Point-free substitution

Citation for published version (APA):

Bijlsma, A., \& Scholten, C. S. (1994). Point-free substitution. (Computing science reports; Vol. 9438). Technische Universiteit Eindhoven.

Document status and date:

Published: 01/01/1994

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Eindhoven University of Technology
 Department of Mathematics and Computing Science

Point-free substitution
by
A. Bijlsma and C.S. Scholten

94/38

ISSN 0926-4515
All rights reserved
editors: prof.dr. J.C.M. Baeten
prof.dr. M. Rem

Point-free substitution

A. Bijlsma and C.S. Scholten

June 14, 1994

0 Introduction

In modern treatments of predicate calculus [2], no mention is made of states or variables up until the point where substitution is introduced. There, suddenly, the abstraction that reigned before is cast to the winds, and a substitution is defined as the result of a textual replacement of variable names by expressions. It is the purpose of this note to remedy this breach of style by proposing a new characterization of substitution, one that is meaningful also in point-free models, and is equivalent to the classical definition [3] wherever the latter is applicable. More precisely, we prove that
a predicate transformer is a substitution according to the classical definition iff it is both universally conjunctive and universally disjunctive.

To this purpose, we introduce a number of postulates limiting the set of valid models for the predicate calculus until we finally arrive at a context where variables are available.

Our first postulate concerns the existence of a covering set of point predicates. In Section 1 we deduce from this that universal junctivity of f is equivalent to the existence of a point predicate transformer h such that, for every point predicate p and every predicate x,

$$
[p \Rightarrow f . x] \equiv[h . p \Rightarrow x] .
$$

In Section 2 we postulate the existence of a state space and prove that universal junctivity of f is equivalent to the existence of a state transformer g such that, for every predicate x,

$$
[f . x \equiv x \circ g] .
$$

Our third and final postulate introduces variables and enables us to prove. in Section 3, equivalence to a classical definition of substitution.

Throughout, we assume familiarity with predicate calculus as developed in [2].

1 Point predicates

Definition 1 The set P of point predicates is defined by

$$
\begin{equation*}
p \in P \equiv(\forall x::[p \Rightarrow x] \not \equiv[p \Rightarrow \neg x]), \tag{1}
\end{equation*}
$$

where p and x range over the predicates. Functions mapping P into itself will be called point predicate transformers.

The definition of P makes sense in every model for the predicate calculus, but there exist models where P is the empty set [4, page 29]. In order to exclude such surprises, we introduce our first postulate.

Postulate $2 \quad[(\exists p: p \in P: p)]$.

The following lemma shows that now every predicate may be written as a disjunction of point predicates.

Lemma 3 For every predicate x,

$$
[x \equiv(\exists p: p \in P \wedge[p \Rightarrow x]: p)] .
$$

Proof For any x, with the range $p \in P$ omitted,

```
    x
\equiv {Postulate 2}
    x^(\existsp:: p)
\equiv {^ over \exists}
    ( }\existsp::x\wedgep
{splitting the range}
    (\existsp:[p=>x]:x\wedgep)\vee(\existsp:\neg[p=>x]:x\wedgep)
    {eliminating implications, using (1)}
    (\existsp:[p\equivx\wedgep]:x\wedgep)\vee(\existsp:[x\wedgep\equiv false]:x\wedgep)
    {Leibniz}
    (\existsp:[p\equivx\wedgep]:p)\vee (\existsp:[x\wedgep\equiv false]: false)
{reintroducing implication; term false}
    (\existsp:[p=>x]:p) .
```

Lemma 3 enables us to formulate our first alternative characterization of universal junctivity.
Theorem 4 For predicate transformer f, the following are equivalent:
(i) there exists a point predicate transformer h such that for every point predicate p and every predicate x,

$$
\begin{equation*}
[p \Rightarrow f . x] \equiv[h . p \Rightarrow x], \tag{2}
\end{equation*}
$$

(ii) f is universally conjunctive and universally disjunctive.

Proof of (i) \Rightarrow (ii) Choose h to satisfy (2). We begin by proving that f is universally conjunctive. For any any set V of predicates we have, the ranges $x \in V$ and $p \in P$ being understood,

```
    \([f .(\forall x:: x) \equiv(\forall x:: f . x)]\)
\(\equiv \quad\{\) Lemma 3, twice \(\}\)
    \([(\exists p:[p \Rightarrow f .(\forall x:: x)]: p) \equiv(\exists p:[p \Rightarrow(\forall x:: f . x)]: p)]\)
\(\Leftrightarrow \quad\) \{termwise equality \(\}\)
    \((\forall p::[p \Rightarrow f .(\forall x:: x)] \equiv[p \Rightarrow(\forall x:: f . x)])\).
```

Now for any p,

$$
\begin{aligned}
& {[p \Rightarrow f .(\forall x:: x)]} \\
& \equiv \quad\{(2) \text { with } x:=(\forall x:: x)\} \\
& {[h . p \Rightarrow(\forall x:: x)]} \\
& \text { \{distribution \} } \\
& \text { (} \forall x::[h . p \Rightarrow x]) \\
& \equiv \quad\{(2)\} \\
& (\forall x::[p \Rightarrow f . x]) \\
& \equiv \quad\{\text { distribution }\} \\
& {[p \Rightarrow(\forall x:: f . x)],}
\end{aligned}
$$

which proves the universal conjunctivity.
In order to prove f 's universal disjunctivity, it suffices to prove

$$
\begin{equation*}
f=f^{*}, \tag{3}
\end{equation*}
$$

since-loosely speaking- f 's conjunctivity is f^{*} 's disjunctivity (see Theorem 6.9 of [2]). Indeed, for any p in P and any predicate x,

```
        \(\left[p \Rightarrow f^{*} \cdot x\right]\)
\(\not \equiv \quad\left\{(1)\right.\) with \(\left.x:=f^{*} \cdot x\right\}\)
    \(\left[p \Rightarrow \neg f^{*} \cdot x\right]\)
    \{conjugate\}
        \([p \Rightarrow f .(\neg x)]\)
\(\equiv \quad\{(2)\) with \(x:=\neg x\}\)
    \([h . p \Rightarrow \neg x]\)
\(\not \equiv \quad\{(1)\) with \(p:=h . p\), using \(h . p \in P\}\)
    \([h . p \Rightarrow x]\)
\(\equiv \quad\{(2)\}\)
    [ \(p \Rightarrow f . x]\),
```

from which, again with the help of Lemma 3, (3) follows.
Proof of $(\mathrm{ii}) \Rightarrow$ (i) From f 's universal conjunctivity it follows that there exists a predicate transformer g with

$$
\begin{equation*}
[g . x \Rightarrow y] \equiv[x \Rightarrow f . y] \tag{4}
\end{equation*}
$$

for all predicates x, y (see Theorem 11.1 of [2]). A correspondence of this kind is sometimes called a Galois connection [1]. We wish to take h as the restriction of g to P; this yields the proof obligation

$$
(\forall p: p \in P: g \cdot p \in P),
$$

which is discharged as follows: for $p \in P$ and any predicate y,

$$
\equiv \quad \begin{gathered}
{[g . p \Rightarrow y]} \\
\{(4)\} \\
{[p \Rightarrow f . y]}
\end{gathered}
$$

```
\(\equiv \quad\{[f . y \equiv \neg f .(\neg y)]\), see below \(\}\)
    \([p \Rightarrow \neg f .(\neg y)]\)
\(\not \equiv \quad\{(1)\}\)
\([p \Rightarrow f .(\neg y)]\)
\(\equiv \quad\{(4)\}\)
    \([g . p \Rightarrow \neg y]\),
```

from which $g . p \in P$ follows by (1). The second step in the above derivation is justified since for any y

```
    \(f . y \equiv \neg f .(\neg y)\)
\(\equiv \quad\{\) eliminating the equivalence \(\}\)
    \((f . y \vee f .(\neg y)) \wedge \neg(f . y \wedge f .(\neg y))\)
\(\equiv \quad\{f\) is finitely disjunctive and finitely conjunctive \(\}\)
    \(f .(y \vee \neg y) \wedge \neg f .(y \wedge \neg y)\)
\(\equiv \quad\{\) Excluded Middle \(\}\)
    f.true \(\wedge \neg f\).false
\(\equiv \quad\{f\) is conjunctive and disjunctive over the empty set \(\}\)
    true .
```

Remark Inspection of the proofs shows that we have not explicitly used the universal disjunctivity of f, only disjunctivity over finite (possibly empty) sets. This observation, however, does not strengthen the theorem, because every universally conjunctive predicate transformer that is disjunctive over finite sets is also universally disjunctive. This was proved by Scholten [5], as a generalization of a theorem of Van der Woude [2, Theorem 6.25].

The reader who is already convinced that (i) of Theorem 4 captures the notion of substitution may quit here. Others may wish to read on.

End of scope of Postulate 2.

2 State transformers

In this section, we restrict ourselves to predicates as functions on a state space. We shall see that this implies the existence of a covering set of point predicates as claimed in Postulate 2, which reappears below as Lemma 10.

Postulate 5 The predicates are boolean functions on some set S, such that

$$
\begin{align*}
& (\forall x: x \in V: x) \cdot s \equiv(\forall x: x \in V: x \cdot s) \tag{5}\\
& (\neg y) \cdot s \equiv \neg(y \cdot s) \tag{6}\\
& {[y] \equiv(\forall t: t \in S: y \cdot t)} \tag{7}
\end{align*}
$$

for $s \in S$, predicate y and set V of predicates.

We shall call S the state space and its elements states; a function mapping S into itself is called a state transformer. No doubt some readers would prefer denoting the operators and quantifiers on the right hand side, which take boolean constants as their operands, differently from those on the left hand side, which operate on boolean functions. We have not found such a distinction to be useful.

Notice that (5) and (6) guarantee that (.s) distributes over all boolean operators; in particular, it follows that

$$
\begin{align*}
& (x \Rightarrow y) . s \equiv x . s \Rightarrow y . s, \tag{8}\\
& (x \equiv y) . s \equiv x \cdot s \equiv y . s . \tag{9}
\end{align*}
$$

In order to prepare for Lemma 10, we define predicates C_{t} as follows:
Definition 6 For state t, predicate C_{t} is defined by

$$
\left(\forall s: s \in S: C_{t} \cdot s \equiv t=s\right) .
$$

The predicates C_{t} allow us to express application of a predicate to a state differently, as is shown in the next lemma.

Lemma 7 For state t and predicate x,

$$
x . t \equiv\left[C_{t} \Rightarrow x\right] .
$$

Proof

```
    {C }=>x
\equiv {(7)}
    (\foralls:s\inS:(Ct=>x).s)
\equiv {(8)}
    (\foralls:s\inS:Ct.s = x.s)
\equiv {Definition 6}
    (\foralls:s\inS:t=s = x.s)
\equiv {trading; one-point rule}
    x.t
```

Now we are ready to show that set of the C_{t} equals the set of point predicates.
Lemma 8 For all predicates p,

$$
p \in P \equiv\left(\exists t: t \in S:\left[p \equiv C_{t}\right]\right)
$$

Proof of LHS \Rightarrow RHS For any predicate p we have, with t ranging over the states,

```
    \(\left(\exists t::\left[p \equiv C_{t}\right]\right)\)
\(\equiv \quad\{\) mutual implication \(\}\)
    \(\left(\exists t::\left[p \Rightarrow C_{t}\right] \wedge\left[C_{t} \Rightarrow p\right]\right)\)
\(\Leftarrow \quad\) \{predicate calculus, guided by the form of (1)\}
        \(\left(\forall t::\left[p \Rightarrow C_{t}\right] \equiv\left[C_{t} \Rightarrow p\right]\right) \wedge\left(\exists t::\left\{C_{t} \Rightarrow p\right]\right)\)
                            \{Lemma 7 with \(x:=p\), twice \}
        \(\left(\forall t::\left[p \Rightarrow C_{t}\right] \equiv p . t\right) \wedge(\exists t:: p . t)\)
            \{Lemma 7 with \(x:=\neg p\); de Morgan \}
        \(\left(\forall t::\left[p \Rightarrow C_{t}\right] \equiv \neg\left[C_{t} \Rightarrow \neg p\right]\right) \wedge \neg(\forall t:: \neg p . t)\)
            \{contraposition; (7)\}
        \(\left(\forall t::\left[p \Rightarrow C_{t}\right] \equiv \neg\left[p \Rightarrow \neg C_{t}\right\}\right) \wedge \neg[p \Rightarrow\) false \(]\)
    \(\Leftarrow \quad\left\{(1)\right.\) with \(\left.x:=C_{t}\right\}\)
        \(p \in P \wedge \neg[p \Rightarrow\) false \(]\)
\(\equiv \quad\{(1)\) with \(x:=\) false \(\}\)
        \(p \in P \wedge[p \Rightarrow\) true \(]\)
\(\equiv \quad\) \{second conjunct is true \(\}\)
        \(p \in P\).
```

Proof of LHS \Leftarrow RHS With p and x ranging over the predicates and t over the states,

```
        \(\left(\forall p:: p \in P \Leftarrow\left(\exists t::\left[p \equiv C_{t}\right]\right)\right)\)
            \(\{\Leftarrow\) over \(\exists\}\)
        \(\left(\forall p, t:: p \in P \Leftarrow\left[p \equiv C_{t}\right]\right)\)
                            \{trading; one-point rule \}
        \(\left(\forall t:: C_{t} \in P\right)\)
    \(\equiv \quad\{(1)\}\)
        \(\left(\forall t, x::\left[C_{t} \Rightarrow x\right] \not \equiv\left\{C_{t} \Rightarrow \neg x\right]\right)\)
    \(\equiv \quad\{\) Lemma 7\}
        \((\forall t, x:: x . t \not \equiv \neg x . t)\)
            \{term is true\}
        true .
```

The following 'dummy transformation rule' is an immediate consequence of Lemma 8.
Lemma 9 For every predicate transformer f,

$$
\left[\left(\mathrm{Q} t: t \in S: f . C_{t}\right) \equiv(\mathrm{Q} p: p \in P: f . p)\right],
$$

where $\mathrm{Q}=\forall$ or $\mathrm{Q}=\exists$.

Proof

$\left(\mathrm{Q} t: t \in S: f . C_{t}\right)$
$\equiv \quad$ \{one-point rule $\}$
$\left(\mathrm{Q} t: t \in S:\left(\mathrm{Q} p:\left[p \equiv C_{t}\right]: f . p\right)\right)$
$\equiv \quad$ \{generalized range split $\}$
$\left(Q p:\left(\exists t: t \in S:\left[p \equiv C_{t}\right]\right): f \cdot p\right)$
$\equiv \quad\{$ Lemma 8$\}$
$(Q p: p \in P: f . p)$.

As announced above, we are now able to prove Postulate 2.
Lemma $10 \quad[(\exists p: p \in P: p)]$.

Proof

```
    \([(\exists p: p \in P: p)]\)
\(\equiv \quad\{\) Lemma 9\(\}\)
    \(\left[\left(\exists t: t \in S: C_{t}\right)\right]\)
\(\equiv \quad\{(7)\}\)
        \(\left(\forall s: s \in S:\left(\exists t: t \in S: C_{t} . s\right)\right)\)
\(\equiv \quad\{\) Definition 6\}
    ( \(\forall s: s \in S:(\exists t: t \in S: t=s))\)
\(\equiv \quad\{\) instantiation \(t:=s\}\)
    true .
```

On account of Lemma 10 we are allowed to import every result from Section 1, in particular Theorem 4. We are now in a position to present another property equivalent to universal junctivity.

Theorem 11 For predicate transformer f the following are equivalent:
(i) there exists a state transformer g such that, for every predicate x,

$$
[f x \equiv x \circ g],
$$

(ii) f is universally conjunctive and universally disjunctive.

Proof In the proof, we let dummy x range over the predicates, p over the point predicates, t over the states, g over the state transformers, and h over the point predicate transformers.

We start by transforming both (i) and (ii) into comparable shapes.

```
\(\equiv \quad\{\) by definition \(\}\)
    \((\exists g::(\forall x::[f . x \equiv x \circ g]))\)
\(\equiv \quad\{(7)\}\)
    \((\exists g::(\forall x, t::(f \cdot x \equiv x \circ g) . t))\)
\(\equiv \quad\{(9)\}\)
    \((\exists g::(\forall x, t:: f . x . t \equiv x .(g . t)))\)
\(\equiv \quad\{\) Lemma 7 with \(t:=\) g.t \(\}\)
    \(\left(\exists g::\left(\forall x, t:: f . x . t \equiv\left[C_{g . t} \Rightarrow x\right]\right)\right)\),
```

and
(ii)
$\equiv \quad\{$ Theorem 4\}
$(\exists h::(\forall p, x::[p \Rightarrow f . x] \equiv[h . p \Rightarrow x]))$

$$
\begin{array}{cc}
\equiv & \{\text { Lemma } 9\} \\
\equiv & \left(\exists h::\left(\forall x, t::\left[C_{t} \Rightarrow f . x\right] \equiv\left[h . C_{t} \Rightarrow x\right]\right)\right) \\
& \{\text { Lemma } 7 \text { with } x:=f \cdot x\} \\
& \left(\exists h:::\left(\forall x, t:: f . x \cdot t \equiv\left[h \cdot C_{t} \Rightarrow x\right]\right)\right) .
\end{array}
$$

The equivalence of

$$
\begin{equation*}
\left(\exists g::\left(\forall x, t:: f . x . t \equiv\left[C_{g . t} \Rightarrow x\right]\right)\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\exists h::\left(\forall x, t:: \text { f.x.t } \equiv\left[h . C_{t} \Rightarrow x\right]\right)\right) \tag{11}
\end{equation*}
$$

is proved by mutual implication. First, let a state transformer g be given that is a witness for (10). Then, for every state t, g.t is also a state, and hence, by Lemma $8, C_{g . t}$ is a point predicate. Again by Lemma 8, every C_{t} is a point predicate; from Definition 6 it follows immediately that distinct states t correspond to distinct point predicates C_{t}. Consequently, a point predicate transformer h can be defined by

$$
\begin{equation*}
\left(\forall t::\left[h . C_{t} \equiv C_{g . t}\right]\right) \tag{12}
\end{equation*}
$$

This h is a witness for (11).
Conversely, let a point predicate transformer h be given that is a witness for (11). Let t be any state. Then C_{t} is a point predicate by Lemma 8 and so, therefore, is $h . C_{t}$. Again by Lemma 8 , the point predicate $h . C_{t}$ equals C_{s} for some state s. Now define $g . t$ to be s. This defines a state transformer g satisfying (12); it is a witness for (10).

Again, the reader who is convinced that (i) of Theorem 11 captures the notion of substitution may quit here.

3 Substitution

We retain Postulate 5, but add another postulate in order to introduce coordinates into the state space.

Postulate 12 All states are functions defined on the same finite set.

The elements of this finite set will be called variables. With the aid of Postulate 12, we can give a conventional definition of substitution; see, for instance, [3]. As usual, a structure is a function on the state space.

Definition 13 A state transformer g is called an update iff there exists a list v of distinct variables and an equally long list φ of structures, such that

$$
g . s . w=\left\{\begin{array}{ll}
s . w & \text { if } w \notin v \tag{13}\\
\varphi_{k} . s & \text { if } w=v_{k}
\end{array},\right.
$$

for state s and variable w. A substitution is a predicate transformer f such that, for all predicates x,

$$
[f . x \equiv x \circ g]
$$

where g is an update.

Example 14 Consider the state space spanned by the integer variables a, b and c. An example of a structure on this state space is the function mapping each state s to $s . a+s . b$ An example of an update on this space is g defined by

$$
\text { g.s. } a=s . b \quad, \quad \text { g.s. } b=s . a+\text { s.b }, \quad \text { g.s. } c=s . c
$$

for every state s. An example of a substitution on this space is f defined by

$$
f . x . s=x .(g . s)
$$

for every state s. The substitution f would traditionally be denoted by $(a, b:=b, a+b)$.

Observe that lists v and φ as occurring in (13) are not uniquely determined by the state transformer g. Indeed, if $w \notin v$, lists v and φ may be extended with w and ψ respectively, where ψ is defined by $\psi . s=s . w$ for all states s. Hence, without loss of generality, we may assume v to be a list of all variables. In that case the first alternative in (13) does not occur.

Lemma 15 Every state transformer is an update.
Proof Let g be a state transformer. Let v be a list of all variables; define list φ by

$$
\varphi_{k} \cdot s=g \cdot s \cdot v_{k}
$$

for every index k and all s. Then g satisfies (13).

Combination of Lemma 15 and Theorem 11 finally yields the result promised in the Introduction:

Theorem 16 For predicate transformer f the following are equivalent:
(i) f is a substitution,
(ii) f is universally conjunctive and umiversally disjunctive.

End of scope of postulates 5 and 12.

References

[1] R.C. Backhouse and J.C.S.P. van der Woude, 'Demonic operators and monotype factors'. Math. Struct. in Comp. Sci. 3 (1993), 417-433.
[2] E.W. Dijkstra and C.S. Scholten, Predicate calculus and program semantics. SpringerVerlag, New York, 1990.
[3] W.H. Hesselink, Programs, recursion and unbounded choice: predicate-transformation semantics and transformation rules. Cambridge Tracts in Theoretical Computer Science; 27. Cambridge University Press, 1992.
[4] J.D. Monk and R. Bonnet, Handbook of boolean algebras, vol. I. North-Holland, Amsterdam, 1989.
[5] C.S. Scholten, A generalization of Van der Woude's theorem. Memorandum CSS144. Beekbergen, 1988.

Department of Mathematics and Computing Science Eindhoven University of Technology

In this series appeared:

91/01	D. Alstein	Dynamic Reconfiguration in Distributed Hard Real-Time Systems, p. 14.
91/02	R.P. Nederpelt H.C.M. de Swart	Implication. A survey of the different logical analyses "if...,then...", p. 26.
91/03	J.P. Katoen L.A.M. Schoenmakers	Parallel Programs for the Recognition of P-invariant Segments, p. 16.
91/04	E. v.d. Sluis A.F. v.d. Stappen	Performance Analysis of VLSI Programs, p. 31.
91/05	D. de Reus	An Implementation Model for GOOD, p. 18.
91/06	K.M. van Hee	SPECIFICATIEMETHODEN, een overzicht, p. 20.
91/07	E.Poll	CPO-models for second order lambda calculus with recursive types and subtyping, p. 49.
91/08	H. Schepers	Terminology and Paradigms for Fault Tolerance, p. 25.
91/09	W.M.P.v.d.Aalst	Interval Timed Petri Nets and their analysis, p. 53.
91/10	R.C.Backhouse P.J. de Bruin P. Hoogendijk G. Malcolm E. Voermans J. v.d. Woude	POLYNOMIAL RELATORS, p. 52.
91/11	R.C. Backhouse P.J. de Bruin G.Malcolm E.Voermans J. van der Woude	Relational Catamorphism, p. 31.
91/12	E. van der Sluis	A parallel local search algorithm for the travelling salesman problem, p. 12.
91/13	F. Rietman	A note on Extensionality, p. 21.
91/14	P. Lemmens	The PDB Hypermedia Package. Why and how it was built, p. 63.
91/15	A.T.M. Aerts K.M. van Hee	Eldorado: Architecture of a Functional Database Management System, p. 19.
91/16	A.J.J.M. Marcelis	An example of proving attribute grammars correct: the representation of arithmetical expressions by DAGs, p. 25 .

91/17	A.T.M. Aerts P.M.E. de Bra K.M. van Hee	Transforming Functional Database Schemes to Relational Representations, p. 21.
$91 / 18$	Rik van Geldrop	Transformational Query Solving, p. 35.

91/35	F.S. de Boer J.W. Klop C. Palamidessi	Asynchronous communication in process algebra, p. 20.		
92/01	J. Coenen J. Zwiers	A note on compositional refinement, p. 27.		
	W.-P. de Roever			
92/02	J. Coenen			
	J. Hooman		\quad	A compositional semantics for fault tolerant real-time
:---				
systems, p. 18.				

92/21	F.Kamareddine	Non well-foundedness and type freeness can unify the interpretation of functional application, p. 16.
$92 / 22$	R. Nederpelt F.Kamareddine	A useful lambda notation, p. 17.

93/14	J.C.M. Baeten J.A. Bergstra			
$93 / 15$	J.C.M. Baeten J.A. Bergstra R.N. Bol			
$93 / 16$	H. Schepers J. Hooman			
$93 / 17$	D. Alstein P. van der Stok			
$93 / 18$	C. Verhoef	\quad		
:---	:---			
$93 / 19$	G.J. Houben			
$93 / 20$	F.S. de Boer			
$93 / 21$	M. Codish D. Dams			
	G. Filé			
M. Bruynooghe				

Part V: Specification Language, p. 89.
On Sequential Composition, Action Prefixes and Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system, p. 19.

A congruence theorem for structured operational semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.
A Process Algebra of Concurrent Constraint Programming, p. 15.

Freeness Analysis for Logic Programs - And Correctness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.
Relational Algebra and Equational Proofs, p. 23.
Pure Type Systems with Definitions, p. 38.
A Compositional Proof Theory for Fault Tolerant RealTime Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.
Finding all minimal separators of a graph, p. 11.
A Semantics for a fine λ-calculus with de Bruijn indices, p. 49.

GOLD, a Graph Oriented Language for Databases, p. 42.
On Vertex Ranking for Permutation and Other Graphs, p. 11 .

> Derivation of delay insensitive and speed independent CMOS circuits, using directed commands and production rule sets, p. 40 .

On the Correctness of some Algorithms to generate Finite Automata for Regular Expressions, p. 17.

93/33	L. Loyens and J. Moonen	ILIAS, a sequential language for parallel matrix computations, p. 20.
93/34	J.C.M. Baeten and J.A. Bergstra	Real Time Process Algebra with Infinitesimals, p.39.
93/35	W. Ferrer and P. Severi	Abstract Reduction and Topology, p. 28.
93/36	J.C.M. Baeten and J.A. Bergstra	Non Interleaving Process Algebra, p. 17.
93/37	J. Brunekreef J-P. Katoen R. Koymans S. Mauw	Design and Analysis of Dynamic Leader Election Protocols in Broadcast Networks, p. 73.
93/38	C. Verhoef	A general conservative extension theorem in process algebra, p. 17.
93/39	W.P.M. Nuijten E.H.L. Aarts D.A.A. van Erp Taalman Kip K.M. van Hee	Job Shop Scheduling by Constraint Satisfaction, p. 22.
93/40	P.D.V. van der Stok M.M.M.P.J. Claessen D. Alstein	A Hierarchical Membership Protocol for Synchronous Distributed Systems, p. 43.
93/41	A. Bijlsma	Temporal operators viewed as predicate transformers, p. 11.
93/42	P.M.P. Rambags	Automatic Verification of Regular Protocols in P/T Nets, p. 23.
93/43	B.W. Watson	A taxomomy of finite automata construction algorithms p. 87.
93/44	B.W. Watson	A taxonomy of finite automata minimization algorithms, p. 23.
93/45	E.J. Luit J.M.M. Martin	A precise clock synchronization protocol,p.
93/46	T. Kloks D. Kratsch J. Spinrad	Treewidth and Patwidth of Cocomparability graphs of Bounded Dimension, p. 14.
93/47	W. v.d. Aalst P. De Bra G.J. Houben Y. Komatzky	Browsing Semantics in the "Tower" Model, p. 19.
93/48	R. Gerth	Verifying Sequentially Consistent Memory using Interface Refinement, p. 20.

94/01	P. America M. van der Kammen R.P. Nederpelt O.S. van Roosmalen H.C.M. de Swart	The object-oriented paradigm, p. 28.
94/02	F. Kamareddine R.P. Nederpelt	Canonical typing and Π-conversion, p. 51.
94/03	L.B. Hartman K.M. van Hee	Application of Marcov Decision Processe to Search Problems, p. 21.
94/04	J.C.M. Baeten J.A. Bergstra	Graph Isomorphism Models for Non Interleaving Process Algebra, p. 18.
94/05	P. Zhou J. Hooman	Formal Specification and Compositional Verification of an Atomic Broadcast Protocol, p. 22.
94/06	T. Basten T. Kunz J. Black M. Coffin D. Taylor	Time and the Order of Abstract Events in Distributed Computations, p. 29.
94/07	K.R. Apt R. Bol	Logic Programming and Negation: A Survey, p. 62.
94/08	O.S. van Roosmalen	A Hierarchical Diagrammatic Representation of Class Structure, p. 22.
94/09	J.C.M. Baeten J.A. Bergstra	Process Algebra with Partial Choice, p. 16.
94/10	T. verhoeff	The testing Paradigm Applied to Network Structure. p. 31 .
94/11	J. Peleska C. Huizing C. Petersohn	A Comparison of Ward \& Mellor's Transformation Schema with State- \& Activitycharts, p. 30.
94/12	T. Kloks D. Kratsch H. Müller	Dominoes, p. 14.
94/13	R. Seljée	A New Method for Integrity Constraint checking in Deductive Databases, p. 34.
94/14	W. Peremans	Ups and Downs of Type Theory, p. 9.
94/15	R.J.M. Vaessens E.H.L. Aarts J.K. Lenstra	Job Shop Scheduling by Local Search, p. 21.
94/16	R.C. Backhouse H. Doombos	Mathematical Induction Made Calculational, p. 36.
94/17	S. Mauw M.A. Reniers	An Algebraic Semantics of Basic Message Sequence Charts, p. 9.

94/18	F. Kamareddine R. Nederpelt	Refining Reduction in the Lambda Calculus, p. 15.

94/37 T. Basten R. Bol
M. Voorhoeve

Simulating and Analyzing Railway Interlockings in ExSpect, p. 30.

