
Strathprints Institutional Repository

Duncan, Ross and Dunne, Kevin (2016) Interacting Frobenius algebras 

are Hopf. In: Proceedings of the 31st annual ACM/IEEE Symposium on 

Logic in Computer Science (LICS). ACM, New York. (In Press) , 

This version is available at http://strathprints.strath.ac.uk/56775/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42594168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


Interacting Frobenius Algebras are Hopf

Ross Duncan Kevin Dunne

University of Strathclyde
26 Richmond Street, Glasgow, G1 1XH, UK.

Abstract

Theories featuring the interaction between a Frobenius algebra
and a Hopf algebra have recently appeared in several areas in
computer science: concurrent programming, control theory, and
quantum computing, among others. Bonchi, Sobocinski, and Zanasi
[9] have shown that, given a suitable distribution law, a pair of Hopf
algebras forms two Frobenius algebras. Here we take the opposite
approach, and show that interacting Frobenius algebras form Hopf
algebras. We generalise [9] by including non-trivial dynamics of
the underlying object—the so-called phase group—and investigate
the effects of finite dimensionality of the underlying model, and
recover the system of Bonchi et al as a subtheory in the prime power
dimensional case. However the more general theory does not arise
from a distributive law.

Categories and Subject Descriptors F [3]: 2; F [4]: 1; F [4]: 3

1. Introduction

Frobenius algebras and bialgebras are structures which combine a
monoid and a comonoid on a single underlying object. They have a
long history1 in group theory, but have applications in many other
areas: natural language processing [29, 30], topological quantum
field theory [24], game semantics [26], automata theory [36], and
distributed computing [7], to name but a few.

In quantum computation, the bialgebraic interplay between
two Frobenius algebras describes the behaviour of complementary
observables [13, 16], a central concept in quantum theory. This
interaction is the basis of the ZX-calculus, a formal language for
quantum computation. Using these ideas, a significant fraction
of finite dimensional quantum theory can be developed without
reference to Hilbert spaces. Surprisingly, almost exactly the same
axioms have also appeared in totally different settings: Petri nets
[11, 33] and control theory [6, 10]. This combination of structures
seems to have broad relevance in computer science.

The approach of the current paper is directly inspired by the
recent work of Bonchi, Sobociński, and Zanasi [9], who investigated
the theory of interacting Hopf algebras2 and showed that Hopf

1 See Fauser [21] for much detail on Frobenius algebras, including their
history; for the history of Hopf algebras see [2].
2 A Hopf algebra is a bialgebra with some extra structure; see later 6.2.
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algebras which obey a certain distributive law form Frobenius
algebras [8, 9]. Using Lack’s technique of composing PROPs [25],
they show the resulting theory IHR is isomorphic to that of linear
relations3.

Do interacting quantum observables [16] admit such a beautiful
description? In this paper we present a rational reconstruction of the
theory of strongly complementary observables and show that, except
under quite restrictive circumstances, the theory does not arise by
composing PROPs via a distributive law. Along the way we also
clarify the structure of the theory of complementary observables and
show that some assumptions used in earlier work are unnecessary.

In the quantum context, the key insight is that an observable of
some quantum system corresponds to a Frobenius algebra on its state
space [15]. Further, the state spaces have non-trivial endomorphims
giving their internal dynamics; among these there is a phase group

for each observable, which leaves the observable unchanged4. Since
observables are fundamental to quantum theory, we take Frobenius
algebras and their phase groups as the starting point, and freely
construct FG, the PROP of a Frobenius algebra with a given group
of phases G.

The general plan of the paper is to begin with a pair of such
Frobenius algebras and formalise interactions between them by
imposing stronger and stronger axioms upon them. We produce a
series of PROPs

F_ + F_ -- IF -- IFK -- IFKd

each more closely resembling quantum theory than its predeces-
sor. The first is simply the disjoint union of two non-interacting
observables. The second requires that the observables be strongly
complementary; this means their corresponding Frobenius algebras
jointly form a Hopf algebra [13, 16]. The additional structure allows
us to construct a ring of endomorphisms of the generator, distinct
from the phase groups, and a large class of multiparty unitary opera-
tions, being the abstract counterpart of quantum circuits. The next
two PROPs introduce eigenstates for the observables, and the effect
of finite dimensionality of the state space respectively. In the last of
these, IFKd, if the dimension is a prime power then we recover the
system IHR of Bonchi et al [9] as a subcategory.

Each of these theories is actually a functor from a suitable
category of groups, so we can freely construct a quantum-like
theory with any given dynamics. We view the PROPs as syntactic
objects, being the graphical language of a theory. However, at several
points in the paper, we consider properties of their models (i.e. their
algebras), and use these properties as a justification for the next
PROP in the chain.

Our motivation for studying these generalisations is to better
understand categorical quantum theory [1], particularly with a view

3 Baez and Erbele [6] prove the same result with different techniques.
4 The importance of the phase group in non-locality arguments has been
demonstrated by Edwards [20]



to the ZX-calculus. We explicate the necessary features of higher
dimensional versions of the calculus, and separate the algebraic
foundation from model-specific details. This will help clarify ques-
tions of completeness [3, 5, 19, 27] and also aid in the formalisation
of error correcting codes [18]. However given the interest in these
structures in other areas, we expect that a richer theory will lead to
unexpected applications elsewhere.

Due to restriction on space the proofs are mostly omitted.

2. Background

We assume that the reader is familiar with the theory of monoidal
categories; all monoidal structures here are taken to be strict. We will
employ diagrammatic notation throughout the paper; see Selinger
[32]. Our convention is to read diagrams from top to bottom;
however, since we operate in a †-category, every diagram can be
read equally well from bottom to top; the reader who chooses to do
so will need to add the involutive prefix “co” throughout the text
themselves.

Definition 2.1. A †-category is a category C equipped with a functor
† : Cop → C which is involutive and acts as the identity on objects.

A morphism f : A → B in a †-category is called unitary if
f† : B → A is the two-sided inverse of f ; it is self-adjoint if
f = f†.

Remark 2.2. A groupoid is a †-category in which every morphism
is unitary; in particular every group can be viewed as a one-object
†-category.

A functor F : C → D between †-categories is a †-functor
if (Ff)† = F (f†) for all arrows f . A (symmetric) monoidal †-
category is called †-(symmetric) monoidal if −⊗− : C × C → C
is a †-functor, and all the canonical isomorphisms of the monoidal
structure are unitary.

The main example of interest is fdHilb, the category of finite
dimensional Hilbert spaces over C and linear maps; given f : A→
B, f† : B → A is the usual Hermitian adjoint.

We now turn our attention to PROPs. This material largely
follows [25, 9].

Definition 2.3. A product category, abbreviated PRO, is a strict
monoidal category whose objects are generated by a single object un-
der the tensor product; or equivalently, whose objects are the natural
numbers. A product and permutation category, abbreviated PROP,
is a symmetric PRO. A †-PRO or †-PROP is a PRO (respectively
PROP) which is also a †-monoidal category.

Given any strict monoidal category C the full subcategory
generated by a single object under tensor is a PRO. In particular,
for any natural number D we can consider the full subcategory of
fdHilb generated by C

D under the tensor product. For D = 2 this
gives the usual setting of quantum computing.

For a PRO T and a strict monoidal category C, a T-algebra in
C is a strict monoidal functor from T to C. We will abuse notation
and refer to the algebra by the name of its generating object in C.
A morphism between PROs is an algebra which is the identity on
objects. Therefore we have a category PRO of PROs and their
morphisms. The same can be done for PROPs, †-PROs, and †-
PROPs by requiring that the functor is symmetric monoidal and/or
dagger as appropriate.

Let P be the PRO whose morphisms n→ n are the permutations
on n elements, with no morphisms n→ m if n 6= m. P is groupoid,
hence also a †-category. We can understand the category †-PROP
as a subcategory of the coslice category P/†-PRO, in which all
permutations are natural. The coproduct T1 + T2 in †-PROP
is given by the pushout of T1 ← P → T2 in †-PRO since the
symmetric structure has to agree in both.

In this paper we are concerned with PROPs which are presented
syntactically. The arrows of the PROP will be constructed by
composition and tensor from the elements of a monoidal signature
Σ and a setE of equations between terms of the same type. Equality
is then the least congruence generated by E and the equations of the
symmetric monoidal structure. From this point of view the coproduct
T1 + T2 is given by the pair (Σ1 +Σ2, E1 + E2).

The coproduct is not an especially exciting operation: we need
to combine PROPs and make them interact. Lack’s method of
composing PROPs via distributive laws is a particularly elegant
approach [25]. We will skip the details here, but given two PROPs
T1 and T2, a distributive law λ : T2;T1 → T1;T2 is a set of
directed equations (f2, f1) → (f ′

1, f
′
2) commuting morphisms of

T2 past those of T1. The composite PROP T1;T2 has morphisms of

the form n
f1
- z

f2
- m where f1 is an arrow of T1 and f2 of

T2; its syntactic presentation is that of T1 + T2 with the additional
equations of λ.

Example 2.4. As a simple example we can view P as a PRO with
a single generator c : 2 → 2 quotiented by c2 = id and the usual
hexagon diagrams. Let G be a group; we define G× to be the PRO
with hom-sets G×(n, n) =

∏

nG, and G×(n,m) = ∅ if n 6= m.

Composition is done component-wise in G. The generators of G×

are just the elements g : 1 → 1 for each g ∈ G quotiented by
the equations of G. We can define the composite P;G× via the
distributive law:

λ :

g1 g2

= g2 g1

for each g1 and g2 in G. This yields the PRO – actually a †-PROP
– whose morphisms n→ n are a permutation on n followed by an
n-vector of elements of G. It’s easy to see that this construction
yields a functor P : Grp→ †-PROP. Notice that PG is again a
groupoid, and every morphism is unitary.

Example 2.5. A second cluster of examples, stolen shamelessly
from [25], provides the main structures of interest of this paper. Let
M denote the PROP of commutative monoids; it has two generators,

µ : 2→ 1 and η : 0 :→ 1, which we write graphically as and

, subject to the equations:

= = = (M)

We can define the PROP of cocommutative comonoids as C = Mop.
The generators are δ : 1 → 2 and ǫ : 1 → 0; the equations are
those of (M) but flipped upside down. We call these equations (C).
Bialgebras and Frobenius algebras combine a monoid and comonoid
in different ways; both can be built using distributive laws between
M and C.

Example 2.6. The PROP B of commutative bialgebras is con-
structed via a distributive law λB : M;C→ C;M generated by the
equations

= = = (B)

=



where the dashed box represents the empty diagram.

Example 2.7. The PROP F of Frobenius algebras is also defined
by distributive law, λF : C;M→ M;C, given by the equations:

= = = (F)

This is not the most general form of Frobenius algebra. More accu-
rately, F is the PROP of special commutative Frobenius algebras;
the last equation above is what makes them “special”. Throughout
this paper the reader should understand the term “Frobenius algebra”
to mean “special commutative †-Frobenius algebra”, usually ab-
breviated †-SCFA. Rosebrugh, Sabadini, and Walters call the same
structure a separable commutative algebra [28].

By defining the PROP F in Example 2.7 via the distributive
law λF we can see the following “Spider Theorem” [14], which
establishes a normal form for morphisms in the PROP F. In particu-
lar every morphism in F can be expressed as the composition of a
morphism in M followed by a term in C

Theorem 2.8 (Spider Theorem). Let f : m→ n be a morphism in
F; if the graphical form of f is connected then f = δn ◦ µm where

δ0 := ǫ δk+1 := (δk ⊗ idA) ◦ δ

and µm is defined dually.

With this in mind we define a “spider” m
n := δn ◦ µm as a

tree of m multiplies followed by a co-tree of n comultiplies. We can
view F as the category of spiders, where composition means fusing
connected spiders and removing any self-loops.

Remark 2.9. We note that all of these PROPs also have “seman-
tic” presentations: M to equivalent to FinSet, the skeletal cat-
egory of finite sets and functions, while B and F are equivalent
to Span(FinSet) and Cospan(FinSet) respectively. See [28]
and [25]. The spider theorem is equivalent to this last fact.

For any category T, one can view T+Top as a †-category, hence
in all of the above we may assume that δ = µ† and ǫ = η†. However
it is not always desirable to do so. Whether we view C;M as a PROP
or a †-PROP makes a difference when considering its algebras in
some other †-category. In the sequel we will ignore the †-structure
of B but will take F as the †-PROP of †-Frobenius algebras. In
particulat this means that a Frobenius algebra may be specified by
giving either its monoid part (µ, η) or its comonoid part (δ, ǫ).

3. The Standard Model

The combination of Frobenius and Hopf algebras arises naturally in
the study of quantum observables. In this section we present a class
of concrete examples that exist in every finite dimensional complex
Hilbert space. The starting point is this theorem of Coecke, Pavlovic,
and Vicary [15]:

Theorem 3.1. In fdHilb, (δ , ǫ ) is a †-SCFA on A iff

δ : |ai〉 7→ |ai〉 ⊗ |ai〉 ǫ : 1 7→ |ai〉 .

for some orthonormal basis {|ai〉}i of A.

For any coalgebra the elements copied by δ – the |ai〉 in the
theorem above – are called set-like. So given an orthonormal basis
|0〉 , . . . , |D − 1〉 for the Hilbert space CD we get a †-SCFA defined
as above, whose set-like elements are |n〉. We can construct another
Frobenius algebra by viewing this basis as the elements of the
additive group ZD and forming the group algebra:

µ : |n〉 ⊗ |m〉 7→ |n+m〉 η : |0〉 7→ 1

This is again a †-Frobenius algebra, although it is quasi-special [22]
rather than special: we have µ ◦ δ = D · id rather than the usual
“special” equation.

This pair of Frobenius algebras are pair-wise Hopf algebras (see
Def. 6.2) in the sense that (µ , δ ) is a Hopf algebra, as is (µ , δ ).

Remark 3.2. Any finite abelian group G determines such a tuple
(µ , δ , µ , δ ), see Table 1, which we will denote CG and call
the group algebra of G.

Such pairs of quantum observables are called strongly comple-
mentary [17] and are closely related to the Fourier transform [22].

Recall that the dual group G∧ of a finite abelian group G is the
set of group homomorphisms from G into the circle group of unit
complex numbers, with multiplication in G∧ computed point-wise.
We have G ∼= G∧, although this isomorphism is not natural. The
set-like elements of δ are in 1-1 correspondence with elements of
the group G∧, in particular, for a group character χ,

|χ〉 :=
∑

g∈G

χ(g) |g〉

is set-like for δ . Distinct |χ〉 , |χ′〉 are orthogonal, so by rescaling
we obtain an orthonormal basis, and via Theorem 3.1 a †-SCFA as
required. Moreover, in fdHilb every pair of interacting †-SCFAs is
of the form CG for a finite abelian group G [17].

Aside from providing some intuition for what a pair of interacting
Frobenius algebras might be, we will use these examples as a source
of counter-models to show that certain equations do not hold in the
syntactic PROPs we define in the main body of the paper. Most of
this holds for group algebras over arbitrary fields.

4. Frobenius Algebras and Phases

By Theorem 3.1, every Frobenius algebra in fdHilb corresponds
to a non-degenerate quantum observable: the set-like elements of
the coalgebra are the eigenstates of the observable. In this concrete
setting, the maps which fix a given observable are of great interest;
we call them phases. Before developing this idea in the abstract
setting we will recall some properties of F-algebras.

Let A be an F-algebra in some category C; we let δ, µ etc stand
for their images in C. The following proposition follows from the
Spider Theorem.

Proposition 4.1. The PROP F is †-compact [23], with all objects
self-dual.

Proof. Let d = 0
2 = and e = d†. Then

= =

by the spider theorem, which makes 1 self-dual; the required cup
and cap for the other objects can be easily constructed (although see
[31] for the coherence conditions) to make all of F compact. For
†-compactness, we require

( )† =

which again follows from the spider theorem.

Obviously, compactness of F implies that any F-algebra is also
compact, in particular the inclusion of F into another PROP. Given
a map f : A → A, we can construct its “ -transpose”, by
conjugating with d and e:

f = f



Table 1. Complex Group Algebra (e the group identity)
Hopf Hopf

Frobenius µ :: |n〉 ⊗ |m〉 7→ |n+m〉 δ :: |n〉 7→
∑

m+m′=n

|m〉 ⊗ |m′〉

η = |e〉 ǫ = 〈e|
Frobenius δ :: |n〉 7→ |n〉 ⊗ |n〉 µ :: |n〉 ⊗ |m〉 7→ |n〉 if g = h, 0 otherwise

ǫ =
∑

n∈G

〈n| η =
∑

n∈G

|n〉

The -transpose extends to an involutive contravariant functor on
any F-algebra A, and since F is †-compact, the adjoint and the
-transpose commute, and hence we can define a covariant involution,
the -conjugate:

f = (f†) = (f )† .

We say that f is -real if f = f , or equivalently if f† = f .
Evidently, the defining maps of the Frobenius algebra are -real,
as is the symmetry of the monoidal structure, hence in F itself
f† = f for all f . This is not true for F-algebras in general.

Before moving on we state a useful lemma.

Lemma 4.2. If a morphism f commutes with both the monoid and
comonoid parts of a Frobenius algebra, then it is invertible and
f−1 = f .

We are now ready to develop the abstract theory of phases.

Definition 4.3. A pre-phase for the †-SCFA (A, δ, µ) is a map
α : A→ A which acts as a strength for the multiplication:

α
=

α
(Φ)

A pre-phase is a phase if it is unitary.

Definition 4.4. Let ψ : I → A and define Λ(ψ) : A→ A by

Λ(ψ) : ψ 7→ µ ◦ (ψ ⊗ id)
ψ
7→

ψ
.

It follows immediately from this definition that Λ(ψ) is a pre-
phase. If Λ(ψ) is in fact a phase, then we say that ψ is -unbiased.

Lemma 4.5. Let α : A → A be a phase. Then there exists
ψ : I → A such that

1. α = Λ(ψ);

2. α = α;

3. α† = Λ(ψ );
4. µ(ψ ⊗ ψ ) = η.

Proof. Let ψ = α ◦ η; the rest follows by elementary diagram
manipulations.

Corollary 4.6. If α is a phase, then so is α†.

Lemma 4.7. Let Φ denote the set of phases, and U denote the unbi-

ased points; then (Φ, ◦, id, ()†) and (U , µ, η, () ) are isomorphic
abelian groups.

We will now consider the †-PROP which is generated by a †-
SCFA with a prescribed group of phases i.e. where (Φ, ◦, id, ()†) ∼=
G for some abelian group G. As in example 2.4, given the abelian
group G we can construct the PROP PG. We might then hope
to compose the PROPs F and PG using a distributive law [25],

but this is impossible. However, we can form the desired PROP
via an iterated distributive law [12] To combine F and PG we
compose the PROPs M, C and PG pairwise via distributive laws;
these distributive laws interact to yield the desired PROP.

Lemma 4.8. 1. The PROPS M and PG can be composed via
a distributive law σ : PG;M → M;PG, yielding a PROP
presented by the equations of M + PG and equation (P1);

g h
=

gh
(P1)

2. The PROPs C and PG can be composed via a distributive
law ρ : C;PG → PG;C, yielding a PROP presented by the
equations of C + PG and equation (P2).

g h
=

gh
(P2)

Recall that the PROP F is defined by a distributed law λF :
C;M→ M;C (Example 2.7).

Theorem 4.9. The distributive laws λF , ρ and σ form a distributive
series of monads [12], and hence determine a PROP FG presented
by the equations of M + PG+ C and equations (P1), (P2) and (F).

Note that every F-algebra has a group of phases, although it
may be the trivial group. We now construct the PROP of Frobenius
algebras with a given phase group G. Take any abelian group G and
consider the †-PROP PG as earlier; then the distributive laws ρ, σ
and λF allow us to define the functor.

F : Ab→ †-PROP .

For example F1 is the original PROP of Frobenius algebras F.
The PROPs F and PG embed in FG, and equation (P1) ensures

that the morphisms 1→ 1 in PG are phases for the †-SCFA i.e. that
they satisfy equation (Φ).

Corollary 4.10. Let f : n→ n′ in FG; then

f = n
∇
- m

g
- m

∆
- n′

where∇ : n→ m is in M, ∆ : m→ n′ is in C, g : m→ m is in
G×and m ≤ n, n′.

Note that FG-algebras (i.e. models of FG) may have many more
phases than those from G. For a given FG algebra we will denote
the full group of phases Φ, of which G is necessarily a subgroup.
Just as FG generalises F, Corollary 4.10 lets us generalise the Spider
Theorem.

Theorem 4.11 (Generalised Spider). Let f : A⊗m → A⊗n be a
morphism built from δ, ǫ, µ, η, and some collection of phasesαi ∈ Φ
by composition and tensor; if the graphical form of g is connected



then f = δn ◦ α ◦ µm where

α = α1 ◦ · · · ◦ αk

Therefore a Frobenius algebra and its group of phases generate
a category of Φ-labelled spiders. Composition is given by fusing
connected spiders and summing their labels.

In particular, if n = n′ = 1 in the above then f is either a
phase map or a “projector” φ ◦ ψ† for a pair of unbiased points
φ, ψ : 0→ 1. The following is a consequence of Theorem 4.11.

Lemma 4.12. Suppose f : n→ n is unitary in FG; then f ∈ PG.

5. Two Frobenius Algebras

We briefly consider the structure of the free †-PROP FG+ FH , i.e.
the case of two non-interacting Frobenius algebras.

Notation We will adopt the convention that elements in image of
the first injection (i.e. from FG) are coloured green and the elements
in the second (FH) are coloured red. In practice, the colour we call
“green” may be light grey, and “red” may be dark grey depending
how you read this document.

Morphisms of FG+FH are alternating sequences of morphisms
from FG and FH; i.e. f = g1 ◦ h1 ◦ g2 ◦ h2 ◦ · · · ◦ gn ◦ hn where
gi ∈ FG and hj ∈ FH . Although no equations force the two
components to interact, the spider theorem holds separately in each
colour, hence any morphism can be reduced to a 2-coloured graph,
and any 2-coloured (self-loop free) graph is valid morphism. The
following is a consequence of Lemma 4.12.

Lemma 5.1. Let u : n→ n be unitary in FG+ FH; then u is in
PG+ PH .

As a special case of the above, if u : 1 → 1 is unitary, it is an
element of the free product of groups G ∗H . However, unlike in
FG this group structure is not reflected back to the points, since we
have to choose between µ and µ for the multiplication, and the
wrong colour merely generates the free monoid on G rather than
reproducing the group structure.

In FG+ FH we have two distinct transposition and conjugation
operations which do not coincide, i.e. f 6= f .

Lemma 5.2. Let f : n→ n be a morphism in F1 + F1; then f is
-real iff it is green and -real iff it is red.

Corollary 5.3. In F1 + F1, f = f implies f ∈ P1.

6. Interacting Frobenius Algebras

The notion of two observables being complementary is central to the
theory of quantum mechanics. In categorical quantum mechanics
strong complementarity is characterised by a pair of Frobenius
algebras jointly forming a Hopf algebra [16].

We now impose some equations on FG+ FH governing their
interaction. We want FG and FH to jointly form a bialgebra so we
impose:

= = =

(B)
We call the resulting structure a Frobenius bialgebra: the pairs
(δ , µ ) and (δ , µ ) †-SCFAs, while the pairs (δ , µ ) and
(δ , µ ) are bialgebras.

Remark 6.1. This definition differs from the usual one by the
presence of the scalar factor ǫ η in the equations, and the omission
of the equation:

= (B’)

In [16] this structure is called a scaled bialgebra. The usual definition
can be restored by imposing (B’). Space does not permit a full
discussion of the scalars but note that equation (B’) is not true in the
standard model CZD . However, having belaboured the point that
the scalars are needed, we henceforward omit them in the name of
clarity – they can always be restored if needed: see Backens [4].

Definition 6.2. A bialgebra on A is called a Hopf algebra if there
exists s : A→ A, called the antipode, satisfying the equation

s = (H)

Definition 6.3. Let (δ , ǫ , µ , η ) be a Frobenius bialgebra as
above; define the antipode s as

s = :=

Theorem 6.4. The morphisms (δ , ǫ , µ , η ) form a Hopf alge-

bra if and only if η = (ǫ ) and ǫ = (η ) , i.e.

= = (+)

Remark 6.5. In the original paper on interacting quantum observ-
ables [16] the condition “ -classical points are -real” formed
part of the definition of complementarity; equation (+) is a weaken-
ing of this condition.

Equation (+) can be stated in purely Hopf algebraic terms as

= = ,

however the given version emphasises that it is an interaction of
the red and green monoid structures, but not a complete distributive
law. Indeed, as we shall see later, there is no general distributive law
of FG over FH . We are forced to define the PROP of interacting
Frobenius algebras as a quotient.

Definition 6.6. Let IF(G,H) be the PROP obtained quotienting
FG+ FH by the equations (B+). This gives a functor IF : Ab×
Ab→ †-PROP.

Whenever the groups G and H are obvious or unimportant, we
abbreviate IF(G,H) by IF.

Example 6.7. The group algebras CZD described in Section 3
are IF(ZD,ZD)-algebras. Indeed, the same group algebras are

models of IF(TD−1, TD−1), where Tn is the n-torus, i.e. the n-
fold product of circles. For D = 2 this yields the usual model of the
ZX-calculus.

IF contains two copies of the PROP of bialgebras: B generated by
(δ , µ ) and Bop by (δ , µ ). By Theorem 6.4 IF also contains two
Hopf algebra structures. Let HA be the subcategory generated by B
and s, and define HAop dually. Note that we have an isomorphism
HA ∼= HAop via the dagger.

Proposition 6.8. Let s be the antipode of a commutative Hopf
algebra H; then

1. s is the unique map satisfying (H);

2. s is a bialgebra morphism;

3. s ◦ s = id ;



4. Let K be a commutative Hopf algebra with antipode s′; then for
any bialgebra morphism f : H → K we have f ◦ s = s′ ◦ f

These are standard properties (see [34]) which lead immediately
to the following.

Corollary 6.9. Let s be as defined in 6.3; then:

1. s is a self-adjoint unitary

2. s = (s) = (s)

Remark 6.10. Since the Hopf algebra is built out of †-Frobenius
algebras, and s = s†, we know that s is also the antipode for the
opposite bialgebra.

Corollary 6.9 implies that the antipode commutes with all of the
structure in of IF(1, 1). This forces the two transpositions to interact
in a variety of unexpected ways.

Lemma 6.11. For any f : n→ m we have f = f .

Proof.

f = (s⊗m) ◦ f ◦ (s†
⊗n

) = (s†
⊗m

) ◦ f ◦ (s⊗n) = f .

Corollary 6.12. 1. If f commutes with s then f = f ;

2. If f commutes with s then f is -real iff it is -real;

3. If f is both -real and -real then it commutes with s.

Proof. 1.

f = f =

f

= f

2. Suppose f† = f , then by the above f = f = f† = f
The converse holds by the same argument.

3. Suppose f is -real and -real; then f = f = sfs
which gives the result by Corollary 6.8.3.

Corollary 6.13. Suppose k : 0→ 1 is -real, and let h = Λ (k).
Then

1. s ◦ k = k , and

2. s ◦ h ◦ s = h†.

Proposition 6.14. In IF(1, 1) f = f = f† for all morphisms f .

Proof. The generators of IF(1, 1) are real in their own colour, and
as noted above s commutes with all the generators of the PROP;
hence the result follows by Corollary 6.12.

Given a pair of bialgebras (A,µA, δA) and (B,µB , δB), the
collection of morphisms A → B becomes a monoid under the
convolution product where f + g := µB ◦ (f ⊗ g) ◦ δA, and the
unit is ηA ◦ ǫB .

In particular the endomorphisms of the bialgebra (δ , ǫ , µ , η )
carry this monoid structure.

Proposition 6.15. Let f be a bialgebra morphism, and s the
antipode; then for all g, h : A→ A we have:

1. f ◦ (g + h) = (f ◦ g) + (f ◦ h) ,

2. (g + h) ◦ f = (g ◦ f) + (h ◦ f) , and

3. f + (f ◦ s) = 0 .

Lemma 6.16. If f and g are bialgebra morphisms then so is f + g.

Hence the bialgebra morphisms of (δ , ǫ , µ , η ) form a
unital ring R, with multiplication given by composition, and where
the additive inverse is given by composing with s.

Define n : A→ A by

0 := n+ 1 = n

for all n ∈ N. Accordingly we refer to the morphisms n ∈ Z as the
internal integers. Applying the bialgebra law and the spider theorem
respectively we have:

n

m
= nm and n m = n+m

Further, n is a bialgebra morphism for (δ , ǫ , µ , η ).

Example 6.17. In the group algebra CZ3 the internal integers are
given by the following matrices:

0 =





1 0 0
1 0 0
1 0 0



 1 =





1 0 0
0 1 0
0 0 1



 2 =





1 0 0
0 0 1
0 1 0





There are no others; see Section 8 for discussion.

Lemma 6.18. Let α be a phase of either colour in IF(G,H); then
α is bialgebra morphism iff α = id.

Since the non-trivial phases can never be bialgebra morphisms,
we restrict our attention to IF(1, 1) for the rest of this section.

In any PROP, given a monoid (µ, η) on 1, a monoid on 2 can be
defined using the tensor:

µ2 := η2 :=

and similarly for a comonoid (δ, ǫ). It is easy to check that
if (δ, ǫ, µ, η) is a bi-, Hopf, or Frobenius algebra then so is
(δ2, ǫ2, µ2, η2). Continuing in the same way, there is a Hopf algebra
on every object n of HA. Therefore all the preceding discussion
applies equally well to bialgebra morphisms n→ m for any n and
m. In particular all the generators of HA are bialgebra morphisms,
which yields:

Lemma 6.19. Every morphism in HA is a bialgebra homomor-
phism for (δ , µ ).

Thanks to †-duality, any bialgebra morphism for f ∈ HA gives
a bialgebra morphism f† ∈ HAop, so we also have an isomorphic
opposite ring Rop, complete with opposite integers n†. None of
the equations of IF forces these structures to interact: there is no
commutation of δ and δ for example. However, if we restrict
attention to the invertible morphisms of IF(1, 1) we can make some
progress.

Lemma 6.20. If f is an invertible bialgebra morphism then f−1 is
also a bialgebra morphism.

Lemma 6.21. Let f : n → n be a bialgebra morphism, and
suppose that f ′ ◦ f = f ◦ f ′ = id for some morphism f ′ : n→ n,

which is both -real and -real; then f ′ = f†.

Proof. By uniqueness of inverses in monoids it is enough to show
that (−f ′) + f† = 0.



f
f ′

=
f

f ′

=
f f f ′

=
f f f ′

=
f f

f ′

=

f

=

f

=

f

=

f

=

f

=

f

by a similar argument we obtain

f
f ′

=

f

It is easy to see the following

f

=

f

⇒
f

=

and hence, (−f ′) + f† = 0 as required.

Theorem 6.22. Let f ∈ IF be an invertible morphism; if f ∈ HA
then f is unitary.

Proof. By proposition 6.14, all morphisms in IF(1, 1) are -real
and -real, so in particular f−1 is. Since f ∈ HA it is a bialgebra
morphism. Hence the result follows from Lemma 6.21.

Combining the preceding result with Lemma 6.20 shows that the
invertible elements of the rings R and Rop must coincide. However,
we can do better by appealing to this theorem of Bonchi et al:

Theorem 6.23. [9, Prop. 3.7] Let MatR denote the category of
matrices valued in the ringR; then HA ≃ MatR is an isomorphism
of PROPS.

Theorem 6.24. Let f ∈ IF be invertible; then f ∈ HA iff
f ∈ HAop

Proof. By Theorem 6.22 f−1 = f† ∈ HAop. However by Theorem
6.23 the inverse of an R-valued matrix is again an R-valued matrix,
hence f−1 ∈ HA

Remark 6.25. A priori there are no invertible elements of R other
than the identity and the antipode in IF(1, 1). However, when we
consider the finite dimensional collapse of IF in Section 8 the this
will no longer be true. (By Lemma 6.18 it suffices to consider
IF(1, 1).)

7. Set-like elements and classical maps

Recall that ψ : I → A is called set-like (also called group-like or
classical) for the coalgebra δ : A → A ⊗ A if δ(ψ) = ψ ⊗ ψ.
Set-like elements of a †-SCFA correspond to the eigenstates of
an observable in quantum mechanics, hence they are of great
importance for applications. They have many useful properties,
which we now explore.

The following is standard; see [35].

Lemma 7.1. Let (µ, δ, η, ǫ) be a bialgebra; then:

1. η is set-like.

2. If ψ and ϕ are set-like then µ(ψ ⊗ ϕ) is set-like.

3. If this bialgebra is a Hopf algebra with antipode s then µ(ψ ⊗
(s ◦ ψ)) = η.

Hence the set-like elements form a monoid for every bialgebra and
a group for every Hopf algebra.

In an IF-algebra we have two coalgebras, and hence two ways
to be set-like. Call an element -set-like if it is set-like for δ , and
similarly for δ .

Lemma 7.2. Let k be a -set-like element in some IF-algebra;
then k is -unbiased iff it is -real.

Proof. If k is -real, we have s ◦ k = k , hence by Lemma 7.1.3
we have η = µ (k ⊗ (s ◦ k)) = µ (k ⊗ k ) which implies k is

-unbiased by Lemma 4.5. Conversely, if k is -unbiased then,
by Lemma 7.1 and the uniqueness of inverses, we have s ◦ k = k
from which k† = k follows.

Remark 7.3. Again, this clarifies the “classical points are real”
assumption of [16] – in that work -set-like elements are separately
assumed to be both -real and -unbiased. In vector space models,
k being -real means that all its matrix entries are real when
written in the orthonormal basis defining ; this seems a very
natural property to demand of the basis vectors themselves! However
there is no a priori reason why this should coincide with being
-unbiased; it is surprising that these properties are axiomatically
equivalent.

Corollary 7.4. Let δ and δ be a pair of interacting †-SCFAs
and suppose that the -set-like elements are also -real, for
∈ { , }; then -set-like elements form a subgroup of the

-unbiased points and vice versa.

By Lemma 4.5 we know that each -unbiased point α deter-
mines a -phase Λ (α). Phases that are constructed from -set-
like points are called -classical. It follows immediately from
Corollary 7.4 that the -classical maps form a subgroup of the

-phases.



Lemma 7.5. No -phase can also be -classical.

Proof. If k : I → A is -set-like then Λ (k) = k ◦ k , which is
a projector, hence not unitary and therefore not a phase.

Bearing Lemmas 7.2 and 7.5 in mind we wish to consider
interacting Frobenius algebras where we have a given subgroup
of phases for one colour which are classical for the other.

Definition 7.6. Let GK and HK be subgroups of abelian groups G
and H respectively. Define the †-PROP IFK(G ≥ GK , H ≥ HK)
as the quotient obtained by imposing on IF(G,H) the equations

h

=
h h

g

=
g g

(IFK)

for each g ∈ GK and each h ∈ HK .

Remark 7.7. Note that in complex Hilbert space models we must
have HK

∼= GK but there are concrete models in which this is not
the case. For example, consider the group algebra of Z4 over the
reals. The -set-like elements correspond to the elements of Z4 but
the -set-like elements correspond with the group homomorphisms
Z4 → R

×, of which there are only two. Hence as groups the set-like
elements for the respective colours are not isomorphic.

Lemma 7.8. If h : 1→ 1 is -classical then it commutes with δ
and µ .

In the †-PROP IF(G,H), by definition the only phases for the
respective colours are G and H . However, the presence of classical
maps in IFK(G ≥ GK , H ≥ HK) changes this.

Theorem 7.9. Let α be a -phase and k a -classical map then

k ◦ α ◦ k† is a -phase.

Proof. By its construction k ◦ α ◦ k† is evidently unitary. We need
to show that it is a pre-phase. Consider

α

k
=

k

α

=

k

α

=

k

k

α

hence we have

α

k

k

=

α

k

as required.

While Lemma 7.5 tells us that the -phases and -classical
maps are disjoint as groups, there is a degree of interaction between

-phases and -classical maps: the classical maps act on the phase
group, to produce new phases.

Lemma 7.10. ForHK the group of -set-like elements and Φ the
group of -phases, there is a group action • : HK × Φ → Φ .

k • α =

α

k

for α ∈ Φ and k ∈ HK

Theorem 7.11. The set of morphisms obtained by freely compos-
ing -phases and -classical maps is a group isomorphic to
Φ ⋊ϕ HK , the (outer) semidirect product of Φ and HK over the
action •.

We end this section with an important lemma which relates the
ring structure and the classical maps.

Lemma 7.12. Let n ∈ R be an internal integer, and k : A → A
be a -classical map then n ◦ k = kn ◦ n.

Proof.

· · ·

k

n =
· · · kk k
n

=
· · ·

kn

n

8. Collapse to finite dimension

It is well known that if a vector spaceA supports a Frobenius algebra
then A must be finite dimensional. As the last part of our story we
incorporate this fact into our axiomatic framework. Recall that in a
monoidal category an object A is said to have enough points if, for
all morphisms f, g : A→ B, we have

(∀x : I → A, fx = gx)⇒ f = g .

In vector spaces an even stronger form of extensionality is present:
two linear maps are equal if they agree on all elements of a basis for
the space. Further, we have the following:

Lemma 8.1. Let k be a field,A a k-vector space, and δ : A→ A⊗
A a coalgebra. The set-like elements of δ are linearly independent.

Proof. See [34, Proposition 7.2].

This motivates the following definition.

Definition 8.2. Let A be an IFK(G ≥ GK , H ≥ HK)-algebra;
then A has enough -set-like elements if

(∀k ∈ HK : f ◦ k ◦ η = g ◦ k ◦ η )⇒ f = g (*)

holds for all f, g : A→ B.

By lemma 8.1 it follows that an IFK-algebra in Vectk has enough
-set-like elements iff the -set-like elements form a basis. This

suffices to determine δ uniquely, while the group structure of HK

determines µ , and the whole thing is just the group algebra kHK ;
cf. Section 3. The dimension of the underlying vector space A is
then |HK |.

Since arguments that depend on having enough set-like points
are quite common in the categorical quantum mechanics literature,
we impose this condition to define the final PROP of this paper.
Note, per Remark 7.7, asking for both GK and HK to be enough
points is too strong, so we just pick one.

Definition 8.3. Let IFKd(G ≥ GK , H ≥ HK) denote the †-
PROP obtained by quotienting IFK(G ≥ GK , H ≥ HK) by the
equation schema (*) above; this has the effect of ensuring that IFKd

has enough -set-like elements.

Recall that the exponent of a finite group is the least non-zero n
such that gn = 1 for all g.



Theorem 8.4. Suppose HK is finite, and let d be its exponent; then
in IFKd the internal integers are the finite ring Zd.

Proof. Applying lemma 7.12 we have

k

d+ 1

=
d+ 1

kd+1

=
kd+1

= k ,

for each k ∈ Hk. Since HK is enough points, d+ 1 = id, from
whence n = n+ d for all internal integers n ∈ R.

The following observation follows directly from Theorem 8.4
and Lemma 6.21.

Corollary 8.5. If n ∈ Zd has a multiplicative inverse then n ∈ Z

is unitary. In particular, if the group HK has prime exponent then
every non-zero internal integer n ∈ R is unitary.

Theorem 8.6. Let d be the exponent of HK and n ∈ R be an
internal integer then the following are equivalent:

1. d and n are coprime.

2.

n

= n n and n =

3.
n

=
n n

and n =

Proof. (1)⇒ (2) and (3): The integers n and d are coprime iff n
is invertible in Zd, in which case n ∈ R is invertible. By Theorem
6.24, the invertible members ofR andRop coincide. Since n ∈ Rop

it is a bialgebra morphism for Bop which implies both (2) and (3).
(2) ⇒ (1): Since n ∈ R it commutes with (µ , η ), by

assumption it commutes with (δ , ǫ ); hence it is a Frobenius
algebra morphism, and by Lemma 4.2 it is invertible in R; hence n
is coprime to d.

(3)⇒ (1) follows by the same argument as above.

In the case where HK has prime exponent, this theorem demon-
strates the kind distributive equation between HA and HAop con-
spicuously absent from Section 6. Indeed equations of this type take

part in the distributive law used to construct the PROP IH
Sp
R in [9].

However, as we now see, such a law is not possible in our more
general setting.

Theorem 8.7. There is no distributive law of PROPs

τ : FG;FH → FH;FG

such that FH;FG is isomorphic to IF(G,H).

Proof. If such distributive law exists then for every composable pair

n
g1
- l

h1
- m

in FG;FH , there must exist an equal composable pair

n
h2
- k

g2
- m

in FH;FG. Consider the case n = l = m = 1; then g1 and h1

are just group elements from G and H respectively. Applying the

Generalised Spider theorem in FH and FG separately, we must
have

g1

h1

τ
= k

· · ·
=

h2

g2

k
· · ·

=

h2

g2

k

for some g2 ∈ G and h2 ∈ H . From this we have

g†2h1g1h
†
2 = k

The lefthand side is always unitary, but the righthand side is unitary
iff k is invertible in the internal integers R; hence by an appropriate
choice of model—choose R = Zk for example—this equation does
not hold.

Remark 8.8. Note that even if we restrict to our attention to the
case whereR is a field, then the phase groups provide an obstruction
to a distributive law. For example, consider the standard model of
IFKd(S

1,Z2, S
1,Z2) over the complex numbers. In this model

the unitaries generate the group SU(2); if the distributive law
held it would imply that each u ∈ SU(2) could be expressed as
two orthogonal rotations, rather than the known three of Euler’s
decomposition.

9. Conclusions and future work

In this paper we have described a sequence of PROPs based on
stronger and stronger interactions between a pair of Frobenius
algebras augmented with phase groups. At each step another feature
of quantum mechanics is introduced, approaching closer to the full
theory. Since each PROP is parameterised by the phase groups, we
can view them as freely constructed quantum-like theories with the
given dynamics. Further, we have shown that, unlike the case of
interacting Hopf algebras [9], such theories arise via distributive
laws of PROPs only in special circumstances.

Comparison to “Interacting Hopf algebras”. The similarities
between our system and that of Bonchi, Sobocinksi, and Zanasi
[9] are striking. Taking the Frobenius structure as primitive yields
almost the same theory as starting with the Hopf structure, and
requires fewer axioms to be imposed. The main extra ingredient
in IF are the phase groups, which play rather badly with the Hopf
algebra structure as Lemma 6.18 shows; we will ignore them and
focus on IF(1, 1). Unlike in IF, all the PROPs of [9] have trivial
scalars; this forces the generating object to be 1-dimensional.

As noted in Section 6, IF contains both HA and HAop; however
it does not validate any of the axioms concerning the invertibility of
the ring elements, nor their commutation with the “wrong” bialgebra
maps5. Here Bonchi et al rely on the assumption that R is a PID.
However this assumption fails in, e.g., CZ4 which is a perfectly good
model of IF. However, in prime dimensional models, Corollary 8.5
implies that these axioms are validated, hence:

Theorem 9.1. Every IFKd algebra of prime dimension includes

a copy of IH
Sp
Z

, where Z denotes the internal integers, and this
coincides with the image of IF(1, 1), modulo scalar factors.

Comparison to ZX-calculus. The main inspiration for this ap-
proach is the ZX-calculus. Writing S1 for the circle group, the
PROP IFKd(S

1,Z2, S
1,Z2), contains all the elements and most of

the equations of the ZX-calculus, but there are some key differences.

5 to wit: (W1), (W7), (W8), (B1), (B7), (B8), (S1) and (S2).



Firstly, S1 is the entire phase group i.e. no new phases are gener-
ated by the action of Z2. Secondly, the ZX-calculus incorporates
the Hadamard gate, which is a definable map which exchanges the
colours. In consequence, the sets of - and -unbiased points
are not disjoint in the ZX-calculus. We will explore necessary and
sufficient conditions for such a map to exist abstractly in future
work; a connection with Gogioso and Zeng’s [22] seems likely.

Further work Many interesting algebraic properties of IF and
its relatives remain unexplored: most notable is role of the semi-
direct product in the phase group (Theorem 7.11), and the possibility
to define Hadamard transforms purely abstractly. A tempting next
phase of development would to investigate topological features,
by considering the case of Lie groups. Finally we note that in the
models of the ZX-calculus (although not derivable) we have the Euler
decomposition for SU(2) giving every unitary as a composition of
at most three unitaries. An abstract understanding of this would be
most valuable.
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