sporting event tickets[22], a package delivery system 

[14], and a networking trading system [17]. There is also work showing how blockchain 

can be used with machine learning in [21] where the ledger self-adapts to transaction 

demands. As we can see there is a body of work done on how blockchain can be used for 

things other than cryptocurrencies. 

 

2.3 Intrusion Detection System (IDS) 

 

There is a wealth of studies on Intrusion Detection System (IDS) because of its 

impact on cybersecurity. IDSs can be categorized as host-based IDS and network-based 

IDS. There are pros and cons for each type of IDS. In a host based system the IDS runs 

on a single host, this allows for the IDS to directly monitor that host and which resources 

were attacked. Host-based can make it difficult to analyze the intrusion attempts on 

multiple computers and will be difficult to work in a large network environment. In a 
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network-based IDS a network sensor is installed on the network interface card and allows 

for an entire network to be monitored. All of these packets are analyzed, however this can 

take a lot of time and resources, and can miss packets going to a specific host. 

IDSs can also be divided by the detection methods: signature-based intrusion 

detection systems and anomaly-based intrusion detection systems. A signature-based IDS 

relies on patterns of malicious behavior or violations to recognize the attacks. Signature-

based IDS could ideally identify 100% of the attacks with no false alarms as long as 

signatures are specified ahead of time. However, each signature, even if it leads to the 

same attack, has the potential to be unique from any other signatures. This is the most 

commonly implemented IDS [34,35,36]. 

The other common type of IDS is an anomaly detection system. This type of IDS 

focuses on the system’s normal behaviors instead of focusing on attack behaviors, as seen 

with signature-based intrusion detection systems. To implement this type of IDS, the 

approach is to use two phases. The first phase is the training phase where the systems 

behavior is observed in the absence of any type of attack. Normal behavior for the system 

is identified into a profile. After this, the second phase or detection phase, begins. In this 

phase, the stored profile is compared to the way the system is currently behaving and 

deviations from the profiles are considered potential attacks on the system. This can lead 

to several false positives [37, 38, 39]. 

There has been a growing trend of research towards CIDS due to the speed and 

efficiency of peer-to-peer networks[31][32]. As the Internet becomes faster the 

shareability of an application becomes more likely. We are no longer bound to slower 

speeds, or forced to store data locally, we can store and share data seamlessly among 
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many networks. CIDS is a part of this evolution and is a major reason why we chose this 

in our research. There are many other new ideas being conceived, such as the research 

done on securing Internet of Things devices with a blockchain-based collaborative 

IDS[5]. There is promise for CIDS to aid in securing intelligent electronic devices (IED) 

with intrusion detection[10]. Kademlia (a peer-to-peer overlay) also shows proof of 

concept with a CIDs-like system in [19]. 

 

 

2.4 Intersection of Blockchain and IDS 

 

Given the built-in immutability and consensus building of blockchain technology, 

researchers [23, 26] have started to apply blockchain technology to tackle issues in 

Collaborative IDSs. 

Meng et al. [26] conducted comprehensive survey on applicability of blockchain 

technology in intrusion detection and identified several open challenges in the field. Such 

as Latency, Complexity, Security, Privacy, and Limited Signature Coverage, among 

others, our work can address these challenges by establishing a peer-to-peer network of 

signatures, implementing security and trust policies via consensus building, and showing 

that the speed of networks has increased to allow for blockchain and peer-to-peer 

networks to succeed where in the past the limitations of network speeds was a limiting 

factor.  Alexopoulous et al. [23] proposed a system that uses blockchain technology for 

trust building and alarm data exchange in CIDSs and discussed some design 

considerations. 
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Chapter III. 

The Proposed Architecture 

Building on Alexopoulus et al. [23]’s work, we introduce a more comprehensive 

architecture specifically for a signature-based CIDS. We argue that signature/rule 

exchange and protection are a critical part of a CIDS and blockchain technology can be 

used to facilitate rule exchange and secure the ruleset of each host IDS (hence we label 

each IDS as blockchain-IDS). 
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Figure. 1: Architecture of blockchain-based IDS 
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Figure 1. Legend 

 

As shown in Fig. 1, the proposed architecture applies consortium blockchain 

infrastructure to build trust among participating IDS hosts and enable secure storage and 

exchange of rule sets. Similarly, to a traditional IDS, there are three components inside of 

a host in the proposed NIDS architecture: 1) a sniffer that reads and breaks down network 

traffic and sends them to the detection engine; 2) a detection engine that compares the 

packets received from the sniffer with rules/signature. 3) a rule manage that handles the 

maintenance of the rules in a host and rule exchange with other hosts. 

Each host IDS creates block to store its rule set and alarm data while in a 

traditional IDS these rules are stored in ASCII format .txt files. Table 1 shows how an 

IDS store rules in the blocks.  

 

Genesis Block  Previous Hash  Previous Hash 

Header  Header  Header 

Rules  Added Rules  Added Rules 

Block Hash  Block Hash  Block Hash 

Figure. 2: Rule Storage in a Blockchain-based IDS 
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In the proposed architecture, there are two types of host IDS: trusted nodes (T) 

and participating nodes (P). All nodes can make a request to change the rule set such as 

adding new rules, modifying or deleting existing rules. However, only trusted nodes are 

involved in consensus building process which approve or reject the change request. The 

rule change approval process is illustrated in Figure 2.  

 

Figure 3: Consensus Building Process 

Below is the general flow for adding a new rule to the system. The process for updating 

or removing a rule is similar to rule addition. 

1. T or P node makes an add-rule request  

2. Notifications are sent to all T nodes on the network that a new request needs to be 

voted on. 

3. T nodes analyze the pending request and vote within a predesignated time frame. 
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4. Votes are tallied automatically by the system and the request either is approved or 

rejected. 

5. Multiple requests can be voted on at once due to the blocks being immutable. The 

approved requests are implemented in batch sequence.  

Chapter IV. 

Implementation 

We built a preliminary prototype for the proposed architecture. The rule set is 

adapted from Snort, an open-source, free and lightweight network intrusion detection 

system (NIDS). In term of blockchain implementation, there are three popular options: 

Ethereum Virtual Machine, Truffle Suite, HyperLedger. 

Ethereum is best suited to cryptocurrency and would cost money to use the network. 

Truffle Suite is only capable of development on the Ethereum network which would be 

counterproductive to a prototype for this research paper[24][20] HyperLedger is an 

umbrella project of open source blockchains and related tools, started in December 2015 

by the Linux Foundation and supported by big industry players like IBM, Intel and SAP 

to support the collaborative development of blockchain-based distributed ledgers [9]. 

There are many tools and frameworks available via HyperLedger. We want to have to an 

open and consortium blockchain, hence the HyperLedger is a better choice to build our 

prototype.   

The HyperLedger Sawtooth or Fabric framework could work well for the 

purposes of creating a blockchain-based IDS. The chaincode can initialize a ledger of 
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blockchain rules. We can then implement with javascript the following classes, this is not 

an exhaustive list and can be added/remove as needed. 

• CreateRule- Creates a rule in the blockchain. 

• RemoveRule – Remove a rule from the blockchain. 

• QueryAllRules – This query will return all rules currently in the blockchain. 

• QueryRuleProperties – Will return the properties of a ruleID # such as 

Port/Protocol/Owner/Etc 

• UpdateRuleProperties – Allow update to the properties of a rule if something 

changes. 

• UpdateRuleOwner -Update the owner of a rule. 

 

A snippet of the CreateRule function written in JavsScript for the HyperLedger 

framework is listed as below.  

    async createRule(ctx, ruleNumber, RuleAction, protocol, sourceIP, 
sourcePort, Direction, destIP, destPort, msg 
sid, Revision, ClassType, Reference, RuleOwner) { 
        console.info('======== START : Create Rule ======'); 
 
        const rule = { 
            RuleAction, 
            docType: 'rule', 
            protocol, 
            sourceIP, 
            sourcePort, 
            Direction, 
            destIP, 
            destPort, 
            msg, 
            sid, 
            Revision, 
            ClassType, 
            Reference, 
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            RuleOwner, 
        }; 
 
        Await ctx.stub.putState(ruleNumber, Buffer.from(JSON.stringify(rule))); 
        console.info('======= END : Create Rule ======'); 
    } 
 

 

These classes can be used to manipulate the blockchain from the backend. The 

frontend instantiates the consensus algorithm and allow for the consortium to take place 

on a larger scale.  

Our prototype is built on a machine with following configurations: Intel Core i7-

3630QM 2.4GHz with 6 MB L3 Cache, 8 GB DDR3 Memory, Dual NVIDIA GeForce 

GT 650M SLI. Running LUbuntu 19.04. 

Our prototype can be accessed from the Github repository, 

https://github.com/delerak/bbids 

The configuration used in our benchmark is known as a “simple” config included 

with the Caliper framework. These config files define variables which are used during the 

benchmark process. Some examples of the variables are txNumber, txDuration and 

rateControl, these variables were left at default values for the tests that were run.  

Once the benchmark test is run Caliper begins sending transactions to the 

blockchain network. These transactions are simply communication packets being sent 

between the network nodes and ensuring that the blockchain can function under network 

stress. None of the blockchain data is altered during these tests.  

The summary in Table. 2 shows several outputs. The name of the tests is 

open/query these are simply labels that are used to differentiate testing variables that can 

https://github.com/delerak/bbids
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be defined in the configuration file. We defined open as opening an account within the 

system, and query for querying the blockchain for transactions. The transaction send rate 

is how many transactions are being sent per second, the latency are based on the time it 

takes for a transaction or query from the submission by the client until it is processed and 

written on the ledger. Throughput is the number of transactions or queries per second 

(TPS) that was processed by the blockchain network itself. 

Table 1.  

Benchmark tests of preliminary prototype. 

Test Name Send 

Rate 

Latency Throughput 

Max  Min  Avg.  

1 Open 50.3 78.16 1.26 42.43 10.3  

2 Open 100.5  71.13 1.22 36.81 12.3 

3 Open 149.5  74.63 1.08 38.10 12.3  

4 Query 100.2  0.10 0.01 0.01 1002 

5 Query 199.8  0.02 0.01 0.01 199.4  

Note: 1) send rate and throughput are measured in transaction per seconds; 2) Latency is 

measured in seconds.   

 

4.1 Prototype Environment 

The process by which I used to come to my results can be found here. 

4.1.2 Hardware 
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The hardware used during the testing process was a Lenovo IdeaPad Y500 with the 

following specs: 

• 3rd Generation Intel Core i7-3630QM Processor( 2.40GHz 6MB) 

• NVIDIA GeForce GT650M 2GB 

• 8.0GB PC3-12800 DDR3 SDRAM 1600 MHz 

• 1TB 5400 rpm 

 

This is clearly an older model and has no special hardware or functionality. 

Running the HyperLedger and Caliper on a newer hardware would likely increase 

speed and response times. 

4.1.3 Operating Systems 

The OS used during this is Lubuntu 19.04, a lightweight version of Ubuntu which 

requires less memory, space, and processor usage. The Linux OS was chosen due its 

speed and efficiency of the system and the ease of usage within the scope of software 

development and testing. Lubuntu was specifically chosen for its fast, lightweight, clean 

and easy-to-use interface. A full Ubuntu install would work just as well with a faster 

computer. 

4.1.4 HyperLedger 

HyperLedger (HL) has a significant amount of documentation, the complexity of 

which cannot be understated. I will detail as best I can how I was able to get 

HyperLedger running on my machine and include the necessary links to the HyperLedger 

docs themselves. 
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Firstly, HyperLedger is simply an umbrella term, what you will be installing and 

building towards is one of the HL frameworks of which there are many. The two 

frameworks used in my project are Fabric (for the blockchain) and Caliper (for the 

benbchmark).  Sawtooth is another option, however, Sawtooth was a much more complex 

and confusing sort of blockchain. It should be noted that Sawtooth could conceptually 

work as the blockchain but due to time constraints I decided that Fabric would be the best 

option since it has a plug-n-play sort of setup, whereas Sawtooth is a customizable, 

feature-rich framework which requires deep understanding of the setup. 

4.1.5 Prerequisites 

There are many prerequisites which can be timely to sort through. There is no easy way 

to get these done, while some Linux distributions might already include these, it is very 

likely that you will need to spend significant time simply setting up the environment so 

that HyperLedger can work. I will state that there is a very concise and solid guide to do 

this from the folks over at HyperLedger, I will include my own walkthrough, but I highly 

recommend that the official site also be used. You can find the link below. 

https://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html 

 

cURL 

The curl tool is necessary for some installs and typically comes preconfigured on most 

Linux distros. If you don’t have it download it here:  https://curl.haxx.se/download.html 

 

Docker and Docker Compose 

https://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html
https://curl.haxx.se/download.html
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Docker and Docker Compose are required for HyperLedger to run. This is one of the 

most difficult steps in the process because Docker in and of itself is a complex concept to 

grasp. I highly recommend that at least some familiarization with containerization and 

Docker fundamentals is understood before moving any further.  This link is very helpful 

to begin: https://www.docker.com/resources/what-container 

Docker documentation: https://docs.docker.com/ 

Once you have Docker installed and have some familiarity with it, I recommend going 

thru the Docker tutorials completely and running containers and learning how the 

network nodes will work, this will save you a lot of headaches once you get to installing 

HyperLedger. Once you feel you have a firm grasp of Docker begin with the next steps of 

the prerequisites. 

Go Programming Language 

The Go programming language is required for HyperLedger to run. Thankfully this step 

is straightforward and simple, you just need to download the package and install it. 

 

Node.js runtime and Node Package Manger (NPM) 

Node.js and NPM are required to use HyperLedger. Node.js comes prepackaged with 

NPM. One of the major problems you may run into with Node/NPM is the version usage. 

You really should consider using NVM (node version manager) and then downgrading to 

what is required to run HyperLedger. HyperLedger runs on 8.0x Node/NPM therefore 

you cannot simply sudo apt-get npm sudo apt-get node and have it work. You need to 

install NVM and then use NVM to install a specific version of npm/node and go from 

there.  

https://www.docker.com/resources/what-container
https://docs.docker.com/
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Python 

Python is needed to use node.js. Simply download and install Python on your linux 

distro. 

 

Fabric 

Ah finally we get to install the blockchain software. Hopefully we don’t get any errors 

but that is highly unlikely. The HyperLedger documentation should suffice from this 

point on found at:  

https://hyperledger-fabric.readthedocs.io/en/latest/install.html 

There were many points where I had to debug and the best resources if an error is 

encountered is to use Google and find StackOverflow results. 

4.2 Prototype Guide 

This section will be used to display the blockchains features such as rule_add, 

rule_alter, change_owner functions. There are several steps that are outlined to describe 

and show how the prototype works from start to finish. The prototype is a proof of 

concept and would require more work to finish it completely. There will be a TODO 

section at the end of the prototype guide to show what work would be useful to have done 

to simplify the process and make it more robust. 

Below you will find a flowchart detailing the steps necessary to get the prototype 

up and running. 

https://hyperledger-fabric.readthedocs.io/en/latest/install.html
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4.2.1 Setting up Blockchain 

Once the prerequisites are installed we begin by moving the BBIDS github code from 

github.com/delerak/bbids, we can clone the repository from the command line. 
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Step 1: Clone github repo. Make sure you are in the directory you need to be. 

 

Figure. 4: Cloning the git repository 

HyperLedger uses Go and your $GOPATH will probably be /home/go/src/github.com/* 

I recommend cloning into that path and then working from there or else you will have 

path errors for the rest of the setup. 

Step 2: 

Start the network with the startFabric script as seen below. 
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Figure. 5: Starting the fabric blockchain network with javascript as the selected codebase 

You will see output like the following: 
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Figure. 6: Blockchain startup output 

 

It could take some time to initialize the ledger of rules. This current iteration only has 50 

IDS rules and took 115 seconds: 

 

Figure 7: Blockchain startup script complete. 

Step 3: 

Now we must install the Node packages that are required by the HyperLedger. These 

packages will install all required Node modules so that the code will run properly. 

We do this with the command npm install from the /javascript folder. 

If you run into any errors double check that you are using NPM 8.0 and not the latest 

version of 12.4, HyperLedger only works with 8.0x. 



 

31 

NVM: 

Ensure you are using 8.0 or you will receive errors and will be unable to run the 

HyperLedger framework. 

 

Figure 8: Installing the node modules with npm. 

Here is the output of the npm install: 

 

Figure 9: NPM install output screenshot 

 

Step 4: Enroll the users (trusted node and participating nodes). 

The enrollAdmin and registerUser files are used to create the accounts used in the 

querying and contract process. If these Node commands do not work, more than likely 

you have a pathing problem with your $GOPATH and need to double-check that the code 

is placed within /gopath/src/github.com/fabric-samples/fabcar 

Enrolling the Trusted Node with enrollAdmin: 
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Figure 10: Creating the “Trusted Node” 

Enrolling the Participating Node with registerUser: 

 

Figure 11: Creating the “Participating Node” 

Step 5: Now that we have the network up and running and both the trusted and participant 

nodes installed we can query the ledger and see our rules with the ‘Node Query’ 

command: 

The Query command returns all the rules stored in the blockchain. It is currently 

unformatted. 
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Figure 12: IDS rules in Blockchain format. 

Step 6: Adding a Rule, Altering a Rule, Querying a Specific Rule 

At this point there are3 other functions available. Adding a rule, altering a rule, and 

querying a specific rule. First we show adding, then altering, then querying a specific 

rule. Note: Since everything is hardcoded you must change the source file in order to 

make these queries as shown below. 
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Adding a rule: 

 

Edit invoke.js and go to the addRule function line. 

 

Figure 13: Creating a rule within invoke.js 

You can see I’m adding a rule with a couple of test fields and KSU in one. Next let’s find 

the rule with the following command: node query | grep test 

And it should highlight the new rules that were added: 

 

Figure 14: Output of the created ‘test’ rule. 

Alter Rule: 
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We go into the source code for Invoke once more and call the function changeRuleOwner 

from the fabcar.js ChainCode. See below:

 

Figure 15: Altering a rules ‘owner’ property. 

Next, we run node invoke again. 

 

Figure 16: Altering rule output. 

Now we will try to find the new rule owner changed with node query | grep Dr. 

 

Figure 17: Finding the new rule within the blockchain. 
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As we can see from the screenshot the RuleOwner was switched to Dr. Lei Li. 

Querying a specific rule: 

To query a specific rule # we have to edit the query.js file directly as shown below: 

 

Figure 18: Querying for a specific rule number. 

Comment out the QueryAllRules function and write in the queryRule function: 

As we can see the query now only returns RULE54 in the blockchain. 

 

Figure 19: Output of the query for RULE54. 

This concludes the walkthrough for the Blockchain Based IDS prototype. 

4.3 YouTube Tutorial Videos 

You can find my YouTube tutorial videos at the following playlist link.  

https://www.youtube.com/playlist?list=PLfobw40cSck2faRCNRK1inOt9mpF93R38 

https://www.youtube.com/playlist?list=PLfobw40cSck2faRCNRK1inOt9mpF93R38
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Chapter V. 

Conclusions 

Collaborative IDS (CIDS) has been proposed to detect increasingly complex 

cyber-attacks.  Overcoming the issue of trust and sharing of rulesets has remained to a 

challenge. In this paper, we proposed a CIDS architecture leveraging blockchain 

technology’s record immutability and tamper proof properties of stored data in the 

distributed ledger. We provided details on various workflows for our CIDS including 

how to add or update rulesets. We implemented our prototype using HyperLedger 

frameworks and evaluated using an available benchmark. The initial results look 

promising, including running over 1000 transactions on the blockchain, latency numbers 

were low and acceptable range for a small peer-to-peer network. 

Our future work plan includes applying our prototype within a real network, 

testing with simulated attack network traffics, and evaluating the performance with many 

IDS nodes in place. 
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Appendix I 

BBids Prototype Code, using FabCar contract in HyperLedger 

Chaincode files: 

 

 

 

/lib/Fabcar.js 

/*  
 * SPDX-License-Identifier: Apache-2.0  
 */  
   
'use strict';  
   
const { Contract } = require('fabric-contract-api');  
   
class FabCar extends Contract {  
   
    async initLedger(ctx) {  
        console.info('============= START : Initialize Ledger 

===========');  
        const rules = [  
            {  
                ruleAction: 'alert',  
                protocol: 'tcp',  
                sourceIP: '$HOME_NET',  
                sourcePort: '2589',  
                Direction: '->',  
                destIP: '$EXTERNAL_NET',  
                destPort: 'any',  
                msg: 'MALWARE-BACKDOOR - Dagger_1.4.0"; 

flow:to_client,established; content:"2|00 00 00 06 00 00 00|Drives|24 

00|",depth 16',  
                sid: '105',  
                Revision: '14', 
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                ClassType: 'misc-activity',  
                Reference: 'ruleset_community',  
                RuleOwner: 'laufenberg',  
            },  
            {  
              RuleAction: 'alert',  
              protocol: 'tcp',  
              sourceIP: '$EXTERNAL_NET',  
              sourcePort: 'any',  
              Direction: '->',  
              destIP: '$HOME_NET',  
              destPort: '7597',  
              msg: 'MALWARE-BACKDOOR QAZ Worm Client Login access"; 

flow:to_server,established; content:"qazwsx.hsq"',  
              sid: '108',  
              Revision: '11',  
              ClassType: 'misc-activity',  
              Reference: 'ruleset_community',  
              RuleOwner: 'mcafee,98775',  
            },  
            {  
              RuleAction: 'alert',  
              protocol: 'tcp',  
              sourceIP: '$EXTERNAL_NET',  
              sourcePort: 'any',  
              Direction: '->',  
              destIP: '$HOME_NET',  
              destPort: 20034,  
              msg: 'MALWARE-BACKDOOR NetBus Pro 2.0 connection 

established"; flow:to_client,established; 

flowbits:isset,backdoor.netbus_2.connect; content:"BN|10 00 02 00 "',  
              sid: 115,  
              Revision: '15',  
              ClassType: 'misc-activity',  
              Reference: 'ruleset_community',  
              RuleOwner: 'none',  
            },  
            {  
              RuleAction: 'alert',  
              protocol: 'tcp',  
              sourceIP: '$EXTERNAL_NET',  
              sourcePort: 'any',  
              Direction: '->', 
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              destIP: '$HOME_NET',  
              destPort: '7597',  
              msg: 'MALWARE-BACKDOOR Infector.1.x"; 

flow:established,to_client; content:"WHATISIT",depth 9; 

metadata:impact_flag red,ruleset community; reference:nessus,11157',  
              sid: '117',  
              Revision: '17',  
              ClassType: 'misc-activity',  
              Reference: 'ruleset_community',  
              RuleOwner: 'none',  
            },  
            {  
              RuleAction: 'alert',  
              protocol: 'tcp',  
              sourceIP: '$HOME_NET',  
              sourcePort: 'any',  
              Direction: '->',  
              destIP: '$EXTERNAL_NET',  
              destPort: '666',  
              msg: "MALWARE-BACKDOOR SatansBackdoor.2.0.Beta"; 

flow:to_client,established; content:"Remote|3A| ",depth 11,nocase; 

content:"You are connected to me.|0D 0A|Remote|3A| Ready for commands',  
              sid: '118',  
              Revision: '12',  
              ClassType: 'misc-activity',  
              Reference: 'ruleset_community',  
              RuleOwner: 'none',  
            },  
            {  
              RuleAction: 'alert',  
              protocol: 'tcp',  
              sourceIP: '$EXTERNAL_NET',  
              sourcePort: '12345', 

 
              Direction: '->',  
              destIP: '$HOME_NET',  
              destPort: 12345,  
              msg: 'MALWARE-BACKDOOR netbus getinfo"; 

flow:to_server,established; content:"GetInfo|0D| "',  
              sid: '110',  
              Revision: '10',  
              ClassType: 'trojan-activity',  
              Reference: 'ruleset_community', 
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              RuleOwner: 'none',  
            },  
            {  
              RuleAction: 'alert',  
              protocol: 'tcp',  
              sourceIP: '$HOME_NET',  
              sourcePort: 'any',  
              Direction: '->',  
              destIP: '$EXTERNAL_NET',  
              destPort: '6789',  
              msg: 'MALWARE-BACKDOOR Doly 2.0 access"; 

flow:established,to_client; content:"Wtzup Use "',  
              sid: '119',  
              Revision: '11',  
              ClassType: 'misc-activity',  
              Reference: 'ruleset_community',  
              RuleOwner: 'none',  
            },  
            {  
              RuleAction: 'alert',  
              protocol: 'tcp',  
              sourceIP: '$HOME_NET',  
              sourcePort: 'any',  
              Direction: '->',  
              destIP: '$EXTERNAL_NET',  
              destPort: '7597',  
              msg: 'MALWARE-BACKDOOR Infector 1.6 Client to Server 

Connection Request"; flow:to_server,established; content:"FC"',  
              sid: '121',  
              Revision: '14',  
              ClassType: 'misc-activity',  
              Reference: 'ruleset_community',  
              RuleOwner: 'nessus,1157',  
            },  
            {  
              RuleAction: 'alert',  
              protocol: 'tcp',  
              sourceIP: '$EXTERNAL_NET',  
              sourcePort: '31785',  
              Direction: '->',  
              destIP: '$HOME_NET',  
              destPort: 'any', 
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              msg: 'MALWARE-BACKDOOR HackAttack 1.20 Connect"; 

flow:established,to_client; content:"host"',  
              sid: '141',  
              Revision: '10',  
              ClassType: 'misc-activity',  
              Reference: 'ruleset_community',  
              RuleOwner: 'none',  
            },  
            {  
              RuleAction: 'alert',  
              protocol: 'tcp',  
              sourceIP: '$EXTERNAL_NET',  
              sourcePort: 'any',  
              Direction: '->',  
              destIP: '$HOME_NET',  
              destPort: '21',  
              msg: 'PROTOCOL-FTP ADMw0rm ftp login attempt"; 

flow:to_server,established; content:"USER",nocase; content:"w0rm",distance 

1,nocase; pcre:"/^USER\s+w0rm/smi"',  
              sid: '144',  
              Revision: '16',  
              ClassType: 'misc-activity',  
              Reference: 'ruleset_community',  
              RuleOwner: 'mcafee,98775',  
            },  
            {  
              RuleAction: 'alert',  
              protocol: 'tcp',  
              sourceIP: '$EXTERNAL_NET',  
              sourcePort: 'any',  
              Direction: '->',  
              destIP: '$HOME_NET',  
              destPort: '666',  
              msg: '"MALWARE-BACKDOOR BackConstruction 2.1 Client FTP 

Open Request"; flow:to_server,established; content:"FTPON "',  
              sid: '157',  
              Revision: '16',  
              ClassType: 'misc-activity',  
              Reference: 'ruleset_community',  
              RuleOwner: 'mcafee,98775',  
            },  
            {  
              RuleAction: 'alert', 
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              protocol: 'tcp',  
              sourceIP: '$EXTERNAL_NET',  
              sourcePort: 'any',  
              Direction: '->',  
              destIP: '$TELNET_SERVICES',  
              destPort: '23',  
              msg: 'MALWARE-BACKDOOR w00w00 attempt"; 

flow:to_server,established; content:"w00w00 "',  
              sid: '209',  
              Revision: '19',  
              ClassType: 'attempted_admin',  
              Reference: 'ruleset_community',  
              RuleOwner: 'mcafee,98775',  
            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'tcp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$TELNET_SERVICES', 

              destPort: '23', 

              msg: 'MALWARE-BACKDOOR w00w00 attempt"; 

flow:to_server,established; content:"w00w00 "', 

              sid: '210', 

              Revision: '19', 

              ClassType: 'attempted_admin', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'tcp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$TELNET_SERVICES', 

              destPort: '23', 

              msg: 'MALWARE-BACKDOOR w00w00 attempt"; 

flow:to_server,established; content:"w00w00 "', 

              sid: '211', 

              Revision: '19', 

              ClassType: 'attempted_admin', 
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              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'tcp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$TELNET_SERVICES', 

              destPort: '23', 

              msg: 'MALWARE-BACKDOOR w00w00 attempt"; 

flow:to_server,established; content:"w00w00 "', 

              sid: '212', 

              Revision: '19', 

              ClassType: 'attempted_admin', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'tcp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$TELNET_SERVICES', 

              destPort: '23', 

              msg: 'MALWARE-BACKDOOR w00w00 attempt"; 

flow:to_server,established; content:"w00w00 "', 

              sid: '213', 

              Revision: '19', 

              ClassType: 'attempted_admin', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'tcp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$TELNET_SERVICES', 

              destPort: '23', 
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              msg: 'MALWARE-BACKDOOR w00w00 attempt"; 

flow:to_server,established; content:"w00w00 "', 

              sid: '214', 

              Revision: '19', 

              ClassType: 'attempted_admin', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'tcp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$TELNET_SERVICES', 

              destPort: '23', 

              msg: 'MALWARE-BACKDOOR w00w00 attempt"; 

flow:to_server,established; content:"w00w00 "', 

              sid: '215', 

              Revision: '19', 

              ClassType: 'attempted_admin', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'tcp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$TELNET_SERVICES', 

              destPort: '23', 

              msg: 'MALWARE-BACKDOOR r00t attempt"; 

flow:to_server,established; content:" r00t"', 

              sid: '216', 

              Revision: '19', 

              ClassType: 'attempted_admin', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'tcp', 
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              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$TELNET_SERVICES', 

              destPort: '23', 

              msg: 'MALWARE-BACKDOOR rewt attempt"; 

flow:to_server,established; content:" rewt"', 

              sid: '217', 

              Revision: '19', 

              ClassType: 'attempted_admin', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'tcp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$TELNET_SERVICES', 

              destPort: '23', 

              msg: 'MALWARE-BACKDOOR attempt"; 

flow:to_server,established; content:" wh00t"', 

              sid: '218', 

              Revision: '19', 

              ClassType: 'attempted_admin', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'tcp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$TELNET_SERVICES', 

              destPort: '23', 

              msg: 'MALWARE-BACKDOOR d13hh attempt"; 

flow:to_server,established; content:" d13hh"', 

              sid: '219', 

              Revision: '19', 

              ClassType: 'attempted_admin', 

              Reference: 'ruleset_community', 
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              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'tcp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$TELNET_SERVICES', 

              destPort: '23', 

              msg: 'MALWARE-BACKDOOR lrkr0x attempt"; 

flow:to_server,established; content:" lrkr0x"', 

              sid: '220', 

              Revision: '19', 

              ClassType: 'attempted_admin', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            },  
            {  
              RuleAction: 'alert',  
              protocol: 'udp',  
              sourceIP: '$EXTERNAL_NET',  
              sourcePort: 'any',  
              Direction: '->',  
              destIP: '$HOME_NET',  
              destPort: '53',  
              msg: 'PROTOCOL-DNS dns zone transfer via TCP detected"; 

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6; 

byte_test:1,!&,0xF8,4"',  
              sid: '255',  
              Revision: '23',  
              ClassType: 'attempted-recon',  
              Reference: 'ruleset_community',  
              RuleOwner: 'none',  
            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'udp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$HOME_NET', 

              destPort: '53', 
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              msg: 'PROTOCOL-DNS dns zone transfer via TCP detected"; 

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6; 

byte_test:1,!&,0xF8,4"', 

              sid: '256', 

              Revision: '12', 

              ClassType: 'attempted-admin', 

              Reference: 'ruleset_community', 

              RuleOwner: 'none', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'udp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$HOME_NET', 

              destPort: '53', 

              msg: 'PROTOCOL-DNS dns zone transfer via TCP detected"; 

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6; 

byte_test:1,!&,0xF8,4"', 

              sid: '257', 

              Revision: '12', 

              ClassType: 'misc-activity', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'udp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$HOME_NET', 

              destPort: '53', 

              msg: 'PROTOCOL-DNS dns zone transfer via TCP detected"; 

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6; 

byte_test:1,!&,0xF8,4"', 

              sid: '258', 

              Revision: '22', 

              ClassType: 'misc-activity', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 
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            { 

              RuleAction: 'alert', 

              protocol: 'udp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$HOME_NET', 

              destPort: '53', 

              msg: 'PROTOCOL-DNS dns zone transfer via TCP detected"; 

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6; 

byte_test:1,!&,0xF8,4"', 

              sid: '259', 

              Revision: '5', 

              ClassType: 'misc-activity', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'udp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$HOME_NET', 

              destPort: '53', 

              msg: 'PROTOCOL-DNS dns zone transfer via TCP detected"; 

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6; 

byte_test:1,!&,0xF8,4"', 

              sid: '260', 

              Revision: '23', 

              ClassType: 'misc-activity', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'udp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$HOME_NET', 

              destPort: '53', 
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              msg: 'PROTOCOL-DNS dns zone transfer via TCP detected"; 

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6; 

byte_test:1,!&,0xF8,4"', 

              sid: '261', 

              Revision: '23', 

              ClassType: 'misc-activity', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'udp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$HOME_NET', 

              destPort: '53', 

              msg: 'PROTOCOL-DNS dns zone transfer via TCP detected"; 

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6; 

byte_test:1,!&,0xF8,4"', 

              sid: '262', 

              Revision: '23', 

              ClassType: 'misc-activity', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'udp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$HOME_NET', 

              destPort: '53', 

              msg: 'PROTOCOL-DNS dns zone transfer via TCP detected"; 

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6; 

byte_test:1,!&,0xF8,4"', 

              sid: '263', 

              Revision: '23', 

              ClassType: 'misc-activity', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 
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            { 

              RuleAction: 'alert', 

              protocol: 'udp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$HOME_NET', 

              destPort: '53', 

              msg: 'PROTOCOL-DNS dns zone transfer via TCP detected"; 

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6; 

byte_test:1,!&,0xF8,4"', 

              sid: '264', 

              Revision: '23', 

              ClassType: 'misc-activity', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'udp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$HOME_NET', 

              destPort: '53', 

              msg: 'PROTOCOL-DNS dns zone transfer via TCP detected"; 

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6; 

byte_test:1,!&,0xF8,4"', 

              sid: '265', 

              Revision: '23', 

              ClassType: 'misc-activity', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            }, 

            { 

              RuleAction: 'alert', 

              protocol: 'udp', 

              sourceIP: '$EXTERNAL_NET', 

              sourcePort: 'any', 

              Direction: '->', 

              destIP: '$HOME_NET', 

              destPort: '53', 



 

52 

              msg: 'PROTOCOL-DNS dns zone transfer via TCP detected"; 

flow:to_server,established; content:"|00 01 00 00 00 00 00|",depth 8,offset 6; 

byte_test:1,!&,0xF8,4"', 

              sid: '266', 

              Revision: '23', 

              ClassType: 'misc-activity', 

              Reference: 'ruleset_community', 

              RuleOwner: 'mcafee,98775', 

            },  
        ];  
   
        for (let i = 0; i < rules.length; i++) {  
            rules[i].docType = 'rule';  
            await ctx.stub.putState('RULE' + i, 

Buffer.from(JSON.stringify(rules[i])));  
            console.info('Added <--> ', rules[i]);  
        }  
        console.info('============= END : Initialize Ledger 

===========');  
    }  
   
    async queryRule(ctx, ruleNumber) {  
        const ruleAsBytes = await ctx.stub.getState(ruleNumber); // get the rule 

from chaincode state  
        if (!ruleAsBytes || ruleAsBytes.length === 0) {  
            throw new Error(`${ruleNumber} does not exist`);  
        }  
        console.log(ruleAsBytes.toString());  
        return ruleAsBytes.toString();  
    }  
   
    async createRule(ctx, ruleNumber, RuleAction, protocol, sourceIP, 

sourcePort, Direction, destIP, destPort, msg, sid, Revision, ClassType, 

Reference, RuleOwner) {  
        console.info('============= START : Create Rule ===========');  
   
        const rule = {  
            RuleAction,  
            docType: 'rule',  
            sourceIP,  
            protocol,  
            sourcePort,  
            Direction, 
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            destIP,  
            destPort,  
            msg,  
            sid,  
            Revision,  
            ClassType,  
            Reference,  
            RuleOwner  
        };  
   
        await ctx.stub.putState(ruleNumber, Buffer.from(JSON.stringify(rule)));  
        console.info('============= END : Create Rule ===========');  
    }  
   
    async queryAllRules(ctx) {  
        const startKey = 'RULE0';  
        const endKey = 'RULE999';  
   
        const iterator = await ctx.stub.getStateByRange(startKey, endKey);  
   
        const allResults = [];  
        while (true) {  
            const res = await iterator.next();  
   
            if (res.value && res.value.value.toString()) {  
                console.log(res.value.value.toString('utf8'));  
   
                const Key = res.value.'{print $3}'key;  
                let Record;  
                try {  
                    Record = JSON.parse(res.value.value.toString('utf8'));  
                } catch (err) {  
                    console.log(err);  
                    Record = res.value.value.toString('utf8');  
                }  
                allResults.push({ Key, Record });  
            }  
            if (res.done) {  
                console.log('end of data');  
                await iterator.close();  
                console.info(allResults);  
                return JSON.stringify(allResults);  
            } 
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        }  
    }  
   
    async changeRuleOwner(ctx, ruleNumber, newOwner) {  
        console.info('============= START : changeOwner 

===========');  
   
        const ruleAsBytes = await ctx.stub.getState(ruleNumber); // get the rule 

from chaincode state  
        if (!ruleAsBytes || ruleAsBytes.length === 0) {  
            throw new Error(`${ruleNumber} does not exist`);  
        }  
        const rule = JSON.parse(ruleAsBytes.toString());  
        rule.RuleOwner = newOwner;  
   
        await ctx.stub.putState(ruleNumber, Buffer.from(JSON.stringify(rule)));  
        console.info('============= END : changeOwner ===========');  
    }  
   
}  
   
module.exports = FabCar; 

 

 

Startup Script: 

#!/bi

n/ba

sh  
#  
# Copyright IBM Corp All Rights Reserved  
#  
# SPDX-License-Identifier: Apache-2.0  
#  
# Exit on first error  
set -e  
   
# don't rewrite paths for Windows Git Bash users  
export MSYS_NO_PATHCONV=1 
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starttime=$(date +%s)  
CC_SRC_LANGUAGE=${1:-"go"}  
CC_SRC_LANGUAGE=`echo "$CC_SRC_LANGUAGE" | tr [:upper:] 

[:lower:]`  
if [ "$CC_SRC_LANGUAGE" = "go" -o "$CC_SRC_LANGUAGE" = 

"golang"  ]; then  
 CC_RUNTIME_LANGUAGE=golang  
 CC_SRC_PATH=github.com/fabcar/go  
elif [ "$CC_SRC_LANGUAGE" = "javascript" ]; then  
 CC_RUNTIME_LANGUAGE=node # chaincode runtime language is 

node.js  
 CC_SRC_PATH=/opt/gopath/src/github.com/fabcar/javascript  
elif [ "$CC_SRC_LANGUAGE" = "typescript" ]; then  
 CC_RUNTIME_LANGUAGE=node # chaincode runtime language is 

node.js  
 CC_SRC_PATH=/opt/gopath/src/github.com/fabcar/typescript  
 echo Compiling TypeScript code into JavaScript ...  
 pushd ../chaincode/fabcar/typescript  
 npm install  
 npm run build  
 popd  
 echo Finished compiling TypeScript code into JavaScript  
else  
 echo The chaincode language ${CC_SRC_LANGUAGE} is not 

supported by this script  
 echo Supported chaincode languages are: go, javascript, and typescript  
 exit 1  
fi  
   
   
# clean the keystore  
rm -rf ./hfc-key-store  
   
# launch network; create channel and join peer to channel  
cd ../basic-network  
./start.sh  
   
# Now launch the CLI container in order to install, instantiate chaincode  
# and prime the ledger with our 50 rules  
docker-compose -f ./docker-compose.yml up -d cli  
docker ps -a  
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docker exec -e "CORE_PEER_LOCALMSPID=Org1MSP" -e 

"CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger

/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.

example.com/msp" cli peer chaincode install -n fabcar -v 1.0 -p 

"$CC_SRC_PATH" -l "$CC_RUNTIME_LANGUAGE"  
docker exec -e "CORE_PEER_LOCALMSPID=Org1MSP" -e 

"CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger

/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.

example.com/msp" cli peer chaincode instantiate -o 

orderer.example.com:7050 -C mychannel -n fabcar -l 

"$CC_RUNTIME_LANGUAGE" -v 1.0 -c '{"Args":[]}' -P "OR 

('Org1MSP.member','Org2MSP.member')"  
sleep 10  
docker exec -e "CORE_PEER_LOCALMSPID=Org1MSP" -e 

"CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger

/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.

example.com/msp" cli peer chaincode invoke -o orderer.example.com:7050 -

C mychannel -n fabcar -c '{"function":"initLedger","Args":[]}'  
   
cat <<EOF  
Total setup execution time : $(($(date +%s) - starttime)) secs ...  
Next, use the BBIDS applications to interact with the deployed BBIDS 

contract.  
  Start by changing into the "javascript" directory:  
    cd javascript  
  Next, install all required packages:  
    npm install  
  Then run the following applications to enroll the admin user, and register a 

new user  
  called user1 which will be used by the other applications to interact with the 

deployed  
  BBIDS contract:  
    node enrollAdmin  - this is considered the Trusted Node in the BBIDS 

Architecture  
    node registerUser - this is considered a Participating Node in the BBIDS 

Architecture  
  You can run the invoke application as follows. By default, the invoke 

application will  
  create a new rule, but you can update the application to submit other 

transactions:  
    node invoke  
  You can run the query application as follows. By default, the query 

application will 
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  return all rules, but you can update the application to evaluate other 

transactions:  
    node query  
NOTE: Currently everything is hardcoded so you must go into the 

query/invoke JavaScript  
files in order to adjust their queries or invocations.  
EOF 

 

Contract files: 

enrollAdmin.js 

/*  
 * SPDX-License-Identifier: Apache-2.0  
 */  
   
'use strict';  
   
const FabricCAServices = require('fabric-ca-client');  
const { FileSystemWallet, X509WalletMixin } = require('fabric-network');  
const fs = require('fs');  
const path = require('path');  
   
const ccpPath = path.resolve(__dirname, '..', '..', 'basic-network', 

'connection.json');  
const ccpJSON = fs.readFileSync(ccpPath, 'utf8');  
const ccp = JSON.parse(ccpJSON);  
   
async function main() {  
    try {  
   
        // Create a new CA client for interacting with the CA.  
        const caURL = ccp.certificateAuthorities['ca.example.com'].url;  
        const ca = new FabricCAServices(caURL);  
   
        // Create a new file system based wallet for managing identities.  
        const walletPath = path.join(process.cwd(), 'wallet');  
        const wallet = new FileSystemWallet(walletPath);  
        console.log(`Wallet path: ${walletPath}`);  
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        // Check to see if we've already enrolled the admin user.  
        const adminExists = await wallet.exists('admin');  
        if (adminExists) {  
            console.log('An identity for the admin user "admin" already exists in 

the wallet');  
            return;  
        }  
   
        // Enroll the admin user, and import the new identity into the wallet.  
        const enrollment = await ca.enroll({ enrollmentID: 'admin', 

enrollmentSecret: 'adminpw' });  
        const identity = X509WalletMixin.createIdentity('Org1MSP', 

enrollment.certificate, enrollment.key.toBytes());  
        wallet.import('admin', identity);  
        console.log('Successfully enrolled admin user "admin" and imported it 

into the wallet');  
   
    } catch (error) {  
        console.error(`Failed to enroll admin user "admin": ${error}`);  
        process.exit(1);  
    }  
}  
   
main(); 

 

Invoke.js 

/*  
 * SPDX-License-Identifier: Apache-2.0  
 */  
   
'use strict';  
   
const { FileSystemWallet, Gateway } = require('fabric-network');  
const fs = require('fs');  
const path = require('path');  
   
const ccpPath = path.resolve(__dirname, '..', '..', 'basic-network', 

'connection.json');  
const ccpJSON = fs.readFileSync(ccpPath, 'utf8');  
const ccp = JSON.parse(ccpJSON);  
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async function main() {  
    try {  
   
        // Create a new file system based wallet for managing identities.  
        const walletPath = path.join(process.cwd(), 'wallet');  
        const wallet = new FileSystemWallet(walletPath);  
        console.log(`Wallet path: ${walletPath}`);  
   
        // Check to see if we've already enrolled the user.  
        const userExists = await wallet.exists('user1');  
        if (!userExists) {  
            console.log('An identity for the user "user1" does not exist in the 

wallet');  
            console.log('Run the registerUser.js application before retrying');  
            return;  
        }  
   
        // Create a new gateway for connecting to our peer node.  
        const gateway = new Gateway();  
        await gateway.connect(ccp, { wallet, identity: 'user1', discovery: { 

enabled: false } });  
   
        // Get the network (channel) our contract is deployed to.  
        const network = await gateway.getNetwork('mychannel');  
   
        // Get the contract from the network.  
        const contract = network.getContract('fabcar');  
   
        // Submit the specified transaction.  
        // createRule transaction - requires 5 argument, ex: ('createRule', 

'RULE12', 'alert', 'tcp', 'source-port', 'source-ip')  
        // changeRuleOwner transaction - requires 2 args , ex: ('Rule', 'RULE10', 

'Daniel')  
        await contract.submitTransaction('createRule', 'RULE53', 'Dr. Shahriar', 

'test', 'test', 'test', 'test', 'test', 'test', 'test', 'test', 'test', 'test', 'test', 'test');  
        console.log('Transaction has been submitted');  
   
        // Disconnect from the gateway.  
        await gateway.disconnect();  
   
    } catch (error) {  
        console.error(`Failed to submit transaction: ${error}`);  
        process.exit(1); 
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    }  
}  
   
main(); 

 

 

Query.js 

/*  
 * SPDX-License-Identifier: Apache-2.0  
 */  
   
'use strict';  
   
const { FileSystemWallet, Gateway } = require('fabric-network');  
const fs = require('fs');  
const path = require('path');  
   
const ccpPath = path.resolve(__dirname, '..', '..', 'basic-network', 

'connection.json');  
const ccpJSON = fs.readFileSync(ccpPath, 'utf8');  
const ccp = JSON.parse(ccpJSON);  
   
async function main() {  
    try {  
   
        // Create a new file system based wallet for managing identities.  
        const walletPath = path.join(process.cwd(), 'wallet');  
        const wallet = new FileSystemWallet(walletPath);  
        console.log(`Wallet path: ${walletPath}`);  
   
        // Check to see if we've already enrolled the user.  
        const userExists = await wallet.exists('user1');  
        if (!userExists) {  
            console.log('An identity for the user "user1" does not exist in the 

wallet');  
            console.log('Run the registerUser.js application before retrying');  
            return;  
        }  
   
        // Create a new gateway for connecting to our peer node. 
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        const gateway = new Gateway();  
        await gateway.connect(ccp, { wallet, identity: 'user1', discovery: { 

enabled: false } });  
   
        // Get the network (channel) our contract is deployed to.  
        const network = await gateway.getNetwork('mychannel');  
   
        // Get the contract from the network.  
        const contract = network.getContract('fabcar');  
   
        // Evaluate the specified transaction.  
        // queryRule transaction - requires 1 argument, ex: ('queryRule', 'RULE4')  
        // queryAllRules transaction - requires no arguments, ex: 

('queryAllRules')  
        const result = await contract.evaluateTransaction('queryAllRules');  
        console.log(`Transaction has been evaluated, result is: 

${result.toString()}`);  
   
    } catch (error) {  
        console.error(`Failed to evaluate transaction: ${error}`);  
        process.exit(1);  
    }  
}  
   
main(); 

 

 

registerUser.js 

/*  
 * SPDX-License-Identifier: Apache-2.0  
 */  
   
'use strict';  
   
const { FileSystemWallet, Gateway, X509WalletMixin } = require('fabric-

network');  
const fs = require('fs');  
const path = require('path');  
  



 

62 

 
const ccpPath = path.resolve(__dirname, '..', '..', 'basic-network', 

'connection.json');  
const ccpJSON = fs.readFileSync(ccpPath, 'utf8');  
const ccp = JSON.parse(ccpJSON);  
   
async function main() {  
    try {  
   
        // Create a new file system based wallet for managing identities.  
        const walletPath = path.join(process.cwd(), 'wallet');  
        const wallet = new FileSystemWallet(walletPath);  
        console.log(`Wallet path: ${walletPath}`);  
   
        // Check to see if we've already enrolled the user.  
        const userExists = await wallet.exists('user1');  
        if (userExists) {  
            console.log('An identity for the user "user1" already exists in the 

wallet');  
            return;  
        }  
   
        // Check to see if we've already enrolled the admin user.  
        const adminExists = await wallet.exists('admin');  
        if (!adminExists) {  
            console.log('An identity for the admin user "admin" does not exist in 

the wallet');  
            console.log('Run the enrollAdmin.js application before retrying');  
            return;  
        }  
   
        // Create a new gateway for connecting to our peer node.  
        const gateway = new Gateway();  
        await gateway.connect(ccp, { wallet, identity: 'admin', discovery: { 

enabled: false } });  
   
        // Get the CA client object from the gateway for interacting with the CA.  
        const ca = gateway.getClient().getCertificateAuthority();  
        const adminIdentity = gateway.getCurrentIdentity();  
   
        // Register the user, enroll the user, and import the new identity into the 

wallet.  
        const secret = await ca.register({ affiliation: 'org1.department1', 

enrollmentID: 'user1', role: 'client' }, adminIdentity); 
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        const enrollment = await ca.enroll({ enrollmentID: 'user1', 

enrollmentSecret: secret });  
        const userIdentity = X509WalletMixin.createIdentity('Org1MSP', 

enrollment.certificate, enrollment.key.toBytes());  
        wallet.import('user1', userIdentity);  
        console.log('Successfully registered and enrolled admin user "user1" and 

imported it into the wallet');  
   
    } catch (error) {  
        console.error(`Failed to register user "user1": ${error}`);  
        process.exit(1);  
    }  
}  
   
main(); 
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