

Point-free substitution

Citation for published version (APA):
Bijlsma, A., & Scholten, C. S. (1994). Point-free substitution. (Computing science reports; Vol. 9438).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/fe833078-be79-410c-a857-0bbeeb24d39c

Eindhoven University of Technology

Department of Mathematics and Computing Science

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.C.M. Baeten

prof.dr. M. Rem

Point-free substitution

by

A. Bijlsma and C.S. Scholten

94/38

Computing Science Report 94/38
Eindhoven, September 1994

AB48c/CSS184c 1

o Introduction

Point-free substitution

A. Bijlsma and C.S. Scholten

June 14, 1994

In modern treatments of predicate calculus [2], no mention is made of states or variables up
until the point where substitution is introduced. There, suddenly, the abstraction that reigned
before is cast to the winds, and a substitution is defined as the result of a textual replacement
of variable names by expressions. It is the purpose of this note to remedy this breach of style
by proposing a new characterization of substitution, one that is meaningful also in point· free
models, and is equivalent to the classical definition [3] wherever the latter is applicable. More
precisely, we prove that

a predicate transformer is a substitution according to the classical definition iff it
is both universally conjunctive and universal1y disjunctive.

To this purpose, we introduce a number of postulates limiting the set of valid models for the
predicate calculus until we finally arrive at a context where variables are available.

Our first postulate concerns the existence of a covering set of point predicates. In Section
1 we deduce from this that universal junctivity of f is equivalent to the existence of a point
predicate transformer h such that, for every point predicate p and every predicate x,

[P~f.x] ': [h.p~x] .

In Section 2 we postulate the existence of a state space and prove that universal junctivity of
f is equivalent to the existence of a state transformer g such that, for every predicate x,

[J.x,:xog] .

Our third and final postulate introduces variables and enables us to prove. in Section 3,
equivalence to a classical definition of substitution.

Throughout, we assume familiarity with predicate calculus as developed in [2].

1 Point predicates

Definition 1 The set P of point predicates is defined by

pEP,: (lIx:: [P ~ x] ~ [P ~ ...,xl) , (1)

where p and x range over the predicates. Functions mapping P into itself will be called point
predicate transformers. •
o

AB48c/CSS184c 2

The definition of P makes sense in every model for the predicate calculus, but there exist
models where P is the empty set [4, page 29J. In order to exclude such surprises, we introduce
our first postulate.

Postulate 2
o

[(3p:pEP:p)J .

The following lemma shows that now every predicate may be written as a disjunction of
point predicates.

Lemma 3 For every predicate x,

[x == (3p: pEP /I [p '* xJ : p)J

Proof For any x, with the range pEP omitted,

=

=

o

x
{Postulate 2}

x /I (3p::p)
{/I over 3}

(3p :: x /I p)
{splitting the range}

(3p : [p '* x J : x /I p) v (31': ~[1' '* x J : x /I 1')
{eliminating implications, using (1)}

(31' : [p == x /I pJ : :, /I 1') v (31': [x /I l' == falseJ : x /I 1')
{Leibniz}

(31': [p == x 11]1] :]1) V (3]1: [x II l' == false] : false)
{reintroducing implication: term false}

(31' : [p '* xJ : 1') .

Lemma 3 enables us to formulate our first alternative characterization of universal junctivity.

Theorem 4 For predicate transformer f, tile following are equiva.lent:
(i) tilere exists a point predicate tra.llsformer h sucil tilat for every point predicate l' and

every predicate x,

[p '* f·xJ == [h.p,* xJ , (2)

(ii) f is universally conjullctive and universally disjunctive.

Proof of (i) '* (ii) Choose h to satisfy (2). We begin by proving that f is universally
conjunctive. For any any set V of predicates we have, the ranges x E V and l' E P being
understood,

[J.(\;Ix :: x) == (\;Ix:: f.x)J
{Lemma 3, twice}

[(3p: [p,* f.(\;Ix:: x)J : p) == (31': [p '* (\;Ix:: f·x)J : p)J
{termwise equality}

(\;Ip:: [p '* f.(\;Ix:: x)J, == [p '* (\;Ix:: f.x)])

Now for any p,

[p ~ f.(Vx:: x)]
{(2) with x := ("Ix :: x) }

[h.p ~ ("Ix:: x)]
{distribution}

("Ix :: [h.p ~ x])
{(2)}

("Ix :: [p ~ f.x])
{distribution}

[p ~ ("Ix:: f.x)] ,

which proves the universal conjunctivity.
In order to prove !'S universal disjunctivity, it suffices to prove

f=/* ,

AB48c/CSS184c 3

(3)

since-loosely speaking-!,s conjunctivity is r's disjunctivity (see Theorem 6.9 of [2]). In­
deed, for any p in P and any predicate x,

=

[p ~ r·x]
{(I) with x:= r.x}

[p ~ ..,r·x]
{ conjugate}

[p ~ f.(..,x)]
{(2) with x:=..,x}

[h.p ~ ..,x]
{(I) with p:= h.p, using h.p E P}

[h.p ~ x]
{(2)}

[p ~ f.x] ,

from which, again with the help of Lemma 3, (3) follows.

Proof of (ii) ~ (i) From!'s universal conjunctivity it follows that there exists a predicate
transformer g with

[g.x ~ y] == [x ~ f.y] (4)

for all predicates x, y (see Theorem 11.1 of [2]). A correspondence of this kind is sometimes
called a Galois connection [lJ. We wish to take h as the restriction of !J to P; this yields the
proof obligation

(Vp : pEP: g.p E P) ,

which is discharged as follows: for PEP and any predicate y,

[g.p ~ yJ
= {(4)}

(p ~ J.yJ

{ [f.y :; ~f·(~y)J, see below}
[p =} ~f.(~y)J

{(I)}
[P =} f·(~y)]

{(4)}
[g.p =} ~y] ,

AB48c/CSSI84c 4

from which g.p E P follows by (1). The second step in the above derivation is justified since
for any y

o

f.y:; ~f.(~y)
{eliminating the equivalence}

(J.y V f.(~y)) /I ~(J.y /I f.(~y))
{f is finitely disjunctive and finitely conjunctive}

f.(y V ~y) /I ~f.(y /I ~y)

{Excluded Middle}
f.true /I ~f.faI8e

{f is 'conjunctive and disjunctive over the empty set}
true .

Remark Inspection of the proofs shows that we have not explicitly used the universal dis­
junctivity of f, only disjunctivity over finite (possibly empty) sets. This observation, however,
does not strengthen the theorem, because every universally conjunctive predicate transformer

that is disjunctive over finite sets is also universally disjunctive. This was proved by Scholten
[5J, as a generalization of a theorem of Van der Woude [2, Theorem 6.25J.
o

The reader who is already convinced that (i) of Theorem 4 captures the notion of substitution
may qnit here. Others may wish to read on.

End of scope of Postulate 2.

2 State transformers

In this section, we restrict ourselves to predicates as functions on a state space. ,Ve shall see
that this implies the existence of a covering set of point predicates as claimed in Postulate 2,
which reappears below as Lemma 10.

Postulate 5 Tile predicates are booIeall fUllctions on some set S, SlIC/z tIlat

("Ix: x E V : x).s :; ("Ix: x E V: x.s)
(~y).s :; ~(y.s) ,

[yJ :; ("It: t E S : y.t)

for s E S, predicate y and set V of predicates.
o

(5)

(6)

(7)

AB48c/CSS184c 5

We shall call S the state space and its elements states; a function mapping S into itself is
called a state transformer. No doubt some readers would prefer denoting the operators and
quantifiers on the right hand side, which take boolean constants as their operands, differently
from those on the left hand side, which operate on boolean functions. We have not found such
a distinction to be useful.

Notice that (5) and (6) guarantee that (.8) distributes over all boolean operators; in
particular, it follows that

(x:} y).s == x.s :} y.s ,

(x == y).s == X.s == y.s .

In order to prepare for Lemma 10, we define predicates Ct as follows:

Definition 6 For state t, predicate Ct is defined by

("IS: s E S : Ct.s == t = s) .

o

(8)
(9)

The predicates Ct allow us to express application of a predicate to a state differently, as is
shown in the next lemma.

Lemma 7 For state t and predicate x.

x.t == [Ct :;. xl .
Proof

o

[Ct :;. xl
{ (7)}

("Is: 8 E S: (Ct :;. x).s)
{ (8)}

("Is: S E S : Ct.s:;' x.s)
{Defini tion 6}

("Is: s E S : t = s :;. x.s)
{trading; one-point rule}

x.t .

Now we are ready to show that set of the Ct equals the set of point predicates.

Lemma 8 For all predicates p,

pEP == (3t: t E S : [p == Ctj)

Proof of LHS :;. RHS For any predicate p we have. with t ranging over the states,

(3t :: [p ;: Gt])

{mutual implication}
(3t :: [p => GtJ A [Gt => p])

{predicate calculus, guided by the form of (I)}
(Vt :: [p => GtJ ;: [Gt => p]) A (3t:: [Gt => p])

{Lemma 7 with x := p, twice}
(Vt :: [p => GtJ ;: p.t) A (3t:: p.t)

{Lemma 7 with x:= ""p; de Morgan}
(Vt :: [p => GtJ ;: ...,[Gt => ...,p]) A ...,(Vt:: ...,p.t)

{contraposition; (7)}
(Vt :: [p => GtJ ;: ...,[p => ...,Gt]) A ...,[p => falseJ

{(I) with x := Gd
pEP A ...,[p => falseJ

{(I) with x :=false}
pEP A [p=> trueJ

{second conjunct is true}
pEP.

AB48c/CSSI84c 6

Proof of LHS <= RHS With P and x ranging over the predicates and t over the states,

o

(Vp :: pEP <= (3t:: [p ;: Gt]))

{<= over 3}
('ifp, t :: pEP <= [p;: GtJ)

{trading; one-point rule}
('ift :: Gt E P)

{ (I)}
('ift, x:: [Gt => xJ ¥; [G, => ...,x])

{Lemma 7}
('ift, x:: x.t ¥; ...,x.t)

{ term is tr"e}
true .

The following 'dummy transformation rule' is an immediate consequence of Lemma 8.

Lemma 9 For every predicate transformer f,
[(Q t : t E 5 : f.G,) ;: (Q p: pEP: f.p)J ,

where Q = V or Q = 3.

Proof

(Qt:tES:j.G,)
{one-point rule}

(Q t : t E 5 : (Q p : [1' ;: G,] : f.p))
{generalized range split}

(Q l' : (3t : t E 5 : [p ;: C,]) : f.p)
{Lemma 8}

(Q l' : l' E P : f·p) .

o

As announced above, we are now able to prove Postulate 2.

Lemma 10 [(3p: pEP: p)] .

Proof

o

[(3p: PEP: p)]
{Lemma 9}

[(3t : t E S : C,)]
{(7)}

('Is: s E S : (3t: t E S : C,.s))
{Definition 6}

('Is: s E S : (3t : t E S : t = s))
{instantiation t : = s }

true .

AB48c/CSS184c 7

On account of Lemma 10 we are allowed to import every result from Section 1, in particular
Theorem 4. We are noW in a position to present another property equivalent to universal
junctivity.

Theorem 11 For predicate transformer f tlIe following are equivalent:
(i) tlIere exists a state transformer 9 sucii tlIat, for every predicate x,

[f.x == x 0 gJ ,

(ii) f is universally conjunctive and universally disjunctive.

Proof In the proof, we let dummy x range over the predicates, p over the point predicates,
t over the states, 9 over the state transformers, and h over the point predicate transformers.

=

and

We start by transforming both (i) and (ii) into comparable shapes.

(i)
{by definition}

(3g :: ('Ix :: (f.x == x 0 gD)
{(I)}

(3g :: ('Ix, 1 :: (f.x == x 0 g).t))
{ (9)}

(39 :: ('Ix, 1 :: f.x.1 == x.(g.t)))
{Lemma I with 1 := g.l}

(3g :: ('Ix, t :: f.x.t == [Cg ., '"' xl))

(ii)
{Theorem 4}

(3h :: (Vp, x :: [P'"' f.x] [h.p,", xl))

{Lemma 9}
(3h :: (lix, t :: [Ct => f.x] ;: [h.C, => x]))

{Lemma 7 with x := f.x }
(3h :: (lix, t :: f.x.t ;: [h.C, => xl)) .

The equivalence of

(3g :: (lix, t :: f.x.t _ [Cg ., => xl))

and

(3h :: (lix, t :: f.x.t ;: [h.C, => xl))

AB48c/CSSI84c 8

(10)

(11)

is proved by mutual implication. First, let a state transformer 9 be given that is a witness
for (10). Then, for every state t, g.t is also a state, and hence, by Lemma 8, Cg ., is a point
predicate. Again by Lemma 8, every C, is a point predicate; from Definition 6 it follows
immediately that distinct states t correspond to distinct point predicates C,. Consequently,
a point predicate transformer h can be defined by

(lit :: [h.C, ;: Cg.,]) • (12)

This h is a witness for (11).
Conversely, let a point predicate transformer h be given that is a witness for (11). Let t

be any state. Then C, is a point predicate by Lemma 8 and so, therefore, is h.C,. Again by
Lemma 8, the point predicate h.C, equals C, for some state s. Now define g.t to be oS. This
defines a state transformer g satisfying (12); it is a witness for (10).
D

Again, the reader who is convinced that (i) of Theorem 11 captures the notion of substitution
may quit here.

3 Substitution

We retain Postulate .5, but add another postulate in order to introduce coordinates into the
state space.

Postulate 12 All states are functions defined on the same finite set.
D

The elements of this finite set will be called variables. With the aid of Postulate 12, we can
give a conventional definition of substitution; see, for instance, [3]. As usuaL a structure is a
function on the state space.

Definition 13 A state transformer g is called an update iff there exists a list v of distinct
variables and an equally long list 'P of structures, such that

g.s.w = {
s.w

'Pk· S
if w rf. v ,
if w = Vk

(13)

AB48c/CSS184c 9

for state s and variable w. A substitution is a predicate transformer I such that, for all
predicates x,

[f.x == x 0 gj ,

where 9 is an update.
D

Example 14 Consider the state space spanned by the integer variables a, band c. An
example of a structure on this state space is the function mapping each state s to s.a + s.b
An example of an update on this space is 9 defined by

g.s.a = s.b , g.s.b = s.a + s.b , g.s.c = s.c

for every state s. An example of a substitution on this space is I defined by

I.x.s = x.(g.s)

for every state s. The substitution I would traditionally be denoted by (a, b := b, a + b).
D

Observe that lists v and 'P as occurring in (13) are not uniqnely determined by the state
transformer g. Indeed, if w rt. v, lists v and tp may be extended with wand 4' respectively,
where 7/J is defined by 7/J.s = -s.w for all states .s. Hence, without loss of generality, we may
assume v to be a list of all variables. In that case the first alternative in (13) does not occur.

Lemma 15 Every state transformer is an update.

Proof Let 9 be a state transformer. Let v be a list of all variables; define list 'P by

'Pk·S = g.S.Vk

for every index k and all s. Then 9 satisfies (13).
D

Combination of Lemma 15 and Theorem 11 finally yields the result promised in the Introduc­
tion:

Theorem 16 For predicate transformer I tlIe following are equiFalent:
(i) I is a substitution,
(ii) I is universally conjunctive and universally disjunctive.

D

End of scope of postulates 5 and 12.

AB48c/CSSI84c 10

References

[IJ R.C. Backhouse and J.C.S.P. van der Woude, 'Demonic operators and monotype factors'.
Math. Struct. in Compo Sci. 3 (1993),417-433.

[2J E.W. Dijkstra and C.S. Scholten, Predicate calculus and program semantics. Springer­
Verlag, New York, 1990.

[3] W.H. Hesselink, Programs, recursion and unbounded choice: predicate-transformation
semantics and transformation rules. Cambridge Tracts in Theoretical Computer Science;
27. Cambridge University Press, 1992.

[4] J.D. Monk and R. Bonnet, Handbook of boolean algebras, vol. 1. North-Holland, Amster­
dam, 1989.

[5] C.S. Scholten, A generalization of Van der Woude's theorem. Memorandum CSSI44. Beek­
bergen, 1988.

Computing Science Reports

In this series appeared:

91/01 D. Alstein

91/02 R.P. N ederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Slappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Vocrmans
J. v.d. Woude

91/11 R.c. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if...,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Perlormance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
GJ. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

91/35 F.S. de Boer
J.W. KIop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H. W. v .d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J. C.M. Baeten
J.A. Bergstra

92/07 RP. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 RC. Backhouse

92/10 P.M.P. Rambags

92/11 RC. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 RR. Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J.A.Bergstra
S.A.Smolka

92120 F.Kamareddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 11 O.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/FIoyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

92/21 F.Kamareddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelcn
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.J. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bonum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. IS.

A modelling method using MOVIE and SimCon/ExSpect,
p. IS.

A taxonomy of keyword pattern matching algorithms,
p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in MUltiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real­
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach

93/14 J.C.M. Baeten
J .A. Bergstra

93/15 J.C.M. Baeten
J.A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houben

93/20 F.S. de Boer

93/21 M. Cod ish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamareddine and
R. Nederpelt

93/29 R. Post and P. De Bra

93/30 J. Deogun
T. Kloks
D. Kratsch
H. Miiller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

Part V: Specification Language. p. 89.
On Sequential Composition. Action Prefixes and
Process Prefix. p. 21.

A Real-Time Process Logic. p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems. p. 27

Hard Real-Time Reliable Multicast in the DEDOS system.
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises. p. 22.

The Design of an Online Help Facility for ExSpect. p.21.

A Process Algebra of Concurrent Constraint Program­
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct­
ness? p. 24.

A Typechecker for Bijective Pure Type Systems. p. 28.

Relational Algebra and Equational Proofs. p. 23.

Pure Type Systems with Definitions. p. 38.

A Compositional Proof Theory for Fault Tolerant Real­
Time Distributed Systems. p. 31.

Multi-dimensional Petri nets. p. 25.

Finding all minimal separators of a graph. p. 11.

A Semantics for a fine A-calculus with de Bruijn indices.
p.49.

GOLD. a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. II.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions. p. 17.

93/33 L. Loyens and J. Moonen

93/34 J.CM. Baeten and
J.A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 J.CM. Baeten and
J .A. Bergstra

93(37 J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

93/38 C. Verhoef

93/39 W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

93/40 P.D. V. van der Stok
M.M.M.P.J. Claessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.J. Luit
J.M.M. Martin

93/46 T. Kloks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.J. Houben
Y. Komatzky

93/48 R. Gerth

ILIAS. a sequential language for parallel matrix
computations. p. 20.

Real Time Process Algebra with Infinitesimals. p.39.

Abstract Reduction and Topology. p. 28.

Non Interleaving Process Algebra. p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks. p. 73.

A general conservative extension theorem in process
algebra. p. 17.

Job Shop Scheduling by Constraint Satisfaction. p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems. p. 43.

Temporal operators viewed as predicate transfonners.
p. 11.

Automatic Verification of Regular Protocols in PIT Nets.
p. 23.

A taxomomy of finite automata construction algorithms.
p. 87.

A taxonomy of finite automata minimization algorithms.
p. 23.

A precise clock synchronization protocol.p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension. p. 14.

Browsing Semantics in the "Tower" Model. p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement. p. 20.

94/01 P. America
M. van der Kammen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine
R.P. Nederpelt

94/03 L.B. Hartman
K.M. van Hee

94/04 J.C.M. Baeten
J.A. Bergstra

94/05 P. Zhou
J. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

94/07 K.R Apt
R Bol

94/08 O.S. van Roosmalen

94/09 J.C.M. Baeten
J .A. Bergstra

94/10 T. verhoeff

94/11 J. Peleska
C. Huizing
C. Petersohn

94/12 T. Kloks
D. Kratsch
H. Miiller

94/13 R. Seljee

94/14 W. Peremans

94/15 RJ.M. Vaessens
E.H.L. Aarts
J. K. Lenstra

94/16 RC. Backhouse
H. Doornbos

94/17 S. Mauw
M.A. Reniers

The object-oriented paradigm, p. 28.

Canonical typing and n-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.
p. 31.

A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in
Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

94/18 F. Kamareddine
R. Nederpclt

94/19 B.W. Watson

94/20 R. Bloo
F. Kamareddine
R. Nederpelt

94/21 B.W. Watson

94/22 B.W. Watson

Refining Reduction in the Lambda Calculus, p. IS.

The performance of single-keyword and multiple­
keyword pattern matching algorithms, p. 46.

Beyond I3-Reduction in Church's A---), p. 22.

An introduction to the Fire engine: A C++ toolkit for
Finite automata and Regular Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressi­
ons.

94/23 S. Mauw and M.A. Reniers An algebraic semantics of Message Sequence Charts, p.
43.

94/24 D. Dams
O. Grumberg
R. Gerth

94/25 T. Kloks

94/26 R.R. Hoogerwoord

94/27 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Verhoeven

94/29 J. Hooman

94/30 J.CM. Baeten
J .A. Bergstra
Gh. ~tefanescu

94/31 B.W. Watson
R.E. Watson

94/32 J.J. Vereijken

94/33 T. Laan

94/34 R. Bloo
F. Kamareddine
R. N ederpelt

94/35 J.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. Nederpelt

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'v'CTL*, 3CTL* and CTL*, p. 28.

K1,3-free and W,-free graphs, p. 10.

On the foundations of functional programming: a
programmer's point of view, p. 54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A formalization of the Ramified Type Theory, p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Chatts, p. IS.

Canonical typing and n -conversion in the Barendregt
Cube, p. 19.

94/37 T. Basten
R. Bol
M. Voorhoeve

Simulating and Analyzing Railway Interlockings in
ExSpect. p. 30.

	1. Introduction
	1. Point predicates
	2. State transformers
	3. Substitution
	References

