
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322393731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

13

Data Mining for Decision Making
in Multi-Agent Systems

Hani K. Mahdi, Hoda K. Mohamed and Sally S. Attia
Computer and Systems Engineering Department,

Faculty of Engineering, Ain Shams University, Cairo
Egypt

1. Introduction

The intelligent agent paradigm has generated such a remarkable interest in many

application domains over the last two decades. It is growing to be a continuously evolving

and expanding area. Agents, Software Agents or Intelligent Agents are intelligent in the

sense that they are adaptive, independent, and possess reasoning capability. They can plan

and execute tasks in cooperation with other agents in order to satisfy their goals. A Multi-

Agent System (MAS) is defined as a loosely coupled network of problem solvers that work

together to solve problems that are beyond the individual capabilities or knowledge of each

problem solver (Agent). The increasing interest in MAS research is due to significant

advantages inherent in such systems, including their ability to solve problems that may be

too large for a centralized single agent, provide enhanced speed and reliability, and tolerate

uncertain data and knowledge. Some of the key research issues related to problem-solving

activities of agents in a multi-agent system MAS are in the areas of coordination,

negotiation, and communication.

With advances in Web technologies, collaborative applications are now server based and the

user interface is typically a Web browser. Thus, a collaborative application can be a Web-

based solution that runs on a local server that allows people communicate and work

together, share information and documents, and talk in real-time over the Internet. Recently,

much research has been conducted in distributed artificial intelligence and collaborative

applications. Several interesting methodologies and systems have been developed in areas

such as distributed multi-agent systems for decision support, web search and information

retrieval, information systems modeling, and supply chain management.

This chapter considers applying different data mining techniques for the decision making

process in a Multi-Agent System for Collaborative E-learning (MASCE). The dynamism in e-

learning can be made more powerful with the help of intelligent agents. Intelligent agents –

the so called e-assistants or helper programs - can reside inside a computer and make the

learning in e-learning occur dynamically to suit the need of the user. They can track the

user’s likes and dislikes in different areas, the level of knowledge and the learning style and

accordingly recommend the best matching helpers for collaboration.

A previous research outlined the development and the implementation processes of a Multi-

Agent System for Collaborative E-learning (MASCE) which is designed to be used to assist

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

274

the teaching and learning processes. This system considers the blended learning

environment as a supplement to the face-to-face lecture. The goal is to incorporate the

intelligence of the multi-agent system in a way that enables it to actively and intelligently

support the educational processes, where multiple agents can interact to exchange

information so that students may collaborate on how best to gain knowledge.

In this chapter we are going to outline the application of different data mining techniques to

discover important information previously unknown from the large database tables

obtained from MASCE. The use of data mining facilitates the decision making process. As

the world grows in complexity, overwhelming us with the data it generates, data mining

becomes our only hope for explaining the patterns that underlie it. Intelligently analyzed

data is a valuable resource. It can lead to new insights and, in commercial settings, to

competitive advantages.

Data mining is defined as the process of discovering patterns in data. The process must be

automatic or (more usually) semiautomatic. The patterns discovered must be meaningful in

that they lead to some advantage. The data is invariably present in substantial quantities.

Useful patterns allow us to make nontrivial predictions on new data. In other words, they

help to explain something about the data.

First, we are going to apply Rough Sets techniques to the decision tables in order to obtain

decision rules that can be used to classify new unseen cases. Second, Decision Tree

algorithms such as ID3 will be applied to the same decision tables to obtain decision trees

that can be used in classification of new objects. Third, a hybrid data mining algorithm

combining rough sets and decision trees is applied and the results are compared with the

previous two techniques to determine which is most suitable for decision making in this

particular application of multi-agent systems.

2. Multi-agent systems and their applications

Agents and Multi-Agent Systems (MAS) have emerged as a powerful technology to cope

with the increasing complexity of a variety of Information Technology scenarios. We are not

going to explain the full details of the agents because these are covered in other chapters.

We are only going to provide a basic overview.

2.1 Multi-agent overview

The most widely accepted definition for the “agent” term is that “an agent acts on behalf of

someone else, after having been authorized”. This definition can be applied to software

agents, which are instantiated and act instead of a user or a software program that controls

them. The difficulty in defining an agent arises from the fact that the various aspects of

agency are weighted differently, with respect to the application domain at hand.

Wooldridge & Jennings have succeeded in combining general agent features into the

following generic abstract definition integrating all the characteristics into the notion of an

agent: “An agent is an autonomous software entity that -functioning continuously - carries

out a set of goal-oriented tasks on behalf of another entity, either human or software system.

This software entity is able to perceive its environment through sensors and act upon it

through effectors, and in doing so, employ some knowledge or representation of the user's

preferences” (Wooldridge, 1999).

www.intechopen.com

Data Mining for Decision Making in Multi-Agent Systems

275

An agent may have, depending on the domain it is situated in, some or all of the properties
listed below (Symeonidis & Mitkas, 2005):

• Autonomy (considered a must-have feature by many researchers in the field of agents)

• Interactivity: Reactivity or Pro-activeness

• Adaptability

• Sociability

• Cooperativity

• Competitiveness

• Mobility

• Learning
In this chapter, we are going to concentrate on the “learning” feature which means that an

agent should be able to learn (get trained) through its reactions and its interaction with the

environment. This is one of the most fundamental features that agents should have. We are

going to use different data mining techniques to extract decision rules which can help agents

make intelligent decisions. The more efficient the training process, the more intelligent the

agents.

(Nwana, 1995) classified agents with respect to the following dimensions:

• Mobility that differentiates agents into static or mobile.

• The logic paradigm they employ, which classifies them as either deliberative or reactive.
The fundamental characteristics that describe the agent are: autonomy, cooperativity and

learning. Based on these axes, agents can be classified as collaborative agents, collaborative

learning agents, interface agents and truly smart agents as shown in Figure 1. The

combination of two or more of the above approaches classifies agents as hybrid, leading to

mobile deliberative collaborative agents, static reactive collaborative agents, static

deliberative interface agents, mobile reactive interface agents, etc.

Fig. 1. The Nwana agent classification, according to their fundamental characteristics
(Nwana, 1995)

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

276

A multi-agent system is one that consists of a number of agents, which interact with one-

another. In the most general case, agents will be acting on behalf of users with different

goals and motivations. To successfully interact, they will require the ability to cooperate,

coordinate, and negotiate with each other, much as people do (Wooldridge, 2002). Several

architectural styles have been used in the development of multi-agent systems (Buse and

Wu, 2007; Sellers and Giorgini, 2005).

In order for MAS to solve common problems coherently, the agents must communicate

amongst themselves, coordinate their activities, and negotiate once they find themselves in

conflict. Agents communicate via messages, which can be of two types: assertions and

queries.

MAS architectures exploit the coupling of the agent effectiveness, acting within a distributed

environment, with the advantages of a strict and successfully coordinated framework, as far

as communication and agent collaboration is concerned. MAS complexity is mainly

dependent on the number of agents that participate in it. One could, therefore, argue that

the simplest form of MAS consists of a single agent, while more elaborate MAS structures

may comprise a substantial number of cooperating agents, or even smaller MAS

(Symeonidis & Mitkas, 2005).

2.2 Multi-agent systems applications

The following issues differentiate between the rationale for MAS and single-agent systems
(Agent Working Group, 2000):

• A single agent that handles a large amount of tasks lacks performance, reliability, and

maintainability. On the other hand, MAS provide modularity, flexibility, modifiability,

and extensibility, due to their distributed nature.

• A single agent cannot obtain (and provide to humans) extensive and specialized

knowledge. MAS, composed of multiple distributed processes can access more

knowledge resources, exploiting concurrent execution.

• Applications requiring distributed computing are better supported by MAS than by a

single (often static) agent.

• Intelligence, as described by neuroscientists of the human mind, can be approached

by a multi-processing system, rather than serial computing. Such a multi-

processing computational system can only be implemented as a wide distributed

environment where many agents act. Thus, MAS appear as the optimal solution for

implementing.

It becomes evident that the choice between MAS or single-agent architecture must be

guided by the application needs. If we decide, for example, to implement a system notifying

us whenever we have an incoming e-mail, then a static single-agent implementation seems

sufficient. On the other hand, if we are to implement a large-scale electronic marketplace,

where many agents take part in electronic auctions to buy or sell goods, MAS architecture

will be more suitable.

Multi-agent systems and e-learning

Dynamism in e-learning can be made more powerful with the help of intelligent agents.

In e-learning, Intelligent Agents help make the learning in e-learning happen

dynamically to suit the need of the user (Chen and Chiu, 2005; Shang et al. 2001). They

can collect information about the user’s likes and dislikes while using the system, the

www.intechopen.com

Data Mining for Decision Making in Multi-Agent Systems

277

level of knowledge and accordingly recommend the best matching helpers for

collaboration.

E-learning has become one of the most popular teaching methods in recent years. At the

same time, in the computational intelligence field, the Intelligent Agent paradigm gained a

tremendous interest in many application domains over the last two decades. Current

research in this area has approached integrating agents into educational systems. That is

why we thought of building a Multi-Agent System for Collaborative E-learning (MASCE) as

will be shown in details in the next section.

3. Proposed Multi-Agent System for Collaborative E-Learning (MASCE)

MASCE is to assist teaching and learning process and also to encourage collaborative

learning among peers. This system shall be used in a blended learning environment as a

supplement to the face-to-face lecture where students can use the system in the lab or from

home after attending the traditional lecture in the faculty. The objective is to incorporate the

intelligence of the multi-agents system in a way that enables it to actively and intelligently

support the educational processes, where multiple agents can interact to exchange

information so that students may collaborate on how best to gain knowledge (Mahdi and

Attia, 2008).

The proposed MAS system considers two types of users; namely students and instructors.

Each of these users has a corresponding agent. These are Student Agent and Instructor

Agent. The Student Agent runs on the student’s computer. Thus, each student is equipped

with a Student Agent, which helps the learning process of the student. It manages the

student's personal profile and also tracks the student actions during learning process and

updates his profile accordingly. On the other hand, the Instructor Agent provides teaching

materials, assesses the progress and participation of different students through quizzes, and

manages the progress of the course.

The innovation in the proposed system is the introduction of the Assistant Agent which is

initialized as soon as any of the users starts to use the system. The Assistant Agent runs

on the system’s server. It plays a centric role in the proposed system. It has a collaboration

mechanism which will be used for “match-making” and “community-building” to help

increase collaboration between peers in a certain course. It also gives hints to the

instructor of the course to help in the teaching process such as statistics of the results of

quizzes and summaries of students’ profiles to help in the final grading. It acts a mediator

(facilitator) between Student Agents and Instructor Agent of a specific course. After

receiving the preferences (goals) of the instructor and the students, it will run

autonomously and self-dependently. All the Assistant Agents of different courses are

under the control of the Assistant Manager Agent. Thus the proposed MAS consist of

three types of agents.
a. Student Agent
Each student has the corresponding Student Manager Agent that helps the learning process

of the student. It acquires the student’s preferences and profile. During the learning process,

as the student enrolls in new courses, a dedicated student agent for each course is created. It

tracks the student actions in that course. Accordingly, the tracking mechanism updates the

student’s profile and preferences. All the student agents of different courses of the same

student are under the control of the Student Manager Agent as shown in Figure 2.

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

278

Student

Course 1 Agent

Student

Course 2 Agent
Student

Course n Agent

Facilitator (Student Manager Agent)

Fig. 2. Student Agent

b. Instructor Agent
The Instructor Manager Agent or simply the Assistant Agent assists the teaching process
while interacting with the instructor. It is assigned for each instructor. For each course that is
taught by the instructor a dedicated instructor agent is created. It provides teaching
materials when requested by Assistant agent for distributing to students’ agents, assesses
the progress and participation of different students through quizzes, and manages the
progress of the course. All the instructor agents of different courses of the same instructor
are under the control of the Instructor Manager Agent as shown in Figure 3.

Instructor

 Course 1 Agent

Facilitator (Instructor Manager Agent)

Instructor

Course m Agent
Instructor

 Course 2 Agent

Fig. 3. Instructor Agent

c. Assistant Agent
The innovation in the proposed system is the introduction of the Assistant Agent shown in
Figure 3which is initialized as soon as any of the users starts to use the system. The
Assistant Manager Agent or simply the Assistant Agent plays a centric role in the proposed
system. For each course, a dedicated Assistant Course Agent is created. It has a
collaboration mechanism which will be used for “match-making” and “community-
building” to help increase collaboration between peers in a certain course. It also gives hints
to the instructor of the course to help in the teaching process such as statistics of the results
of quizzes and summaries of students’ profiles to help in the final grading. It acts a mediator
(facilitator) between Student Agents and Instructor Agent of a specific course. After
receiving the preferences (goals) of the instructor and the students, it will run autonomously
and self-dependently. All the Assistant Agents of different courses are under the control of
the Assistant Manager Agent as shown in Figure 4.

www.intechopen.com

Data Mining for Decision Making in Multi-Agent Systems

279

Assistant

Course x Agent

Assistant

Course 2 Agent

Assistant

Course 1 Agent

Facilitator (Assistant Manager Agent)

Fig. 4. Assistant Agent

The analysis and design phase of MASCE is done using Beliefs, Desires, Intentions-Agent
Based Software Development (BDI-ASPD) (Jo et al., 2004). We find desires first from the
system requirements and then find its intention and corresponding belief. This idea comes
from the natural approach we usually do in the real world. An agent’s beliefs are a set of
data describing the state of the environment. They are the knowledge that intentions use to
fulfill their goals (desires).
The course material is going to be structured in a hierarchical form where the course is
divided into chapters and each chapter is divided into sections which in turn are divided
into subsections and so on until we reach the leaves (concepts which cannot be divided any
further). For each of these leaves the following will be provided:
1. Teaching materials
2. Quizzes to test student’s knowledge level
3. Students’ notes (blogs)
4. Discussion forums
5. Questions asked by students requiring help
The student can review all the teaching materials provided and add notes to his blogs if he
wants to. He will take quizzes after each module to test his understanding (knowledge level)
in that part so as to update his profile. If the student asks a question in a particular section,
the Assistant Agent (Match Maker) will try to find the best potential helper for that question
who is currently available online, willing and able to provide help. The Assistant Agent uses
the students’ models in that match making process.
Some of the parameters which are going to be used to in the model are static, they are
collected from the student himself through a questionnaire given to the student when he
first uses the system including:
1. Help willingness
2. Initial availability
3. Preferences such as cognitive style Maximum numbers of concurrent discussions,
4. Initial belief of the student knowledge level through a simple quiz given to the student

to classify him as either: novice, beginner, intermediate or advanced.
5. Weighted importance of various attributes: such as if he requires help quickly from any

available willing helper, or he would rather wait to be matched with the helper with the
best knowledge level in the concept he is asking about.

Some of these parameters are dynamic; they are updated dynamically as the student
interacts with the system and more new information is collected. Old information may be

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

280

outdated or even wrong. For example, after each help session between two students, an
evaluation form is presented to each of them to evaluate his colleague. These peer
evaluations along with the collected information about student by the tracking system such
as rate of his responses, are all used to update the helpfulness parameter. The actions
(parameters) that the tracking system will monitor and that will be collected, modeled and
analyzed are:
1. Actual Availability
2. Frequency of logging to the system (number of times in one week period for example)
3. Banned topics or users
4. Preferred users
5. Quizzes taken to update student’s knowledge level
6. Downloaded teaching materials
7. Blogs visited and notes added by the student to his blog
8. Number of postings on the forums
9. Frequency and type of questions asked to instructor or peers (not content-based)
10. Number of help requests accepted or rejected
11. Peer evaluation
Whenever a student has a question or a problem in a particular part of the course, he notifies
his personal student agent. Interacting with the student personal agent in this manner also
helps make users aware of the extent of the effort directed towards locating a suitable helper
for them. Users tell their agents any important information that should be considered – e.g.
that they know little about a particular topic, and that someone who would help on this
topic should be someone who has been voted a good helper by others in the past.
Sometimes it might be the case that the learner has a straightforward question, and that
speed of response is more important, than depth of knowledge in a topic. This information
is then conveyed by the personal student agent to the Assistant Agent (Match Maker) who
tries to find the best potential helper who is currently ready or available (online), able (has a
good knowledge level of that part) and willing to help. This helps fulfilling the first goal of
MASCE.
The assistant agent also groups students together according to their similar preferences and
complementing abilities into “buddies groups” to solve group projects or assignments. Thus
a community of learners may be built up. So in addition to the one-to-one relationships that
grow through the use of MASCE, learners can be arranged into groups with similar
concerns who support each other on specific issues. This might be a problem solving session
with one or more learners assisting each other with similar problems, or it might be a longer
term study group where each member contributes to mutual understanding of the subject
matter in some way. Interaction at the one-to-one and the group level is designed to bring
learners closer together, and contribute to the evolution of a community of learners anxious
to support each other in their learning. Thus the second goal of MASCE which is the
promotion of collaboration and knowledge sharing can be fulfilled.
Using this principle of the ready, willing and able helper greatly increases the likelihood of
benefit among participants: helpers are dedicated, and are not receiving help requests for
which they have too little time or knowledge; the helpee is more likely to receive the kind of
help they require, and will perceive the positive attitude of the helper. In return, the helpee
may be more enthusiastic to assist the helper should an occasion arise where he is in a
position to do so (students can add others to a 'friends list', indicating to their agent their
particular willingness to help that person in the future). Thus the kind of community of

www.intechopen.com

Data Mining for Decision Making in Multi-Agent Systems

281

learners that is built in MASCE is designed to benefit everybody which is the third goal of
MASCE (Mahdi and Attia, 2008 a).

4. Data mining techniques used in MASCE

Data mining refers to the analysis of the large quantities of data that are stored in
computers. Data mining is about solving problems by analyzing data already present in
databases. Data mining is defined as the process of discovering patterns in data. The process
must be automatic or (more usually) semiautomatic. The patterns discovered must be
meaningful in that they lead to some advantage (Chakrabarti et al., 2009).
Data mining tasks can be categorized into: summarization, classification, clustering,
association, and trend analysis. Classification is a method of predicting the decisions for the
new cases, based on their conditional features using a model learned from the already
known attributes. It has been commonly studied by many data mining researches. Rule
Based Classification (RBC) system is a part of classification which represents knowledge via
a set of propositional rules. Rule-based data mining algorithms have a number of desirable
properties. Rule sets are relatively easy for people to understand. RBC is widely used in the
real world applications because of the easy interpretability of the extracted rules (Qin, 2009).
We will be focusing our research on classification task and more specifically on rule based
classification. Modeling in RBC starts with the process of extracting a set of rules from data
source that identifies key relationship between the attribute and class label. Then, the
obtained rules are tested with unseen data. Rough Classifier (RC) and Decision Tree
Classifier (DTC) are categorized as RBC. Both techniques apply different approach to
perform classification but produce same structure of output with good classification results
(Mohsin & Abd Wahab, 2008).

4.1 Three levels of knowledge diffusion for MAS

Following the above perspective, data mining techniques can be applied in three alternative
manners, leading to three different types of knowledge, which, in turn, correspond to three
distinct ways of knowledge diffusion to the MAS architecture (Symeonidis & Mitkas, 2005):

• Data mining on the application level of MAS
Data mining is performed on available application data, in order to discover useful rules
and/or associations and/or patterns. The extracted knowledge is related to the scope of the
end-user application and not its internal architecture. In this case, the technology coupling
issue is viewed macroscopically, where the knowledge models extracted are intended to
improve the efficiency of the MAS.

• Data mining on the behavior level of MAS
In this case, data mining is performed on log files containing agent behavior data (i.e.,
actions taken, messages exchanged, decisions made). The goal is to better predict future
agent behaviors by eliminating unnecessary or redundant agent activity. The extracted
knowledge may result in more efficient agent actions. In this case, the coupling issue is
viewed microscopically, where the knowledge models extracted are intended to improve
the performance of an agent engaged in a MAS (i.e., to improve the internal MAS action
flow).

• Data mining on evolutionary agent communities
At this level, we perform evolutionary data mining techniques on agent communities, in
order to study agent societal issues. This approach tries to achieve the satisfaction of the

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

282

goals of an agent community, which evolves and learns through interaction. In this case,
coupling is considered at a higher level of abstraction, where the main focus is on the
formulation of the problem that the agent community has to deal with and the way the
extracted knowledge is diffused to the agent community.

4.2 Rough sets mining in MASCE

Rough set theory has proved to be useful in Data Mining (DM) and Knowledge Discovery
(KD). It constitutes a sound basis for data mining applications. The theory offers
mathematical tools to discover hidden patterns in data. It identifies partial or total
dependencies in databases, eliminates redundant data and gives an approach to solve some
challenges as null values, missing data, dynamic data and others.
In the past decade there has been done a substantial progress in developing rough set
methods for DM and KD. In particular, new methods for extracting patterns from data,
decomposition of decision tables as well as new methodology for data mining in multi-agent
systems have been developed.
Rough set theory was introduced by Pawlak in 1982. Since then, it has often proved to be an
excellent mathematical tool for the analysis of a vague description of objects. The adjective
vague (referring to the quality of information) is concerned with inconsistency or ambiguity.
Rough sets can be applied on information represented in the form of a table called
information system. It is composed of a 4-tuple as follows: S = < U, Q, V, f > where U is the
closed universe, a finite set of N objects {x1, x2, ….xN}, Q is a finite set of n attributes {q1, q2,
….qn}, the attributes in Q are further classified into disjoint condition attributes C and

decision attributes D, Q = C ∪ D. Such information systems are called decision tables, V =

∪q ∈QVq where Vq is a domain (value) of the attribute q, f = U × Q → V is the information

function such that f (x, q) ∈ Vq for every q ∈ Q, x ∈ U (Cios et al., 1998).
The rough set philosophy is based on the assumption that with every object of the universe

U there is associated a certain amount of information (data, knowledge). This information

can be expressed by means of a number of attributes. The attributes describe the object.

Attributes with preference-ordered domains are called criteria because they involve an

evaluation such as: bad, medium, good.

Objects which have the same description are said to be indiscernible (similar) with respect to

the available information. The indiscernibility relation thus generated constitutes the

mathematical basis of rough set theory. It induces a partition of the universe into blocks of

indiscernible objects, called elementary sets, which can be used to build knowledge about a

real or abstract world. The use of the indiscernibility relation results in information

granulation.

Any subset X of the universe may be expressed in terms of these blocks either precisely (as a

union of elementary sets) or approximately. In the latter case, the subset X may be

characterized by two ordinary sets, called the lower and upper approximations. A rough set

is defined by means of these two approximations, which coincide in the case of an ordinary

set. The lower approximation of X is composed of all the elementary sets included in X

(whose elements, therefore, certainly belong to X), while the upper approximation of X

consists of all the elementary sets which have a non-empty intersection with X (whose

elements, therefore, may belong to X).
The difference between the upper and lower approximation constitutes the boundary region
of the rough set, whose elements cannot be characterized with certainty as belonging or not

www.intechopen.com

Data Mining for Decision Making in Multi-Agent Systems

283

to X (by using the available information). The information about objects from the boundary
region is, therefore, inconsistent or ambiguous. The cardinality of the boundary region
states, moreover, the extent to which it is possible to express X in exact terms, on the basis of
the available information. For this reason, this cardinality may be used as a measure of
vagueness of the information about X (Cios et al., 1998).
We say that two objects of an information system are indiscernible if for a subset of the

attributes A, they have the same value for each attribute: IND(A) = {(x, y) ∈ U × U: for all a

∈ A, f (x, a) = f (y, a)}. The indiscernibility relation IND(A) splits the universe U into a family
of equivalence classes {X1, X2, X3,…..Xr} and is denoted by A*. Objects belonging to the same
equivalence class Xi are indiscernible. The equivalence classes Xi’s are called A-elementary

sets. DesA(X) denotes the description of A-elementary set X∈A*: DesA(X) = {(a = b): f (x, a) =

b, ∀x ∈ X, a ∈ A}.

A given subset of attributes A∈ Q determines the approximation space AS = (U, IND (A)) in

S. For a given A ∈ Q and a concept X ∈ U, the A-lower approximation AX of set X is the
union of all those elementary sets each of which is fully contained by X i.e. AX contains all
objects that can be classified as certainly belonging to the concept X (based on knowledge
from A). AX is also called the A-positive region POSA(X) of X in S.

 AX = {x ∈ U: [x]A ⊆ X} = {Y∈A*: Y ⊆ X} (1)

The A-upper approximations of set X is A X is the union of those elementary sets each of
which has non-empty intersection with X i.e. it contains all objects that cannot be classified
as not belonging to the concept X (based on knowledge from A).

 A X= {x ∈ U: [x]A ∩ X ≠ Φ} = ∪{Y∈A*: Y ∩ X ≠ Φ} (2)

For given information system some attributes may be redundant (superfluous) with respect
to a specific classification A*. Using the dependency properties of attributes, we can find a
reduced set of the attributes without loss of classification power.

For an information system S, with A ⊆ Q an attribute a∈A is called dispensable if IND(A) =

IND(A−{a}), otherwise a parameter a is indispensable. Absence of dispensable attributes
does not reduce the classificatory power while the indispensable attributes carry the
essential information about objects and cannot be removed without changing the
classificatory power. The set of all indispensable attributes is called a core of A = Core (A). It
may be an empty set. (from master thesis)

A proper subset E ⊂ A that preserves the classification generated by A is called a reduct of
A, RED(A) if E is orthogonal (cannot be further reduced) and if E preserves classification as
A i.e. E is a minimal set of attributes that discerns all objects in S that are discernable by A.
More than one reduct of A can be identified forming a family of reducts REDF(A), their

intersection forms core of A i.e. Core(A) = ∩ REDF(A) (Cios et al., 1998).
One of the important applications of rough sets is the generation of decision rules for a
given information system for classification of known objects, or prediction of classes for new
objects. One can find the rules classifying objects through different methods. The mostly
adopted algorithm for extracting rules extracts rules using the intersections between

classifications and partitions: Let decision table DT= <U, C ∪ D, V, f> where C represents
the set of condition attributes, D represents the set of decision attributes, C* = {X1, X2,….., Xr}
represents the condition classification of U and D* = {Y1, Y2, .., Ym} represents the decision

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

284

classification of U. The decision rules are logically described as follows: If (conditions) then
(decisions). The decision rule which is called τij can be extracted as follows:

 τij = DesC(Xi) ⇒ DesD(Yj) such that Xi ∩Yj ≠ Φ for Xi ∈ C* and Yj ∈ D* (3)

 A rule is said to be deterministic if Xi ⊆ Yj i.e. Xi ∩ Yj = Xi, otherwise a rule is non

deterministic. The set of all decision rules {τij} for all classes Yj ∈ D* is called the decision
algorithm of the information system S (Slowinski, et al. 2005; Komorowski, et al. 1998).

Fig. 5. Process map and the main steps of the rough sets analysis (Olson & Delen, 2008)

The rough sets algorithm implemented in MASCE can be summarized as follows:

This algorithm takes as input a decision table S = (U, C∪ D, V, f) and produces as output the

set of decision rules {τij} (Attia at al., 2004).
Step 1: Vertical reduction: The vote value is calculated for all the tuples (similar tuples are
collapsed into one and their number is added to the vote). Then tuples, with vote values less
than the noise filter threshold, are removed from the database table.
Step 2: Horizontal reduction: Attributes reduction is made by calculating the best reduct
RED as follows, let all attributes be called AR and the user preferred attributes if any be UA.
Begin

2.1. Construct the modified discernibility matrix M(C):
Each entry mij contains the condition attributes whose values are not identical on both xi
and xj where xi, xj belong to different classes of IND(D) i.e. they represent different
decision concepts. M(C) is a diagonal symmetric matrix.

mij = 0 if xi, xj ∈ same IND(D)

 = {c ∈ C: f(c, xi) ≠ f(c, xj)} if xi, xj∈different IND(D)
2.2. Find the CORE from discernibility matrix:

For any c ∈ C, c ∈ CORE(C) if and only if there exists i, j, 1 ≤ j < i ≤ N such that mij =
{c}. Note that a core may be empty

www.intechopen.com

Data Mining for Decision Making in Multi-Agent Systems

285

2.3. Determine the attribute set UA which user prefers to emphasize. If UA is empty
that means that the user does not have preference for any attribute.

2.4. Let RED = CORE ∪ UA
2.5. AR = AR – RED
2.6. Find attribute a in AR which has the maximum SGF(a, RED, D)

2.7 RED = RED ∪ {ai}, AR = AR – {ai} (i =1, 2,…m)
2.8 If k(RED, D) = 1, then stop, otherwise go to step 2.6

/*End of Step 2 */
Step 3: Generate the reduced relation by removing those attributes which are not in the best
reduct RED.
Step 4: Combine similar tuples in the reduced relation.
Step 5(a): Transform tuples in the reduced relation into decision rules for each class in D.
Step 5(b): For the same class in the reduced table, two tuples can be combined if the values
of the condition attributes differ in only one attribute, thus obtaining a more general set of
decision rules.
Or instead of steps 5(a) and 5(b) we can use the following alternative method for generation
of decision rules:

Step 6(a): Extract the decision rule which is called τij as follows: τij = DesC(Xi) ⇒ DesD(Yj)

such that Xi ∩ Yj ≠ Φ for Xi ∈ C* and Yj ∈ D*.

Step 6(b): Call A rule (deterministic) if Xi ⊆ Yj i.e. Xi ∩ Yj = Xi, otherwise a rule is non-

deterministic. The set of all decision rules {τij} for all classes Yj ∈ D* is called the decision
algorithm of the information system S.
/* End of the algorithm*/
The significance of an individual attribute {a} added to the set A with respect to the
dependency between A and D (Decision set) is represented by significant factor SGF, given
by:

 SGF (a, A, D) = k(A+{a}, D) – k(A, D) where k(A, D) = card(POSA(D)) / card(U) (4)

Complexity of the chosen algorithm

This algorithm can learn a set of decision rules from databases efficiently and effectively. A
basic role is played by the reduct and the core. Intuitively, a reduct of the relation is its
essential part, which defines all basic concepts occurring in the considered data, whereas
core is its most important role. Reducing a relation consists of removing irrelevant or
superfluous attributes in such a way that the set of elementary categories in the relation is
preserved. This procedure eliminates all unnecessary data from the relation, preserving
only useful data. Thus concise, accurate decision rules are derived from the reduced
relation.
Suppose there are N tuples in the database which is relevant to the learning task and A
attributes for each tuple. The time complexity for the worst case is analyzed as follows.

During reduction, to construct the discernibility matrix, it takes O(N×N) steps. To search

core attributes in the discernibility matrix costs O(N×N) steps. The best reduct or user

minimal attribute subset can be found in A × O(N×N) steps. Since A is usually much less

than N, the worst case in the reduction process is O(N×N).
In this research work, we introduce the idea of using Rough Sets as a data mining technique
to find the candidate helpers for collaboration with peers. In our case, the condition
attributes C are the parameters of the student model explained in Section 3 such as quiz

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

286

results, peer evaluation, skill level and number of help sessions ignored. The decision
parameter D is whether the student is a candidate helper or not. Each of the family of
equivalence classes X1, X2,….Xr describes a group of students having the same values for
different parameters in their models and thus can be candidate helpers for each other. They
can be matched together in a one-to-one help session where each of the helper and the
helpee profits the other (Mahdi & Attia, 2008 b).

4.3 Decision trees mining in MASCE

Decision tree induction is a well-known discipline in Machine Learning presented by
Quinlan in 1986 (Quinlan, 1986). The basic algorithm for decision tree induction is a greedy
algorithm that constructs decision trees in a top-down recursive divide-and-conquer
manner. In the process of constructing a tree, the criteria of selecting test attributes
influences the classification accuracy of the tree. Presently, there are many criteria for
choosing the test attribute in building decision tree, such as ID3 (Quinlan, 1986) and C4.5
(Quinlan, 1993) which use an entropy-based measure known as information gain as a
heuristic for selecting the attribute.
Decision trees represent a supervised approach to classification. A decision tree is a simple
structure where non terminal nodes (internal) represent tests on one or more attributes and
terminal (leaf) nodes reflect decision outcomes. The ordinary tree consists of one root,
branches, nodes (places where branches are divided) and leaves. In the same way the
decision tree consists of nodes which stand for circles, the branches stand for segments
connecting the nodes. A decision tree is usually drawn from left to right or beginning from
the root downwards, so it is easier to draw it. The first node is a root. The end of the chain
“root - branch - node-...- node” is called “leaf”. From each internal node (i.e. not a leaf) may
grow out two or more branches. Each node corresponds with a certain characteristic and the
branches correspond with a range of values. These ranges of values must give a partition of
the set of values of the given characteristic (Quinaln, 1986).

Constructing decision tress

The problem of constructing a decision tree can be expressed recursively. First, select an
attribute to place at the root node and make one branch for each possible value. This splits
up the example set into subsets. If at any time all instances at a node have the same
classification, stop developing that part of the tree. The only thing left to decide is how to
determine which attribute to split on. There are a number of possibilities for each split.
Which is the best choice? The number of yes and no classes are shown at the leaves. Any leaf
with only one class—yes or no—will not have to be split further, and the recursive process
down that branch will terminate (Witten & Frank, 2005).
Because we seek small trees, we would like this to happen as soon as possible. If we had a
measure of the purity of each node, we could choose the attribute that produces the purest
child nodes. The measure of purity that we will use is called the information and is
measured in units called bits. Associated with a node of the tree, it represents the expected
amount of information that would be needed to specify whether a new instance should be
classified yes or no, given that the example reached that node.

ID3

One of the oldest decision tree algorithms is ID3. It was designed for when there are many
attributes and the training set contains many objects, but where a reasonably good decision

www.intechopen.com

Data Mining for Decision Making in Multi-Agent Systems

287

tree is required without much computation. The basic structure of ID3 is iterative. ID3
adopted an information based method that depends on two assumptions. Let C contain p
objects of class P and n of class N. The assumptions are:
(1) Any correct decision tree for C will classify objects in the same proportion as their
representation in C. An arbitrary object will be determined to belong to class P with
probability p/(p + n) and to class N with probability n/ (p + n).
(2) When a decision tree is used to classify an object, it returns a class. A decision tree can
thus be regarded as a source of a decision 'P' or 'N', with the expected information needed to
generate this decision given by

 () 2 2, log log
p p n n

l p n
p n p n p n p n

= − −
+ + + +

 (5)

If attribute A with values [A1, A2 Av] is used for the root of the decision tree; it will
partition C into [C1, C2 Cv] where Ci contains those objects in C that have value Ai of A.
Let Ci contain pi objects of class P and ni of class N. The expected information required for
the subtree for Ci is I(pi, ni). The expected information required for the tree with A as root is
then obtained as the weighted average:

 () ()
v

i i
i i

i 1

p n
E A I p ,n

p n=

+
=

+∑ (6)

where the weight for the ith branch is the proportion of the objects in C that belong to Ci. The
information gained by branching on A is therefore:

 gain(A) = I(p, n) – E(A) (7)

A good rule of thumb would seem to be to choose that attribute to branch on which gains
the most information. ID3 examines all candidate attributes and chooses A to maximize
gain(A), forms the tree as above, and then uses the same process recursively to form
decision trees (Witten & Frank, 2005).

Complexity of ID3 Algorithm

At each non-leaf node of the decision tree, the gain of each untested attribute A must be

determined. This gain in turn depends on the values pi and ni for each value Ai of A, so

every object in C must be examined to determine its class and its value of A. Consequently,

the computational complexity of the procedure at each such node is O(|C|.|A|), where

|A| is the number of attributes above. ID3's total computational requirement per iteration is

thus proportional to the product of the size of the training set, the number of attributes and

the number of non-leaf nodes in the decision tree. The same relationship appears to extend

to the entire induction process. No exponential growth in time or space has been observed

as the dimensions of the induction task increase, so the technique can be applied to large

tasks (Zhao & Zhang, 2008).
The main problem of ID3 is that a sub-tree may repeat several times in a decision tree, and
that an attribute may be used for several times in some certain paths of the tree ,which
degrades the efficiency of classification. Missing values pose an obvious problem. It is not
clear which branch should be taken when a node tests an attribute whose value is missing.
Sometimes, missing value is treated as an attribute value in its own right. If this is not the

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

288

case, missing values should be treated in a special way rather than being considered as just
another possible value that the attribute might take. A simple solution is to record the
number of elements in the training set that go down each branch and to use the most
popular branch if the value for a test instance is missing.

4.4 Integrated Rough Sets and Entropy (RSE) algorithm in MASCE

Rough Set Entropy (RSE) algorithm for combining Rough Sets and Entropy heuristics is
used to induce classification rules. This algorithm is based on Information gain and
equivalence relation. It is applied to discrete-valued attributes. We divide the algorithm into
three stages (Yang et al., 2003):
(1) First, we select a condition attribute based on information gain; let us call the selected
condition attribute c.
(2) Second, use the concepts of rough sets to build equivalence classes. For our knowledge

representation system J = (U, C ∪ D), subset P={c, d} ⊆ C ∪ D (c is the selected condition
attribute in step (1), d is the decision attribute) determines an equivalence relation in U:

IND(P)={(u, w) ∈ U x U: q(u) = q(w) for every q∈ P} where the number of U/IND(P) is no
more than k x m (k is the number of values of c, m is the number of values of d).
(3) Finally, classification rules can be extracted from equivalence classes, for each
equivalence class, we get classification IF-THEN rule by extracting attribute values which
are identical for all the samples in the equivalence class, we use the condition attribute
values as the rule antecedent and use the class label (decision) attribute value as the rule
consequent.

Complexity of the Integrated RSE Technique

Comparing RSE with traditional Rough Sets, RSE is simpler because we do not need to build
discernibility matrix, nor reduct calculations which can be very time consuming instead of
large number of attributes and samples. If we use the RSE, we only need selecting a
condition attribute once at the root node, so its time complexity is O(A*N), then it uses
rough set theory to establish the equivalence classes then extract classification rules (Yang et
al., 2003).
Suppose that the total number of training sample is n, the number of condition attributes is
a. If we use ID3 algorithm to get a decision tree, at the worst case, the maximal length from
the root node to each leaf node is a, so the total node number of decision tree is less than
A*N. At the root node, ID3 algorithm requires analyzing each sample for each condition
attribute is O(A*N). For the other nodes, the time complexity is less than root node, so the
worst complexity is O(A * N * A *N) i.e. O(A2 * N2).

5. Results and analysis

Whenever the student using the system needs help in a certain topic in a certain course, he
can either choose among three different machine learning techniques so that MASCE can
help him to find the candidate helpers: rough sets, decision trees or an integrated approach
Rough Sets Entropy (RSE) combining both rough sets and decision trees. These different
classifiers are applied every 12 hours on the decision table - a snapshot of it is shown in
Table 1-after it has been updated with students’ data collected during the last 12 hours such
that the extracted decision rules are always up to date. The decision attribute is Decision
with binary values {Yes, No}.

www.intechopen.com

Data Mining for Decision Making in Multi-Agent Systems

289

ID

to
p

ic

is
 o

n
li

n
e

w
il

li
n

g
 t

o
 h

el
p

m
ax

im
u

m
 c

o
n

cu
rr

en
t

d
is

cu
ss

io
n

s

is
 p

re
fe

rr
ed

 a
g

en
t

is
 b

an
n

ed
 a

g
en

t

is
 b

an
n

ed
 t

o
p

ic

q
u

iz
 r

es
u

lt

h
el

p
 e

v
al

u
at

io
n

h
el

p
 i

g
n

o
re

d
ec

is
io

n

1 Word Y N N N Y N F VG P N

2 Presentation Y N N N Y N F F P N

3 XML Y Y Y N Y N G F P N

4 Power Point Y Y N N Y N F E F N

5 HTML N Y N N Y N VG F E N

6 Java Y N Y Y Y Y G F P N

7 Java Script Y N N Y Y Y F P F N

8 Power Point Y Y N Y N N VG F VG N

9 Power Point N N N N N Y P P P N

10 PDF Y Y Y N Y Y F F F N

11 PDF Y Y Y N N Y F G E N

12 UML N Y Y Y Y N VG E P N

13 PDF N Y N Y N Y G F P N

14 Java Y Y Y N N Y F P Et N

15 UML N Y Y Y Y N F G P N

16 Programming Y Y N N Y N F P F N

17 Programming N Y Y N N N F G P Y

18 Java N Y N Y N N VG E P N

19 Oracle N N Y N N Y E VG VG N

20 Power Point N Y Y N N Y G VG E N

E = Excellent, VG = Very Good, G= Good, F=Fair, P = Poor

Table 1. Snapshot (only 20 records) of MASCE Decision Table (100 records) filled with
random data

The major criticism of rough sets is that it requires all of the variables to be in nominal
format. Rough sets cannot work with numerical continuous valued variables. In order to use
such variables, one should perform discretization. Discretization, is a process of converting
continuous numerical variables into range labels. We had to assign range labels for some of
the condition attributes which have numerical continuous values such as: quiz results, help

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

290

evaluation and help ignore. The condition attributes of the decision table after discretization
are as follows:

• Topic, with possible values {Java, Oracle, Java Script, HTML, UML, PowerPoint,
Presentation, PDF, Programming, Documentation and Word}

• Willing to help, with binary values {Yes, No} but filled according to the assumption the
75% of the students are willing to help while only 25% are not willing to help. This
assumption agrees with data obtained when trying system with real users

• Help ignore, with possible values {Poor, Fair, Good, Very Good, Excellent} following a
normal distribution with mean 25 and standard deviation 10 for those who are willing
to help but ignoring help requests.

• Maximum concurrent discussions, with binary values {Yes, No}

• Is preferred agent, with binary values {Yes, No}

• Is banned agent, with binary values {Yes, No}

• Is banned topic, with binary values {Yes, No}

• Quiz results, with possible values {Poor, Fair, Good, Very Good, Excellent} according to
normal distribution with mean 65 and standard deviation 15.

Help evaluation, with possible values {Poor, Fair, Good, Very Good, Excellent} with normal

distribution dependent on the result of the quiz-result, i.e. mean of this normal distribution

is the result of the quiz-results according to the assumption that high quiz results implies

higher probability of good peer evaluation.

5.1 Results of Rough Sets classifier

Applying Rough Sets Algorithm to MASCE decision table to determine whether a student is

a good candidate for help or not. We first tried the Rough Sets Classifier on MASCE decision

table consisting of 100 records filled with random data as shown in Table 1. Applying RS

algorithm for finding best reduct, it was found to be: best reduct = {willing to help,

maximum concurrent discussions, is banned user, is banned topic}. Using these attributes to

build decision rules used for classification new unseen cases asking for candidate helpers,

we obtained the following decision rules:

willing to
help

maximum concurrent
discussions

is banned
agent

is banned
topic

decisi
on

vot
e

count of
attributes

Y Y N N Y 10 4

Y Y Y N 9 4

N Y Y N 7 4

Y N N Y N 7 4

 N N N N 8 4

N N N N 3 4

Y Y Y N N 11 4

N N Y N 3 4

Y N Y Y N 6 4

Table 2. Extracted Decision Rules from Rough Sets Classifier

www.intechopen.com

Data Mining for Decision Making in Multi-Agent Systems

291

5.2 Results of Decision Trees (ID3) classifier

Choosing to apply decision trees as the machine learning technique on the same decision
table to find candidate helpers, we obtained the following decision tree as shown in
Table 3.

willing to
help

maximum
concurrent
discussions

is banned
agent

quiz result topic decision vote
count of

attributes

 Y N 56 1

Y Y N Documentation Y 2 4

N Y N Documentation N 1 4

 N N Documentation N 4 3

Y N HTML Y 2 3

N N HTML N 1 3

Y N Java Y 1 3

N N Java N 1 3

 N Very Good Java Script N 1 3

 N Poor Java Script Y 1 3

 N Fair Java Script N 3 3

 N Excellent Java Script N 1 3

 Y N Oracle Y 2 3

 N N Oracle N 2 3

 N PDF N 3 2

 N Power Point N 3 2

 N Presentation N 2 2

 N Programming N 3 2

 N UML N 4 2

 N Word N 2 2

 Y N XML Y 2 3

 N N XML N 2 3

Table 3. Extracted Decision Rules from Decision Trees Classifier

5.3 Results of Integrated Rough Sets Entropy (RSE) classifier

Choosing to apply an integrated approach (Rough Sets Entropy) to the same decision table

for finding the candidate helpers, we obtained the root node for the decision tree as (is

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

292

banned agent). Using this root node and following the RSE algorithm we obtained the

following decision rules shown in Table 4.

willing to
help

maximum concurrent
discussions

is banned
agent

is banned
topic

decision vote
count of

attributes

 Y N 55 1

Y Y N N Y 10 4

 N N 44 1

Table 4. Extracted Decision Rules from the Integrated Rough Sets Entropy

5.4 Evaluating deducerd ules

We often need to compare a number of different learning methods on the same problem to
see which one is the best to use. It seems simple: estimate the error (using different
estimation procedures that will be explained shortly), perhaps repeated several times, and
choose the scheme whose estimate is smaller. This is quite sufficient in many practical
applications: if one method has a lower estimated error than another on a particular dataset,
the best we can do is to use the former method’s model. However, it may be that the
difference is simply caused by estimation error, and in some circumstances it is important to
determine whether one scheme is really better than another on a particular problem. This is
a standard challenge for machine learning researchers. If a new learning algorithm is
proposed for a certain problem, it must be shown that it improves on the state of the art for
the problem at hand and demonstrate that the observed improvement is not just a chance
effect in the estimation process.
It is important that the testing data that will be used was not used in any way to create the
classifier. As we did in our research, we tried out several learning schemes on the training
data and then we want to evaluate them to see which one works best. Other measurements
are: the time taken during mining, the complexity of algorithm, and the coverage of the
rules. The performance of a classification system cannot be based only on the higher
accuracy but the quality of knowledge such as minimum number of rules, rule length, and
rule strength also need to be assessed. A good rule set must has a minimum number of rules
and each rule should be short as possible. Moreover, an ideal model should be able to
produces fewer rule with shorter rule and classify new data with good accuracy.
A comparative study is carried out for the three used classifiers: Rough Set Classifier (RC),
Decision Tree Classifier (DTC) and the integrated RSE in terms of accuracy, rule number,
rule length and rule coverage. Integrated Rough Sets and Entropy classifier (RSE)
outperformed both Rough Sets (RS) classifier and Decision Tree Classifier (ID3) since it
performs smaller number of simpler, shorter rules (less number of attributes) as well as a
higher coverage.

5.5 Predicting performance

Repeated cross-validation

The question of predicting performance based on limited data is an interesting, and still
controversial, one. There are different techniques but the repeated cross-validation is
probably the evaluation method of choice in most practical limited-data situations.

www.intechopen.com

Data Mining for Decision Making in Multi-Agent Systems

293

The standard way of predicting the error rate of a learning technique given a single, fixed
sample of data is to use stratified n-fold cross-validation. The data is divided randomly into
n parts in which the class is represented in approximately the same proportions as in the full
dataset. Each part is held out in turn and the learning scheme trained on the remaining nine-
tenths; then its error rate is calculated on the holdout (test) set. Thus the learning procedure
is executed a total of n times on different training sets (each of which have a lot in common).
Finally, the n error estimates are averaged to yield an overall error estimate. Tests have also
shown that the use of stratification improves results slightly. Thus the standard evaluation
technique in situations where only limited data is available is stratified n-fold cross-
validation (Witten & Frank, 2005).
Different n-fold cross-validation experiments with the same learning method and dataset
often produce different results, because of the effect of random variation in choosing the
folds themselves. Stratification reduces the variation, but it certainly does not eliminate it
entirely. When seeking an accurate error estimate, it is standard procedure to repeat the
cross-validation process 10 times and average the results. This involves invoking the
learning algorithm n*n times on datasets. Obtaining a good measure of performance is a
computation-intensive undertaking (Witten & Frank 2005).

Leave-One-Out

Leave-one-out cross-validation is simply n-fold cross-validation, where n is the number of
instances in the dataset. Each instance in turn is left out, and the learning method is trained
on all the remaining instances. It is judged by its correctness on the remaining instance, one
or zero for success or failure, respectively. The results of all n judgments, one for each
member of the dataset, are averaged, and that average represents the final error estimate.
This procedure is an attractive one for two reasons. First, the greatest possible amount of
data is used for training in each case, which increases the chance that the classifier is an
accurate one. Second, the procedure is deterministic: no random sampling is involved. There
is no point in repeating it 10 times, or repeating it at all: the same result will be obtained
each time.
On the other hand, its disadvantage is the high computational cost, because the entire
learning procedure must be executed n times and this is usually quite infeasible for large
datasets. Another disadvantage is that it cannot be stratified, worse than that, it guarantees a
non-stratified sample.

Bootstrapping

An alternative, called Bootstrapping, involves sampling with replacement to choose
elements of the training and test sets. Starting with n training examples, first sample n times,
with replacement, to give another set (a bag, actually) of n examples. There will nearly
always be duplicates in the training set; use the elements not in the training set as a test set.
Compute error = 0.632 * test-error + 0.368 * training-error. Repeat steps 1-3 and output
average accuracy. These coefficients come from the probability that a particular example
will not be picked in n tries is as follows:

n

11
1 e 0 386

n
.−⎛ ⎞− ≅ =⎜ ⎟

⎝ ⎠
 (8)

thus the test set will contain roughly 36.8% of the examples; the training set 63.2% on the
average.

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

294

Cost of evaluation

In the two-class case with classes yes and no, a single prediction has the four different

possible outcomes TP, TN, FP and FN. The True Positives (TP) and True Negatives (TN) are

correct classifications. A False Positive (FP) occurs when the outcome is incorrectly

predicted as yes (or positive) when it is actually no (negative). A False Negative (FN) occurs

when the outcome is incorrectly predicted as negative when it is actually positive (Witten &

Frank, 2005).

Confusion matrix

In a multiclass prediction, the result on a test set is often displayed as a two dimensional

confusion matrix with a row and column for each class. Each matrix element shows the

number of test examples for which the actual class is the row and the predicted class is the

column. Good results correspond to large numbers down the main diagonal and small,

ideally zero, off-diagonal elements.

 Predicted + Predicted -

Actual + True Positives (TP) False Negatives (FN)

Actual - False Positives (FP) True Negatives (TN)

Table 5. Confusion Matrix Parameters

The performance measures can consist of any or all of the following properties of this matrix

(Witten & Frank, 2005):

Property Formula Interpretation

Accuracy (TP+TN)/(TP+TN+FP+FN)
Proportion of classifications that were
correct

Sensitivity TP/(TP+FN)
Proportion of actual positives that
were predicted that way

Specificity TN/(TN+FP)
Proportion of actual negatives that
were predicted that way

Positive
Predictivity

TP/(TP+FP)
Proportion of predicted positives that
really were

Negative
Predictivity

TN/(TN+FN)
Proportion of predicted negatives that
really were

Table 6. Different Performance Measures

We chose to use Leave-One-Out technique for testing. As was mentioned earlier, Leave-One-
Out is most suitable for small size datasets. Each instance of the dataset is left out, and the
learning method is trained on all the remaining instances. It is judged by its correctness on

www.intechopen.com

Data Mining for Decision Making in Multi-Agent Systems

295

the remaining instance, one or zero for success or failure, respectively. The results of all n
judgments, one for each record of the dataset, are averaged, and that average represents the
final accuracy estimate.

Confusion matrix using rough sets classifier

 Predicted + Predicted -

Actual + TP = 10.0 FN = 0.0

Actual - FP = 17.0 TN = 73.0

Table 7. Confusion Matrix using Rough Sets Classifier

Confusion matrix using decision trees classifier

 Predicted + Predicted -

Actual + TP = 8.0 FN = 2.0

Actual - FP = 10.0 TN = 80.0

Table 8. Confusion Matrix using Decision Trees Classifier

Confusion matrix using integrated rough sets and entropy classifier

 Predicted + Predicted -

Actual + TP = 0.0 FN = 10.0

Actual - FP = 0.0 TN = 90.0

Table 9. Confusion Matrix using Integrated Rough Sets and Entropy

Comparison of performance measures for three classifiers

Property Rough Sets Decision Tree Rough Sets & Decision Tree

Accuracy 0.83 0.88 0.90

Sensitivity 1.00 0.80 0.00

Specificity 0.82 0.88 1.00

Positive Predictivity 0.37 0.44
Not a Number (as both

TP and FP = 0)

Negative Predictivity 1.00 0.98 0.90

Table 10. Comparison of Performance Measures for Three Classifiers

Analyzing the previous data it can be shown that regarding Accuracy (Proportion of
classifications that were correct) RSE classifier (with 90% accuracy) outperformed both RS
classifier (with 83% accuracy) and DT classifier (with 88% accuracy). Also, regarding

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

296

Specificity (proportion of actual negatives that were predicted that way), RSE classifier (with
100% specificity) outperformed both RS classifier (82% specificity) and DT classifier with
(88% specificity).
On the other hand, regarding Sensitivity (i.e. proportion of actual positives that were
predicted that way) RSE scored 0 as it was not able to predict any actual positives, while RS
classifier had sensitivity of 100% followed by DT classifier with 80% sensitivity.

6. Conclusions and future work

The use of Data Mining techniques in a Multi-Agent System for Collaborative E-Learning
(MASE) is introduced. A comparative study is carried out for the three used classifiers:
Rough Set Classifier (RC), Decision Tree Classifier (DTC) and the integrated RSE Classifier
in terms of accuracy, sensitivity and specificity.
Regarding accuracy & specificity measures, the Integrated Rough Sets and Entropy (RSE)
Classifier outperformed the two other techniques.
Quality of the knowledge extracted is also compared in terms of rule number, rule length
and rule coverage. Integrated Rough Sets and Entropy classifier (RSE) outperformed both
Rough sets (RS) classifier and Decision Tree Classifier (ID3) since it performs smaller
number of simpler, shorter rules (less number of attributes) as well as a higher coverage.
Comparison of the two techniques, Rough sets and ID3, in general terms is very difficult.
These two methods use different classification criteria. Rough sets is typically based on
relations between condition and decision attributes, concepts of positive and boundary
region, core and reducts. On the other hand, decision trees (ID3) uses entropy (Information
gain) for the classification process. Another difference is the way to represent the derived
knowledge. Rough sets uses information tables where as ID3 uses decision trees. Certain
kinds of problems are best represented by tables, others by trees while some need a totally
different type of data structures. When the sample size is small or when the underlying
distribution of data deviates significantly from multivariate normal distribution, rough sets
may perform better than decision trees since there is no assumption on the data size and the
distribution. Rough sets may also perform better when the data is imprecise, incomplete. To
summarize, there is no best approach for all problems. That is why instead of a single
method, a hybrid approach benefiting from the combined strengths of both rough sets and
decision trees is used and which gave good accuracy and fewer, simpler, shorter rules with
high coverage. So according to these experiments, the integrated RSE approach is the most
suitable (among the three techniques investigated) for application in our system MASCE.
We find that the decision rules constructed by the integrated method are much simpler in
structure (less number of rules and shorter rules) than the constructed decision rules
extracted by the other two classifiers. Since the complexity of this algorithm is much less, the
computation time is much less. Furthermore, they have higher classification accuracy. All
this indicators lead to the conclusion that the integrated rough sets and entropy approach is
the most suitable one among the implemented three machine learning techniques to be used
in data mining in Multi-Agent System for Collaborative E-learning (MASCE).
We are thus providing an online web mining opposite to the offline web mining which is an
aftermath analysis that could give some hints on how an on-line course is effectively used
and how its structure could be improved. We are presenting in this research an integrated
web mining where the patterns automatically discovered are used to assist learners in their
on-line learning. In other words, mined patterns are used on-the-fly by the system to

www.intechopen.com

Data Mining for Decision Making in Multi-Agent Systems

297

improve the application or its functions. We claim that this is quite a promising approach
that successfully combines machine learning techniques with agent technology in e-learning
systems in order to provide higher quality services towards the end users of e-learning
systems (both students and instructors).
This study showed that advanced data mining methods could successfully be used to help
decision making in multi-agent systems with a relatively high degree of accuracy. However,
in the context of predictive accuracy, one should be aware of several issues that delimit the
applicability and predictive accuracy of data mining models: (i) the nature of the data
(including the richness, correctness, completeness and representation of the data itself), (ii)
the data mining methods (including their capabilities and limitations to handle different
types and combination of data) and (iii) the application domain (including
understandability and availability of related factors needed to develop accurate predictive
models).
The models (extracted decision rules in our case) are only as good and as predictive as the
data used to build them. One of the key determinants of predictive accuracy is the amount
and quality of the data used for a study. Although all of the models built in this study
provided an acceptable level of prediction accuracy based on variables at hand, their
performance levels could be improved by including more relevant variables.
It is recommended that more (and relevant) variables be added to the model when possible
to increase the accuracy levels. It is also recommended to test the three classifiers using
different techniques other than Leave-One-Out such as Bootstrapping and n-fold cross
validation and comparing the results with those obtained here as a future work to this
research. Different data mining techniques can also be tested and their results compared
with the three classifiers studied in this research.

7. References

Agent Working Group (2000). Agent Technology, Green Paper, Technical report, version 1.0,
Object Management Group, available at: http://www.jamesodell.com/ec2000-08-
01.pdf, last accessed 12/12/2010

Attia, S. S., Mahdi H. K. and Mohammad, H. K. (2004). Data Mining in Intelligent Tutoring
Systems using Rough Sets, Proceedings of the 2004 International Conference on
Electrical, Electronic and Computer Engineering (ICEEC’04), Cairo, Egypt

Buse. D. P. and Wu, Q. H. (2007). IP Network-based Multi-Agent Systems for Industrial
Automation, Springer-Verlag, London

Chakrabarti, S., Cox, E., Frank E. et al. (2009). Data Mining: Know It All, Morgan Kaufmann
Publishers, Burlington, MA

Chen, S. Y., Chiu, M. L. (2005). Building an Agent-Based System for E-Learning in Digital
Design, Computer-Aided Design Applications, Vol. 2

Cios, K. J., Pedrycz W. and Swiniarski, R. W. (1998), Data Mining Methods for Knowledge
Discovery, Kluwer Academic Publishers

Jo, Ch., Chen, G., Choi, J. (2004). A New Approach to the BDI Agent-Based Modeling,
Proceedings of the 2004 ACM Symposium on Applied Computing

Komorowski, Pawlak, Z., Polkowski, L. and Skowron, A. (1998). Rough Sets: A Tutorial, in
Rough-Fuzzy Hybridization: A New Method for Decision Making, Pal S. K. and
Skowron, A. (Ed.), Springer-Verlag

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

298

Mahdi, H. K., Attia, S. S. (2008 a). Prioritizing of MAS Architectures for Developing
Collaborative E-Learning, Proceedings of the International Conference on Technology
Communication and Education, Kuwait

Mahdi, H. K., Attia, S. S. (2008 b). Small Dataset Size Clustering in MASCE, Proceedings of the
2008 International Conference on Frontiers in Education: Computer Science and Computer
Engineering, Las Vegas, Nevada, USA

Mohsin, M., Abd Wahab, M. (2008). Comparing the Knowledge Quality in Rough Classifier
and Decision Tree Classifier in Information Technology, In International Symposium
on Information Technology 2008, Kuala Lumpur, Malaysia

Nwana, H. S. (1995). Software agents: An overview, Knowledge Engineering Review,
11(2):205-244

Olson D. L., Delen D. (2008). Advanced Data Mining Techniques, Springer-Verlag, Berlin,
Heidelberg

Qin, B., Xia, Y., Prabhaka, S., Tu, Y. (2009). A Rule-Based Classification Algorithm for
Uncertain Data, in IEEE International Conference on Data Engineering.

Quinlan, R. (1986). Induction of Decision Trees, Machine Learning, Vol. 1, No. 1, Kluwer
Academic Publishers, Boston, 1986

Quinlan, R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers
Sellers, B. H. and Giorgini, P. (2005). Agent-Oriented Methodologies, Idea Group Inc.
Shang, Y., Shi, H. and Chen, S. (2001). An Intelligent Distributed Environment for Active

Learning, ACM Journal of Educational Resources in Computing, Vol. 1, No. 2
Slowinski, R., Greco, S., Matarazzo, B. (2005). Rough Set Based Decision Support, in Search

Methodologies Introductory Tutorials in Optimization and Decision Support Techniques,
Burke, E. K., Kendall, G., (Ed.), Springer

Symeonidis, A. L., Mitkas P. A. (2005). Agent Intelligence through Data Mining, Springer
Science + Business Media, Inc, USA

Wooldridge, M. (1999). Intelligent agents, In Multi-Agent Systems: A Modern Approach to
Distributed Artificial Intelligence, Weiss & Gerhard, (Ed.), The MIT Press, Cambridge,
MA, USA

Wooldridge, M. (2002). Introduction to Multi-Agent Systems, John Wiley & Sons, first edition
Witten, I. H., Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques,

2nd Edition, Morgan-Kaufmann, CA, USA
Yang, J., Wang, H., Hu, S. and Hu Z. (2003). A New Classification Algorithm based on

Rough Set and Entropy, Proceedings of the Second International Conference on Machine
Learning and Cybernetics, November 2003

Zhao Y. and Zhang Y. (2008). Comparison of Decision Tree Methods for Finding Active
Objects, Advances in Space Research, Vol. 41, No. 12

www.intechopen.com

Multi-Agent Systems - Modeling, Interactions, Simulations and

Case Studies

Edited by Dr. Faisal Alkhateeb

ISBN 978-953-307-176-3

Hard cover, 502 pages

Publisher InTech

Published online 01, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent

systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic

system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous

and proactive software components. Multi-agent systems have been brought up and used in several

application domains.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hani K. Mahdi, Hoda K. Mohamed and Sally S. Attia (2011). Data Mining for Decision Making in Multi-Agent

Systems, Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies, Dr. Faisal Alkhateeb

(Ed.), ISBN: 978-953-307-176-3, InTech, Available from: http://www.intechopen.com/books/multi-agent-

systems-modeling-interactions-simulations-and-case-studies/data-mining-for-decision-making-in-multi-agent-

systems

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

