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PROJECT SUMMARY 
The objectives of the proposal are creating new methods and tools for effective constructing software-intensive 
systems based on multiple perspectives that are used to reflect differing stakeholder's concerns. The models and 
methods will incorporate rapid prototyping, explicit architecting and consistent engineering techniques into a 
synthesis approach for highly dependable software-intensive systems (HDSIS). 

To improve the dependability of software-intensive systems as well as their affordable flexibility, and increase 
the effectiveness of requirements validation teclmiques for HDSIS, this proposed research addresses two aspects 
to dependability: getting the requirements right, and getting the realization of the system to meet the 
requirements. Integration of the proposed research with requirements validation techniques such as rapid 
prototyping, and integration of differing stakeholder perspectives and concerns into the models and methods to 
be used addresses this dominant dependability issue. 

To put high confidence on a sound objective basis, via a systematic method for expressing dependability 
objectives via measurable localized constraints associated with the subsystems of the architecture, the proposed 
research addresses whether the system meets the requirements by enabling the degree of confidence to be put on 
a quantitative statistical basis that is rooted in measurements, and to factor assurance processes into independent 
tasks associated with each subsystem to the extent possible, thus simplifying analysis and reducing 
computational complexity. 

To reduce the amount of re-certification effort required after each requirement change that stays within the 
envelope of some invariants, this proposed research is trying to maintain the assurance of dependability as the 
system evolves. Successful systems are in a constant state of change. This is particularly challenging for high 
confidence systems. We address this problem by investigating principles that enable parts of the assurance to be 
based on properties of the architecture that are invariant with respect to system requirements changes. 

There are three main barriers to the synthesis approach for HDSIS: perspective model, constraint localization 
and software tool support. Modeling a system with multiple perspectives needs to specify, from the viewpoint of 
different stakeholders, which is crucial in the successful development and evolution of DHSIS. It is impractical 
to characterize all of stakeholder' s concerns with a single model, while multiple models to characterize specific 
concerns relative to specific stakeholders may not be compatible. Constraints localization represents how to 
translate dependability, its translation to quantitative constraints and applying them in the design, construction, 
deployment and evolution of the system, which is the problem we have to face. Intellectual models and methods 
should be designed for manipulable automation by CASE tools. To be truly usable and useful, the real challenge 
is to develop the sophisticated software tools that are needed for automation support. 

The proposed research will explore the following: 
1) Conceptual Framework for constructing HDSIS 
2) Rapid modeling system via multiple perspectives. 
3) Explicit architecting system via compositional patterns. 
4) Derivational Evolving system via generalized framework. 
5) Quantitative formulating dependability as localized constraints. 
6) Automatic synthesizing approach by CASE tool support 

The key areas of research are in Software Engineering, Rapid Prototyping, Software Architecture and 
Component-based Development. To be highly dependable, the development of software-intensive systems will 
also involve accompanied research areas: design inspection. Design inspection provides dominating methods for 
detecting errors in software systems. Numeric questions must be answered in each of these areas in order to 
evaluate this approach. However, if these quest-ions can be answered sufficiently, then the overall impact on 
software development could be huge. Improving the dependability of software-intensive systems as well as their 
affordable flexibility is crucial. Creating a set of compositional patterns that support explicit architecting 
throughout the whole procedure of the synthesis approach. By translating macro dependability into quantitative 
constraints, while localizing them on compositional patterns, the dependability of software-intensive systems as 
well as their affordable flexibility should are dramatically improved. 
This research could have broad impact on the area of Command, Control, Communications, Computers, 
Intelligence, Surveillance, and Reconnaissance (C4ISR) Architectures to support acquisition of system that will 
meet the needs of military coalition. The use of architectures is to address increased uncertainty about 
requirements, rapid changes in technology, changes in organizational structures, and a widening of spectrum of 
mission and operations. Today, military organizations must respond to a variety of situations by quickly 
assembling and organizing coalitions from different components. Compositional patterns are used to promote 
heterogeneous interactions among components, govern system composition and localized constraints on the 
architecture. The perspectives of an architecture are smoothly transformational via compositional patterns, they 
work with well-grained components, heterogeneous interaction and hierarchical composition and flexible 
configuration. In the synthesis approach for HDSIS, we have tools for rapid prototyping, explicit architecting, 
and consistent engineering the software-intensive systems. 
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PROJECT DESCRIPTION 
We propose research at Software Engineering Automation Center (SEAC), Naval Postgraduate School to create 
a new method and tools for effective constructing software-intensive systems based on based on multiple 
perspectives that are used to reflect differing stakeholder's concerns. The models and methods will incorporate 
rapid prototyping, explicit architecting and consistent engineering techniques into a synthesis approach for 
highly dependable software-intensive systems (HDSIS). 

Software-intensive systems are those complex systems where software contributes essential influences to the 
design, construction, deployment and evolution of the system as a whole. Generally, they are characterized as 
distributed, heterogeneous, network-based and time-critical systems [44, 45]. 

C.1 Objectives and Significance 
The main objective of the proposed work is to enable a perspective-based transformation process for HDSIS 
based on explicit system architecting. Because of increased uncertainty about requirements, flexible 
configuration in organizational structures, and rapid application development, HDSIS inevitably involve 
different kinds of stakeholders such as customer, architect and implementer. A collection of products is needed 
to document different stakeholder 's concerns in developing the HDSIS. We propose to develop a synthesis 
approach embodied in computat ional prototyping, compositional architecting and transformational derivation. 
Explicitly architecting a system aims to attain the benefits of reduced costs and increased quality, because an 
architecture of the HDSIS can effectively bridge the gap between evolving software requirements and system 
implementations. 
We also seek to develop methods for explicit architecting systems, which is recognized as a critical element in 
the successful development and evolution of software-intensive systems, for rigorously formulating 
dependability into quantitative constraints that can be associated with the compositional patterns, and for 
automatic generation of a well-designed architectural framework (generic templates) to realize dependable 
construction, convenient composition, rapid deployment and flexible evolution of software-intensive systems. 

Proposed new methodologies and automated tools will incorporate rapid prototyping, explicit architecting and 
consistent engineering techniques into highly automated, easily applied CASE tools. There are five research 
thrusts in the proposed research: 

• Conceptual Framework/or constructing HDSIS 
• Rapid modeling system via multiple perspectives. 
• Explicit architecting system via compositional patterns. 
• Derivational Evolving system via generalized framework. 
• Quantitative formulating dependability as localized constraints. 
• Automatic synthesizing approach by CASE tool support 

C.1.1 Significance and Benefits 

The results of this research should improve the dependability of software-intensive systems as well as their 
affordable flexibility. 

There are two aspects to dependability: getting the requirements right, and getting the realization of the system 
to meet the requirements. Software engineering research has shown that the majority of software faults are due 
to requirements and specification errors, and that this proportion is particularly high for novel systems. The 
integration of the proposed research with requirements validation techniques such as prototyping and the 
integration of differing stakeholder perspectives and concerns into the models and methods to be used addresses 
this dominant dependability issue. The proposed approaches and models should increase the effectiveness of 
requirements validation techniques for HDSIS. 

High confidence is a perception regarding dependability, at the current time a vague and informal concept. This 
research seeks to put high confidence on a sound objective basis, via a systematic method for expressing 
dependability objectives via measurable localized constraints associated with the subsystems of the architecture. 
This aspect of the research addresses whether the system meets the requirements, and should enable the degree 
of confidence to be put on a quantitative statistical basis that is rooted in measurements, and to factor assurance 
processes into independent tasks associated with each subsystem to the extent possible, thus simplifying 
analysis and reducing computational complexity. 

Successful systems are in a constant state of change. This is particularly challenging for high confidence 
systems, because the assurance of dependability must be maintained as the system evolves. We address this 
problem by investigating principles that enable parts of the assurance to be based on properties of the 
architecture that are invariant with respect to system requirements changes. The proposed approach should 
reduce the amount of re-certification effort required after each requirement change that stays within the 
envelope of these invariants. 
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PROJECT DESCRIPTION 
C.1.2 Technical Barriers 

In order to develop the synthesis approach for HDSIS, following technical problems should be thoroughly 
studied and then solved 

• Perspective model problem. Modeling a system with multiple perspectives needs to specify, from the 
viewpoint of different stakeholders, what stakeholder's concerns are and how they are formulated as 
key aspects in the successful development and evolution of software-intensive systems. Since 
stakeholder's concerns are not only often diversified but also sometimes contradictive. It is impractical 
to characterize all of stakeholder' s concerns with a single model, while multiple models to characterize 
specific concerns relative to specific stakeholders may not be compatible. It is crucial to find key 
factors that enable a transformable process between perspectives. The process should be able to "zoom 
in" the commonness and "zoom out'' or identify the difference among stakeholders' concerns. 

• Constraint localization problem. Constraints localization represents translation of dependability to 
quantitative constraints, and applying these constraints in design inspection. The dependability of a 
system is global qualitative requ iremen ts that are abstracted as availability, reliability, safety, security, 
integrity, mai ntainability, and so on. They need translating into semantic quantitative constraints during 
system development. What constraints are needed to quantitatively attain the benefits of largely 
reduced costs and highly increased dependability and how they can be applied (localized) in the design, 
construction, deployment and evolution of the system is the key problem that has to be faced. 

• Software tool support problem. Intellectual models should be designed for manipulable automation by 
CASE tools. The associated engineering tasks, such as rigorously reasoning about desired properties, 
mechanically translating formulas from each other and formally applying constraints, cannot be done 
very well manually because of cost and excessive human error rates. Formal models should be 
represented as semantic formulas so that they fit with reasoning and manipulation by CASE tools. To 
be truly usable and useful, the real challenge is to develop the sophisticated software tools that are 
needed for automation support. 

C.2 Technical Approach 

In order to enable effective constructing HDSIS, we propose three fundamental approaches: computational 
model for rapid prototyping, compositional patterns for explicitly architecting, and optimized object model for 
component object evolution, all of which are synthesized to the perspective-based approach. Based on 
compositional patterns, the synthesis approach calls for explicit treatment of software composition and 
architecting that involves (1) three perspectives of architecture characterized as computational activity, 
compositional architecture, and derivational transformation, (2) two mappings between three perspectives, 
embodied in explicitly architecting the system via compositional patterns and physically deriving the component 
from architectural role wrappers, (3) a set of formal description that is used to model well-grained components, 
heterogeneous / hierarchical composition, and flexible configuration, and (4) the associated tool support that 
makes the synthesis approach more applicable in design, analysis, evolution and executable system generation. 

C.2.1 Multiple Perspectives for Software-Intensive Systems 

Highly dependable software-intensive systems inevitably involve multiple stakeholders (e.g., customer, architect 
and implementer of the system) and their concerns (e.g., computational, compositional and derivational aspects). 
Associated with a set of concerns, a perspective will provide both conventional specification (for constructing 
and using the perspective of stakeholders) and patterns or templates from which to develop individual 
perspectives by establishing the techniques for its creation and analysis. Such a system should have an 
architecture and this can be concretely described as a collection of products to document the architecture. 

Modeling a system via three perspectives starts with the formulation of customers's informal needs that, in the 
context of software-intensive systems, are usually a strategic operational concept. An operational concept is 
created to describe how undertaking collaborative missions will be carried out. A prototype model (in a 
prototyping language such as PSDL [1 ,2]) represents computational activity from which a compositional 
architecture can be derived. Three perspective models, embodied as computational activity, compositional 
architecture and derivational transformation, should provide a computer-aided foundation abstracted as 
significant attributes suitable for automated analyzing, reasoning and framework/code generating. Figure 1 
illustrates a high level depiction of the synthesis approach for HD SIS development. 
In the intersection of the prototype constructing and system architecting, there exists a centered formalism 
collecting vertical properties (prototyping) and horizontal properties (architecting) into a generated framework. 
They both are translated as quantitative constraints that can be used for steering design inspection ( e.g., model 
checking [34-37]) and monitoring component derivation (e.g., run-time monitoring [42,43]). These formal 
verification techniques are embodied in the checking and analysis processes that ensures the software conforms 
to its specification and meets the needs of the customers who are paying for that software [37,39]. 
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C.2.1.1 Conceptual Framework 

PROJECT DESCRIPTION 
O'pcrational 

Concept 

Fig. 1 Synthesis Approach for HD SIS 

Highly 
Dependable 

Systems 

In general, a system is a collection of components organized to accomplish a specific mission or set of missions. 
A system inhabits an environment, while the environment can influence that system by determining the settings 
and circumstances of developmental, operational, political, and other influences upon that system. A system has 
an architecture that provides the fundamental organization of the system embodied in its components, their 
relationships to each other and to the environment and the principles guiding its design and evolution. Fig.2 
illustrates the conceptual framework that is used to support explicitly architecting software-intensive systems 
with multiple perspectives. 

Mission 

fulfills 

Environment influences System f----h-•s_•_•_-1 Architecture 
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Fig.2 Conceptual framework supporting explicitly architecting with multiple perspectives 
In this research, a system has three kinds of stakeholders who have specific concerns relative to the system. 
Involving system stakeholders, life cycle and uses of architectural description, the system architecture will 
provide multiple documents to reflect multiple stakeholder's concerns. From viewpoint of customer, 
computational perspective conforms to requirement acquisition From viewpoint of architect, compositional 
perspective conforms to explicit architecting that covers architect's concerns, so that the computational activity 
can be accomplished. From the viewpoint of implementer, derivational transformation conforms to system 
implementation that covers implementer's concerns under the support of a specific architecture. 
The architectural description selects three viewpoints for use. This choice depends on the concerns of three 
stakeholders, all of which need to be addressed by the architectural description. Similarly, Joint Technical 
Architecture framework (e.g., JTA [45]) has selected three such viewpoints, but IEEE-std-1471-2000 [44] does 
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PROJECT DESCRIPTION 
not prescribe any particular viewpoints. A viewpoint may be defined with the architectural description, but it 
may also be defined externally and only used in the architectural description. Such externally defined 
viewpoints are termed library of compositional patterns. 

C.2.1.2 Architectural Perspectives 

Computational Perspective. Computational activity provides the perspective for customer whose main concern 
is computation and interconnection with qualitative dependable requirements. This perspective outlines the 
activities and information flows that will accomplish the operational concept ( e.g., a computer-aided prototyping 
system such as CAPS [1]), that is, what activities are needed and how their interactions are associated with 
workflows, networking and plans necessary to support customer's operations [45]. Computational perspective 
addresses system requirements (computation and interconnection) and the associated macro dependability 
(translated into constraints) by capturing three kinds of formal arguments: well-grained components from which 
the system is built, interconnections enforcing interactions among components, and constraints on both 
components and interconnecti ons. This perspective can be represented as follows 

Pcomputation = [COA(., INT, Cons (COMc , INT)] 
Where COi11c is the set of conceptual components, INT is the set of interconnect ions among components, Cons 
(COi\1c, INT) is the set of constraints localized on components and their interconnections, respectively. 

Conceptual components should take responsibility for carrying out the activities to accomplish 
mission-collaborated operational concept. By the way, granularity is one of the importance features that will be 
considered as a kind of constraints localized on the components, which are crucial factors · for constructing 
complex systems. Well-grained components are helpful not only to increase productivity but also to improve the 
understandability, reliability and maintainability. 

Compositional Perspective. Compositional architecture provides the perspective for architect whose main 
concern is explicit treatment of system composition and architecting with constraints localized on the patterns. 
This perspective details what kinds of rules (patterns) are used to govern the interactions among components 
and how quantitative constraints are associated with the patterns (e.g., JTA framework, software architecture and 
architecture description languages [10,12,18,22,44,45]), so that the operational concept can be accomplished. 
Compositional perspective addresses what kinds of interactions are applied among components and how to 
translate macro dependability into quantitative constraints and how to partition them and how to associated them 
with the patterns by generalizing three kinds of formal arguments: interactive roles components are assigned to 
play in the architecture, architectural styles for specifying interactions between specific roles, communication 
protocols for transporting information during interaction. This perspective can be represented as follows 

Pcomposition = [COMc • R, R0-Slr---+R;, Cons (R, S, P)] 
Where COMc • R is the set of roles abstracted from conceptual components, R0~/p--->R; is the set of 
compositional patterns: R0 interacts with R; via architectural styles S whi le complying with communication 
protocols P, Cons(R, S, P) is the set of constraints localized on roles, styles, and protocols, respectively. 

The interactive roles play an important part in compositional patterns that are used to explicitly architecting a 
system [7,21]. In architectural description, a role is abstracted as generalized role wrapper (GRW), a kind of 
abstract, generalized class in object-oriented philosophy [29,31,33 ,38]. The GRW of a role will reside in an 
architectural element known as patterned composer that promotes an interaction between two roles. Generalized 
role wrappers provide adherence to restricted, plug-compatible interfaces for both interaction and computation. 
The interfaces for interaction will be implemented as generalized procedures and the interfaces for computation 
are to be refined or overridden by the derivation of components that are assigned to play the role. In this way, 
compositional patterns provide a good level of abstraction not only for steering design inspection by localizing 
constraints on the patterns, but also for monitoring component derivation at run time. 

Derivational Perspective. Derivational transformation provides the perspective for implementer whose main 
concern is derivation of components and their connectivity. This perspective describes physical components 
and their connectivity that will be instantiated to cany out the activities of the computational perspective and 
how to derive those components from the architectural environment (e.g., J2EE, COM+, COREA [23-28]). 
Component derivation is embodied through subtyping and refinement. Derivational perspective addresses what 
kinds of physical components are needed to carry out computational activity and how to glue them to specific 
roles that provide adhere to different implementation constraints by capturing three kinds of formal arguments: 
physical components that derived from the assigned roles, connective glue by which that instantiated 
components are exactly attached to the roles, and constraints embodied in components, their styles and 
protocols. Its formula is given as follows 

Pcterivation = [R "::JCOMp, (Cp--+1R 0)-%---+ (Ri 1+-Cp), Cons (COMp, S, P)] 
Where R :::, COMP is the set of physical components that are derived from the associated role, Ci, --+1R (its peer R 
1+---Cp) is the set of instantiated components that are physically glued to associated roles, Cons( COMp, S, P) is the 
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PROJECT DESCRIPTION 
set of constraints localized on physical components, styles, and protocols, respectively. 

A set of compositional patterns relative to patternized composers acts as a bridge between computational 
activity (software requirement) and derivational transformation (system implementation) because they offer a 
means for evolving the operational concept or deriving (refining) physical components. 

According to the conceptual framework in this proposal, library of compositional patterns provides a set of 
patterned composers that are always tangible from explicitly architecting a system to physical deriving 
component. Explicit composer in implementation is the expectation that software architecture separates 
interaction (connector) from computation (component) . However, the current level of understanding and support 
for connectors has been insufficient, so that connectors are often considered to be explicit at the level of 
architecture, but intangible in the system implementation [ 17, 46] 

Formulating dependability as localized constraints. The intersection of the prototype constructing and system 
architecting in Fig.I becomes formulating loci of features against different perspectives. All of these features are 
focusing on the three aspects: computation, composition and derivation. Granularity comes towards taxonomy 
of computation that is embodied in computational responsibility and systematic decomposability, heterogeneity 
towards taxonomy of composition that is embodied in compositional coupling and architectural compositional ity, 
and trans/ormationality towards taxonomy of derivation that is embodied in derivation glue and componential 
evolvability. Fig.3 illustrates characterized perspectives associated with computational activity, compositional 
architecture and derivational transformation. 

(jjj= COMPUTATIONAL PERSPECTIVE 

Well-grained Computaitonal Desired Property Systematic Decomposability 
Component Resoonsibilitv 
Computer Software 

. Dependenlability CSCS is the top-level component that undertakes global 
Collaboration . Interoperability activity characterized as distributed and concurrent Complex System (CSCS) . Dvnamic configuration collaboration. 

Computer Software 
. Autonomous 

CSCI is the I" level component that undertakes specific 
Mission . Real-time 

Configuration Item (CSCI) . Platfonn-indepe ndent mission, a part of composed top-level collaboration (CSCS) 

Compu ter Software . Loosely coupled 
CSCC is the 2"" level component that undertakes specific 

Common Component Function . Replacebility 
function, a part of composed I" level mission (CSCJ). (CSCC) . Laneuaee-indeoendent 

Computer Software 
. Well packaged 

CSCU is the 3"' level component that undertakes specific 
Computing Unit (CSCU) Task . Tightly cohered 

task, a part of composed 2"" level function (CSCC). . Evolvabilitv 

(jjj= COMPOSITIONAL PERSPECTIVE 

Heterogeneous Compositional Desired Property Architectural Compositionality 
Interaction Coupling 

Interoperably-distributed ·- Compatibility of roles ID! is used for composing CSCS from CSCI components to 
Distributed . Consistency between enforce distributed interactive collab oration (maybe 

Interaction (ID!) roles, style, and protocol cross-olatfonn), . Real~time constraints, LCJ is used for composing CSCI from CSCC components 
Loosely-coupled Interaction such as maximum to encourage flexible configuration with minimal 
(LC!) Loose execution times (MET) communication between components (maybe 

on the assigned roles cross-languages), . Latency on lprolocol 

Tighlty-cohered Interaction 
. Heterogeneous data, TC! is used for composing CSCC from CSCU components 

Coherent e.g., dataflow, event, to emphasize independent partition of components, with 
(TC!) knowledge, message low external and high internal complexity. 

(jjj= D ERIVATIONAL PERSPECTIVE 

Transformational Derivational 
Desired Property Componential Evolvability 

Connectivity Glue . Polymoiphism it allows a system component lo be derived from the 
Inheritance Extension . Dynnmic binding corresponding role wrapper end then to extend its . Incremental Evolution behavioral computation. . Organic library it allows a system component to be associated with the 
Association Import . Simplicity correpondent role wrapper and then to refine its behavioral . Infonnation hiding computation. . Heterogeneity it allows a system component to aggregate one more one 
Aggregation Assembly . Multiple roles more the correpondenl ro le wrapper and then to refine its . High-cohesion behavioral computation. . Replication Configurable glue means how the component is glued onto 

Configuration Dynamism . Insertion & Removal 
the specific role and this exhibits dynamism by allowing 
replication, insertion, removal, and reconnection of . Reconnection 
architecturcal elements 

Fig. 3 Perspective-based Characteristics 
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PROJECT DESCRIPTION 
With respect with constraints localization, the characteristics in Fig. 3 can be considered as embodiments of 
dependability, for instance, integrity and maintainability could be translated into granularity, heterogeneity and 
transformationality [13,14], which will be associated 'with computation, composition and derivation, respectively. 
Furthermore, a CSCI (seen as a subsystem) can be composed from CSCC via LCI patterns, while a CSCS from 
CSCI via IDI, which could largely improve the maintainability and guarantee the integrity of the given system. 

C.2.1.3 Automated Synthesizing approach 

Starting with rapid prototyping (a computational model [l ,6,8]), the synthesis approach is embodied as 
transformational process from computational activity, through compositional architecture, to derivational 
transformation. In next section, formal description for modeling architectural elements will be given that 
supports both component and composer evolution through subtyping and refinement. Under the support of 
automated software tools to be developed, two key mappings are applied to bridge the gaps between 
perspectives: explicitly architecting between computational activity and compositional architecture, physically 
transforming between compositional architecture and derivational transformation. Fig. 4 illustrates the 
tr J; I I ans ormat1ona process among t 1ree perspectives. 

P computnlion Architecting P compusi1ion Transfom,ing P ckrivntiun 

COMc COi\llc• R R-:::;COMp 

INT Explicit An:hitecting via R 0-:-s/p->R; Physical transfonning via (C • 1R)_sl p->(R 1+-C) 
Compositional Patterns Pattemized Composers 

p . p 

Cons(CO1vl, INT) Cons (R, S, P) Cons (COMp, S, P) 

Fig. 4 Transfomrntional process 

Explicit architecting the computational activity starts with that components are assigned as specific roles. 
According to the characteristics of roles, the related architectural styles and communication protocols can be 
determined so that suitble compositional patterns can be applied to govern those interconnections among 
components. Physical transforming components and establishing their connectivity result from that chosen 
compositional patterns are mapped into patternized composers (architectural elements). Accoding to assignment 
that components play specific roles, the components will be derived from the associated role facility. After being 
derived, the components will be instantiated and then glued to the associated roles [32]. 

C.2.2 Synthesis of Architecting from Compositional Patterns 

Architecture is recognized as a critical element in the successful development and evolution of 
software-intensive systems [ 44 ]. Generally, the architecture is the fundamental organization of a system that is 
embodied in its components, their relationships (interactions) to each other and to the environment and the 
principles (patterns) guiding its design and evolution. Precisely, explicit architecting involves interactions 
among interactive roles (components are specified to play) via architectural styles (specifying the interaction) 
while complying with communication protocols (specifying the information transportation). 

C.2.2.1 Formulating Compositional Patterns 

Compositional patterns provide a set of rules for governing the interactions among components and the 
constraints on them. They are associated with three kinds of formulated factors : interactive roles, architectural 
styles, and communication protocols. In previous work [7,21,22], a compositional pattern is designed as 
patternized composer, a kind of architectural element, which is used to promote heterogeneous interactions 
between components. 

Example of Compositional Pattern. Fig. 5 shows an example of a compositional pattern: for a given interaction 
between two components, these two components are assigned to play specific roles r1 and r2 , architectural style 
s specifies how r1 interacts with r2, while communication protocolp builds specific transporting channel for data, 
event or message during the interaction. In order to construct the components as autonomous entities, roles in 
the compositional pattern are deputized for the components in dealing with interaction while the components are 
only concerned with their functional activities (separating computation from interaction). The pattern also 
provide ameans for gluing specific component to the role. 

Compositional Patterns. Formal compositional patterns via rigorous mathematics will provide a means for 
property reasoning and analyzing, and automated manipulation by CASE tool. Supposing that there are three 
sets: R {interactive roles}, S { architectural styles}, and P { communicative protocols} 

R = { 
Caller, Definer, 
Announcer, Listener, 
Outflow, Inflow, 
Source, Repository, ... 

S={ 
Explicit-invocation, 
Implicit-invocation, 
Pipeline, 
Rep-knowledge, ... 

P ={ 
Message-passing, 
Access-memory, 
Dataflow-strenm, 
Sampled-stream, 
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PROJECT DESCRIPTION 
Without considering any constraint, a composition is defined as an interaction between two roles ( e.g., Caller 
and Definer) via an architectural style (e.g., explicit-invocation), while complying with a communicative 
protocol ( e.g., message-passing), so the Cartesian product R XS X P X R enumerates all possible compositions C 

C(R,S, P) = { r 0-2/p---tri I r0 , ri E R,s E S,pE P} 
Where r0.J/p->- ri represents interaction between r0 and ri via a styles while complying a protocolp. 

Compositional patterns refer to the constraints, that are applied on the compositions so that sophisticated 
patterns are formed. For instance, architectural style Pipeline can only applied to roles (Outflow and Inflow). In 
architecture design, a role is formally abstracted as a generalized role wrapper (GRW), a kind of generic and 
abstract class in object-oriented philosophy. A GRW provides adherence to restricted, plug-compatible interfaces 
for interaction and template of behavior for computation, while components derived from the GRW will specify, 
refine or override the template. In this way, interactions are separated from computations (performed by 
components). So compositional patterns CP are the relation on Cartesian product of compositions with the 
constraints reasonably localized on roles, styles and protocol, respectively 

CP(R, S, P) = {GRW(r0)-2/p---tGRW(ri) I r0 , riE R, SE S, pE P, Cons( r0 , s,p , ri) } 

Where GRW(r) abstracts role r as generalized role wrapper that separates interaction (GRW provides) from 
computation (assigned component refines), .J/P-,. represents interaction between r0 and ri via a specific style s 
while complying a specific protocolp,Co ns(r0 , s,p,r i) represents constraints localized on concrete factors. 

Constraints Localized on Patterns. The term "localization" represents abstraction of dependability, its 
translation to quantitative constraints, and handling these constraints applied (localized) in the design, 
construction, deployment and evolution of HDSIS. The dependability of HD SIS reflects the quantitative global 
requirements and should be applied as quantitative constraints in architecture design. In macro view, the 
dependability is abstracted as availability, reliability, safety, confidentiality, integrity and maintainability. How 
to translate qualitative global requirements into quantitative constraints becomes the key. HDSIS involve 
important aspects of architecture, such as well-grained components from which the system is built, 
heterogeneous interactions among them, compositional patterns to guide their composition, and quantitative 
constraints on these patterns [9,10]. There are two points that are considered crucial: what dependable properties 
need transforming to quantitative constraints, and how they are localized on compositional patterns. In this 
research, the transformation from dependable properties to quantitative constraints, and localization of the 
co 1 b b d. d . th ti 11 fr k h . F" 6 nstrams on compos1tiona patterns can eem o 1e m e o owmg amewor s ownm 1g. 

Dependability Translation Constraints Localization Patterns 

Availability/ usability 

~ 
. Consistency 

~ 
Role . . . Compatibility . Reliability/Confidentiality . Granularity . Safety/ Security . Style . Heterogeneity . Integrity/ maintainability . Real time . Flexibility/interoperability Svnchronization 

. Protocol . 
Fig. 6 Framework of dependability translation and constraints localization 

With respect to translating dependability and localizing semantic constraints on the patterns, handling of 
real-time constraints indicates an easily understood example. Reliability of the time-critical system may be 
embodied as an immediate reply of a discriminant component, under a given request, within maximum execution 
time (MET), or data stream communication between components within latency (LATENCY) [4,8]. First of all, 
this time-critical reliability should be translated into timing constraints maximum execution times MET and 
LATENCY, two quantitative constraints. Both MET and LATENCY can be associated with the patterns referring 
to the role and protocol, respectively. MET requires computation of the role ( component is assigned to play) 
must be executed within the amount of time (hard real time); LATENCY constrains the maximum delay of data 
transportation communicating on the protocol. On the other hand, timing constraints can be verified not only by 
static design inspection via static scheduling [5], but also by runtime monitoring correctness assurance [42,43]. 
The typical examples of constraints localized on the patterns are listed as follows 

• Compositional roles: a specific role can only interact with the other (consistency) 
• Interactive roles should be consistent with architectural style ( consistency) 
• Appropriate glue of a role with the corresponding component acting as multiple roles ( compatibility) 
• Suitable protocols for a specific style that could be accommodated with a few protocols (compatibility) 
• Hierarchical composition from well-grained components via heterogeneous composers (granularity) 
• Autonomous components running on the distributed environment via datagram protocol ( granularity) 
• Heterogeneous interaction of the component that is assigned to play several roles (heterogeneity) 
• A component interacts with one via implicit invocation and with the other via pipeline (heterogeneity) 
• Max execution times (MET) specified for a consumer role relative to components (timing constraints) 
• Max call times (MRT) specified for a producer role relative to components (timing constraints) 
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• Latency of communication protocols, potential starvation in distributed aspects (timing constraints) 
• Synchronization between concurrent entities that ensures proper functioning (synchronous constraints). 
• Rendezvous of the producer role with the consumer role (synchronous constraints) 

C.2.2.2 Generalized Architectural Description 

Compositional patterns are strongly associated with three essential aspects: fimctional components, patternized 
composers and architectural configuration. A functinal component is a unit of computaion, a loci of 
computation and state. A patterned composer is an architectural building block used to model interactions 
between components and rules governing the interaction. Both composer and component are reusable 
architectural elements. Architectural configuration is a connected graph of composers and components that 
describe the structural organization of HD SIS. In our research, components have three views: a decomposed unit 
in computational activity, a role in compositional architecture, and a derivative entity in derivational 
transformation. Modeling a component starts with hierarchical operators described in PSDL, assigns a 
component to play a specific role, identifes a suitable compositional pattern and derives the copprespondent 
component with the selected composer. So in our forma lism, the patternized composer is the centric entity that 
involves two interactive roles, an architecture! style and a communication protocol. The composer is described 
in generic package that can provide excellent reusability with parameterized genericity, abstracted class 
definition and active glued collaboration [22,33]. The roles in the composer are abstracted as generalized role 
wrappers that provide the adherence to the restricted, plug-compatible interfaces for interaction and the template 
of behavior for computation that components is expected to refine. 

Framework for Architectural Description . The framework states that a set of formal description for modeling 
architecture should support what kinds of modeling features and their function embodied in the description. 
Both component and composer are architectural building blocks used to model computation, interaction and 
rules governing those interactions. Unlike connectors in other architectural description languages, composers in 
our research are always explicit entities that run through all architectural levels and implementation [21,22]. 
Surveying current architectural description languages [ 17], these following aspects are considered essential for 
modeling both component and composer, such as types, interfaces, semantics, constraints, evolution and 
hierarchical composition. 

1) Types. Architecture-level communication is often expressed with complex protocols. To abstract away these 
protocols and make them reusable, formal description should model architectural entities as types. Abstract 
class are considered valuable generalized types which can be specialized to produce instances. 

2) Interface. Interface of GRW or component is the type of interaction between it and the external world. The 
interface enables proper connectivity of components and their communication in an architecture. It also 
enables reasoning about the well-formedness of a configuration. On the other hand, an interface is modeled 
with ports and determined by (potentially dynamic) interfaces of its attached components. This added 
flexibility might prove a liability when analyzing for interface mismatches between components. 

3) Semantics. To perform analyses of component interactions, consistent refinements across levels of 
abstraction, and enforcement of interconnection and communication constraints, architectural descriptions 
should provide processing semantics. A set of formal description generally uses a single semantic model for 
both components and composers. For instance, CSP-based concurrent semantics can be easy to map to 
Ada95 task mechanism such rendezvous, protected buffer access and asynchronous control transfer. 

4) Constraints. In order to ensure adherence to restricted interactive roles, architectural styles and 
communication protocols, several kinds constraints should be specified, such as consistency, compatibility, 
timing constraints, etc. 

5) Evolution. Component interactions are governed by complex and changing protocols. Maximizing 
architectural entity reuse is achieved by inheriting and refining existing ones. The formal description support 
entity evolution with subtyping and refinement. 

6) Hierarchical Composition For HDSIS, architecture will be required to describe a system at different levels 
of details, where complex computation are either explicitly represented or abstracted away into single 
components (sub-systems). In the latter situation, an entire architecture becomes a single component in 
another, large architecture. Therefore, support for hierarchical composition is crucial. 

Formal Architectural Description. In oreder to support perspective-based approach for architecture development 
and evolution, the formal architectural description must explictly model components that perform behavuoral 
computation, composers that promote interactions among components, and their configuration that are 
connected graphs of components and composers. Ada-like notation is taken to create the formal architectural 
description, because it could easily be mapped to current excellent object-oriented programming languages, such 
as C+t-, Java and Ada95 [30-33]. The description framework of composers and components associated with the 
above-mentioned aspects are presented as follows 
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Patterned Composer 

composer Pat!Namc is generalized - 1) 
- generic parameters 

style as ... ; 
protocol as ... ; 
wrapper - role wrappers with generic parameters 

role W _Role 1 is [associate I inherited I aggregate] <grw> - 5) 
~rt -~ 

.. . -- computing states and service operations 
computation - 3) 

. .. -- autonomous behavior and semantics - 4) 
end W Rolel; 
role W - Role2 is ••• end W Role2; 

collaboration (P: W _Role!; C: W _Role2) 
... - collaborative behavior and semantics 

end PattNamc; 

Functional Component 
component ComName is [ associate I Inherited I aggregate] <grw> 

... - wrapped roles in composers - I), 5) 
port -2) 

... -- computing states and service operations: 
- some computing states 
-- some are overridden from the wrapped role 
-- some arc refined and extended 

computation -- 3) 
. , . - autonomous behavior and semantics including 

- control constraints - 4) 
- task scheduling and synchronous coordination 
- asynchronous task scheduling 

architecture - 6) 
••• -- hierarchical decomposition 

end ComNamc; 

Basically, a composer is represented as generalized template via generic parameters that can express complex 
protocols reusable different situation in concrete application. Two generalized role wrappers (GRW) in the 
composer are typical abstract classes that provide restricted, plug-compatible interfaces for interaction and 
template of behavior for computation. Collaboration part provides behavioral semantics during the interaction 
between roles that will be glued with physical components. A component is represented as a computational 
entity that derived from the associated GRW and it also provide an architectural decomposition which means the 
current component is composed from the entire architecture. Configuration in the research mainly focuses on 
instantiating components and composers and then gluing the instance components to the relative roles. 
Formal semantics and constraints. For highly dependable software-intensive systems, the architectural 
description should be concerned with quantitative constraints such as componential granularity and interactive 
heterogeneity, timing constraints and synchronous constraints. Some of these properties could be abstracted as 
quantitative constraints in temporal logic that fits with model checking techniques [34,40,52]. In linear temporal 
logic (LTL), real-time constraints can be added to future time temporal operators to become metric temporal 
logic [52]. And the components and their interactions are treated as formal factors so that granularity and 
heterogeneity can be used to modify them. For instance, 

Eventually FINISH-WITHIN=1000 ms ( Co11trol_Feedere cscc deliver FeedingAmount > 50 lb), 

which illustrates that component Co11trol_Feeder belonging to the 2nd level component CSCC and undertaking 
feeding function, will deliver FeedingAmount greater than fifty pounds within 1000 ms. 

A Typical Example. Pipeline is the typical composer that exhibits excellent architectural properties (e.g., loose 
component coupling, asynchronous communication, possible data buffering). Pipeline can be used to enforce 
interaction between components with dataflow stream. Two-side roles interconnected by Pipeline are Outflow 
and Inflow, respectively. The Outflow is deputized for the producing component to output stream, while the 
Inflow for the consuming component to input stream through the Pipeline. The formal Pipeline composer 
provides four generic parameters for enhancing reusabbility, such as transported Data (basic item for dataflow), 
buffer Size (data transportation buffer), timing constraints Vmet and Vmrt (the ammount of MET and MRT 
[4,5]). The derciption of the Pipeline composer and component derivations are described as follows 

Pipeline Composer Component derivation & Configuration 
composer Pipeline Is generalized composer My_Pipc is specialized Pipeline ( 

type Data is private; Data=> Adt, Size=> 300, Vmet-'>80, vmrt=>I00 ); 
Size : Integer : = 100; -----·<<< Component Derivation>>-----
vmet: Time; component Source_COM Is inherited My_Pipe.Outflow 
vmrt: Time; port 

style as <#pipe-filter#>; procedure Produce(d: Data) is overridden; 
protocol as <#dataf/ow-stream#>; computation 
wrapper Produce (d); 

role Outflow is •[ Output (d) • Produce (d) • met(B0) • exception;] 
port architecture ••• - hierarchical decomposition 

procedure Output(d: Data); end Source COM; 
procedure Produce(d: Data) is abstract; component-Sink_COM ls associate My_Pipc.lnflow 

computation port 
Produce (d); procedure Consume(d: Data) is redefined; 

*[ Output (d) • Produce (d) • mel(vmet) • exception;] computation 
end Outflow; *[ Inflow•lnput (d)• Consume (d) • mrt(I00) • exception;] 
role Inflow is end Sink_COM; 
port -----~<<<Configuration>>>·-------

procedure lnput(d: Data); configuration CONFIG is 
procedure Coosume(d: Data) Is abstract; Producer: component Source_COM; 

computation Consumer: component Sink_COM; 
*( Input (d)• Consume (d) • mrt(vmrt) • exception;] My_Pipe-Collaboration(Producer, Consumer); 

end Inflow; .. . - Roles are glued with the instances of producer & consumer 
collaboration (P : Outflow; C : Inflow) ... - Instances assigned to play roles are concurrently executed 

P•Produce(d); ... - Producer keeps producing data aod then outputting it 
•[ P•Output(d)• P•Produce(d) C•lnput(d) • C•Coosume (d)] . . . - Consumer keeps inputting data aod then consuming it 

end Pipeline; end CONFIG; 
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The example provides well-defined template for generalized role wrappers. With respect to behavioral 
comutation of components, CSP-based semantic description [30] provides not only synchronous constraints but 
also asynchronous control transit. For instance, both Output and Input are designed implemented as exclusive 
procedures. They can be treated as execution guards to coordinate concurrent synchronization. For instance, on 
timing constraints, the role Outflow is subjected to max execution time (met) while Inflow to max response time 
(mrt). Both met(Vmet) and mrt(Vmrt) are transformed as asynchronous control transit for runtime monitoring of 
real time constraints. That is, when outputting a produced data onto the given pipeline, Outflow requires to be 
synchronized within met(Vmet), otherwise the synchronization is considered failure and MET_EXCEPTION is 
triggered (• represents asynchronous select). Similarly Inflow has the similar situation with mrt(Vmrt). 

Colaboration part in the composer description will automatically generated as architectural configurations that 
are connected graphs of components and composers. In concert with models of components and conposers, 
configurations enable assessment of autonomous and concurrent aspects of an architecture, such as potential for 
deadlocks, and starvation, performance, reliability, security, etc.. Configurations also enable concurrent 
execution immediately after the roles are glued with the instances of corresponding components. 

C.2.2.3 Substantiated Interconnections 

The interconnections among components are the central argument because they embody the substantial 
architecture of a system. In early time, the architecture of a software system was nothing except for graph of 
"box-line-box". Substantiating interconnection is a must for an explicit architecture of HDSIS. It deals with 
three aspects: explicit architectural entity by which interaction among component are promoted, compositional 
relationships that guide topologic connectivity of components, and heterogeneous information forms by which 
communication among components can be built. With respect to explicit architectural entity, we have 
thoroughly discussed compositional patterns and the associated composers in this proposal. Only compositional 
relationships and heterogeneous information form will be discussed here. 

Compositional Relationship. Since the asymmetry of an interaction among roles, a producer role could interact 
with one more other components that are assigned to play the same role. For instance, an Announcer of event 
might have one more Listener that is listening to the same Announcer. In contrast, one more Source of 
knowledge might have the same Repository, which means shared memory. So there exist compositional 
relationships for transforming interconnections to patternized composer, which is illustrated as follows 

• Fork (1-N): Fork allows a producer to interact with multiple consumers that play the same role via a composer. 
• Merge (N-1 ): Merge allows multiple producers that play the same role to interact with a consumer via a composer 

Unique (1-1): Unique allows a producer to interact with the other consumer via a composer. 
• Hierarchy: Hierarchy allows the external1 producer to interact with the internal1 consumer, and vice versa. 

PSDL-like descri tion 
Graph 

Vertex CO, Cl, C2, C3 

Edge EOl: CO as Ro -> Cl as Ri 
Edge E02: CO as Ro -> C2 as Ri 
Ed e E03: CO as Ro-> C3 as Ri 

Formal Description 
Architecture 

Fork: 
(CO..,, Ro)-s/p• (Ri1t-Cl, C2, C3) 

Figure 7. Typical compositional architecture: Fork relationship 

Fig. 7 illustrates the example about how to explicitly architect the computational model described in prototyping 
language with patterned composer. The related outcome is automatically generated compositional architecture. 
In prototyping description, a Vertex denotes a component and an Edge denotes an interconnection. The vertices 
are tagged as roles for explicit architecting. Generally, since a patternized composer is designed as an 
aotonomous entity, it dyanamically maitain necessary state space in order to coordinate the interaction among 
more than 2 roles. For instance, the event-bsaed composer will maintain a event-listening list that is used to 
register multiple Lisenters. Once an event is announced, all Listeners in the list will be triggered by the event 
[22]. In this way, Fork crelationsip greatly simplifies interconnections among components, that is, several edges 
could share the same one composer if the composnents are supposed to paly the same role. 

Heterogeneous Information Forms. Heterogeneous information is strongly asscoaited with the architectural style 
and communication protocol. The way of information transportation will be refered to communication protocols 
in compositional patterns. The homogengeous information form in CAPS [l] is data stream, by which a 
producer interacts with the consumer via FIFO. In our research homogeneous information is extended to 
following heterogeneous information forms which are associated with the interaction between interactive roles 
via specific architectural style while complying with specific communication protocol: 

1 Both external and internal are referred to the hierarchical decomposition. For a given hierarchical level of decomposition, a component in 
current level is the external to the component in low level, while the latter is the internal to the former .. 
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• Dataflow: Ouiflow interacts with Inflow via Pipeline while complying with Dataflow 
• Sampled: Sampler interacts with Reader via Sensored-Status while complying with Sampled 
• Knowledge: Sourcer interactis with Repository via Knowledge-Reposito,y while complying with Knowledge 
• Event: Announcer interacts with Lisenter via lnplicit-invocation while complying with Envent 
• Message: Caller interacts with Definer via Remot-procedure-call while complying with Message 

Pattemized composers of heterogeneous information transportation can support heterogeneous interaction 
among components and hieratrchical composition from decomposed components , which increases flexibility of 
modeling computational activity, especially enhances suitability for Software-intensive systems development. 

C.3 General Plan of Work 

C.3.1 Plan Overview 

We envision the computational model that we currently have as the start point for additional research . 

Prototyping language and its equivalent graph are suitable for capturing computation and interconnection. 
Relevant ambiguities and missing attributes in PSDL will need to be identified and appropriate extensions made 
to correct these shortcomings for perspective-based architectures. For instance, convenient representations of the 
roles' assignment and roles ' selection are likely needed, because interactive roles in compositional patterns is a 
critical factor that used for adherence to restricted, plug-compatible interfaces for both interaction and 
computation; meanwhile, architectural styles and communication protocols are strongly dependent on the 
assignment of roles to specifi c components. 

We must investigate compositional patterns that are expressly useful for explicitly architecting. They are 
embodied by a set of rules governing interactions among components and characterized as interactions between 
roles via architectural styles while complying with communication protocols. Finding and abstracting 
sophisticated roles for compositional patterns likely makes the proposed research more practical and applicable. 
For instance, highly abstracted role pairs RMI_Caller / RMI_Definer will largely simplify remote method 
invocation for distributed architecture, because many complicated concepts and details such as marshaling of 
calling parameters for RMI_Caller, Datagram via TCP/IP unmarshaling of invoked arguments for RMI_Definer 
are all hidden from the physical components by the tangible RMI composer. 

We should thoroughly study optimized object models represented in UML, Ada95, Java and C++ so as to 
support template, concurrent and exclusive object design, because this is the foundation of the implementation 
of formal description. We also need to study formal semantics for behavioral concurrency and their mapping 
with sophisticated concurrent distributed object-oriented programming languages such as Java, Ada95, CSP. 
Automatically generated behavioral concurrency is likely useful in runtime monitoring of component evolution, 
because concurrent bugs is hard to detect by static design inspection. These and many more patterned features 
will be needed in the formal description for supporting generalized architectural framework. 

Many of the tasks can be undertaken in parallel. Each of fundamental approach can be considered independently 
of each other. For instance, computational activity depends on prototyping model extension, while 
compositional architecture on the formal description that models components, composers and configurations. 
Students will be assigned services for research and implementation. For our purposes, being able to certify 
correctness form a diverse set ofpattemized composers with multiple implementations is a goal of this research. 

C.3.2 Broad Design Activities 

Responding to the requirement in this proposal, three fundamental approaches are proposed to implement 
HDSIS: computational model for rapid system prototyping, compositional patterns for explicitly architecting, 
and optimized object model for component object evolution. All of them can be synthesized to characterize 
different perspectives of a HDSIS, so that a transformational process can be developed to support the 
perspective-based architecture design. The synthesis approach calls for explicit treatment of software 
composition and architecting that involves (1) three perspectives of architecture characterized as 
computational activity, compositional architecture, and derivational transformation, (2) two mappings between 
three perspectives, embodied in explicitly architecting the system via compositional patterns and physically 
deriving the component from architectural role wrappers, (3) a set of formal description that is used to model 
well-grained components, heterogeneous / hierarchical composition, and flexible configuration, and (4) 
associated support tool that makes the synthesis approach more applicable in design, analysis, evolution and 
executable system generation. 

C.3.3 Deliverables 
1) Automated tool for analyzing prototyping model into computational perspective 
2) Rigorous taxonomy of interactions to enhance compositional patterns for compositional perspective 
3) A set of formal description tools that explicitly models components, composers and configurations 
4) An automatic inspection tool for inspecting constraints localized on the architectural description. 
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5) Generalized framework for monitoring component derivation at run time. 
6) A group of associated technical papers and publications 

C.3.4 Description of Procedure 

Building on our strengths, we will perform the following: 
1) Three perspectives of architecture characterized as computational activity, compositional architecture, 

and derivational transformation, 
2) Two mappings between three perspectives, embodied in explicitly architecting the system via 

compositional patterns and physically deriving the component from architectural role wrappers, 
3) A set of formal description that is used to model well-grained components, heterogeneous interactions 

and hierarchical composition, and 
4) The associated support tool that makes the synthesizing approach more applicable in design, analysis, 

evolution and executable system generation. 

C.3 .5 Evaluation Factors 

C.3.5.1 Perspective-based Models 
Perspective-based models are built to reflect the concerns of differing stakeholders, which will obviously 
improve understandability, maintainability, and reliability of the modeled system, reduce re-certificate. Clearly 
modeling stakeholer's concerns as computational activity will reduce re-certification effort required afte r each 
requirement change that stays within the envelope of some invariants. Model built for architect's concerns hold 
promise to keep invariant w ith respect to system requirements changes. 

C.3.5.2 A set of compositional patterns supporting explicit architecture 
Compositional patterns capture architectural factors such as role components are assigned to play in the 
architecture, styles the architecture will performs, and protocols by which infom1ation are transported during 
interactions. Because of undertaking coherent tasks that are well designed and frequently reused, computational 
complexity will be largely reduced and analysis of the systematic properties will be dramatically simplified. 

C.3.5.3 Dependability translation and localization 
Dependability of software-intensive systems as well as their affordable flexibility is crucial factors. Flexibility 
can be embodied by sophisticated compositional patterns that hold invariants with respect to system 
requirements changes, while dependability will be translated to quantitative constraints and then localized on the 
patterns, so that the effectiveness ofrequirements validation will be increased 

C.3.5.4 Agility and flexibility for adaptation to rapid changes 
The agility and flexibility is heavily concerned by C4ISR systems because the adaptation to rapidly changing 
circumstances is needed to bring about desired outcomes that provide an unprecedented level of interoperability 
in software-intensive systems to support the various units of a coalition (the "plug and play" concept). 

C.3.6 Schedule 
1) Study current and future releases ofUML, AD Ls; Investigate their appropriateness for HDSIS (3 months) 
2) Formulate stakeholder' s concerns as key aspects for development, evolution and inspection (6 months) 
3) Create generalized architectural template for explicit architecting software-intensive systems (12 months) 
4) Formulate dependability to quantitative constraints, and study their localization (3 months) 
5) Develop a set of formal description with accompanied support tools for architecture design (8 months) 
6) Improve CSP-based semantic description for concurrent and synchronous constraints (4 months) 
7) Build reusable library of compositional patterns, and create a set of patterned composers ( 6 months) 
8) Abstract generalized role wrappers as easily derived templates for framework generation (12 months) 
9) Study current component middleware, and abstract architectural facilities for interoperability (3 months) 
10) Incorporate rapid prototyping & explicit architecting into an automatic synthesis approach (8 months) 

C.3.7 Comparison with Other Research 

In present, software research community focuses on software-intensive systems development. Since it involves 
many perspectives and each perspective appropriately deals with different concerns, the three perspectives for 
software-intensive systems development are requirement engineering, architecture design and systematic 
implementation. In this proposal, these three perspectives correspond to computational activity, compositional 
architecture and derivational transformation, respectively. Architecture is recognized as a critical element in the 
successful development and evolution of software-intensive systems. Explicitly architecting a system bridges 
the gap between software requirement and system implementation to attain the benefits of reduced costs and 
increased quality such as usability, flexibility, reliability, interoperability and so forth. Software-intensive 
systems will inevitably involve different stakeholders such as customer, architect and implementer. For instance, 
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increased uncertainty about requirements, flexible configuration in organizational structures, and rapid 
development of application demand diversified perspectives to reflect stakeholders' concerns. 

Work related to the topics discussed in this proposal includes research in the areas of rapid system prototyping, 
software architecture and component middleware, all of which focus on composing software systems from 
coarser-grained components. Although these efforts present complementary, often overlapping approaches, they 
come down to the areas of requirement acquisition, architecture design, systematic implementation. HDSIS 
development also involves two accompanied research areas: design inspection and perspective-based 
architecture framework. The former provides dominating methods for detecting errors in software systems, 
whereas latter specifies multiple perspectives (views) of software-intensive system architecture. 

Rapid system prototyping (e.g., CAPS [1]) has been found to be an effective technique for clarifying 
requirements and eliminating the large amount of wasted effort currently spent on developing software to meet 
incorrect or inappropriate requirements in traditional software life cycle. A prototype is an executable model or a 
pilot version of the intended system. Lack of agreement on the requirements as specified by the customer and as 
analyzed by the designer causes inconsistencies between the delivered system and customer expectations, 
leading to expensive rebuilding. generally, rapid prototyping is effective to capture uncertainty about 
requirements. This kind of technique is seriously concerned of computational activity so that rapid consistent 
response is given to customer, with less consideration of both explicit architecture and derivational 
implementation, because a prototype is usually a partial representation of the intended system, used as an aid in 
analysis and design rather than as production software [ 6,7]. 

System architecting (e.g., software architecture and the associated architectural description languages (ADLs) 
[9-11, 13, 15, 17, 18]) holds promise in attaining benefits of reduced costs and increased quality because software 
architecture forms the backbone for building highly dependable software-intensive systems. A system's quality 
attributes are largely permitted or precluded by its architecture. Architecture represents a capitalized investment, 
an abstract reusable model that can be transferred from one system to the next. Architecture represents a 
common vehicle for communication among a system's stakeholders, and is the arena in which conflicting goals 
and requirements are mediated [44,46]. The software architecture research community, essentially academics, 
has focused on the creation and improvement of special-purpose languages, known as architecture description 
languages (AD Ls). In the past years, numerous AD Ls have been specially designed to represent different aspects 
of architectures of software-intensive systems. AD Ls have the advantage of being mathematically founded, 
facilitating analysis of architectural models, but they have also the disadvantage of lacking adequate support for 
separating various kinds of stakeholders' concerns along different viewpoints. Due to their too rigorously formal 
nature, ADLs can be hard to understand and to use, as developers in need of ADL-based software architectures 
will have to learn the mathematical models of systems. Especially, software architecture approach typically 
separates computation (components) from interaction (connectors) in a system. Despite this, connectors are 
often considered to be explicit at the level of architecture, but intangible in the system implementation [ 15,46]. 

Using UML extension to model software architecture is a new effort for architecture deign. The UML [19,20] is 
a family of design notations that is rapidly becoming a de facto standard software design language. Unified 
system modeling constructs large enterprise applications in a way that enables scalability, security, and robust 
execution under stressful conditions. UML provides a variety of useful capabilities to the software designer, 
including multiple, interrelated design views, a semiformal semantics expressed as a UML meta model, and an 
associated language for expressing formal logic constraints on design elements. In supporting architectural 
concerns within UML, one approach involves using UML "as is," while the other approach incorporates useful 
features of existing ADLs as UML extensions. The assessment of UML's expressive power for modeling 
software architectures indicates that UML currently lacks support for capturing and exploiting certain 
architectural concerns whose importance has been demonstrated through the research and practice of software 
architectures. In particular, UML lacks direct support for modeling and exploiting architectural styles, explicit 
software connectors, and local and global architectural constraints [16,18,46]. 

Component middleware platform (e.g., J2EE, CORBA, COM+ [23-28]) enables frequently composing software 
systems from prefabricated, heterogeneous components that provide complex functionality and engage in 
complex interactions. Existing research on component-based development has mostly focused on component 
structure, interfaces, and functionality. Recently, software architecture has emerged as an area that also places 
significant importance on component interactions, embodied in the notion of software connectors. However, the 
current level of understanding and support for connectors has been insufficient. This has resulted in their 
inconsistent treatment and a notable lack of understanding of what the fundamental building blocks of software 
interaction are and how they can be composed into more complex interactions. Middleware platform assumes a 
homogeneous architectural environment in which all components adhere to certain implementation constraints 
(e.g., design, packaging, and runtime constraints) and it is unalterably associated with derivational 
transformation because its primary role is to bridge the gap between application programs and the lower-level 
hardware and software infrastructure [ 15,28] . 
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Design inspection and testing are the dominating methods for detecting errors in software systems. However, 
testing has the drawback that errors are detected very late in the development process. As a result errors that 
have their origin in the system design may impose substantial costs even if the error is detected during testing. 
Design inspection, on the other hand, facilitates early detection of errors. Design inspection also known as 
verfication and validation (V & V) is the checking and analysis processes that ensure that software conforms to 
its specification and meets the needs of the customers who are paying for that software. [34,35,37]. Formal 
verification and automated analyses are static V & V techniques, as they do not require the system to be 
executed. However, even if a design has been formally verified, it still does not ensure the correctness of an 
implementation of the design. This is because the implementation often is much more detailed, and may not 
strictly follow the formal design. So, there is possibility for introduction of errors into an implementation of a 
design that has been verified. Runtime assurance based on formal specification is the dynamic V & V techniques, 
as they require the system to be executed under the designing monitors to check for the correctness of the 
system [ 42,43]. Automated source code analysis and formal verification used to check the correspondence 
between the implementation system and its specification (verification). Translating source code to 
highly-abstracted finite-state automaton for model checking is a practical approach [36,40,41], which is insuring 
correspondence between the properties of the source code that are to be reasoned about and the properties of the 
automaton to be checked. All of these efforts rarely connect formal specification with architectural elements 
such as components, composers and configurations. 

IEEE 1471 [ 44] defines architecture as "the fundamental organization of the system embodied in its components, 
their relationships to each other and to the environment and the principles guiding its design and evolution". In 
addition, it refers to an architecture description as "a collection of products to document an architecture". By 
these definitions, the distinction between the architectural description and architecture of a software-intensive 
system. IEEE 1471 is a recommended practice, but it does not prescribe any particular views and concerns, that 
is, IEEE 1471 does not provide a standard architecture, or architectural process or method. The United States 
Department of Defense has mandated Joint Technical Architectures (JTA) to support the acquisition of systems 
that are interoperable and will meet the needs of military coalitions. JTA Framework [ 45] specifies three 
perspectives (views) of an architecture and defines a set of products that describe each view. The three views of 
JTA architecture framework are supposed to promote a great help in consistently engineering HDSIS, but this 
framework does not provide a procedure for developing the artifacts that used in the description [47-49]. The 
lack of adequate support for separating various kinds of stakeholders' concerns along different viewpoints is the 
collective weakness of software architecting with architecture description. IEEE 1471 and C4ISR architecture 
framework specify multiple perspectives for software-intensive systems, which provides complementary efforts 
for architecture description. However, the lack of a definitive process has posed a challenge to those who are 
responsible for developing architectures that are compliant with the framework. Some of software research 
groups have set their focus on developing a process for the framework design, for instance, modeling software 
architectures in the UML [18], bridging the gap between IEEE1471, ADLs and UML [46], structured analysis 
approach and object-oriented approach for architecture design [47-50], object-oriented model for 
interoperability via wrapper-based translation [51]. However, these researches towards JTA and IEEE 1471 do 
not support explicit treatment of software composition and architecting. 

Most of the previous work focuses on either specific profiles, for instance, computational perspective (rapid 
prototyping, UML), compositional perspective (software architecture, ADLs, UML extension), derivational 
perspective (component middleware), or architecture framework of multiple perspectives without a definitive 
process for architecture design (JTA, IEEE 1471). This proposed research not only develop synthesis approach 
for highly dependable software-intensive systems, but also founds a set of compositional patterns that support 
explicit architecting throughout the whole procedure from computational activity, through compositional 
architecture, to evolutional transformation among multiple perspective models. This research provides the 
formulating loci of desired properties features against different perspectives in supporting design inspection and 
run-time correctness assurance. This research also provides a means of translating macro dependability into 
quantitative constraints and localizing them on compositional patterns embodied as generalized template. Indeed, 
the issue of how to implement architecture framework for HDSIS with explicit treatment of architecting has 
been an area of proposed research. 

C.4 Broader Impact 
If effective constructing HDSIS can become a highly automated procedure then the following will take place: 

1) The agility and flexibility will be acquisitioned to adapt to rapidly changing circumstances and bring 
about desired outcomes that provide an unprecedented level of interoperability in software-intensive 
systems to support the various units of a coalition (the "plug and play" concept). 

2) HDSIS can be constructed by using multiple perspectives of architecture to address increased 
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uncertainty about requirements, rapid changes in technology, changes in organizational structures, and 
a widening of spectrum of mission and operations. 

3) The dependability of software-intensive systems as well as their affordable flexibility will be improved 
by integrating the proposed research with requirements validation techniques, and by integrating 
differing stakeholder perspectives and concerns into the models and methods to be used. 

4) We put high confidence on a sound objective basis, via a systematic method for expressing 
dependability objectives via measurable localized constraints associated with the subsystems of the 
architecture. We also enable an assurance processes into independent tasks associated with each 
subsystem to the extent possible, thus simplifying analysis and reducing computational complexity. 

5) We integrate rapid prototyping, explicit architecting and consistent engineering into a synthesis 
approach for HDSIS based on multiple perspectives of an architecture, and this approach is embodied 
in the transformational procedure that will be automatic procedure by CASE tool support. 

C.4.1 Transition of Technology 

Technology transfer will be addressed by integrating the proposed new capabilities with an existing code 
developed under CAPS projects. By re-using commonly used language like PSDL and Ada-adapted architectural 
description instead of creating fully new languages, general acceptance of our approach is enhanced. Publish 
results in ACM, and IEEE sponsored conferences and making toolkit available can facilitate acceptance. 

The Software Engineering Group at the Naval Postgraduate School offers M.S. and Ph. D degrees. The students 
as NPS will contribute to this research and development effort. Their involvement will faci litate information 
transfer into the DoD further. We also plan to integrate emerging technologies into the courses we teach. 

C.4.2 Experimentation and Integration Plan 

The faculty of the Software Engineering Group at the Naval Postgraduate School and their Ph. D and M. S. 
students will perform the work. The principle investigators will be responsible for coordinating the following 
plan previously stated in section C.3.6 for schedule: 

1) Study current and future releases ofUML, AD Ls; Investigate their appropriateness for HDSIS 
2) Formulate stakeholder' s concerns as key aspects for development, evolution and inspection 
3) Create generalized architectural template for explicit architecting software-intensive systems 
4) Formulate dependability to quantitative constraints, and study their localization 
5) Develop a set of formal description with accompanied support tools for architecture design 
6) Improve CSP-based semantic description for concurrent and synchronous constraints 
7) Build reusable library of compositional patterns, and create a set of patterned composers 
8) Abstract generalized role wrappers as easily derived templates for framework generation 
9) Study current component middleware, and abstract architectural facilities for interoperability 
10) Incorporate rapid prototyping & explicit architecting into an automatic synthesis approach 

C.5 Related Work 

In order to support effective construct software-intensive systems, we have undertaken research efforts to 
address three problems; (1) can an explicit architecture be extracted from existing prototyping model, (2) can a 
minimal set of compositional patterns be founded to govern explicitly architecting and hierarchically composing 
the system from well-grained components, and (3) can an transformational process be developed to support the 
perspective-based approach. In paper [2,3,6,8], computational model for rapid prototyping is represented as a 
hierarchy of networks of structured objects and interconnections among them with semantic (formal) constraints. 
That work established the fact that an architecture could be implicitly developed using prototyping model and 
that the resulting description could be mapped to the requisite software-intensive system products (problem l); 
In papers [21,22] , compositional patterns and the associated composers treated as first-class architectural 
elements to promote hierarchical composition from components were investigated. Especially, the patternized 
composer for implicit invocation can be designed as an explicit event broker decentralized in Ada95 [22] . So the 
initiative solution toward perspective-based approach is to build a library of reusable composer to support 
explicitly software architecting (problem 2). In papers [31-33,21,22,51], object-oriented model for 
interoperability via wrapper-based translation [51], object-oriented design with different programming 
languages were thoroughly studied, especially, the optimized object model based on Ada95 can be used to not 
only describe both functional component and pattemized composer but also support such architectural element 
evolution through subtyping and refinement so that smooth transformation between architecture design and 
physical implementation could be made (problem 3). 
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