823 research outputs found

    Connector algebras for C/E and P/T nets interactions

    Get PDF
    A quite fourishing research thread in the recent literature on component based system is concerned with the algebraic properties of different classes of connectors. In a recent paper, an algebra of stateless connectors was presented that consists of five kinds of basic connectors, namely symmetry, synchronization, mutual exclusion, hiding and inaction, plus their duals and it was shown how they can be freely composed in series and in parallel to model sophisticated "glues". In this paper we explore the expressiveness of stateful connectors obtained by adding one-place buffers or unbounded buffers to the stateless connectors. The main results are: i) we show how different classes of connectors exactly correspond to suitable classes of Petri nets equipped with compositional interfaces, called nets with boundaries; ii) we show that the difference between strong and weak semantics in stateful connectors is reflected in the semantics of nets with boundaries by moving from the classic step semantics (strong case) to a novel banking semantics (weak case), where a step can be executed by taking some "debit" tokens to be given back during the same step; iii) we show that the corresponding bisimilarities are congruences (w.r.t. composition of connectors in series and in parallel); iv) we show that suitable monoidality laws, like those arising when representing stateful connectors in the tile model, can nicely capture concurrency aspects; and v) as a side result, we provide a basic algebra, with a finite set of symbols, out of which we can compose all P/T nets, fulfilling a long standing quest

    Relating BIP and Reo

    Get PDF
    Coordination languages simplify design and development of concurrent systems. Particularly, exogenous coordination languages, like BIP and Reo, enable system designers to express the interactions among components in a system explicitly. In this paper we establish a formal relation between BI(P) (i.e., BIP without the priority layer) and Reo, by defining transformations between their semantic models. We show that these transformations preserve all properties expressible in a common semantics. This formal relation comprises the basis for a solid comparison and consolidation of the fundamental coordination concepts behind these two languages. Moreover, this basis offers translations that enable users of either language to benefit from the toolchains of the other.Comment: In Proceedings ICE 2015, arXiv:1508.0459

    Nets, relations and linking diagrams

    Full text link
    In recent work, the author and others have studied compositional algebras of Petri nets. Here we consider mathematical aspects of the pure linking algebras that underly them. We characterise composition of nets without places as the composition of spans over appropriate categories of relations, and study the underlying algebraic structures.Comment: 15 pages, Proceedings of 5th Conference on Algebra and Coalgebra in Computer Science (CALCO), Warsaw, Poland, 3-6 September 201

    Extended Connectors: Structuring Glue Operators in BIP

    Get PDF
    Based on a variation of the BIP operational semantics using the offer predicate introduced in our previous work, we extend the algebras used to model glue operators in BIP to encompass priorities. This extension uses the Algebra of Causal Interaction Trees, T(P), as a pivot: existing transformations automatically provide the extensions for the Algebra of Connectors. We then extend the axiomatisation of T(P), since the equivalence induced by the new operational semantics is weaker than that induced by the interaction semantics. This extension leads to canonical normal forms for all structures and to a simplification of the algorithm for the synthesis of connectors from Boolean coordination constraints.Comment: In Proceedings ICE 2013, arXiv:1310.401

    A Compositional Semantics for Stochastic Reo Connectors

    Full text link
    In this paper we present a compositional semantics for the channel-based coordination language Reo which enables the analysis of quality of service (QoS) properties of service compositions. For this purpose, we annotate Reo channels with stochastic delay rates and explicitly model data-arrival rates at the boundary of a connector, to capture its interaction with the services that comprise its environment. We propose Stochastic Reo automata as an extension of Reo automata, in order to compositionally derive a QoS-aware semantics for Reo. We further present a translation of Stochastic Reo automata to Continuous-Time Markov Chains (CTMCs). This translation enables us to use third-party CTMC verification tools to do an end-to-end performance analysis of service compositions.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Modelica - A Language for Physical System Modeling, Visualization and Interaction

    Get PDF
    Modelica is an object-oriented language for modeling of large, complex and heterogeneous physical systems. It is suited for multi-domain modeling, for example for modeling of mechatronics including cars, aircrafts and industrial robots which typically consist of mechanical, electrical and hydraulic subsystems as well as control systems. General equations are used for modeling of the physical phenomena, No particular variable needs to be solved for manually. A Modelica tool will have enough information to do that automatically. The language has been designed to allow tools to generate efficient code automatically. The modeling effort is thus reduced considerably since model components can be reused and tedious and error-prone manual manipulations are not needed. The principles of object-oriented modeling and the details of the Modelica language as well as several examples are presented

    Coordination of Dynamic Software Components with JavaBIP

    Get PDF
    JavaBIP allows the coordination of software components by clearly separating the functional and coordination aspects of the system behavior. JavaBIP implements the principles of the BIP component framework rooted in rigorous operational semantics. Recent work both on BIP and JavaBIP allows the coordination of static components defined prior to system deployment, i.e., the architecture of the coordinated system is fixed in terms of its component instances. Nevertheless, modern systems, often make use of components that can register and deregister dynamically during system execution. In this paper, we present an extension of JavaBIP that can handle this type of dynamicity. We use first-order interaction logic to define synchronization constraints based on component types. Additionally, we use directed graphs with edge coloring to model dependencies among components that determine the validity of an online system. We present the software architecture of our implementation, provide and discuss performance evaluation results.Comment: Technical report that accompanies the paper accepted at the 14th International Conference on Formal Aspects of Component Softwar

    Reconfigurable and software-defined networks of connectors and components

    Get PDF
    The diffusion of adaptive systems motivate the study of models of software entities whose interaction capabilities can evolve dynamically. In this paper we overview the contributions in the ASCENS project in the area of software defined networks and of reconfigurable connectors. In particular we highlight: (i) the definition of the Network-conscious pi-calculus and its use in the modeling and verification of the PASTRY protocol, and (ii) the mutual correspondence between different frameworks for defining networks of connectors together with two suitable enhancements for addressing dynamically changing systems
    • 

    corecore