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Abstract 

An equivalence graph is a disjoint ulllon of 
cliques. For a graph G let eq( G) be the 
Ininimll111 number of equivalence subgra,phs 
of G needed to cover aU edges of G. We 
call eq(G) the equivalence covering number 
of G. We show that the equivalence cover· 
ing number for splitgraphs can be approxi· 
mated within an additive constant 1. "Ve also 
show tha.t obta.ining the exa.ct value of the 

equivalence number of a splitgraph is an NP· 
hard problem. Using a· similar method we also 
show that the computation of the equivalence 
number remains NP·complete for graphs with 
Inaxilllnll1 degree 6 and with 111axinul1l1 clique 
number 4. 

1 Introduction 

Definition 1 An equivalence graph,s a vel" 
tex disjoint union of clique8. An equivalence 
covering of a graph G is a family of equiva· 
lence slI.bgraI'h8 of G sllch that every edge of G 
is an edge of a.t least one member of the fam· 
ily. The equivalence covering number of G, 
denoted by eq(G), i8 t.he minimllm umlinality 

of all equivalence covering8 of G. 

·Email: aartbCOwin.tue.nl 
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The equivalence covering number was stud· 
ied first in [2J. Interesting bounds for the 
equivalence covering number jn terms of max
imal degree of the complement were obtained 
in [lJ. In this note we mainly consider the 
computation of the equivalence covering num· 
bel' of splitgraphs. We first show an approx· 
imation within an additive constant 1. Then 
we show that obtaining the exact value is an 
NP·hard problem. 

Definition 2 A graph G = (V, E) is a split 
graph, if the're i8 a. partition V = S + K of its 
vate:c set into ({. 8/.able 8et S and a clique K. 

There is no restriction on edges between ver
tices of S' and vertices of J(. Notice that in 
general the partition into S' and K need not be 
unique. Splitgraphs are exactly those graphs 
which, together with their complements, are 
chordal. For more general information on 
splitgraphs we refer to [4J. 

2 Approximation 

In this sect.ion we show that the equivalence 
covering number of a. splitgraph can be ap· 
proximated wit.hin an additive constant l. 
Consider a. partition V = 5' + K of the vertex 
set into an independent set 5' a.nd a clique K. 
For a vertex x in J( let 8( x) be the number of 
neighbors of x; in S. Let L'1 = max{8(x) I x E 
K}. 

Lemma 1 eq(G) ~ L'1. 



Proof. Consider a vertex '" E ]( with o( x) = 
.6. and its neighbors in S. This is a· ](1.'" 

induced subgraph of G. This induced sub
graph has equivalence covering number .6., 
since ea.ch equivalence graph in the cover
ing can have only one edge. This proves the 
lemma. 0 

Lem ma 2 eq( G) ::; .6. + 1. 

Proof. Let YI, ... ,y, be the vertices of S. For 
each vertex x in Ii.." consider a.n a.rbitrary or
dering of its neighbors in S. For i = 1, ... ,.6. 
define the equivaleuce graph Gi as follows. 
Gi is t.he disjoint. union of cliques Hii .} = 
{Yj} U {x E ]( I the ith neighbor of x is Yj}. 
for j = 1, ... , t. It is easy to check t.hat 
the cliques lVi.;i for j = 1, ... , tare all dis
joint. We define one more equivalence graph 
G "'+1 consisting of the clique ](. Obviously, 
this gives an equivalence covering with .6. + 1 
equivalence graphs. 0 

The approxima.tion given in Lemma 2 can be 
computed in linear tilne. This proves the fol
lowing theorem. 

TheorelTI 1 There eX£8ts a linear time 01(/0-

rithm to compute an equivalence covering of 
a splitgmph G with a.t most eq( G) + 1 equiva
lence graphs. 

Remark 1 Notice tha.t, in case the splilgl'Oph 

is a. threshold gra.ph (see, e.g., [4)). its eljviva
fence nu.mber cw{' easily be computed e:fflctly. 

3 NP-completeness 

We use a reduction from EDGE-COLORING. 

The chromatic index of a. graph G, denot.ed 
by X'(G), is t.he number of colors required to 
color the edges of t.he graph in such a way t.hat 
no t.wo adjacent. edges have the same color. 
By Vizing's theorem (see, e.g., [3]) the clll'o
matic index is eit.her dol' d + 1, where d is the 
lllaxinlUll1 vertex degree. 
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Notice that, in general, the chromatic index 
is an upperbound for the equivalence covering 
!lumber. Also, these parameters coincide for 
t.riangle-free graphs. It follows that, for bipar
tite graphs, the equivalence covering number 
equals the maximum degree. Unfortunately, 
for split.graphs the bound is not of much use, 
which is illustrated by a clique. 

It. is by now well-known that it is NP
complete to determine the chromatic index of 
an arbitrary graph [.5, 6J. Holyer [5J obtained 
the following result.. 

Theorem 2 It. i8 NP-complete to determine 
whethe!' the chroma/.ie index of a cubic graph 

i.< S or "I-

Consider a cubic graph G and construct a 
graph H as follows. For each edge e of G 
introduce a. He\V vertex Xe and make this ad
jacent to the two end vertices of e. We call Xe 

the .special vertex a.t. e. 

Lemma 3 X'(G) = 3 {} eq(H) = 3. 

Pmof. First. assume X'(G) = 3. Notice that 
eq(H) ~ 3 since II has an induced ](1,3 sub
graph. (If p is a vertex of G incident with 
edges e, f and 9 in G'~ then {p,xe,xj,xg } in
duces a 1(1.3 in 11.) Consider an edge coloring 
of G with three colors. For each color class de
fine an equivalence graph as follows. For each 
edge in that. color class, the triangle consist
ing of the edge and the special vertex at that 
edge is a clique of the equivalence graph. It is 
easy t.o check that. t.his defines an equivalence 
covering with three equivalence graphs. 

Nmv a.ssume If ha.s an equivalence covering 
with three equivalence graphs 11], Hz and 113 . 

We cla.im that no triangle of G is contained in 
a clique of one of the equivalence graphs. As
Stl me, by way of contradiction, that {a, b, c} is 
a. triangle of G which is contained in a clique 
of 111 , Vertex o. is adjacent to three special 
vertices, sa.y '"I, X2 a.nd X3. Then each of 
the edges ({/., :vil is contained in a clique of an 
equivalence gra.ph, and no two are in a clique 
of the same equiva.lence gra.ph. Without loss 



of generality we may assume that ((l, Xi) is 
contained in a. clique of Hi. But then HI can
not contain the triangle {(l, b, c} since XI has 
degree two and hence the clique cont.aining (l 
and Xl ca·ll have at nlost two vertices of G. 

We can color the edges of G as follows. If 
the edge e is contained in a clique of IIi then 
we give it color i. (If e is contained in cliques 
of more than one equivalence graph, we can 
choose one arbitrarily). By the remark above 
this gives a correct edge-coloring with three 
colors. 0 

Corollary 1 It i8 NP-complete to determine 
whether the equivalence cov€r'ing number oj (f 

[Jr'aph with nUlximunt degree::; 6 and without. 
induced Ii'4 is 3 or 4. 

Given a. cubic graph G we construct a, split
graph G' as follows. The vertex set of G" is 
split into a clique Ii' a.nd an independent set 
S. The vertices of J( are the vertices of G. For 
each edge e of G introduce two new vertices 
Xe,1 and '"e,2 which are both made adjacent. 
to the end vertices of e. For each nonedge f 

equivalence graph as follows. For each edge 
in that color class add the other special ver
tex and let that triangle be a clique of the 
equivalence gra.ph. 

Clearly, this defines an equivalence covering 
of G' with 11 + 2 equivalence graphs. 

Assume that G' has an equivalence cover
ing with n + 2 equivalence graphs. Consider 
a vertex a E Ii'. This vertex (l is a.djacent to 
11+2 special vertices, and each of the edges be
tween a and a special vertex defines a unique 
equivalence graph. It follows that no trian
gle of G can he contained in a clique of an 
equivalence graph. \Ne thus obtain a correct 
edge-coloring of G in the saIne ma.nner as in 
(;he proof of Lemma 3. 0 

Corollary 2 It i" NP-complete to determine 
whether the equivalence covering nwnber of a 

"plitgraph, in which every vertex of the inde
pendent set has degree two, is to or to + 1, 

where to = max{ 5(,") I X E Ii'} for a given 
)Jar/.ilion of t.he ve-rte," set into a clique J( and 
an independent. set S. 

Concluding remarks of G, we introduce one new vertex Yj which 4 
is made adjacent to the endvertices of.f. We 
aga.in call the new vertices, which are t.he ver
tices of S, special vert.ices. 

Tn this note we considered the equivalence 
covering number for splitgraphs. Related 
prohlems are the clique covering number, and 
the clique pa.rt.it.ion number. The clique cover
ing 1Hl111her is the mini1l1U111 number of cliques 
which cover all the edges of the graph. It was 

shown in [8J tha.t the clique covering number 
can he computed in linear time for chordal 
gra.phs. Ti,e clique pa.rtition number is the 
minimum number of cliques such that every 
edge is contained in exactly one clique. De
termining the clique partition number is NP
hard for chordal graphs [9J. It would be in
terest.ing to determine the complexity of the 
computation of the clique partition number 
for split graphs. It should be remarked how
ever that it is unlikely that a polynomial time 
a.lgorithm exists, due to the following [10, 7J. 
Consider the following splitgraph G. Take a 

Lemma 4 X'(G) = 3 {} eq(G') = 11 + 2, 
where 11 i" the '/lumber of vertices of G. 

Proof. The proof goes along the same lines 

as the proof of Lemma 3. Assume G can he 
edge-colored with three colors. Notice that 

eq(G*) 2: n + 2 since I{1,n+2 is an induced 
suhgraph. Since G is cubic, 11 is even. We 
ca.n construct an equivalence covering for G" 
as follows. First., consider an edge-coloring of 
Ii' with 11 - 1 colors (see [3]). For each color 
class, define an equivalence graph as follows. 
For each edge in Ii' in tha.t color class, add 
one special vertex at tha.t edge and let tha.t 
triangle be a clique of the equivalence graph. 

Next consider an edge-coloring of G with 
three colors. For each color class define an 



clique with m2+m+l-r vertices and an inde
pendent set with T vertices. Make every ver
tex of the independent set adjacent to every 
vertex of the clique. (G is sometimes denot.ed 
as K m'+m+l \ K r .) If 2 < r < 1112 + m + 1 
t.hen the clique part.ition number of G is at 
least 110

2 + 111 with equality holding if and 
only if a projective plane of order m exists 

and r = m + 1. 
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