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o Introduction 

Point-free substitution 

A. Bijlsma and C.S. Scholten 

June 14, 1994 

In modern treatments of predicate calculus [2], no mention is made of states or variables up 
until the point where substitution is introduced. There, suddenly, the abstraction that reigned 
before is cast to the winds, and a substitution is defined as the result of a textual replacement 
of variable names by expressions. It is the purpose of this note to remedy this breach of style 
by proposing a new characterization of substitution, one that is meaningful also in point· free 
models, and is equivalent to the classical definition [3] wherever the latter is applicable. More 
precisely, we prove that 

a predicate transformer is a substitution according to the classical definition iff it 
is both universally conjunctive and universal1y disjunctive. 

To this purpose, we introduce a number of postulates limiting the set of valid models for the 
predicate calculus until we finally arrive at a context where variables are available. 

Our first postulate concerns the existence of a covering set of point predicates. In Section 
1 we deduce from this that universal junctivity of f is equivalent to the existence of a point 
predicate transformer h such that, for every point predicate p and every predicate x, 

[P~f.x] ': [h.p~x] . 

In Section 2 we postulate the existence of a state space and prove that universal junctivity of 
f is equivalent to the existence of a state transformer g such that, for every predicate x, 

[J.x,:xog] . 

Our third and final postulate introduces variables and enables us to prove. in Section 3, 
equivalence to a classical definition of substitution. 

Throughout, we assume familiarity with predicate calculus as developed in [2]. 

1 Point predicates 

Definition 1 The set P of point predicates is defined by 

pEP,: (lIx:: [P ~ x] ~ [P ~ ...,xl) , (1) 

where p and x range over the predicates. Functions mapping P into itself will be called point 
predicate transformers. • 
o 
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The definition of P makes sense in every model for the predicate calculus, but there exist 
models where P is the empty set [4, page 29J. In order to exclude such surprises, we introduce 
our first postulate. 

Postulate 2 
o 

[(3p:pEP:p)J . 

The following lemma shows that now every predicate may be written as a disjunction of 
point predicates. 

Lemma 3 For every predicate x, 

[x == (3p: pEP /I [p '* xJ : p)J 

Proof For any x, with the range pEP omitted, 

= 

= 

o 

x 
{Postulate 2} 

x /I (3p::p) 
{/I over 3} 

(3p :: x /I p) 
{splitting the range} 

(3p : [p '* x J : x /I p) v (31': ~[1' '* x J : x /I 1') 
{eliminating implications, using (1)} 

(31' : [p == x /I pJ : :, /I 1') v (31': [x /I l' == falseJ : x /I 1') 
{Leibniz} 

(31': [p == x 11]1] :]1) V (3]1: [x II l' == false] : false) 
{reintroducing implication: term false} 

(31' : [p '* xJ : 1') . 

Lemma 3 enables us to formulate our first alternative characterization of universal junctivity. 

Theorem 4 For predicate transformer f, tile following are equiva.lent: 
(i) tilere exists a point predicate tra.llsformer h sucil tilat for every point predicate l' and 

every predicate x, 

[p '* f·xJ == [h.p,* xJ , (2) 

(ii) f is universally conjullctive and universally disjunctive. 

Proof of (i) '* (ii) Choose h to satisfy (2). We begin by proving that f is universally 
conjunctive. For any any set V of predicates we have, the ranges x E V and l' E P being 
understood, 

[J.(\;Ix :: x) == (\;Ix:: f.x)J 
{Lemma 3, twice} 

[(3p: [p,* f.(\;Ix:: x)J : p) == (31': [p '* (\;Ix:: f·x)J : p)J 
{termwise equality} 

(\;Ip:: [p '* f.(\;Ix:: x)J, == [p '* (\;Ix:: f.x)]) 



Now for any p, 

[p ~ f.(Vx:: x)] 
{(2) with x := ("Ix :: x) } 

[h.p ~ ("Ix:: x)] 
{distribution} 

("Ix :: [h.p ~ x]) 
{(2)} 

("Ix :: [p ~ f.x]) 
{distribution} 

[p ~ ("Ix:: f.x)] , 

which proves the universal conjunctivity. 
In order to prove !'S universal disjunctivity, it suffices to prove 

f=/* , 
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(3) 

since-loosely speaking-!,s conjunctivity is r's disjunctivity (see Theorem 6.9 of [2]). In­
deed, for any p in P and any predicate x, 

= 

[p ~ r·x] 
{(I) with x:= r.x} 

[p ~ ..,r·x] 
{ conjugate} 

[p ~ f.(..,x)] 
{(2) with x:=..,x} 

[h.p ~ ..,x] 
{(I) with p:= h.p, using h.p E P} 

[h.p ~ x] 
{(2)} 

[p ~ f.x] , 

from which, again with the help of Lemma 3, (3) follows. 

Proof of (ii) ~ (i) From!'s universal conjunctivity it follows that there exists a predicate 
transformer g with 

[g.x ~ y] == [x ~ f.y] (4) 

for all predicates x, y (see Theorem 11.1 of [2]). A correspondence of this kind is sometimes 
called a Galois connection [lJ. We wish to take h as the restriction of !J to P; this yields the 
proof obligation 

(Vp : pEP: g.p E P) , 

which is discharged as follows: for PEP and any predicate y, 

[g.p ~ yJ 
= {(4)} 

(p ~ J.yJ 



{ [f.y :; ~f·( ~y)J, see below} 
[p =} ~f.(~y)J 

{(I)} 
[P =} f·( ~y)] 

{(4)} 
[g.p =} ~y] , 
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from which g.p E P follows by (1). The second step in the above derivation is justified since 
for any y 

o 

f.y:; ~f.(~y) 
{eliminating the equivalence} 

(J.y V f.( ~y)) /I ~(J.y /I f.( ~y)) 
{f is finitely disjunctive and finitely conjunctive} 

f.(y V ~y) /I ~f.(y /I ~y) 

{Excluded Middle} 
f.true /I ~f.faI8e 

{f is 'conjunctive and disjunctive over the empty set} 
true . 

Remark Inspection of the proofs shows that we have not explicitly used the universal dis­
junctivity of f, only disjunctivity over finite (possibly empty) sets. This observation, however, 
does not strengthen the theorem, because every universally conjunctive predicate transformer 

that is disjunctive over finite sets is also universally disjunctive. This was proved by Scholten 
[5J, as a generalization of a theorem of Van der Woude [2, Theorem 6.25J. 
o 

The reader who is already convinced that (i) of Theorem 4 captures the notion of substitution 
may qnit here. Others may wish to read on. 

End of scope of Postulate 2. 

2 State transformers 

In this section, we restrict ourselves to predicates as functions on a state space. ,Ve shall see 
that this implies the existence of a covering set of point predicates as claimed in Postulate 2, 
which reappears below as Lemma 10. 

Postulate 5 Tile predicates are booIeall fUllctions on some set S, SlIC/z tIlat 

("Ix: x E V : x).s :; ("Ix: x E V: x.s) 
(~y).s :; ~(y.s) , 

[yJ :; ("It: t E S : y.t) 

for s E S, predicate y and set V of predicates. 
o 

(5) 

(6) 

(7) 
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We shall call S the state space and its elements states; a function mapping S into itself is 
called a state transformer. No doubt some readers would prefer denoting the operators and 
quantifiers on the right hand side, which take boolean constants as their operands, differently 
from those on the left hand side, which operate on boolean functions. We have not found such 
a distinction to be useful. 

Notice that (5) and (6) guarantee that (.8) distributes over all boolean operators; in 
particular, it follows that 

(x:} y).s == x.s :} y.s , 

(x == y).s == X.s == y.s . 

In order to prepare for Lemma 10, we define predicates Ct as follows: 

Definition 6 For state t, predicate Ct is defined by 

("IS: s E S : Ct.s == t = s) . 

o 

(8) 
(9) 

The predicates Ct allow us to express application of a predicate to a state differently, as is 
shown in the next lemma. 

Lemma 7 For state t and predicate x. 

x.t == [Ct :;. xl . 
Proof 

o 

[Ct :;. xl 
{ (7)} 

("Is: 8 E S: (Ct :;. x).s) 
{ (8)} 

("Is: S E S : Ct.s:;' x.s) 
{Defini tion 6} 

("Is: s E S : t = s :;. x.s) 
{trading; one-point rule} 

x.t . 

Now we are ready to show that set of the Ct equals the set of point predicates. 

Lemma 8 For all predicates p, 

pEP == (3t: t E S : [p == Ctj) 

Proof of LHS :;. RHS For any predicate p we have. with t ranging over the states, 



(3t :: [p ;: Gt ]) 

{mutual implication} 
(3t :: [p => GtJ A [Gt => p]) 

{predicate calculus, guided by the form of (I)} 
(Vt :: [p => GtJ ;: [Gt => p]) A (3t:: [Gt => p]) 

{Lemma 7 with x := p, twice} 
(Vt :: [p => GtJ ;: p.t) A (3t:: p.t) 

{Lemma 7 with x:= ""p; de Morgan} 
(Vt :: [p => GtJ ;: ...,[Gt => ...,p]) A ...,(Vt:: ...,p.t) 

{contraposition; (7)} 
(Vt :: [p => GtJ ;: ...,[p => ...,Gt ]) A ...,[p => falseJ 

{(I) with x := Gd 
pEP A ...,[p => falseJ 

{(I) with x :=false} 
pEP A [p=> trueJ 

{second conjunct is true} 
pEP. 
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Proof of LHS <= RHS With P and x ranging over the predicates and t over the states, 

o 

(Vp :: pEP <= (3t:: [p ;: Gt ])) 

{<= over 3} 
('ifp, t :: pEP <= [p;: GtJ) 

{trading; one-point rule} 
('ift :: Gt E P) 

{ (I)} 
('ift, x:: [Gt => xJ ¥; [G, => ...,x]) 

{Lemma 7} 
('ift, x:: x.t ¥; ...,x.t) 

{ term is tr"e} 
true . 

The following 'dummy transformation rule' is an immediate consequence of Lemma 8. 

Lemma 9 For every predicate transformer f, 
[(Q t : t E 5 : f.G,) ;: (Q p: pEP: f.p)J , 

where Q = V or Q = 3. 

Proof 

(Qt:tES:j.G,) 
{one-point rule} 

(Q t : t E 5 : (Q p : [1' ;: G,] : f.p)) 
{generalized range split} 

(Q l' : (3t : t E 5 : [p ;: C,]) : f.p) 
{Lemma 8} 

(Q l' : l' E P : f·p) . 



o 

As announced above, we are now able to prove Postulate 2. 

Lemma 10 [(3p: pEP: p)] . 

Proof 

o 

[(3p: PEP: p)] 
{Lemma 9} 

[(3t : t E S : C,)] 
{(7)} 

('Is: s E S : (3t: t E S : C,.s)) 
{Definition 6} 

('Is: s E S : (3t : t E S : t = s)) 
{instantiation t : = s } 

true . 
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On account of Lemma 10 we are allowed to import every result from Section 1, in particular 
Theorem 4. We are noW in a position to present another property equivalent to universal 
junctivity. 

Theorem 11 For predicate transformer f tlIe following are equivalent: 
(i) tlIere exists a state transformer 9 sucii tlIat, for every predicate x, 

[f.x == x 0 gJ , 

(ii) f is universally conjunctive and universally disjunctive. 

Proof In the proof, we let dummy x range over the predicates, p over the point predicates, 
t over the states, 9 over the state transformers, and h over the point predicate transformers. 

= 

and 

We start by transforming both (i) and (ii) into comparable shapes. 

(i) 
{by definition} 

(3g :: ('Ix :: (f.x == x 0 gD) 
{(I)} 

(3g :: ('Ix, 1 :: (f.x == x 0 g).t)) 
{ (9)} 

(39 :: ('Ix, 1 :: f.x.1 == x.(g.t))) 
{Lemma I with 1 := g.l} 

(3g :: ('Ix, t :: f.x.t == [Cg ., '"' xl)) 

(ii) 
{Theorem 4} 

(3h :: (Vp, x :: [P'"' f.x] [h.p,", xl)) 



{Lemma 9} 
(3h :: (lix, t :: [Ct => f.x] ;: [h.C, => x])) 

{Lemma 7 with x := f.x } 
(3h :: (lix, t :: f.x.t ;: [h.C, => xl)) . 

The equivalence of 

(3g :: (lix, t :: f.x.t _ [Cg ., => xl)) 

and 

(3h :: (lix, t :: f.x.t ;: [h.C, => xl)) 
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(10) 

(11) 

is proved by mutual implication. First, let a state transformer 9 be given that is a witness 
for (10). Then, for every state t, g.t is also a state, and hence, by Lemma 8, Cg ., is a point 
predicate. Again by Lemma 8, every C, is a point predicate; from Definition 6 it follows 
immediately that distinct states t correspond to distinct point predicates C,. Consequently, 
a point predicate transformer h can be defined by 

(lit :: [h.C, ;: Cg.,]) • (12) 

This h is a witness for (11). 
Conversely, let a point predicate transformer h be given that is a witness for (11). Let t 

be any state. Then C, is a point predicate by Lemma 8 and so, therefore, is h.C,. Again by 
Lemma 8, the point predicate h.C, equals C, for some state s. Now define g.t to be oS. This 
defines a state transformer g satisfying (12); it is a witness for (10). 
D 

Again, the reader who is convinced that (i) of Theorem 11 captures the notion of substitution 
may quit here. 

3 Substitution 

We retain Postulate .5, but add another postulate in order to introduce coordinates into the 
state space. 

Postulate 12 All states are functions defined on the same finite set. 
D 

The elements of this finite set will be called variables. With the aid of Postulate 12, we can 
give a conventional definition of substitution; see, for instance, [3]. As usuaL a structure is a 
function on the state space. 

Definition 13 A state transformer g is called an update iff there exists a list v of distinct 
variables and an equally long list 'P of structures, such that 

g.s.w = { 
s.w 

'Pk· S 
if w rf. v , 
if w = Vk 

(13) 
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for state s and variable w. A substitution is a predicate transformer I such that, for all 
predicates x, 

[f.x == x 0 gj , 

where 9 is an update. 
D 

Example 14 Consider the state space spanned by the integer variables a, band c. An 
example of a structure on this state space is the function mapping each state s to s.a + s.b 
An example of an update on this space is 9 defined by 

g.s.a = s.b , g.s.b = s.a + s.b , g.s.c = s.c 

for every state s. An example of a substitution on this space is I defined by 

I.x.s = x.(g.s) 

for every state s. The substitution I would traditionally be denoted by (a, b := b, a + b). 
D 

Observe that lists v and 'P as occurring in (13) are not uniqnely determined by the state 
transformer g. Indeed, if w rt. v, lists v and tp may be extended with wand 4' respectively, 
where 7/J is defined by 7/J.s = -s.w for all states .s. Hence, without loss of generality, we may 
assume v to be a list of all variables. In that case the first alternative in (13) does not occur. 

Lemma 15 Every state transformer is an update. 

Proof Let 9 be a state transformer. Let v be a list of all variables; define list 'P by 

'Pk·S = g.S.Vk 

for every index k and all s. Then 9 satisfies (13). 
D 

Combination of Lemma 15 and Theorem 11 finally yields the result promised in the Introduc­
tion: 

Theorem 16 For predicate transformer I tlIe following are equiFalent: 
(i) I is a substitution, 
(ii) I is universally conjunctive and universally disjunctive. 

D 

End of scope of postulates 5 and 12. 
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