92 research outputs found

    Congruence from the Operator's Point of View: Compositionality Requirements on Process Semantics

    Get PDF
    One of the basic sanity properties of a behavioural semantics is that it constitutes a congruence with respect to standard process operators. This issue has been traditionally addressed by the development of rule formats for transition system specifications that define process algebras. In this paper we suggest a novel, orthogonal approach. Namely, we focus on a number of process operators, and for each of them attempt to find the widest possible class of congruences. To this end, we impose restrictions on sublanguages of Hennessy-Milner logic, so that a semantics whose modal characterization satisfies a given criterion is guaranteed to be a congruence with respect to the operator in question. We investigate action prefix, alternative composition, two restriction operators, and parallel composition.Comment: In Proceedings SOS 2010, arXiv:1008.190

    Discrete time process algebra

    Get PDF

    On the equivalence covering number of splitgraphs

    Get PDF

    Point-free substitution

    Get PDF

    An isotopic invariant for planar drawings of connected planar graphs

    Get PDF

    Ups and downs of type theory

    Get PDF

    Behavioural hybrid process calculus

    Get PDF
    Process algebra is a theoretical framework for the modelling and analysis of the behaviour of concurrent discrete event systems that has been developed within computer science in past quarter century. It has generated a deeper nderstanding of the nature of concepts such as observable behaviour in the presence of nondeterminism, system composition by interconnection of concurrent component systems, and notions of behavioural equivalence of such systems. It has contributed fundamental concepts such as bisimulation, and has been successfully used in a wide range of problems and practical applications in concurrent systems. We believe that the basic tenets of process algebra are highly compatible with the behavioural approach to dynamical systems. In our contribution we present an extension of classical process algebra that is suitable for the modelling and analysis of continuous and hybrid dynamical systems. It provides a natural framework for the concurrent composition of such systems, and can deal with nondeterministic behaviour that may arise from the occurrence of internal switching events. Standard process algebraic techniques lead to the characterisation of the observable behaviour of such systems as equivalence classes under some suitably adapted notion of bisimulation
    • ā€¦
    corecore