6,093 research outputs found

    On Coordinating Collaborative Objects

    Full text link
    A collaborative object represents a data type (such as a text document) designed to be shared by a group of dispersed users. The Operational Transformation (OT) is a coordination approach used for supporting optimistic replication for these objects. It allows the users to concurrently update the shared data and exchange their updates in any order since the convergence of all replicas, i.e. the fact that all users view the same data, is ensured in all cases. However, designing algorithms for achieving convergence with the OT approach is a critical and challenging issue. In this paper, we propose a formal compositional method for specifying complex collaborative objects. The most important feature of our method is that designing an OT algorithm for the composed collaborative object can be done by reusing the OT algorithms of component collaborative objects. By using our method, we can start from correct small collaborative objects which are relatively easy to handle and incrementally combine them to build more complex collaborative objects.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    The Dafny Integrated Development Environment

    Full text link
    In recent years, program verifiers and interactive theorem provers have become more powerful and more suitable for verifying large programs or proofs. This has demonstrated the need for improving the user experience of these tools to increase productivity and to make them more accessible to non-experts. This paper presents an integrated development environment for Dafny-a programming language, verifier, and proof assistant-that addresses issues present in most state-of-the-art verifiers: low responsiveness and lack of support for understanding non-obvious verification failures. The paper demonstrates several new features that move the state-of-the-art closer towards a verification environment that can provide verification feedback as the user types and can present more helpful information about the program or failed verifications in a demand-driven and unobtrusive way.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    Literal Perceptual Inference

    Get PDF
    In this paper, I argue that theories of perception that appeal to Helmholtz’s idea of unconscious inference (“Helmholtzian” theories) should be taken literally, i.e. that the inferences appealed to in such theories are inferences in the full sense of the term, as employed elsewhere in philosophy and in ordinary discourse. In the course of the argument, I consider constraints on inference based on the idea that inference is a deliberate acton, and on the idea that inferences depend on the syntactic structure of representations. I argue that inference is a personal-level but sometimes unconscious process that cannot in general be distinguished from association on the basis of the structures of the representations over which it’s defined. I also critique arguments against representationalist interpretations of Helmholtzian theories, and argue against the view that perceptual inference is encapsulated in a module

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Programming Not Only by Example

    Full text link
    In recent years, there has been tremendous progress in automated synthesis techniques that are able to automatically generate code based on some intent expressed by the programmer. A major challenge for the adoption of synthesis remains in having the programmer communicate their intent. When the expressed intent is coarse-grained (for example, restriction on the expected type of an expression), the synthesizer often produces a long list of results for the programmer to choose from, shifting the heavy-lifting to the user. An alternative approach, successfully used in end-user synthesis is programming by example (PBE), where the user leverages examples to interactively and iteratively refine the intent. However, using only examples is not expressive enough for programmers, who can observe the generated program and refine the intent by directly relating to parts of the generated program. We present a novel approach to interacting with a synthesizer using a granular interaction model. Our approach employs a rich interaction model where (i) the synthesizer decorates a candidate program with debug information that assists in understanding the program and identifying good or bad parts, and (ii) the user is allowed to provide feedback not only on the expected output of a program, but also on the underlying program itself. That is, when the user identifies a program as (partially) correct or incorrect, they can also explicitly indicate the good or bad parts, to allow the synthesizer to accept or discard parts of the program instead of discarding the program as a whole. We show the value of our approach in a controlled user study. Our study shows that participants have strong preference to using granular feedback instead of examples, and are able to provide granular feedback much faster

    IST Austria Thesis

    Get PDF
    Motivated by the analysis of highly dynamic message-passing systems, i.e. unbounded thread creation, mobility, etc. we present a framework for the analysis of depth-bounded systems. Depth-bounded systems are one of the most expressive known fragment of the π-calculus for which interesting verification problems are still decidable. Even though they are infinite state systems depth-bounded systems are well-structured, thus can be analyzed algorithmically. We give an interpretation of depth-bounded systems as graph-rewriting systems. This gives more flexibility and ease of use to apply depth-bounded systems to other type of systems like shared memory concurrency. First, we develop an adequate domain of limits for depth-bounded systems, a prerequisite for the effective representation of downward-closed sets. Downward-closed sets are needed by forward saturation-based algorithms to represent potentially infinite sets of states. Then, we present an abstract interpretation framework to compute the covering set of well-structured transition systems. Because, in general, the covering set is not computable, our abstraction over-approximates the actual covering set. Our abstraction captures the essence of acceleration based-algorithms while giving up enough precision to ensure convergence. We have implemented the analysis in the PICASSO tool and show that it is accurate in practice. Finally, we build some further analyses like termination using the covering set as starting point
    • 

    corecore