36 research outputs found

    Software Evolution Approach for the Development of Command and Control Systems

    Get PDF
    2000 Command and Control Research and Technology Symposium (CCRTS), June 11-13, 2000, Naval Postgraduate School, Monterey, CAThis paper addresses the problem of how to produce reliable software that is also flexible and cost effective for the DoD distributed software domain. DoD software systems fall into two categories: information systems and war fighter systems. Both types of systems can be distributed, heterogeneous and network-based, consisting of a set of components running on different platforms and working together via multiple communication links and protocols. We propose to tackle the problem using prototyping and a “wrapper and glue” technology for interoperability and integration. This paper describes a distributed development environment, CAPS (Computer- Aided Prototyping System), to support rapid prototyping and automatic generation of wrapper and glue software based on designer specifications. The CAPS system uses a fifth-generation prototyping language to model the communication structure, timing constraints, I/O control, and data buffering that comprise the requirements for an embedded software system. The language supports the specification of hard real-time systems with reusable components from domain specific component libraries. CAPS has been used successfully as a research tool in prototyping large war-fighter control systems (e.g. the command-and-control station, cruise missile flight control system, missile defense systems) and demonstrated its capability to support the development of large complex embedded software.This research was supported in part by the U. S. Army Research Office under contract/grant number 35037-MA and 40473-MA

    Real-Time Scheduling for Software Prototyping

    Get PDF
    This paper presents several real-time scheduling algorithms developed to support rapid prototyping of embedded systems using the Computer Aided Prototyping System (CAPS). The CAPS tools are based on the Prototyping System Description Language (PSDL), which is a high-level language designed specifically to support the conceptual modeling of real-time embedded systems. This paper describes the scheduling algorithms used in CAPS along with the associated timing constraint and hardware models, which include single and multi-processor configurations

    Approach for Highly Dependable Software-Intensive Systems

    Get PDF
    Author-contributed print itemhe objectives of the proposal are creating new methods and tools for effective constructing software-intensive systems based on multiple perspectives that are used to reflect differing stakeholder's concerns. The models and methods will incorporate rapid prototyping, explicit architecting and consistent engineering techniques into a synthesis approach for highly dependable software-intensive systems (HDSIS)

    Einsatz wissensbasierter Komponenten in CASE-Werkzeugen : Ergebnisse einer empirischen Untersuchung

    Get PDF
    Trotz kontinuierlicher Bemühungen um eine Automation der Software-Entwicklung, die mit dem Aufkommen des Computer Aided Software Engineering (CASE) einen vorläufigen Höhepunkt erreicht hat, ist die Qualität der marktgängigen CASE-Werkzeuge derzeit nicht zufriedenstellend zu beurteilen. Ein zunehmend häufig diskutierter Ansatz zur Verbesserung dieser Situation ist der Einsatz von wissensbasierten Systemen (WES) - als integrierter Bestandteil von CASE-Werkzeugen oder als eigenständige Systeme -, die den Software-Entwickler auf einer höheren Ebene unterstützen können als dies mit Hilfe konventioneller Technologien möglich ist

    Dependability-Assured Software Transformation

    Get PDF
    The proposed research is to create new paradigm of software transformation and analysis tools that will incorporate computer-aided prototyping system (CAPS) into dependability-assured software transformational platform (DAST) for highly dependable embedded systems (HDES). DAST extends CAPS with software architecting and composition technologies to transform macro dependability (global qualitative requirements) into micro dependability (quantitative constraints). Based upon rapid prototyping, the dependability-assured transformational process from a rapid-prototyped system to the highly dependable embedded system will involve quantitative constraint abstraction in multiple perspectives, software transformation, and formal method applied to verify the correctness of the eventual-evolved system.NSFApproved for public release; distribution is unlimited

    System Engineering and Evolution Decision Support Interim Progress Report (01/01/2000-09/30/2000)

    Get PDF
    The objective of our effort is to develop a scientific basis for system engineering automation and decision support. This objective addresses the long term goals of increasing the quality of service provided complex systems while reducing development risks, costs, and time. Our work focused on decision support for designing operations of complex modular systems that can include embedded software. Emphasis areas included engineering automation capabilities in the areas of design modifications, design records, reuse, and automatic generation of design representations such as real-time schedules and software

    Dynamic Assembly for System Adaptability, Dependability, and Assurance

    Get PDF
    (DASASA) ProjectAuthor-contributed print ite
    corecore