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Abstract: We preseni efficient algorithmns for chordal bipartite graphs. Both algorithms use a doubly

lexical ordeving of the bipavtite adjacency wairiv. The first algorithm compuies a perfect edge without

verter elimination ordering and the second one lisls all mazimal complele bipartite subgraphs.

Keywovds: Design of algorithms. efficient algorithins. chordal bipartile graphs.

Introduction

Chordal bipartite graphs form a large class
of perfect graphs containing for example con-
vex and biconvex hipartite graphs, bipartite
permutation graphs and bipartite distance
hereditary graphs (or (6.2)-chordal bipartite
graphs). For an overview on graph classes the
reader is referred to {2, 6].

Recognizing chordal bipartite graphs can be
done in time O{min{m log n. n*)) [7, 9. 11, 12].
All these recognition algorithms use the same
underlying idea. First compute a doubly lexi-
cal ordering of the bipartite adjacency matrix
of the given bipartite graph and then check if
this is ['-free (see, e.g., [1. 4. 7]).

Chordal bipartite graphs can also be rep-
rescuted by a so-called  perfect edge with-
out verter eliminaiion ordering.  We show
that such an ordering can casily be com-
puted from any doubly lexical ordering of the
bipartite adjacency matrix. Thus we find
an O(min{m logn. n?)) algorithtn computing
a pewveo from the given chordal bipartite
graph. Furthermore, we present an algorithm

*This research was done while the second author
was with TRISA Rennes (France} as a CHM fellow.
Fmail: kratsch@minet.uni-jena.de

computing a list of all maximal complete bi-
partite subgraphs of a chordal bipartite graph
in time O(min(m logn,n?)).

We improve upon the hest known time
bounds for computing the perfect edge with-
out vertex elimination ordering as well as for
computing the list of maximal complete bi-
partite subgraphs. Such algorithms are in-
teresting since a perfect edge without vertex
elimination ordering and the list of maximal
complete bipartite subgraphs of a chordal bi-
partite graph are useful tools for designing ef-
ficient algorithms on chordal bipartite graphs
and bi-interval graphs [8, 10].

Background

In this section we start with some definitions
and easy lemmas. For more information the
reader is referred to [2] or [6].

Definition 1 4 graph is called chordal bipar-
tite iof i is bipartite and each cycle of length
at least siz has a chord,

Throughout the paper we assume that the in-
put chordal bipartite graph has no isolated
vertex. Furthermore, we denote by n the
number of vertices and by m the number of



edges of the input graph. If o is a vertex of a
graph & = (V, I), we denote by N(z) the set
of neighbors of z.

Definition 2 Let G = (X, Y, E) be a bipar-
tite graph. Then (x,y) € F is called a bistm-
plicial edge if N (&)U N (y) induces a complete
bipartite subgraph of .

The notion of a ‘perfect edge without ver-
tex elimination ordering’ appears for example
in {2]. It refers to an edge elimination order-
ing such that no vertices are deleted in the
process.

Definition 3 Let & = (XN, Y. E) be « bipar-
tite graph. Lel (e).....ey) be an ordering
of the edges of G. For i = 0..... m de-
fine the subgraph G; = (N, Y. F;) us follows.
Go = & and for i > | G is the subgroaph
of G wilh verter set X UY and with edge
set By = FEi_y \ {ei} (ie. the edge ¢; is re-
moved bul not the endvertices). The ordering
{1, .., 80) 1§ @ perlect edge without vertex
elimination ordering for G if each edge ¢; is
bisimiplicial in G;_).

We use pewveo as a shorthand for perfect edge
without vertex elimination ordering,.

The following lemma appears for example
in {2].

Lemma 1 & is chordal bipartite if and only
if there is a pewveo of G

We denote complete bipartite subgraphs of
a chordal bhipartite graph ¢ = (X, Y, L) by
(A, B). where 4 and I are nonempty subsets
of X and V., respectivelv. We use mchs as
a. shorthand for maximal complete bipartite
subgraph.

The following lemna indicates how to com-
pute the list of all mchs from a pewveo of the
chordal bipanite graph.

Lemma 2 {f & = (XN.Y, £) is chordal bipar-
tite. then It contains al most m marimal com-
plete bipartite subyraphs.

FProof. G is chordal bipartite, hence there is
a perfect edge without vertex elimination or-
dering (e1,..., ey ). Consider a maximal com-
plete bipartite subgraph (4, B). Let e; he the
first edge in the ordering which is an edge of
(A, 3). Let ¢; = (w,y) with z € A and y € B.
Since ¢; is hisimplicial and (4, B) is maximal
we have 4 = N(y) and B = N(a). a

Recently the importance of a fast algorithm
computing a pewveo of a chordal bipartite
graph was recognized in [8, 10]. In hoth pa-
pers the ordering is nsed for the computation
of the list of all mchs.

An O(n®m) algorithm for computing a
pewveo follows from resuits of [5] and an
O(n® + m*) algorithm is given in [8]. Both
algorithuns iteratively compute a bisimplicial
edge in the graph G for i = 0,1,...,m — 1.

The list of all mebs of a connected chordal
bipartite graph can bhe computed in time
O(nm?} from a pewveo in a straightforward
manner (see [3]). An alternative O(m®) algo-
rithm using fast matrix multiplication is given
in [8], where O(m®) is the best known time
bound for multiplying two m X m matrices.

Doubly lexical ordering and
perfect edge without vertex
elimination ordering

Our new algorithm for computing a pewveo
exploits the information contained in a dou-
blv lexical ordering of the bipartite adjacency
maurix of the given chordal bipartite graph.

Definition 4 Let G = (X, Y, E) be a bipar-
tite graph with X = {xq,22, ..., 25} and ¥ =
{%1.92..-.. ). The bipartite adjacency ma-
trix of G is the binary s X ¢ matriz A = (a;;)
such that a;; = 1 if and only if (v, y;) € E.

For the recognition of chordal bipartite graphs
it 15 of importance 1o obtain a doubly lexical
ordering of its bipartite adjacency matrix [1,

4. 7).



Definition 5 A doubly lexical ordering of
binary matriz is an ordering of the columns
and of the rows such thal both the columns and
the rows. as vectors, ave lexically increasing.

The term ‘increasing’ is to he understood as
‘non-decreasing”. Here the vectors are read
hackwards, i.e., a vector @ is less than another
vector ¥ if in the last different entry 2 has a
zero and y a one.

Definition 6 A binary madriz is I'-free if i
does not contein the matriz

11

as a submatriz.

The following lena shows a strong relation
between I'-free matrices and chordal bipartite
graphs (see [7. 9]).

Lemma 3 A graph is chordal bipartite if and
only if « doubly lexical ovdering of its bipaviite
adjacency matriv is I'-free.

Hence, chordal bipartite graphs can be recog-
nized by determining a doubly lexical ordering
of its bipartite adjacency matrix and checking
whether this matrix is I-free. T'his approach
leads to O{mlogn) and O(n?) recognition al-
gorithins for chordal bipartite graphs. where
the computation of a doubly lexical ordering
is the most time consuming step [11. 12].

We describe an algorithm to compute a
pewveo of a chordal bipartite graph & =
(X,Y, ). We assume that the bipartite s x ¢
adjacency matrix of the graph is stored by
lists of nonzero entries of the columns aund
rows, respectively, as described in [9, 11]. This
will allow us to inspect the nonzero entries of
the matrix by using a pointer for each list of
the nonzero entries of a row,

Using the algorithm of [11] or [12]. a doubly
texical ordering of this mairix is computed in
thne O(min(mlogn, n?}). The resulting ma-
trix ts [-frec. We denote it by 4 and assume

that X and Y are labeled such that a;; = 1if
and only if (2;,9;) € F.

The procedure pewveo( A) given in Figure 1
computes a pewveo of .

procedure pewveo( A)

begin
fori=1to s
do begin
In increasing order of
nonzero entries g;; in row &
do begin
put (v, v;) in the pewveo,
set iy = 0
end
end
end.

Figure 1: computing a pewveo

The procedure pewveo( 4) can obviously be
implemented such that it runs in O(n + m)
time.

Lemma 4 Lel A be a I'-free bipartite adja-
cency matriz of « chordal bipartite graph G.
Then the procedure pewwvoe(A) compules a
pewveo of G

Proof. The crucial point is that when inspect-
ing @;; then by the order of passing the matrix
we have a,; = 0 for all p < ¢ and ¢, = 0 for
all ¢ < 7. _

Let us denote the hipartite graph which cor-
responds to the matrix when inspecting a;; by
7= (N,Y, £, i.e, G is the graph resuiting
from G hy the removal of those edges which
are already inserted in the pewveo. Let N'(u)
denote the set of neighbours of a vertex w in
£

We conclude the proof by showing that
(%7, 95} is bisimplicial in G7. Let g, € N'(a;)\
{y;} and 2, € N'(y;)\ {2;}. Then p > j and
g > 1. Hence o, = 1, a; = 1 and ay; = 1
which implies that a,, = 1 since 4 is I'- free.



Consequently N'{x;) U N'(y;) induces a com-
plete bipartite subgraph of ' Hence. by def-
inition. (=;,y;) is bisimplicial in G”. m]

Theorem 1 The procedure pewveo( A) is an
O(n + m) algorithm computing a perfect
edge without vertex elimination ordering of a
chordal bipartite graph G which is given by a
[-free bipartite adjucency matriz 4.

Theorem 2 There is an algorithm congrud-
g a perfect edge without verter eliminalion
ordering of « given chordal bipartite graph in
time O(min(mlog n. n?)).

Listing all maximal complete
bipartite subgraphs

Notice that, for bipartite graphs in general, a
list of all mehs can be computed as follows.
First make a clique of the two color classes
and then use a clique listing algorithim (see.
e.g.. [3]). In this section we show that there is
a faster method for chordal hipartite geaphs
using a doubly lexical ordering of the bipartite
adjacency matrix.

Let A be the T'-lree bipartite adjacency
matrix of the chordal bipartite graph &
(X.Y,E). Let the vertices of & be labeled
such that (2. y;) € F il and only if a;; = 1.

Consider the pewveo (ey.e3,....¢5) of
G computed by the procedure pewveo( ).

Given the pewveo. there is a compact pre-
sentation of the list of mcebs. For any edge
e, = (2.y) 0 the pewveo consider the graph
G, = G\ {er,....0-1). Let Ay and B,
he the sets of neighbors of y and 2, respec-
tively, in . Then (A,. 13,) induces a com-
plete bipartite subgraph in ). Hence, given
the pewveo, the mchs algorithm needs only to
output those edges ¢, of & for which (A,. 3,)
is a mehs in &, Equivalently. our algorithm
labels those pairs {i,j} for which «;; of 4 is
nonzero and for which the corresponding edge
(i, y;) gives a mehs of &

Let a;; be a nouzero entry of 4. We de-
note by (A, By) = ({ze | 8 > i Ay =
th{we | € > j Aaip = 1}) the complete bi-
partite subgraph of G corresponding with the
edge (2;,y;) with respect to (e1,eq,...,em).

We call a nonzero entry a;; mazimal if
(Ai;, Bij) is a mebs of . Recall that, by
Lemma 2, for any mchs (A4, B) of G there is
a nonzero entry a; = 1 such that (A, B) =
(A, Bij).

Lemma 5 4 nonzero entry a,, of A is not
maxtmal if and only if there is another
nonzero entry a;; such that + <p, j < q and

(1) =

(2)

dry = LA K> p
tpe = 1 A2 g

g =1

= aie — 1

Proof. Clearly, the nonzero entry a,, is not
maximal if and only i there is a nonzero en-
try ag;, with + < pand j < ¢, such that 4,, C
Ai; and By, € By, which is equivalent to
{ap | k2 phag =11 C{ap [ h > ihey; = 13
and {ye | (2 ghape =11 C{ye [ (2 FAai =
1}, This is equivalent with (1) and (2). O

We will say that a;; covers a,, if the condi-
tions of Lemma 5 are Tulfilled.

Definition 7 Let 4 be a ['-free matriz. For
every nonzero eniry a;; of A we define

d Hk > @ | ag; =1} and

HEz 4 [ ae =1}

Ly

ri; =
L OHSe IR P — $ . P —
Consequently dy; = i ;ap; and r; =
Zf?:_r- agr. (Notice that d;; and »r;; are unde-
fined in case a;; = 0.)

Proposition 1 Let 4 be a I'-free matriz. For
any row i, the sequence dy; (of its nonzero en-
tries) is increasing in j. For any column j,
the sequence vy (of its nonzero entries) is in-
Creasing in i.

Proof. Let a;; = 1, a;, = 1 and j < ¢. Then
ap; = Limplics ap, = 1 forany & > isince Ais
I-free. Hence di; < d;,. Analogously, a;; = 1,
tp; = 1 and ¢ < pimply that ri; < ;. o



The following lemma indicates how we can
determine the nonzero entries of A which are
maximal.

Lemma 6 The nonzero entry ay, of the I'-
free bipurtite adjacency malriv A of G is maa-
imal of and only if
Yiep [Phy < py) and

Vicg [dpr < dpyf

Proof.  Assume a,, is not maximal and a;;

Ther + < poj < q, a5y = 1
and a,; = 1 by Lemma 3. Hence d,,; = d,,

COVErS iy, .

and ry = rpe by Lemuna 5 and Proposition 1.
Since ¢+ # por j # g. either (3) or (1) is vio-
lated.

Now assume that oy, is nonzero and ry, =
ryy Tor some k < p. We show that az, cov-
ers dap, = L. We verify the conditions of
Lemma. 5. Clearlv. (1) ts fulfilled. Further-
more, ri, = rp, and the [-freeness of A imply
that {ye [ (> ghape =1} = {ye | 0> ghape =
L}, thus (2} is also fulfilled.

Analogousty. d,y = dy, for some { < ¢ im-

plies that o,y covers ayp,. O

Consequently, the maximal nonzero entries
of A can be determined using the procedure
given in Figure 2.

The correctness of the procedure follows
from Lemma 6.

It is not hard to implement mebs(A) such
that it runs in O{» +m). The computation of
the vahies r;; and d;; can be done by scanning
all rows and all columns once.

Theorem 3 The procedure mebs(A) s an

O(n + m)y agovithm computing the list of

all mazimal complete bipartite subgraphs of a
chordal bipartite graph G awhich is given by «
I'-free bipartite adincency malviz A.

Theorem 4 There is an algorithm comput-
ing the list of all mazimal complefe bipartile
subgraphs of a given chovdal bipartite graph in
time O(min{m log n.n")).

procedure mcbs(A)
begin
Compute »;; and d;; for nonzero entries;
fori=1tos
do begin
Pass through all nonzero entries of
row t in increasing order of 7 and
label those «;; with D for which
("!-ij > 111&)’{(/1','3 l (< r}
end;
forj=1to¢
do begin
Pass through all nonzero entries of
column 7 in increasing order of ¢ and
label those @;; with R for which
ri; > max{ry; | b <}
end;
Output (2. y;) for all entries a;;
labeled I and R
end.

Fignre 2: computing the list of mchs

Conclusions

We have shown that a perfect edge without
vertex elimination ordering and a list of all
maximal complete bipartite subgraphs of a
chordal bipartite graph can be computed in
linear time when the graph is given by a I'-free
bipartite adjacency matrix. Such a matrix is
the output of the best known recognition al-
gorithms for chordal bipartite graphs [11, 12].

lowever. it would be interesting to know
whether the bipartite adjacency matrix of a
given chordal bipartite graph can be trans-
formed into a ['-free bipartite adjacency ma-
trix by a finear time algorithm.
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