
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

2000

System Engineering and Evolution

Decision Support Interim Progress

Report (01/01/2000-09/30/2000)

Luqi

http://hdl.handle.net/10945/25626

Nps-sw-00-001

NAVAL POSTGRADUATE SCHOOL
Monterey, California

System Engineering and Evolution Decision Support

Interim Progress Report (01/01/2000 - 09/30/2000)

BY

Luqi

September 2000

Approved for public release; distribution is unlimited.

Prepared for: U.S. Army Research Office
P.O. Box 1221 1
Research Triangle Park, NC 27709-22 1 1

20001204 064

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93 943-5000

RADM David R. Ellison
Superintendent

This report was prepared for U.S. Army Research Office
and funded in part by the U.S. Army Research Office.

Prepared by:

Professor, Computer Science

Reviewed by:

DaxBoger
Dean of Computerind Information Sciences
and Operations

Richard S. Elster
Provost

Reviewed by:

Director, Software Engineering
Automation Center

Released by:

Associate Provost and
Dean of Research

REPORT DOCUMENTATION PAGE

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

U. S. Army Research Office
P.O. Box 1221 1
Research Triangle Park, NC 27709-22 1 1

11. SUPPLEMENTARY NOTES
The views, opinions andor findings contained in this report are those of the author(s) and should not be construed as an official

Department of the Army position, policy or decision, unless so designated by other documentation.

12 a DISTRIBUTION I AVAILABILm STATEMENT 12 b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The objective of our effort is to develop a scientific basis for system engineering
automation and decision support. This objective addresses the long term goals of
increasing the quality of service provided complex systems while reducing development
risksr costsr and time. Our work focused on decision support for designing operations of
complex modular systems that can include embedded software. Emphasis areas included
engineering automation capabilities in the areas of design modifications, design records,
reuse, and automatic generation of design representations such as real-time schedules and
software.

14. SUBJECT TERMS 15. NUMBER OF PAGES

System Engineering, Decision Support, Evolution, Concurrent Engineering 159

16. PRICECODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18
298-102

Form Approved
OMB NO. 0704-0 188

1. AGENCY USE ONLY (Leave Blank) 2. REPORTDATE 3. REPORT TYPE AND DATES COVERED

09/3 0/2000 Interim Progress Report
01/01/2000 - 09/30/2000

4. TITLE AND SUBTITLE

System Engineering and Evolution Decision Support -
Interim Progress Report (01/01/2000 - 09/30/2000)

6. AUTHOR(S)

Professor Luqi

5. FUNDINGNUMBERS

38690-MA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSFS)

Software Engineering Automation Center,
Naval Postgraduate School, Monterey, CA 93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

NPS-sw-00-00 1

Table of Contents

I . INTERTM PROGRESS REPORT ... 1
1 . List of Manuscripts ... 1
2 . Scientific Personnel ... 2

3 . Report of Inventions .. 2

4 . Scientific Progress and Accomplishments ... 2

5 . Technology Transfer .. 3
I1 . APPENDICES .. 5

1 . “Architectural Re-engineering of Janus using Object Modeling and Rapid
Prototyping” by V . Berzins. M . Shing. Luqi. M . Saluto. and J . Williams 6-18

2 . “Object-oriented modular architecture for ground combat simulation” by
V . Berzins. M . Shing. Luqi. M . Saluto. and J . Williams 19-3 1

3 . “Static Analysis for Program Generation Templates” by V . Berzins 32-40

4 . “Reuse and Re-engineering of Legacy Systems” by J . Gou and Luqi 41-48

5 . “A Survey of Software Reuse Repositories” by J . Gou and Luqi 49-57
6 . “A Risk Assessment Model for Evolutionary Software Projects” by Luqi

and J.C. Nogueira .. 58-66

7 . “Evolutionary Computer Aided Prototyping System (CAPS)” Luqi. V . Berzins.
M . Shing. R . Riehle. and J.C. Nogueira .. 67-76

8 . “The Use of Computer Aided Prototyping for Re-engineering Legacy Software”
by Luqi. V . Berzins. M . Shing. M . Saluto. J . Williams. J . Guo. and B . Shultes 77-107

9 . “Product Line Stakeholder Viewpoint and Validation Models” by N . Nada.
Luqi. D . Rine. and K . Jaber .. 108-115

10 . “A Knowledge-Based System for Software Reuse Technology Practices” by
N . Nada. Luqi. D . Rine. and E . Damiani .. 116-122

1 1 . “Risk Assessment in Software Requirement Engineering” by J.C. Nogueira.
Luqi. and V . Berzins ... 123-129

12 . ‘‘Surfing the Edge of Chaos: Applications to Software Engineering” by
J.C. Nogueira. C . Jones. and Luqi .. 130-142

13 . “A formal Risk Assessment Model for Software Evolution” by J.C. Nogueira.
Luqi. V . Berzins. and N . Nada .. 143-148

14 . “A Risk Assessment Model for Software Prototyping Projects” by J.C. Nogueira.
Luqi. and S . Bhattacharya ... 149-154

I n t e r i m Progress Report

System Engineering and Evolution Decision Support

1/1/2000 - 9/30 /2000

Luqi

List of Manuscripts:

V. Berzins, M. Shing, Luqi, M. Saluto, and J. Williams, "Architectural
Re-engineering of Janus using Object Modeling and Rapid Prototyping",
in Design Automation for Embedded Systems, 5 (3 / 4) , August 2000, pp.251-
263.

V. Berzins, M. Shing, Luqi, M. Saluto, and J. Williams, "Object-
oriented modular architecture for ground combat simulation", in
Proceedings o f the 2000 Command and Control Research and Technology
Symposium, Naval Postgraduate School, Monterey, CA, June 26-28, 2000.

V. Berzins, "Static Analysis for Program Generation Templates", in
Proceedings o f 7 th Monterey Workshop "Modeling Software System
Structures i n a f a s t l y moving scenario", Santa Margherita Ligure,
I t a l y , June 13-16, 2000. A l so available on- line a t
http://www. d i s i . unige. it/person/ReggioG/PROCEEDINGS/

J. Gou and Luqi, "Reuse and Re-engineering of Legacy Systems", in
Proceedings of the 5th World Conference on Integrated Design & Process
Technology, Dallas, TX, June 4-8,2000.
J. Guo, and Luqi, "A Survey of Software Reuse Repositories", in
Proceedings of the 7th IEEE International Conference and Workshop on
the Engineering of Computer Based Systems (IEEE ECBS'ZOOO), Edinburgh,
Scotland, UK, April 6-7, 2000.

Luqi and J .C . Nogueira, "A Risk Assessment Model for Evolutionary
Software Pro]eCts", in Proceedings of 7th Monterey Workshop "Modeling
Software System Structures in a fastly moving scenario", Santa
Margherita Ligure, Italy, June 13-16, 2000. Also available on-line at
h t t p : / / w w w . d i s i . u n i g e . i t / p e r s o n / R e g g i o G / P R O C E E D I N G S /

Luqi, V. Berzins, M. Shing, R. Riehle, and J.C. Nogueira, "Evolutionary
Computer Aided Prototyping System (CAPS)", in Proceedings of the TOOLS
USA 2000 Conference, Santa Barbara, CA, July 30-August 3, 2000.

Luqi, V. Berzins, M. Shing, M. Saluto, J. Williams, J. Guo, and B.
Shultes, "The Use of Computer Aided Prototyping for Re-engineering
Legacy Software", Submitted to the IEEE Transaction on S o f t w a r e
Engineering.

N. Nada, Luqi, D. Rine, and K. Jaber, "Product Line Stakeholder
Viewpoint and Validation Models", in Proceedings o f the Workshop on
Software Product Lines: Economics, Architectures, and Implications,
Limerick, Ireland, June 4-11, 2000,

N. Nada, Luqi, D. Rine, and E. Damiani, "A Knowledge-Based System for
Software Reuse Technology Practices", in Proceedings of the T h i r d
International Workshop on I n t e l l i g e n t Software Engineering (WISE3) ,
Limerick, Ireland, June 4-11, 2000.

J.C. Nogueira, Luqi, and V. Berzins, "Risk Assessment in Software
Requirement Engineering", in Proceedings of the 5 th World Conference on
Integrated Design & Process Technology, Dallas, TX, June 4-8 , 2000.
J.C. Nogueira, C. Jones, and Luqi, "Surfing the Edge of Chaos:
Applications to Software Engineering", in Proceedings of the 2000
Command and Control Research and Technology Symposium, Monterey, CAI
June 26-28, 2000.

J.C. Nogueira, Luqi, V. Berzins, and N. Nada, "A formal Risk Assessment
Model for Software Evolution", in Proceedings of the 2nd Internat ional
Workshop on Economics-Driven Software Engineering Research (EDSER-2) ,
Limerick, Ireland, June 4-11, 2000.

J.C. Nogueira, Luqi, and S. Bhattacharya, "A Risk Assessment Model for
Software Prototyping Projects", in Proceedings of the 11th IEEE
International Workshop on Rapid System P r o t o t p i n g , Paris, France, June
21-23, 2000.

Scientific Personnel:

Dr. Du Zhang, Visiting Professor, NPS.

Dr. Swapan Bhattacharya (National Research Council Research Associate)

Dr. Jiang Guo (National Research Council Research Associate)
Dr. Jun Ge (National Research Council Research Associate)

Dr. Mikhail Auguston (National Research Council Research Associate)

Dr. Oleg Kiselyov (National Research Council Research Associate)
J.C. Nogueira, "A Formal Model for Risk Assessment in Software
Projects", Doctoral Dissertation, Software Engineering, NPS, September
2000 *

Report of Inventions: N/A

Scientific Progress and Accomplishments:

The objective of our research is to develop an integrated set of formal
models and methods for system engineering automation. These results
will enable building decision support tools for concurrent engineering.
Our research addresses complex modular systems with embedded control
software and real-time requirements.

We focused on automation of design activities that appear in an
evolutionary approach to system development. Decision support for
design synthesis, reuse and evolution is emphasized. This research
extended recently developed formal methods in system engineering to
construct a cohesive set of formal models. These models are used to
create and to connect automated processes for computer aided

2

prototyping, requirements validation, and design synthesis.
Mathematical models for implementing a set of automated and integrated
engineering automation tools were also developed. Our work combined
very-high-level specification abstractions and concepts with: (1)
formal real-time models, (2) automated management of system design data
and human resources, (3) design transformations, (4) change merging,
(5) automated retrieval of reusable system design components, and (6)
automated schedule construction. We have created automated methods for:
(1) generating real-time control programs, (2) generating simulations
of subsystems, and (3) coordinating concurrent work by engineering
teams. Our work will ensure design consistency and to alleviate
communication difficulties.

V. Berzins, "Static Analysis for Program Generation Templates",
presented at the 7 t h Monterey Workshop " Mode l ing S o f t w a r e Sys tem
S t r u c t u r e s i n a f a s t l y mov ing s c e n a r i o " , San ta M a r g h e r i t a L i g u r e ,
I t a l y , J u n e 13-16, 2000. I

The significance of our work is to: -
- increase engineering productivity, and
- reduce system maintenance costs.

improve system effectiveness and flexibility,

This was achieved by providing a higher level of engineering automation
coupled directly with requirements validation facilities. Our work will
broaden the scope of engineering decision support to include concurrent
whole-system engineering, requirement determination, and system
evolution. Automated decision support will ensure system quality by
decreasing the human effort required. This, in turn, will minimize the
incidence of human error. The trial use of operational system
prototypes linked with software simulations of selected subsystems
enables users to - provide feedback for validation and refinement of
system requirements prior to detailed design. Maintenance costs can be
minimized by reducing the need to repair requirement errors after
system deployment. We provided methods for process and system re-
engineering at minimal cost. This was achieved by: (1) regenerating new
.variations of designs from high-level decisions. (2) combining changes,
and (3) propagating the consequences of design modifications. These
engineering capabilities will enable the Army to improve and integrate
its complex systems with reduced costs. Improved systems can reduce
Army manpower needs while strengthening information warfare
capabilities.

Specific Tasks accomplished in FYOO include (1) the development of a
risk assessment model for the evolutionary software process; (2) a
detailed survey of the software reuse repositories, (3) the development
of models to support reuse in product line approach, and (4) tool
enhancements for system engineering and evolution decision support.

Technology Transfer: I
V. Berzins, member, Steering Committee, 2000 ARO/NSF/CNR Monterey
Workshop On Modeling Software System Structures in a Fastly Moving
Scenario, held in Santa Margherita Ligure, Italy, June 13-16, 2000.

3

V. Berzins, "A formal Risk Assessment Model for Software Evolution", in
presented at the 2nd International Workshop on Economics-Driven
Software Engineering Research (EDSER-21, Limerick, Ireland, June 4-11,
2000.

J. GOU, "Reuse and Re-engineering of Legacy Systems", presented at the
5th World Conference on Integrated Design & Process Technology, Dallas ,
TX, June 4-8 , 2000.
Luqi, "A Survey of Software Reuse Repositories", presented at the 7th
I E E E International Conference and Workshop on the Engineering of
Computer Based Systems (IEEE ECB.5'2000) , Edinburgh, Scotland, UK, April
6-7, 2000.

Luqi, "A Risk Assessment Model for Evolutionary Software Projects",
presented at the 7th Monterey Workshop "Modeling Software System
Structures in a fastly moving scenario", Santa Margherita Ligure,
Italy, June 13-16, 2000.

Luqi , "A Risk Assessment Model for Software Prototyping Projects",
presented at the llth IEEE International Workshop on Rapid System
Prototyping, Paris, France, June 21-23, 2000.

Luqi, Chair of the Program Committee, the llth IEEE International
Workshop on Rapid System Prototyping, held in Paris, France, June 21-
23, 2000.

Luqi, Co-Chair, Program Committee, 2000 ARO/NSF/CNR Monterey Workshop
On Modeling Software System Structures in a Fastly Moving Scenario,
held in Santa Margherita Ligure, Italy; June 13-16, 2000.
J.C. Nogueira, "Risk Assessment in Software Requirement Engineering",
presented at the 5th World Conference on Integrated Design & Process
Technology, Dallas, TX, June 4-8,2000.
J.C. Nogueira, "Surfing the Edge of Chaos: Applications to Software
Engineering", presented at the 2000 Command and Control. Research and
Technology Symposium, Monterey, CA, June 26-28, 2000.
R. Riehle, "Evolutionary Computer Aided Prototyping System (CAPS)",
presented at the TOOLS USA 2000 Conference, Santa Barbara, CA, July 30-
August 3, 2000.

R. Riehle, chair of the Tutorial Committee, the TOOLS USA 2000
Conference, Santa Barbara, CAI July 30-August 3, 2000.

M. Shing, "Object-oriented modular architecture for ground combat
simulation", presented at the 2000 Command and Control Research and
Technology Symposium, Naval Postgraduate School, Monterey, CA, June 26-
28, 2000.

M. Shing, member of the Program Committee, the llth IEEE International
Workshop on Rapid System Prototyping, held in Paris, France, June 21-
23, 2000.

4

APPENDICES

5

Desizn Automation for Embedded Systems. 5.151-363 (2000)
2 2000 Kluwer Academic Publishers. Boston. Stnuhcrured in The Ki-rhcrlandj.

Architectural Re-engineering of Janus using Object
Modeling and Rapid Prototyping

1. Introduction

This paper describes 3 case study to deterrnine whether cornputer-aided prototyping
techniques provide a cost-effective ineans for re-engineering legacy softu.are [111. The
case study consists of developing an objrct-oriented modular architecture for the existing
Janusf A) system [6]. and validating the architecture via an executable prototype using the
Computer Aided Prototype System (CAPS) [10. 1 I] .

JanuslA) is a software-b:ised war game that simulates ground battles benveen up to six
adversaries. It is an interactive, closed. stochnstic. ground combat simulation that features
precise color graphics. Janus is "interactive" in that command and control functions are
entered by militar). analysts who decide what to do in crucial situations during simulated
combat. It has gone throuzh six major revisions since 1978. The current version of Janus
operates on Hewlett Packard workstations and consists of a large nuriiber of FORTRAX
modules (1918 F0RTR.W routines. 115 C routines. and a total of 393K lines of source
code), organized as a flat structure and interconnected with onc another via I29 FOKIRAN

6

BERZISS ET AL.

COhfhION blocks. resulting in a software structure that niakes modification to Janus very
costly and error-prone. There is a need to modernize the Janus software into a maintain-
able and evolvable system (written in C++) and to take advantage of modern Personal
Computers to make Janus more accessible to the A n y . The TRACDOC Analysis Center
(TRXC) initiated the HLX Wamor project in 199s to re-engineerJanus into an HLX compli-
ant. PC-based combat simulation. with improved graphical user interface, object-oriented
source code. and a modem modular architecture [13]. The Software Engineering group
at the Naval'Postgraduate School was tasked to extract the existing functionality through
reverse engineering and to produce 3n object-oriented architecture that supports esisting
and required enhancements to Janus functionality. The architecture provides protocols for
communication betneen the graphical user interface and the simulation models and acts as
a blueprint for developing the C + i code.

The paper is organized as follons. lye present the re-engineering process and the resultant
object-oriented architecture in Sections 1 and 3. Section 1 describes our prototyping esper-
inient. Srttioii 5 surnniarizes the lessons learned arid Section 6 dn\vs sonic conclusions.

2. The Re-engineering Process

Software re-enpinccring is the process of creatin: an abstract dcscription of a s!htem.
reaioning about a change at a hiphcr level of ahstrnction. and then re-impl~iiientiii~ thc
system 151. This section decribes thc first t\vo activities of the wenpineering prwess.

The rirst step in reverse-eii~iiiccriiig is system understandinp. which \vus acco~iiplilslied
via ;I series of brief mcetingi tvith thc client. TRXC-Montcrey. We asked questions arid
made notes on the system's operation and its current functioiiality. lye paid particular
attention to the client's vk tv of the system to gather their ideas on its strengths. tveak-
nesxs. and desired and undesired functionality. Additionally ive collected copies of the
Janus User's manual. the Janus Programmer's Lqanual. the Janus Database hlanagcmeiit
Program XIanual. the Jaws Softivare Design hlnnuol, and the Janus Algorighm Document

The next step is to abstract the systcim's functionality and then produce system models
that accurately represent that functionality. Analysis of 393K lines of legacy code is I
daunting hut inescapable part of the process. We recoiled from the magnitude of this
effort in the beginning of the project and relied on information contained in the Jams
manuals. In hindsight. it was a mistake that slipped the schedule of the project by seneral
months. W'hile these documents helped us get started bzcause they contained hipher level
infonnation and were much shorter than the code, they were much older and contained
outdated infonnation. lye should have started analyzing the source code right avay and
should have persistently continued a i t h this task in parallel with all other re-engineering
activities.

[6-9. 111.

a

;-

Lye divided the J m u i source code by directories amongst the t e m members to explore.
csaniinr. and pather inforination. Using strictly manual techniques and review procedures.
~vct u'ere able to zet a fairly good idea of what each subroutine n'as designed to do. We
also used the Software Programmers' Manual [7] to aid in undersanding each subroutine's
function. In doing so tve were able to group the subroutines by functionslity to get a
better understanding of the major data flows between programs. Using that knou-ledge, we
dcveloped functional models from the data flows.

LVe used the Computer-Aided Prototyping System (CAPS 1. an automated tool developed
at the Naval Postgraduate School, to assist in developing the abstract models. CAPS
allotved us to rapidly graph the gathered data and transform it into a more radablz and
usable format. Additionally, CAPS enabled us to develop our diagrams separatcly. and then
join them together under the CAPS environment. tvhere they can be used to generate an
executable model of the architecture. Figure 1 shows the resultant top-level strxture of the
existing Janus system. It consists of five subsystems-cs-c(nfn-r?~,onzr. scriznrio~~.inwus.
jamrs, and posrp. The cs-dotnmpif subsystem manages combat system databases. The
sceizm-io-dh subsystem manages the different scenarios and simulation runs in the system.
The jmus subsystem simulates the ground battles. The jnarrs subsystem alloes analysts
to perform post-simulation analysis and the posfp subsystem allows Janus users to v h v
simulation reports.

8

BERZISS ET XL.

2.2. Transformation of Fiinctional Models to Object Models

Xest. w e developed object models of the Janus system, using the aforementioned materials
and products to create the modules and associations amongst them. This was probably
the most difficult and most important step. It required a great deal of analysis and focus
to transform the originally scattered sets of data and functions into small. coherent and
realizable objects. each with its own attributes and operations. This was a crucial step
because we had to ensure that the classes we created accurately represented the functions
and procedures currently in the software. We first identifed a set of candidate obj--t .L s and
created an object mode1 for the core elements based on the information from the Database
Management Program hianual [S] and the domain knowledge of the human experts. Then
we analped the source code and used the infomiation from the Software Design hlanual
[9] to add attributes and operations to the object classes. b'e used the HP-UNIX systems
at the TRAC-Xlonterry facility to run the Janus simulation softivare to aid in verifying
and/or supplementing the inforination tve obtained from reviewing the source code and
documentation. This step enabled us to better aiialyze the siniulation system. gaining
i n @ ~ t into its functionality and further concentrm on niodule definition and rctinement.

3.3. Kcjhwienr of tlic Objcct Models arid the Deselopnrent of the Object Oriented
.4rcliitectrrre

During this phase o f the project. the re-engineering team niet several timcs each tveck
for a pcriod of two and a half months to discuss the object niodcls for thc. Janus core
elttmenrs and the ohjwt-oriented architecture for the Janus system. The5 presented the
findings to the Jmus domain experts at least once per \vrek to yet feedback on the modelz
and architectiires hcing constructed. in addition. the re-en_rineering tciIIii also presented
the finding> to nieiiibers of the OneSAF project. thc Conit~at? I project. and the Sational
Simulation Center. hlany researchers have reported that domain knoivledge plays a critical
role during the softlvare re-engineering process [2 4 J . Since ~ v e were not familiar tvi th
the domain of ground combat simulation. we found that these meetings were invaluable to
our project. Our experience supports the ideas that competent engineers uijfamilisr with
the application domain have an essential role in re-engineering as iveU as in requirements
elicitation [I J. because lack of inessential inforination about the applicrition domain nlakes
it easier to find I ~ V . simpler design structures and architectural concepts to guide the re-
engineering effort. Based on the feedback from the domain espens, the rs-engineering team
revised the object models for the Jan& core elements and developed a .;-tier object-oriented
architecture for the Janus system (Figure 2).

3. Software Architecture for the Janus Combat Simulation STstem

Central to the existing Jams Combat Simulation subsystem is the program RUKJXK. u-hich
is the main event scheduler for the Janus simulation. RUNJAS determines the nest sched-
uled event and CseCUtes that event. If the next scheduled event is a simulation event.

9

ARCHITECTURAL RE-ESGINEERING OF J.?\NUS

,* Domain ,.'

Tier 1
User Interface

1 JAK'L'S 1
User Intcrbce

Interface
A

DB Ctilirics

Storage &
Networking Daubis 1 DIS'HLA

U I I

Fi,yurc. 3. Thc p r o p o d ?-tier object-oriented architecture.

RUh'J.0' advances the same clock to the scheduled time of the event and performs that
evelit. The esisting event scheduler uses global arrays and matrices to maintain the at-
tributes of the objects in the simulation. Hence. one of the major tasks in designing an
object-oriented architecture for the Janus Combat Simulation subsystem is to distribute the
event handling functions to individual objects. hloreover. it is necessary to redefine some
event categories to eliminate redundant coding of the same or similar functions and to take
advantage of dynamic dispatching of event handling functions in the object-oriented archi-
tecture. Interactions between the simulation engine and the world modeler (the interface to
;I distributed simulation network) are performed implicitly within the various event handlers
in the existing Janus. Such interactions are made explicit in the new architecture in order
to provide a uniform framenork to update \Vorld blodel objects during the simulation.

The new architecture uses an explicit priority queue of event objects to schedule the
simulation events. Each event object has an associated simulation object. which is the
target of the event. There 3re 14 event groups, which correspond to the 11 event subclasses
shown in Figure 3.

An object-oriented approach enabled us to reduce the number of event types needed in the
simulation. Dependins on the subclass which an event object belonss to, the Esecute method
n.il1 invoke the corresponding event handler of the associated simulation object to handle

10

BERZINS ET XL.

Time-For-Event , * Simdation

Execute()
Object

.I

t h t event (Figure 1). The simulation object superclass defines the interface of the event
haxilers for the event p u p . and provides an empty body as the default iniplenientation
for the event handlers. The methods :ire overridden by the actual event handlcr code at the
~ ~ ! h c l a w s that 1i:ive non-enipty rictions associated with the events.Thc above nrchitcsture
eilsbles a very simple realization of the main simulation loop:

S o x that this same code handles a11 kinds of events. including those for future extensions
t h a are yet to be designed. Event objects are created and inserted into the event queue by
the initialization procedure at the beginning of the simulation, b> the constructors of new
simulation objects. and by the actions of other event handlers. Dependins on the actual
iir:plementation of when and how events are inserted into the priority event queue, it may
btl n e t e s s a ~ - to allow events to change their priorities while waiting in the queue.

ivorld Model object subclasses (with names starting bvith the “LYM” prefix) are created
10 provide specialized methods for the world modeler to update thc objects from other
simulators. Information concerning objects local to the Janus simulator can be broadcast

1 1

ARCHITECTURAL RE-ESGISEERISG OF MKUS

DoPlan()
!dJveL'pdateObj()
U'riteSums()
DoDirectFire()
Display)
CounterBattcry()
Search()
ChooscDirectFireTarSets(
CpdateChtmicalSrsrus()
DolndircctFire()
ImpactEffccts()
CpJateHcatStat~~()
ChcckPoint()
EndSimuhtion()

4

CombxElemzct

_I- Combat Unit B m i x Minefield

\VriteSwtus()

ChsckPoint()
EndSimularion()

DaDircctFirr()
CountcrBattrry()
Starch()
ChooseDirectFireTar_crts(
CpdatrChemicalStar(I
Do!ndirrcrFire()
UpdatcllcatStatus() u

A
i

WXi-Combat Unit
iloveUpdateObj()
DoDirectFirr()
CounterBattery()
Scirch()
ChooscDirectFireTsrgzo()
CpdarcChemicalStatus()
DolndirectFire()

Cloud

L I

T n x m i o n

I ' I . J

F i x m 4. The simulation object c l m hieriirch).

1 2

BERZISS ET AL.

over the simulation netivork either periodically by an active uorld modeler ohjc'ct, or by
individual local objects tvhenever they update their own states.

1. Development of an Esecutable Prototype Vsing CAPS

In order to vrilidatc the proposed architecture and to refine the interfaces of the Janus
subsystems, we developed an executable prototype using CAPS. Figure 5 shotvs the top-
level structure of the prototype. \vhich has four subsystems: Janus, GUI. JAAWS and the
POST-PROCESSOR. Among these four subsystems. the Janus and the GUI subsystems
(depicted as double circles) are made up of sub-modules shown in Figures 6 and 7, while
the JAAWS and the POST-PROCESSOR subsystems (depicted as single circles) are mapped
directly to objects in the tarset language. After entering the prototype design usins CAPS.
we used the CAPS esccution support system to senerate the code that interconnects and
controls these subsystems.

Due to time and resource limitations. we only developed the prototype for a very small
simulation run. which consists of a single object (a tank) moving on .a two-dimensional
plane. three event subclasses (MoveUpdateObj. DoPlan. and Endsimulation). and one kind
of post-processing statistics (fuel consumption). In addition, a simple user interface \vas
developed using TAE [l j] (Figure 8). The resultant prototype has over 6000 lines of
program source code and contains enoush features to exercise all parts of the architecture.

1 3

ARCHITECTURAL RE-ESGISEERISG OF J.ANVS

The code that handles the motion of a generic simulation object was very simple. but it
US designed so that i t tvould \vork in both t\vo and three dimensions without modification
icurrently the initialization and the movement plan of the t3nk object never call for any
vtrticn! motion). The code was also designed to be polymorphic. just as was the main event
loop. This nieans the same code will handle the motion of all kinds of simulation objects
ivithout any modifications. including even ncw typos of siniulation objects that are part of
future enhancements to Janus and have not ~ r t t been designed or implemented.

I . Lessons Learned

Our prototyping experiment showed that the proposed object-oriented architecture a1loLv.s
design issues to b2 localized and provides easy means for future estensions. We started
out with a prototype consisting of only two event SubcIassej (.MoveUpdateObj and End-
Simulation) and were able to add I third event subclass (DoPlan) to the prototype without
modifying the event control loop of the Janus combat simularor.

We also demonstrated the use of inheritance and polymorphism to efficiently estend/
specialize the behavior of combat units. Foi esample. to implement the hloveUpdatcObj
method of a tank subclass which uses the general-purpose method from its superclass to
compute its distance traveled and a specializd algorithm to compute its fuel consumption,

1 4

BERZIXS- ET AL.

initial-
event-

I
i

i
i

Fi.yiw 8. The Grdphic-1 L e r Inrerfxe of the esccutahle prototype.

15

--

I

i
I

I
i
i
i
i

I i

1

I

I
!

!

ARCHITECTURAL RE-EXGINEERISG OF J.ASL!S

we simply include 1 statement to invoke the h1oveUpdateObj method of its superclass
followed by three lines of code to update its fuel consumption. hloreover. other combat
unit subclasses can be added easily to the prototype without the need to modify the event
ssheduling/dispatching code.

The prototype also resulted in the folloning refinements to the proposed architecture:

(1 I Instead of a procedure with no return value. change the Esecute operation co return
the time at which the next event is to be scheduled for the same simulation object. and
introduce a special time value "NEVER" to indicate that no nest event is needed. The
proposed change turns the communication between the event dispatcher and the simu-
lation objects from a peer-to-peer communication into a client-server cornrnunication.
This change eliminates the dependency of simulation objects on details of the event
queue and allows the event dispatcher to use a single statement to schedule all recurring
events for all event types.

(1) Instead of recording the histop of a simulation run in terms of sets of data files.
niodrl the simulation history as 3 sequence of events. The proposed chunpe provides a
sirnple and uniform way to handle history records for all events. and allons the same
modular architecture to be used for real-time simulations as nell as post-simulation
analysis. This also provide?; the greatest possible resolution for the event histories.
rvhich implies that any quantity that could have been calculated durins the simulation
can also be calciiloted by a po>t-sirnulation analysis of the event histon.. Xvithout an!
loss of accuracy. I t also eliminates the need for the WriteStatus even1 in the l e p a q
softuare. The only constraint imposed hy this design retinciiient is that [he simulation
objects associated with the events must be copied before being included in the simulation
history, to protect them from funher changes of state as the simulation proceeds. This
constraint is easy to meet becausc the process of\vriting the conteiits of an event object
to a history file will implicitly make the rcquired copy.

The prototyping effort also exposed a d e s i p issue-should null events appear in the
event queue? A null event is one that does not affect the state of the simulation. such as
a AloveUpdateObj event for an object that is currently stationary. The prototype version
adopted the position that such events should not be put in the event queue. since this
corresponds to scheduling policies in the legacy system. and appears at first glance to
improve efficiency.
Our experirnce with the developnicnt of the prototype suggests that this decision com-

plicates the logic and may not in fact improve efficiency. In particular. the process ere-
uw-mw-ewzt.r could be eliminated from the Janus subsystem (Figure 6) if xve allowed null
events. This process scans all simulation objects once per simulation cycle to determine
if any dormant objects have become active. and if so. schedules events to handle their
ne\v activities. The alternative is to have the constructor of each kind of simulation object
schedule all of its initial events. and to have each event handler specify the time of next
instance of the same event even if there is nothing for it to do currently. Handlers might
still set the time of its next event to KEVER in the case of a catastrophic kill: however this
is reasonable only if it is impossible to repair or restore the operation of thc units that h:nx
suffered a catastrophic kill.

16

. . ?::.;
. . :,. ,

BERZISS ET AL.

The reasons why this design change may improve efficiency in addition to simplifying I

the code are that:

[I) the check for whether a dormant object has become active is done less often-once per
activity of that object, rather than once per simulation cycle. I

(2) esecuting a null event is very fast-a few instructions at most, so the "unnecessar?."
null events will not have much impact on esecutioii time. and

(3 j the computation to find and test all simulation objects periodically would be eliminated.

Our recommcndation is to allow null events in the event queue. and ro explicitly schedule
every kind of event for every object unless it is knoun that rhere cannot be any non-empty
events of that type in any possible future state of the object. For example. under the proposed
scheduling policy. immobile or irrecoverably damaged objects would not need to schedule
future bloveUpdateObj events. but those that are cui-rently at their planned positions \vould
need to do so. because a change of plan would cause them to niove again in the future. even
though they are not currently moving.

6. Conclusion

Our experience in this cme study suggests that prototyping can be a valuable :lid i n the
re-eugiixering c)f legacy systems. particularly i n cases \\here radical changes to system
concep~ualiration and softivare structure are needed.

I n panicular. ivt: found that constructing even a very thin skeletal instance of the proposed
netv architecture raised niany issues and enabled us to correct. COliijdete. and optimize the
architecture for both simplicity and performance. This ivas done before the architecture
had grolvn into a ni:m of dependent designs and iniplenientution details. Consequently.
the changes could be realized \vithout incurring the large cost and time delays typically
encounxd later i n the development.

The computer-aided prototyping tools in the CAPS syjterii enabled us to do this Xvitli
a minimal amount of coding effort. The bulk of the code tvas generated autoni~t ica l l~ .
enabling us to concentrate on system structuring issues, to consider and evaluate various
alternatives. and to improve the design while doing detailed nianual implementation for
only a fe\v paees of critical code.

The object models produced in this projcct have proven invaluable to the contractors
during code implementation phase of the US Amiy TRAC HLA Warrior project and wi!l be
vital to the Xational Simulation Center Spectrum project. Additionally, our rffons will also
benefit other simulation developers. TRAC-Montere>. sent the class design to Conibat 2 1
tCB21) developers at White Sands. CBl l \vas able to save time and money by reusing the
object models and came up with a design that looks remarkably like ours falthough niuch
larger). The OneShF developers \\-ill look at the CB21 class design and reuse as much as
possible.

17

ARCHITECTURXL RE-ESGINEERING OF J.L\NUS

I

!

t
i

I

I
!
I

* I

i

Acknowledgments

This research was supported in part by the U.S. Army Research Office under grant number
35037-MA and in part by a grant from the U.S. Army Training and Doctrine .Analysis
Command.

References

18

Object-oriented modular architecture for ground combat simulation*

V. Berzins, M. Shing, Luqi
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

{ berzins, mmtak, luqi}@cs.nps.navy.mil

M. Saluto J. Williams
EECS Department

United States Military Academy
West Point, NY 10996

dm5447@exmail.usma.army.mil julian-~~lliams~jsims.mil

JSIMS Joint Program Office
12249 Science Dr., Suite 260

Orlando, F132826

Abstract

This paper addresses the need to modernize the software of the US Army Janus(A) combat
simulation system into a maintainable and evolvable structure. It describes the effective use of
computer-aided prototyping techniques for re-engineering the legacy software and presents the
resultant object models and modular architecture for the existing Janus(A) system. The object
models produced in this project have proven invaluable to the contractors during code
implementation phase of the US A m y TRAC HLA Warrior project and beneficial to other
simulation developers.

1. Introduction

Re-engineering is typically needed when a system performing a valuable service must change, and
its current implementation can no longer support cost-effective changes. Legacy systems embody
substantial institutional knowledge. which include basic and refined requirements, design
decisions, and invaluable advice and suggestions from domain users that have been implemented
over the years. To effectively use these assets, it is important to employ a systematic strategy for
continued evolution of the current system to meet the ever-changing mission, technology and user
needs. However, knowledge embedded in these systems is difficult to recover after many years of
operation, evolution, and personnel change. These software systems were originally written
twenty or more years ago using what many now view as an archaic and ad-hoc methodology.
Such legacy systems usually lack accurate documentation, modular structure, and coherent
abstractions that correspond to current or projected requirements. Past optimizations and desi,on
changes have spread design decisions that now must be changed over large areas of the code. Re- i

* This research was supported in part by the U.S. Amy Research Office under contract + 35037-MA and in part by the u. s.
Amy Training and Doctrine Analysis Command.

19

engineering has frequently been proven to be more cost effective than new development and is
also known to better promote continuous sofhvare evolution.

Software re-engineering can be defined as the systematic transformation of an existing system into
a new form to realize quality improvements in operation, system capability, functionality,
performance, or evolvability at a lower cost, schedule, or risk to the customer. Such
improvements often take the form of increased or enhanced functionality, better maintainability,
configurability, reusability, andor other software engineering goals. This process involves
recovering existing software artifacts from the system and then re-organizing them as a basis for
hture evolution of the system. The re-engineering of procedural legacy software into modem
object-oriented architectures introduces certain complexities into the sofnvare analysis process.
Since typical legacy systems were not originally designed and implemented using an object-
oriented approach, the products of reverse engineerins. such as requirements or design
specifications, will probably reflect a fiinctionally based approach. As a result, some form of
“transformation” of resultant information is necessary in order to use the specifications. Once a
realizable specification based on the transformed object-oriented models is obtained, it is often
very difficult to quickly deterniine if the specification is a true representation of the desired
requirements. Since legacy systems are usually re-engineered only when the existing systems need
some kind of improvement, it is unlikely that the initial version of the reconstructed requirements
adequately reflects current user needs. Prototyping provides a means to validate new system
requirements while simultaneously enabling prospective users to get a brief feel for aspects of the
proposed system. It is a well-established approach that can be highly effective in increasing
software quality [131. When used in conjunction with conducting a major re-engineering effort,
prototyping can be extremely useful in assisting in many areas of software modification,
validation, risk reduction. and the refinement of user requirements.

This paper addresses the need to modernize the software of the Janus(A) systems into a
maintainable and evolvable structure. It describes the effective use of computer-aided prototyping
techniques for re-engineering the legacy software [141 to develop an object-oriented modular
architecture for the Janus combat simulation system [161. Janus(A) is a sofnvare-based war game
that simulates ground battles between up to six adversaries [7]. It is an interactive, closed,
stochastic, ground combat simulation with color graphics. Janus is “interactive” in that command
and control fiinctions are entered by military analysts who decide what to do in crucial situations
during simulated combat. The current version of Janus operates on a Hewlett Packard
workstation and consists of a large number of FORTRAN modules (1918 FORTRAN routines,
115 C routines, and a total of 393.000 lines of source code). The FORTRAN modules are
organized as a flat structure and interconnected with one another via 129 FORTRAN COMMON
blocks, resulting in a software structure that makes modification to Janus very costly and error-
prone. The Software Engineering group at the Naval Postgraduate School was tasked to extract
the existing hnctionality through reverse engineering and to create a base-line object-oriented
architecture that supports existing and required enhancements to Janus fiinctionality.

20

2. Reverse Engineering

.. .

I

The re-architecturing process adapted in the project consists of 3 major phases: reverse
engineering, object-oriented design and design validation via prototyping (Figure 1).

! Obiect-oriented Reverse Engineering j
i domain expert

-ck

modeling

I

source code,

user manual.
domain expert

~

Desig Validation
via Prototwing

prototype
demonstration /y$! feedbac .

oriented
design

arc hi tectu re

executable 1 prototype

Figure I . The object-oriented re-architecturing process

The first phase is reverse engineering. Input to this phase includes the legacy source code, design
documents, user manuals, and information from domain experts. Since the goal of the re-
engineering effort is to duplicate the fhctionality of the existing system within a modular,
extensible architecture and to reuse the domain concepts, models and algorithms rather than the
existing code, we should avoid including any requirementskonstraints that are consequences of
the FORTRAN implementation. The best places to extract domain concepts from the existing
system are the user manuals and the database management system manuals. These manuals were
written using the lingo of the user community and should be relatively free of implementation
details. We found the JANUS Data Base Management Program Manual [8] particularly useful
because it contains detailed information on what kind of data are needed to model the battle field
and how they are organized (logically) in the database. The top-level structure of the database is
shown in Figure 2.

2 1

Symbols

Genenl
Characteristics

Characteristics Weapons Engineer Temaerature Chemical /
Functional CUR vs. Contmt

Volume/Weicht

Combat Systems Terrain

..
Detection
Mine Vulilerability
POL
WeaponslOrdinance
Weapon Selection!

Firing Systein
Weapon Selcctio“

Target System
Kill Categories
Vulnerability to

Indirect Fire
Artillery Systems
lndirect Fire

Lethalities
Arty Cloud Data
Optical & Thermal

Contnst
Smoke Grenade

Data
Aircraft Systems
Radar Systems

General Barner Delay

Round Guidance VEES
MOPP Effects Grenades
PH / PK Data Sets

Characteristics h’on-Arty Smoke

Smoke Pots
By Weapon Large Area
By Target Generators

Minefields
Dispensing
Clearing
Xlinc Detection i

Duds
Activation ’ Kill

Range Dependent
Characteristics Chemical

Capability Susceptibility
Footprints Chemical Rounds

BCIS Heat Stress
Characteristics

Flyer Fuselage,’Rotor
Data Status

Rotor Track Radii
Rotor Acquisition

Times
Fuselage Probability

Track
Fuselage Radar

X-section
Jammer Radar

Characteristics
Jnmmer Effectiveness
Probability of Detection

Data vs. Aircraft

Figure 2. The top-level structure of the Janus Database

Not shown in Figure 2 are the interdependencies between the data, where data entered in one
category affect directly or indirectly the data in other categories. For example, the barrier delays
of the Engineer Data depend on specific weather condition specified by the Weather Data and
system hnctional characteristics of the System Data of the database. The overall network of
interdependencies is highly complex and can only be understood through construction and analysis
of the functional model of the existing Janus software.

Analysis of 393K lines of legacy code is a daunting but inescapable part of the process. We
recoiled from the magnitude of this effort in the beginning of the project and relied on information
contained in the Janus manuals. In hindsight, it was a mistake that slipped the schedule of the
project by several months. While these documents helped us get started because they contained
higher level information and were much shorter than the code. they were much older and

22

contained outdated information. Understanding a design of this complexity requires time for
mental digestion, even with tool support and judicious sampling. We should have started analysis
of the code right away and should have persistently continued this task in parallel with all other
re-engineering activities. Cross-fertilization between all the tasks would have helped us recognize
some dead-end directions earlier and would have enabled us to spend meeting time more
effectively.

Using manual techniques au,gnented with simple W I X shell commands, we were able to walk
through the code and get a fairly good idea of what each subroutine was designed to do. We also
used the Software Programmers' Manual [6] to aid in understanding each subroutine's function.
In doing so we were able to group the subroutines by fimctionality to get a better understanding
of the major data flows between programs and develop fiinctional models from the data flows. We
used the Computer Aided Prototyping System (CAPS), a research tool developed at the Naval
Postgraduate School, to assist in developing the abstract models [121. CAPS allowed us to rapidly
graph the gathered data and transfonn it into a more readable and usable format. Additionally,
CAPS enabled us to concurrently develop our diagrams, and then join them together under the
CAPS environment, where they can be used to generate an executable model.

We also had a series of brief meetings with the client, TRAC-Monterey, asking questions and
making notes on the system's operation and its current fiinctionality. We paid attention to the
client's view of the system to gather their ideas on its strengths, weaknesses, and desired and
undesired functionality. These meetings were indispensable because they gave us information that
was not present in the code. Since we were not familiar with the domain of ground combat
simulation, we were using these meetings to determine the requirements of this domain. often
playing the role of "smart ignoramuses" ['I]. Domain analysis has been identified as an effective
technique for software re-engineering [151. Our experience suggests that competent engineers
unfamiliar with the application domain have an essential role in re-engineering as well as in
requirements elicitation because iack of inessential information about the application domain
makes it easier to find new, simpler design structures and architectural concepts to guide the re-
engineering effort.

3. Object-Oriented Design

Next, we developed object models and architecture of the Janus System using the aforementioned
materials and products, to create the modules and associations amongst them. Information
modeling is needed to support effective re-engineering of complex systems [4]. This was probably
the most difficult and most important phase. It required a great deal of analysis and focus to
transform the currently scattered sets of data and knctions into small, coherent and realizable
objects, each with its own attributes and operations. In performing this phase, we used our
knowledge of object-oriented analysis and applied the OiMT techniques [17] and the UML
notations to create the classes and associated attributes and operations [18]. This was a crucial
phase because we had to ensure that the classes we created accurately represented the functions
and procedures currently in the software.

23

. ...

Restructuring software to identify data abstractions is a difficult part of the process.
Transformations for rneaning-preserving restructuring can be useful if tool support is available [5] .
We used the HP-UNIX systems at the TRAC-Monterey facility to run the Janus simulation
software to aid in verifying and supplementing the information we obtained from reviewing the
source code and documentation. This step enabled us to better analyze the simulation system,
gaining insight into its functionality and hrther concentrate on module definition and refinement.

The re-engineering team met several times each week for a period of two and a half months to
discuss the object models for the Janus core data elements and the object-oriented architecture for
the Janus System. We presented the findings to the Janus domain experts at least once per week
to get feedback on the models and architectures being constructed. In addition, the re-engineering
team also presented the findings to members of the OneSAF project, the Combat21 project, and
the National Simulation Center project. We found that information from these domain experts was
essential for understanding the system, particularly in cases \\:here the legacy code did not
correspond to stakeholder needs. This supports the hypothesis advanced in [9] that the
involvement of domain experts is critical for nontrivial re-engineering tasks.

Tier 1
User Interface

J A W S
User Interface

,..T .?l 4 b A' .. ._..' Tier 2 ..." Applications ..."
Domain I ._...

p r, 3 ,,.7
...'. '. ...(:

?..,.
i,,,j... ."

Services, .._ .. :/ ,..- ...,_
&.'

' '. , "_, '. .. i

''.-..A'.aQ

DB L'tilities

< A'

DIS!HLA

Tier 3
Storage &
Communication

Figure 3 . The proposed 3-tier object-oriented architecture

Early involvement of the stakeholders in the simulation community also pays off in the long run.
Both the National Simulation Center and Combat2 1 projects were able to save time and money by
reusing our work and came up with designs that look remarkably like ours (although much
larger). Now, OneSAF developers have been directed to look at the Combat21 class design and
reuse as much as possible. So, our efforts have directly benefited other simulation developers.

Based on the feedback from the domain experts, the re-engineering team revised the object
models for the Jams core elements and developed a 3-tier object-oriented architecture for the
Janus System (Figure 3). We extracted most of the data and operations from the existing Combat
System DBMS, Scenario Management, Janus Combat Simulation, JAAWS and POSTP
subsystems and encapsulated them as simulation objects in the Core Elements package, leavins
only application specific control codes that use the simulation objects in each of these five
subsystems. Figures I and 5 show the top level class structures of the object models of the core
elements. Details of the associated attributes and operations can be found in [2, 201 and are
omitted from these diagrams due to space limitations.

Scenario

self

Command
& Control

Combat
Element

Q I

Symbols Overlays

Figure 4. The top-level structure of the Janus Core Elements Object Model

25

Terrain
Features

I I I

Building Coefficient
Curve

Figure 5 . The Environment Object Class

Central to the Janus Combat Simulation Subsystem is the program RUNJAN, which is the main
event scheduler for the simulation. RUNJAN determines the next scheduled event and executes
that event. If the next scheduled event is a simulation event, RUNJAN will advance the game
clock to the scheduled time of the event and perform that event. The existing Janus Simulation
System uses 17 different categories to characterize the events. RUNJAN then handles these 17
events using the following event handlers:

1) DoPlan - Interactive Command and Control activities
2) Movement - Update unit positions
3) DoCloud - Create and update smoke and dust clouds
4) StateWt - Periodic activity to write unit status to disk
5) Reload - Plan and execute the direct fire events
6) Intact - Update the graphics displays
7) CntrBat - Detect artillery fire
8) Search - Update target acquisitions, choose weapons against potential targets, and

schedule potential direct fire events
9) DoChem - Create chemical clouds and transition units to different chemical states
10) Firing - Evaluate direct fire round impacting and execute an indirect fire mission
1 1) Impact - Evaluate and update the results of an indirect round impacting
12) Radar - Update an air defense radar state and schedule a direct fire event for “normal”

13) Copter - Update a helicopter states
radar

2 6

14) DoArty - Schedule an indirect fire mission
15) DoHeat - Update units’ heat status
16) DoCkpt - Activity to perform automatic checkpoints
17) EndJan - Housekeeping activity to end the simulation

The legacy event scheduler uses global arrays and matrices to maintain the attributes of the
objects in the simulation. Hence, one of the major tasks in designing an object-oriented
architecture for the Janus Combat Simulation Subsystem was to distribute the event handling
h c t i o n s to individual objects. However, many of the current event handler categories contained
redundant code and did not seem to be very coherent with respect to the class hierarchy we
created. For example, the set of event handlers used to simulate the activities of a particular unit
to search for targets. select weapons, prepare for a direct fire engagement, and then execute that
direct fire engagement differs depending upon whether the unit has a normal radar, special radar,
or no radar at all. The legacy Janus Simulation System uses the Radar event handler to carry out
the entire procedure if the unit has normal radar. However, it uses the Search, Radar, and Reload
event handlers to carry out the procedure if the unit has special radar. Finally the system uses the
Search and Reload event handlers to conduct the procedure if the unit has no radar at all. We
conjecture that this lack of uniformity is due to a series of software modifications made by
different people at different times without full knowledge of the software structure.

It was necessary to redefine some event categories in order to reduce interdependencies between
the event handlers, to factor simulation behavior into more coherent modules. to eliminate
redundant coding of the same or similar functions and to take advantage of dynamic dispatching
of event handling fhctions in the object-oriented architechire. Moreover, the Janus system was
originally designed to work in isolation, and has since been adapted to interact with other
simulation systems. Interactions between the simulation engine and the world modeler (the
distributed simulation network) are performed implicitly within the various event handlers in the
existing Janus. Such interactions are made explicit in the new architecture in order to provide a
uniform framework to update World Model objects during the simulation.

The new architecture uses an explicit priority queue of event objects to schedule the simulation
events. We were able to reduce the total number of event handlers needed in the simulation, from
17 to 14, by eliminating identified redundant code (Figure 6). The 14 remaining event handlers
are as follows:

DoPlan - Interactive Command and Control activities
MoveUpdateObj - Moves and update the objects in the simulation
Search - Searches for potential targets based on the detection devices available to the
objects
ChooseDirectFireTargets - Once search is complete chooses best target to engage. In
future simulations, implementations may allow users to choose targets
CounterBattery - Simulates counter battery radar to find potential targets
DoDirectFire - Executes direct fire events and updates ammunition stahls
DoIndirectFire - Executes indirect fire events and updates ammunition status
ImpactEffects - Calculates results of round impacting

2 7

-' I

F i w e 8. Top-level decomposition of the execlltable prototype

............ I " ... : .. .

,JAAWS

W . 0

pzzEGq
i

28

Figure 9. The Graphical User Interface of the executable prototype

5 . Conclusions

Our conclusion is that substantial and useful computer aid for re-engineering is possible at the
current state of the art. Human analysts must also play an important part of the process because
much of the information needed to do a good job is not present in the software artifacts to be re-
engineered. Success depends on cooperation between skilled people and appropriate software
tools.

The missing information needed for re-engineering is related to deficiencies of the current system
at all levels, from requirements through design and implementation. Thorough and accurate
knowledge of these deficiencies is crucial for success. The clients never want the re-engineered
system to have the exactly same behavior as the legacy system - if they were satisfied, there would
be little motivation to spend time, effort, and resources on a re-engineering project. Even if a
system is being re-engineered for the ostensible goal of porting to different hardware. the desired
behavior at the interface to the hardware and systems software will be different.

In practical situations, the requirements for the re-engineered system are different from those for
the legacy system. Key parts of the requirements for the new system are often missing or incorrect
on the legacy documents. Some of that information is present only in the minds of the clients,
often fra,mented and scattered across members of many different organizations. Communication
is a large part of the process. and that communication cannot be automated away. although it can
be enhanced by appropriate use of prototyping.

Uncertainties about the true requirements play a central role in both re-enzineering and the
development of new systems. We therefore hypothesized that prototyping could play a valuable
role in re-engineering efforts. Our experience supports that hypothesis.

We also found that prototyping can contribute substantially to the process of inventing,
correcting, and refining the concepnial structures on which the architecture of the new system will
be based. Most legacy systems are too complicated for individuals to understand. We found that
constructing even a very thin skeletal instance of the proposed nen architecture raised many
issues and enabled us to correct. complete, and optimize the architecture for both simplicity and
performance. (See [3] for lessons learned from the prototyping effort.) This was done before the
architecture had grown into a maze of dependent designs and implementation details.
Consequently, the changes could be realized without incurring the large cost and time delays
typically encounted later in the development.

To be effective, prototypes must be constructed and modified rapidly. accurately, and cheaply.
The UML interaction diagrams lack the preciseness to support automatic code generation for the
executable prototype. Such weakness can be remedied by the use of the prototype language
PSDL (10, 113 and the CAPS prototyping environment, which provide effective means to model
the system’s dynamic behavior in a form that can be easily validated by user via prototype
demonstration.

8. References

[13 D. Beny, Formal Methods: The Very Idea, “Some Thoushts About Why They Work When
They Work,” Proceedings of the 1998 ARO/ONR/NSF/DAWA Monterey Workshop on
Engineering Automation for Computer Based Systems, 1998, pp. 9-18.

[2] V. Berzins, M. Shing. Luqi, M. Saluto and J. Williams, Re-engineering the Jnnrrs(A) Combat
Simulation System, Technical Report NPS-CS-99-004, Computer Science Department, Naval
Postgraduate School, Monterey, CA, January 1999.

[33 V. Berzins, M. Shing. Luqi, M. Saluto and J. Williams. “Architectural Re-engineering of Janus
using Object Modeling and Rapid Prototyping,” to appeare in the journal Design Aimmation for
Embedded Systenzs. A preliminary version of the paper also appeared in Proceedings of the 10th
IEEE International Workshop in Rapid Systems Prototyping. Cleanvater Beach, Florida, 16- 18
June 1999, pp. 216-221.

[4] 0. Bray and M. Hess. “Reengineering a Configuration-Management System,” I€€€ Sofbvnre,
Vol. 12,No. 1, Jan. 1995. pp. 55-63.

[5] V. Cabaniss, B. Nguyen and J. Moregenthaler, “Tool SLIPPOIT for Planning the Restructuring
of Data Abstractions in Large Systems,” IEEE TSE. Vol. 24, No. 7, July 1998, pp. 534-558.

[6] Jnnus 3.XIUNIX S0fhtzf-e Progi-amnzel-‘s Manzml, Prepared for: Headquarters TRADOC
Analysis Center, Ft. Leavenworth, Kansas. Prepared by: Titan, Inc. Applications Group,
Leavenworth, Kansas, Nov. 1993.

[7] Jcintrs Version 6 User’s Manrrnl, Simulation, Training & Instnimentation Command, Orlando,
Florida, 1995.

[8 J Juntis Version 6 Dcitcr Base Mmagement Program il.Icinunl, Simulation, Training &
Instrumentation Command. Orlando. Florida, 1995.

[9] S. Jarzabek and P.K. Tan, “Design of a Generic Reverse Engineering Assistant Tool,”
Proceedings of the Second Working Conference on Reverse Etigineering (WCRE’95), 1995, pp.
6 1-70.

[101 B. Kraemer, Luqi, and V. Berzins, “Compositional Semantics of a Real-Time Prototyping
Language,” IEEE Transactions on Sofhvare Engineering, Vol. 19, No. 5, May 1993, pp. 453-
477.

[111 Luqi, V. Berzins, and R. Yeh. “A Prototyping Language for Real-Time Software,” IEEE
Transactions on Softwnre Engineering, Vol. 14, No. 10, October 1988, pp. 1409-1423.

[121 Luqi and M. Ketabchi, “A Computer-Aided Prototyping System,” IEEE Sofmare, Vol. 5 ,
NO. 2, 1988, pp. 66-72.

30

[131 Luqi, “System Engineering and Computer-Aided Prototyping,” Jorirnal of Systems
Integration - Special lssrre on Computer Aided Prototyping, Vol. 6, No. 1, 1996, pp.15-17.

[141 Luqi, V. Berzins, M. Shing, M. Saluto, J. Williams, J. GUO and B. Shultes, “The Story of Re-
engineering of 350,000 Lines of FORTRAN Code,” Proceedings of the 1998 ARO/ONR/NSF/
DARPA Monterey Workshop on Engineering Aiitonintion for Coriipiiter Based Systems, Carmel,
CA, 23-26 October 1998, pp. 151-160.

[151 M. Moore and S. Rugaber, “Domain Analysis for Transformational Reuse,” Proceedings of
4th Workshop on Reverse Engineering, IEEE Computer Society, 1997, pp. 156-163.

[161 L. Rieger and G. Pearman, “Re-engineering Legacy Simulations for HLA-Compliance,”
Proceedings of the lntet-service/lndirt~ Training, Siniulntion and Ediicatiori Conference
(I/ITSEC), Orlando, Florida, December 1999.

[17] J. Rumbaugh, M. BIaha, W. Premerlani, F. Eddy and W. Lorenzer, The Object-Oriented
Modeling and Design, Prentice Hall. 1991.

[I81 J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling Language Reference
Manual, Addison-Wesley. Reading, MA, 1999.

[191 TAE Plus C Pvogt-citiznzer ‘s Manual (Version 5. I). Prepared for: NASA Goddard Space
Flight Center, Greenbelt, Maryland. Prepared by: Century Computing. Inc., Laural, Maryland,
April 1991.

[20] J. Williams and M. Saluto, Re-engineering and Prototyping Legmy Software S?tstenis-Janzis
Version 6.X, master’s thesis, Naval Postgraduate School, Dept. of Computer Science, Monterey,
CA, March 1999.

31

Static Analysis for Program Generation Templates'

Valdis Berzins
Naval Postgraduate School
Monterey CA 93943 USA

Abstract

This paper presents an approach to achieving reliable cost-effective software via automatic program
generation patterns. The main idea is to certify the patterns once, to establish a reliability property for all
of the programs that could possibly be generated from the patterns. We focus here on properties that can
be checked via computable static analysis. Examples of methods to assure syntactic correctness and
exception closure of the generated code are presented. Exception closure means that a software module
cannot raise any exceptions other than those declared in its interface.

1. Introduction

Our goal is to provide cost effective means for creating reliable software. We are addressing the
issue by improving the technology for automatic software generation, with particular attention to
reliability issues.

We take a domain specific view of this process: a domain is a family of related problems addressing
a common set of issues. A domain analysis identifies the problem and issues, formulates a model of these,
and determines a corresponding set of solution methods. Users of the proposed computer-aided software
generation system describe their particular problem using a domain specific problem modeling language
that provides concrete representations of problems in the domain. The system then automatically
determines which solution methods are applicable. customizes them to the specific problem instance
described using the modeling language, and then automatically generates a program that will solve the
specified problem.

We seek to provide tool support for the above process that can be applied to many different problem
domains, and that can generate code in any programming language. Therefore we seek uniform and
effective methods for generating software generators of the type described above, given definitions of the
problem modeling language. the target programming language, and the roles for synthesizing solution
programs. A simple architechire for this process is shown in Figure 1.

The specific goals of this paper are: (I) to provide a simple example of a language for expressing
software patterns that are specific enough to be used as synthesis rules and (2) to provide examples of
static rules in this language. We address the problems of certifying that all programs which can be
generated from a given set of rules: (1) are syntactically correct and (2) will not raise any exceptions other
than those explicitly specified in an interface description.

This is a step towards a coordinated system of static and dynamic checks, to be performed on
program synthesis rules. Our hypothesis is that the most cost effective way to improve software quality is
to systematically improve and certify the rules used to generate a domain-specific software senerator.
This approach directly addresses the issue of correctly implementing given software requirements. It also
indirectly addresses the issue of getting the right requirements, because it should eventually enable rapid
prototyping of product quality systems by problem domain experts, who need not be software experts. If
the requirements are found to be inappropriate, the domain experts will simply update the problem models
and regenerate a new version of the solution sofixare.

We will refer to the software generation patterns as templates. Our rationale for the claim of cost
effectiveness is that the benefits of quality improvements to the templates can be extended to all past and
future applications of the generators - by regenerating the generator using the improved templates and
then regenerating the past applications. The regeneration process can be completely automated, thereby
reducing labor costs, eliminating a source of random human errors, and speeding up the process of
repairing a known fault throughout a Iar_ee family of sofhvare systems.

This research was supported in part by the U. S. Army Research Office under contract/grant number I

35037-MA and 40473-MA, and in part by DARPA under contract #99-F759.

The relation to the theme of this workshop is that fast moving scenarios can be addressed by
automatically generating new variants of the software that reflect chansing issues in the problem domain.
Our approach should reduce the explicit quality assurance efforts needed each time the software is
changed. By amortizing the quality assurance effort applied to the template over many applications of the
same templates, we can reduce quality assurance costs. The benefits increase with the number of systems
generated from the same templates.

Attribution
Rules

Rule
Language

Model 0
~~~ 

Problem 
Statement 
Language 

Program Generator 

n Templates 

Template 
Language 

Software 
Solution 

Target 
Implementation 
Language 

Figure 1. Model-Based Software Generator Architecture 

.This paper focuses on static checks that can be completely automated. Our research is also addressing 
testing and debugging of program synthesis rules and proofs of rule properties that require human 
assistance with deeper reasoning. These efforts are outside the scope of the current paper, which is 
organized as follows: 

Section 6 presents conclusions. 

Section 2 formalizes software generation patterns and defines a uniform construction to 
obtain a template language for any target programming language. 
Section 3 describes methods for statically certifying syntactic correctness generated code, 
and gives an example. 
Section 4 does the same for analysis of exceptions. 
Section 5 contains comparisons to previous work 

2. Template Languages 

The purpose of a template languaee is to define software synthesis patterns for a given target 
language. We create such languages based on a fimctional object model of code generation templates. We 
take a fbnctional (i.e. side-effect-free) approach because this simplifies the algebraic basis of the approach 
and supports effective static analysis methods such as those presented in Section 3 and 4. 3 3  



We view template languages as extensions of the corresponding target programming languages. 
Because many different programming languages are created. we will need many different template 
languages. However, all of these can be defined at once by providing unifonii construction such as that 
shown in Figure 2. 

This is a very simple construction, but it is very expressive. In addition to providing substitution of 
actual values for generic parameters, as in the generic units of Ada and the templates of C++, our 
construction includes conditionals that are evaluated at code generation time, and the ability to invoke 
other templates. Recursion is included. 

Template-language = {template, formal-def, template-expression 1 

DEF-TEMPLATE(id[template], type, seq[formal-defl. template-expression): 
template -- where tqpe E target-language 

DEF-FOR~IAL(template-parameter, type): fomial-def 
-- declares the type of a formal parameter 

template-parameter < { id[any], template-expression 1 
IF(template_expression, template-expression, template-expression): 

APPLY(id[template], seq[templats-expression]): template-expression 
template-expression 

template-expression < targe t-1 anguage 

Figure 2. Template Abstract Syntax 

The construction depends heavily on the use of inheritance i n  object-oriented modeling of 
programniing languages. The situation is illustrated in Figure 3. 

Figure 3. Generic Template Language 

In object-oriented modeling, class-wide types’ are viewed as open and extensible. Specifically, each 
time we add a subclass with a new constructor, we add more instances to the class-wide type, thus 
extending its value set. 

We model the abstract syntax of a language using a type for each kind of semantic entity. In a 
properly constructed abstract syntax, there should be one such type for each non-terminal symbol. Each 
constructor of these types corresponds to a production of the grammar. Subclass relationships, denoted by 
“S”, specify that every instance of the subclass is also an instance of the parent class. Multiple inheritance 
is allowed. For example, in line 6 of Figure 2 says that every template parameter is a kind of identifier, 
and also is a kind of template expression. This kind of subclass relationship is used to incorporate 
reusable types in a library of prograinming language building blocks, such as identifiers, and to specialize 
reusable concepts to the application, such as template expression. If T is a type and S is a set of types, 
T<S means T is a subclass of each element of S .  This represents multiple inheritance. 

This is Ada 95 terminology. The instances of a class wide type include its direct instances and those of 
all its subclasses, transitively. 

3 4  



Subclassing is also used to interface between a target programming language and its extensions. In 
Figure 2, "target-language" denotes the set of types comprising the abstract syntax of the target language. 
Figure 4 shows a very simple example of a target language that illustrates how this works. 

target-language = (stmt, exp) 

assign(var, exp): stmt 
if(exp, stmt, stmt): stmt 

integer < exp -- integer literals 
var c {id[any], exp} -- program variables 
apply(id[fimction], seq[expJ): exp -- operations 

subtype rule: x < y ==> id[x] < idly] where x, y E type 

I Figure 4. Example: Micro Target Language 

The example in Figure 5 defines a code generation pattern that embodies Newton's method for 
polynomial evaluation, which is optimal in terms of number of evaluation steps needed. This is a very 
simple example of a code generation pattern that is nevertheless realistic, because it embodies a solution 
method. The example also illustrates the use of all the constructs in the template language. We use infix 
syntax for the exp constructors * and + to improve legibility (e.g x*y is short for the term apply(*, x, y)). 

An additional benefit of considering the abstract syntax to be an algebra rather tlian a tree is that we 
can used well-studied transformation rules. i n  particular we can associate equational axioms with the 
programming language types that define normal forms. Figure 5 illustrates the use of such axioms as 
rewrite rules that simplify the code produced by the generator in a follow-on normalization process. This 
is one way to incorporate optiniizations into the program generation process, which is useful for 
unconditional transformations. 

TEMPLATE evaluate-polynomial (v: var, c: seq[inte,oer]): exp 
-- c contains coefficients of a polynomial, lowest degree first 
IF not (is-empty (c) ) -- use operations of boolean and seq 
THEN v * (evaluate_pol~nomial'(v, rest(c))) + first (c) 
ELSE 0 

END TEMPLATE 

Template application evaluate-polynomial(s, [ I ,  2,3]) generates 
x * (x * (x * 0 +3)  + 2 )  + 1 

Normalization with inteser rules i * 0 = 0, i + 0 = i reduces to 
x * ( x * 3 + 2 ) + 1  

Figure 5. Esample: Generation Pattern 

Code generation using the template language is a very much like evaluation in a functional 
programming language with call-by-value semantics. Analysis of templates can take advantage of 
equational reasoning, substitution, and structural induction. The limitation to primitive recursion 
facilitates the latter. The recursion in the example is structural because rest is a partial inverse for the 
sequence constructor add (i.e. rest(add(x, s)) = s). 

3. Svntactic Correctness of Generated Code 

We treat the abstract syntax structures of the target languaze as the values of the abstract data types 
representing the programming language. We require these types to provide a pretty printing operation that 
outputs such objects as text strings according to the concrete syntax of the target language, with a 
readable format. Establishing correctness of these pretty printins operations is straightforward, and in fact 
their implementations can be generated from an appropriately annotated grammar for the concrete syntax. 

-, - 
35 Given trusted pretty printing operations for the object model of the target lanpage, syntactic 

Correctness of the output reduces to the tqpe-correctness of the ground tcrnis generated by the evaluation 



of the templates. This can be checked using a simple type system for the template language and 
conventional type checking methods. Note that we are referring to the types associated with the signatures 
o f  the constructors in the object model of the target programming language, rather than the types within 
the target programming language, which may not even be a typed language. The process is illustrated 
Figure 6.  The computed type annotations are shown in italics. The type annotations associated with the 
implicit induction step, where the type signature of the template itself is used. is highlighted in bold 
italics. The indentations of the type annotations reflect the structure of the derivation. 

TEMPLATE evaluate-polynomial (v: var, c: seq[integer]): exp 
IF not (is-empty (c : seq[integer] ) ; boolean ) : boolean 
THEX + (  * ( v  : var, 

evaluate-polynomial 
(v : var, 

rest(c: seqrinteger] ) : seq[infegerJ I exp 
) :exp 

first (c: seq[integer] ) : integer 
) :exp 

-tenn fom1 of v” evaluate-polynomial (v, rest(c)) + first (c) 
ELSE 0 : integer 

END TEhIPLATE 

Types conform because integer e blRP)var c exp 

Relevant signatures: +(exp, exp) :exp, *(exp, exp) :exp, 
first(seq[T]): T. rest(seq[T]): seq[T], 
is-empy(seq[T]): boolean, not(boo1ean): boolean 

Figure 6. Example: Syntactic Correctness of Generated Code 

Note that induction has been carried out implicitly. as a routine step of the type checking calculation. 
This is sufficient to establish partial type correctness of the templates, which implies syntactic correctness 
of all code that could be generated by the template. it does not automatically guarantee total correctness, 
because we still have the possibility that evaluation of the template might fail to terminate. 

Total correctness is established by the type check if we check that all recursions are primitive. The 
example satisfies this condition because rest is a partial inverse of the compound sequence constructor; 
rest(add(x,s)) = s. This means that the induction is in fact structural, and hence that evaluate-polynomial 
is total. Thus the template will produce syntactically correct code for all input values that conform to the 
type signahire of evaluategolyiiolllial. 

We note that given declarations of the target language constructors that define the abstract syntax and 
the corresponding partial inverse operations, it is straightforward to automatically check that all recursive 
calls are primitive with respect to any given parameter position. This implies that structural induction can 
bc applied unifomily and completely automatically in this context. Furthermore, our experience suggests 
that structural recursions are sufficient to define the code generation templates needed in practice, and that 
template designers can live within the restriction to structural recursions without undue hardships. 

4. Exception Closures for Generated Code 

One common source of software failure is unhandled exceptions. This section explains a method for 
certifying that all programs generated froin a given template cannot generate any unhandled exceptions 
when placed in a context that handles a specified set of exceptions. 

Our approach is to refine the type system to record the set of exceptions that might be raised by the 
evaluation o f  any expression of the tarset language. A similar structure can be used to analyze the set of 
exceptions that might be raised by execution of a statement of the target languqe. 36 



The refinement replaces the single target language type exp with a parameterized family of types 
exp[set[exception]]. The intended interpretation of this type structure is that evaluation of an expression 
of type exp[S] might raise an exception e only if eE S. Since we do not require all exceptions in S to be 
producible, this family of types has a rich subclass structure defined by the followin, 0 relation: 

SIC S2 9 exp[Sl] I exp[S2] 

The type signatures of an operation are specified explicitly for argument expression type that cannot 
raise any exceptions, and are extended to all other types by the following rule, which describes the 
essential pattern for propagating exceptions: 

F(exp[0]) : exp[Sl] 3 f(exp[S2]): exp[S 1 u S 2 ]  

The rule for operations with multiple ariuments is similar. Siinilar rules apply to language constructs 
representing exception handlers. Exception handlers follow rules of the form 

(TRY exp[SI] CATCH e USE exp[S2]): exp[(Sl-{el) u S2]. 

Figure 7 shows the exception analysis for our running example. The parts added to the version in 
Figure 6 are underlined. 

TEMPLATE evaluate-polynomial (v: var, c: seq[integer]): exp [ { ovf 1) I 
IF not (is-empty (c: seq [inte$slboole$~n boolean 
THEN +(*(v: var 

evaluate-polynornial(v: var. 

first (c: seq[integerlin:egkr exF[{ovfl}] 
rest(c: seq [integer>eQ[integet ) exp f{ovfl)l 

-- term form of v * evaluate-polynomial (v, rest(c)) + first (c) 
ELSE 0:  in teger  

END TEhIPLATE 

Types conform because integer < exp [01 c exp [ { ovf I} 1 and 
var < e x p m  5 exp [ { ovf 1 } I 

- - 

Relevant signatures: +(exp, exp): exp { ovf 1 } 3 , *(exp, exp): exp [ { ovf 1 } 3 , 
first(seq[TJ): T, rest(seq[T]): seq[T], is-empty(seq[T]): boolean, , not(boo1ean): boolean 

Figure 7. Exception Closure of Generated Code 

Note that we require the author of the template to specify in the type declaration of a template the set 
of exceptions the generated expression is allowed to raise. This acts as an induction hypothesis in our 
exception analysis, which is used when analyzing the recursive call of evaluate-polynomial. It also 
provides useful information for the user of the generated code. 

The analysis shown in the figure establishes a partial exception closure: it guarantees that all 
expressions generated by the template can at most raise only the exception ovfl representing integer 
overflow. 

To establish a total exception closure, we have to address clean termination of the template expansion 
at program generation time. The primitive recursion check explained in the previous section guarantees 
there will be no infinite recursions, so that termination is guaranteed. However, for clean termination, we 
must also check that evaluation of the template will not raise any exceptions at program generation time. 

Note that the analysis in Figure 7 addresses run-time exceptions. When viewed as constructors of the 
abstract syntax, + and * are total operations. Overflow exceptions can occur only when those expressions 
are evaluated, not when they are constructed. 



The sequence operators first and rest are different: they are partial query methods of the abstract 
syntax, not total constructors. If applied to an empty sequence, they raise a sequence underflow exception. 
However, this can occur only at program generation time, not at run time. 

To certify clean termination of template at program generation time requires a type refinement to 
record sets of possible exceptions and an additional kind of type refinement to record domains of partial 
methods such as first and rest. b’e can introduce a subtype nseq[T, S] < seq[T. S] consisting of the 
nonempty sequences, and refine the signatures of the partial sequence operations first and rest as follows. 

first(nseq[T, 01): T[01, rest(nseq[T, 01): seq[T. 01 
first(seq[T, 01): T[seq-underflow], rest(seq[T, 01): seq[T. { seq-underflow)] 

Type analysis requires a bit of inference in this case, because we  have to use the guard of the 
template language conditional 1F together with the rule 

s : seq[T. S ]  and not is-empty (s) s: nseq[T, S] 

This inference is easy because the guard matches the subtype restriction predicate for nseq[T]. 

This match did not occur by accident - the purpose of the guard is precisely to ensure that the 
operations first and rest are used only within their domain of definition. In the interests of being able to 
produce certifiably robust code, we claim that it would not be unduly burdensome to require that template 
designers associate domain predicates with all partial operations, and use those domain predicates 
explicitly in guards whenever they are needed to ensure the partial operators are used within their proper 
domains of definition. For example, first could be associated with a domain predicate 

first-ok (seq[T]) : boolean where 
first-ok (s) = not (is-empty (s)). 

This would enable a fast and shallow analysis of guard conditions to certify absence of exceptions in 
cases like this. Some such restriction is necessary for practical enpiiieering support because the problem 
of checking whether an unconstrained guard condition implies the domain predicates of arbitrary guarded 
partial operations is undecidable. 

An alternative is an exception analysis that includes exceptions in the closure even in cases where the 
guard condition ensures they will never arise. We suggest that it is more practical to handle a common 
subset of efficiently recognizable fomis, and to ask designers to work within the constraints o f  those 
rccognizable fomis. We believe this would be less burdensome than the alternative of manually analyzing 
thc cases where a type check insensitive to guard conditions would nominate exceptions that cannot in 
fact occur. and that it would lead to a more robust software by making it practical to do complete analysis 
of  exception closures. For example. we could require the example of Figure 7 to be written in a stylized 
fonn that looks like the following: 

IF first-ok (c) and rest-ok (c) 
THEN ... first (c) ... rest (c) ... 

A similar type check would have to be applied to the implementations of first and rest to ensure that they 
would in fact terminate cleanly whenever the domain predicates are true. 

5. Comparisons to Previous Work 

One of our contributions has been to formalize and abstract the idea of a program generation pattern, 
to make it independent of the details of the target programming language and the process of instantiating 
the patterns. The purpose of this was to create context in which systematic analysis o f  program 
generation patterns becomes possible and in some cases becomes decidable. 

Program generation patterns have been evolving for a long time. Macros are an early form o f  the 
idea. However, macros are notoriously difficult to analyze, partially because they traditionally operate on 
uninterpreted text. This makes the connection between macro definitions and the behavior they 
ultimately denote complicated and potentially very indirect. The macros in LISP are an improvement 
because they are based on abstract syntax trees rather than characters. However, in this context a second 
source of complexity becomes apparent: a macro can expand to produce another macro, and the number 

3 8 



of expansion steps before the generated source code actually appears is potentially unbounded. This 
makes the system very difficult to analyze. At the other extreme are the generic units of Ada. These are 
strongly typed. clearly connected to the abstract syntax of the language, and the results of  instantiating 
them are easy to analyze. However, they do not allow conditional decisions at instantiation time, and are 
restricted in the sense that the abstract syntax trees of all possible instantiations have exactly the same 
shape, up  to substitution for the formal parameters of  the pattern. A language-independent version of the 
idea can be found in [5 ] ,  although this appears to be largely text-based. 

Another aspect of our approach is to model languages as algebras rather than as abstract syntax trees. 
A hint of this idea appears in [4], although it is not exploited there for enabling analysis to any significant 
degree. The work of the CIP group [ 13 develops this idea hrther and takes advantage of the reasoning 
structures that come with the algebraic modeling approach, such as term rewriting and generation 
induction principles. This suggests extension to a full object-oriented v(ew, which includes inheritance. 
The Refine system is the earliest context we know of where grammars are treated as object models with 
potential inheritance structures, although the documentation does not give any hint about the significance 
of this capability. In this paper we demonstrate the usefulness of algebraic models of  syntax with 
inheritance, for defining language extension transformations that can be applied to all possible target 
languages. 

Another theme is lightweight inference [2]. We have demonstrated that some usefLil types of static 
analysis for program generation patterns can be performed via computable and indeed reasonably 
efficient methods. The processes described here can be implemented using technologies typically used in 
compilers, such as object attribution rules, they terminate for all possible inputs, and do so in polynomial 
time. W e  believe this approach will scale up to large applications, and are currently working out the 
details to support a tight analysis of  the efficiency of the process. 

This paper has explored static analysis of meta-programs to check syntactic correctness and 
exception closure of the gencrated code. Another kind of static analysis in  this family. type checking of 
meta-programs to ensure the type correctness of the generated code, is considered by another paper in this 
proceedings [3]. 

6. Conclusions 

We believe that formal models of program generation templates can support a variety of quality 
improvement processes that can help achieve cost-effective software reliability. This paper has presented 
a simplc example of such a fornial model and two such quality improveinelit processes, certification of 
syntactic correctness and freedom from unexpected exceptions for all programs that can be generated 
from a given program generation pattern. We expect the greatest advantages of this approach to be  
rcalizcd when i t  is applied to rcalize flexible and reliable systems in a product line approach. This 
approach should be augmented with systematic methods for domain analysis that culminates in the 
development of a domain-specific library of solutions embodied in a domain-specific software 
architccture that is populated with components produced by model-based software generators. When the 
technology matures, it should become possible for problem domain experts to specify their problem 
instances in terms of familiar problem domain models, and to have reliable software solutions to their 
problems automatically generated, without direct involvement of computer experts. 

The economic advantage of this approach comes from the ability to automatically reap the benefits o f  
each quality improvement for all past and future instantiations of the template (if past applications are 
regenerated). We believe that it will be profitable to explore methods for lifting many known program 
analysis techniques from the level of individual programs to the level of  program generation patterns. 
This should be explored for a variety of issues that range from certifying absence of references to 
uninitialized variables, absence of deadlock, and many others, perhaps ultimately to template-based proof 
of post conditions and program termination for generated programs. 

To make this vision practical, many engineering issues must be addressed, including presentation 
issues, methods for lightweight inference [2] and support for transforming and enhancing complex sets o f  
analysis rules. Other issues include systematic methods for dynamic analysis, testing, and debugging of 
program generation rules. It is hot reasonable to expect progress to occur in an instantaneous quantum 
leap to perfection. A realistic process is a gradual one, where simple sets of program generation rules are 
deployed, and gradually tuned, improved, certified, and cxtended. A key issue is enabling rule 
enhancement and exception closure extension without invalidating all previous effort on analysis and 
certification of the previous versions. 39  



The difference between the program generation approach proposed here and current compiler 
generation tools is the associated static analysis capabilities for the program generation rules. It is 
possible that in the future, ultra-reliable compilers will be built using techniques derived from those 
introduced in this paper. 

REFERENCES 

1. 

2 .  

3. 

4. 

5. 

F. Bauer, H. Ehler, A. Horsch, B. Moller, H. Partsch, 0. Paukner and P. Pepper. The Munich Project 
CIP. Vol. 2: The Program Transformation System CIP-S, Springer, Berlin, 1987. 

V. Berzins, Light Weight Inference for Automation Efficiency , Proceedings of the 1998 
ARO/ONR/NSF/DARPA Monterey Workshop on Engineering Airtomarion for Computer Based 
Systems, Monterey California, 1999. 

N. Bjorner, Type Checking Meta Programs, Proceedings of the Workshop on Modeling Sofnvare 
System Strzictures in a Fastly Moving Scenario, Santa Margherita. Italy, 2000. 

T. Reps, Generating Langzlage-Based Environments, Doctoral Dissertation, August 19S2. 

D. Volpano, R. Kieburtz, Software Templates , CS/E 85-01 1, Department of Computer Science 
and Ensineering, Oregon Graduate Center, 1985. 

40 



Integrated Desipi and Process Technology, IDPT 2000 
Printed in the United States of America, June, 200c 

0 2000 Society for Design and Process Science 

REUSE AND RE-ENGINEERING OF LEGACY SYSTEMS* 

Jiang Guo and Luqi* 
Research Associate 

US National Research Council CA, USA 
*Department of Computer Science 

US Naval Postgraduate School CA, USA 

ABSTRACT 

Software reuse is widely considered to be a way to 
increase the productivity and improve the quality and 
reliability of new software systems. Identifying, extracting 
and reengineering software components that implement 
abstractions within existing systems is a promising cost- 
effective way to create reusable assets and re-engineer 
legacy systems. This paper summarizes our experiences 
with using computer-supported methods to develop a 
software architecture to support the re-engineering of the 
Janus Combat Simulation System. In this effort, we have 
developed an Object-Oriented architecture for the Janus 
Combat Simulation subsystem, and validated the 
architecture with an executable prototype. In this paper, 
we propose methods to facilitate the reuse of the software 
component of these systems by recovering the behavior of 
the systems using systematic methods, and illustrate their 
use in the context of the Janus System. 

1. BACKGROUND 

Rapid changes in hardware and software technology, 
combined with rapid changes in requirements, require new 
methods to enable the efficient evolution of current 
software systems. A significant portion of these systems 
are real-time control systems that typically have rigid 
performance and reliability requirements. The ever 
increasing need to integrate new requirements into these 
systems poses a challenging problem for the industry as it 
strives to respond in a timely, accurate manner. There is a 
lack of reliable methods to maintain and evolve computer 
based systems. 

Softwaie reengineering is the process of 
understanding existing software and improving it, for 
increased or enhanced functionality, better 
maintainability, configurability, reusability, or other 
software engineering goals. The process involves 
recovering existing software artifacts and organizing them 
as a basis for future evolution of the software system. 
Software reuse is a popular way to increase productivity 
and improve the quality and reliability of new, software 
systems. Identifying, extracting and reengineering 

software components which implement abstractions 
within existing systems is a promising cost-effective way 
to create reusable assets and re-engineer legacy systems. 

We have explored reuse in the context of a case study 
that addresses the re-engineering of the Janus System. 
Janus is a software-based war game that simulates ground 
battles between up to six adversaries. It is an interactive, 
closed, stochastic, ground combat simulation that features 
precise color graphics. Janus is “interactive” in that 
command and control functions are entered by military 
analysts who decide what to do in crucial situations during 
simulated combat. The current version of Janus operates 
on a Hewlett Packard workstation and consists of a large 
number of FORTRAN modules, organized as a flat 
structure and interconnected with one another via 
FORTRAN COMMON blocks. This software structure 
makes modification of Janus very costly and error-prone. 
There is a need to modernize the Janus software into a 
maintainable and evolvable system and to take advantage 
of modem personal computers to make Janus more 
accessible to the Army. TWC-Monterey is re-engineering 
Janus into an object-oriented software system that is 
written in the C++ programming language and operates on 
personal computers. Prior to rewriting Janus in C++, the 
software engineering group at the Naval Postgraduate 
School was asked to extract the existing functionality 
through reverse engineering and to produce an object- 
oriented architecture that supports existing and required 
enhancements to Janus functionality. 

Software systems evolve as modifications are made to 
fix defects or to enhance finctionality. Software that has 
been involved in the evolutionary process for many years 
often reaches a state where a decision must be made to 
impose such major changes to the software that significant 
re-engineering is required. This decision is typically based 
on factors such as the state of deterioration of the 
software, high modification costs resulting from reliance 
of the software on outdated paradigms, ineffective 
documentation, and obsolescence of hardware platforms 
on which the software is housed. We have been 
developing software evolution techniques for several 
years, and have applied them to the Janus software, which 
has many of the features listed above. 

41 
This research was supported by AR0(38690-MA), ARO(35037-MA) and DARPA(99-F759). 



The complexities associated with the re-engineering 
of large complex systems and the non-availability of 
effective conventional methods to address the 
complexities suggest the need to explore new research 
directions. One of the historically problematic features of 
conventional methods is that the models that are produced 
are typically not applicable across multiple phases of the 
software development or the software re-engineering 
process. The software engineer experiences both a 
syntactic and semantic disconnect from one life-cycle 
phase to the next. Another problematic feature is that 
current methods are not sufficiently automatable to 
feasibly support the re-engineering of complex systems 
due to lack of effectively computable and accurate 
methods for extracting and assessing the information that 
must be analyzed. This research focuses on enhancing 
software evolution by defining a formal framework which 
includes methods and representations that are integrable 
across multiple phases of the software evolution process. 

The objectives of this paper are to: 
Describe a formal framework for design recovery. 
Design recovery is a vital aspect of  the software 
evolution process. We define a formal framework for 
recovering design information that facilitates the 
derivation of multiple higher level abstractions with 
varying levels of formality. 
Explore the reuse and reengineering method of the 
legacy systems. The method will help to reuse the 
algorithm and data information extracted from the 
legacy system and reengineering the system and class 
Structure through re-organizing the data and 
functions. 
Investigate specification representations. System 
requirements expressed with formal mathematical 
representations improve the reliability and 
maintainability of a system and extend the 
opportunities for computer aid. We define a 
methodology that facilitates the creation of 
specifications of requirements from code. 
Report on our experiences in applying these concepts 
to the re-engineering of the Janus system. 

2. OBJECT ORIENTED MODEL 

We are developing a methodology that establishes a 
formal foundation from which to reengineer systems. The 
methodology consists of two major steps: the derivation of 
object-oriented design models and the derivation of formal 
specifications from the design models. 

1) Object-oriented design models: An object-oriented 
view of a non object-oriented system provides 
understanding about the behavior and relationships in 
the system and facilitates the re-engineering of a 
system to an object-oriented implementation [ 11. 
Object-orientation is the amalgam of three concepts: 
encapsulation, polymorphism, and inheritance. 

Encapsulation is realized as a class. Classes are 
instantiated to create objects, which form the basic 
run-time entity. Polymorphism refers to the ability of 
objects to change t4pe during program execution, so 
that generalized algorithms can be applied to many 
types of objects. Inheritance defines a relation 
behveen classes whereby the definition of a class is 
based on extending and specializing the definitions of 
existing classes. It encourages the reuse of classes 
that are similar by allowing the tailoring of parent 
classes to meet the needs of a class with similar 
requirements in a way that meet the requirements of 
the parent classes. Thus, “inheritance coupled with 
polymorphism and dynamic binding minimizes the 
amount of existing code that must be changed when 
extending a system”. We have developed new 
techniques to derive object representations from non 
object-oriented code [2]. 

2) Specifications: We have developed a set of high-level 
specification tools (CAPS) that formally represent the 
finctionality of legacy systems in an executable form 
that supports prototyping. A formal specification of a 
system, which is a description of a system using a 
notation with a precisely defined semantics, provides 
clear and precise communication of the system 
requirements by avoiding the ambiguities of natural 
language, and thereby reducing design errors and 
testing time. Benefits of CAPS methods are discussed 
at length in [3, 41. A process which includes the 
creation of a graphic representation of a legacy 
system from code will serve to not only provide 
structure and accurate documentation for the system 
but will also allow the system to utilize the power of 
graphic specifications for the reengineering process. 
We have derived methods to express the functionality 
of the legacy systems using graphic methods. 

The research was motivated by the need for better 
techniques for the extraction and utilization of desirable 
hnctionality of an existing system for re-engineering, 
reuse, and maintenance. The work was also motivated by 
the recognition that graphic specifications are currently 
being used successfully on a broad range of applications 
in industry because of their potential to decrease software 
costs and enhance software reliability by helping detect 
errors. The abstractions will provide suitable 
representations from which to forward engineer a system 
and will facilitate the integration of existing requirements 
with new requirements. 

3. REUSING AND RE-ENGIKEERING METHODS 

We present a new program slicing process for 
identifying and extracting code fragments implementing 
functional abstractions. The process is driven by the 
specification of the function to be isolated, given in terms 
of a precondition and a postcondition. Symbolic execution 

4 2  



techniques are used to abstract the preconditions for the 
execution of program statements and predicates. The 
recovered conditions are then compared with the 
precondition and the postcondition of the functional 
abstraction. The statements whose preconditions are 
equivalent to the pre and postconditions of the 
specification are candidates to be the entry and exit points 
of the slice implementing the abstraction. Once the slicing 
criterion has been identified the slice is isolated using 
algorithms based on dependence graphs. The process has 
not been specialised for programs written in the 
FORTRAN or C language. Both symbolic execution and 
program slicing are performed by exploiting the Data 
Flow Graph (DFG) and Control Flow Graph (CFG), a 
fine-grained dependence based program representation 
that can be used for most software maintenance tasks. The 
work described in this paper is aiming to explore reverse 
engineering and reengineering techniques for reusing 
software components from existing systems. 

3.1. PROGRAM SLICING AND INFORMATION 
EXTRACTING 

We extracted dependency and control information to 
enable the definition of object models. This phase groups 
together the activities of source code analysis and 
produces sets of software components. Each one of these 
sets is a candidate to make up a reusable module when 
suitably de-coupled, reengineered and possibly 
generalised. This work includes code structuring, code 
segmentation, dependency analysis, and finally 
aggregation to produce design abstractions. 

We initiated the design recovery process with a 
preprocessing step that restructures code. We built on the 
theory that unstructured code can be written using only D- 
structures [S] and relied on existing algorithms for that 
purpose [6]. Our research within this phase involves the 
use of program slicing techniques for isolating code 
fragments implementing functional abstractions. Program 
slicing has been used both as structural and specification 
driven method. As structural method, program slicing has 
been used to identify external user hnctionalities in large 
programs. The isolation of an internal domain dependent 
function can be driven by its formal specification. The 
specification can be used together with symbolic 
execution techniques to identify a suitable slicing 
criterion. Code segmentation is needed in order to reduce 
the granularity and thus the complexity of the remaining 
processes. We have defined a segmentation scheme that 
separates the code into modular units while also removing 
syntactic sugar features of the code. We have also defined 
heuristics to attach in-code documentation to the 
appropriate segment. For a program P the result is a set of 
se-pents, such that SG = {sg,, sgz, ... sg,} and Pf = usgi, 
where 1 c i < n and Pf represents code that is identical in 
functionality to P. 

Following the segmentation, we defined dependency 
algorithms that analyze each sgi. Specific slicing 
algorithms that are modified forms of the slicing 
algorithms found in [7] are employed at the statement, 
construct, and block levels. These algorithms provide 
information on all variables: local variables, non-local 
variables, array variables, and data tping.  

The results of the restructuring, segmentation, and 
dependency steps are segment design representations and 
a global design representation. These representations 
include traditional methods, such as call graphs, structure 
charts, and hierarchical diagrams and other less 
conventional representations such as variable usage and 
state change descriptions. These representations serve as 
input to perform object identification and to create formal 
specifications of object behavior. 

Results of our work include methods that recover the 
design information at varying levels of granularity, 
expressible in numerous forms from both data and 
functional viewpoints. The data and controI dependency 
representations are the basis for our object extraction 
research. 

3.2. REUSABLE COMPONENT CONSTRUCTIXG 

This phase groups together the activities of the 
analysis of the bag of software reusable component sets 
singled out in the Program Slicing and Information 
Extracting phase and produces a set of reusable modules, 
using reengineering techniques. Also, this phase groups 
together the activities that produce the specifications of 
each one of the reusable modules obtained in this phase. 
Both the hnctional and the interface specifications must 
be produced in this phase. We used object-oriented and 
prototyping techniques to abstract 'a formal specification 
from source code modules implementing functional 
abstractions. Finally, we need to classify the reusable 
modules and related specifications according to a 
reference taxonomy. The aim is to re-engineer legacy 
systems with the reusable modules produced. 

Program comprehension is the most expensive 
activity of software maintenance. The different phases of a 
reuse reengineering process involves comprehension 
activities for understanding the structure of existing 
systems, the fkctionality implemented by a reuse 
candidate module and the reengineering effort. We present 
a method for reuse reengineering existing FORTRAN or 
C systems. Our goal is to create reusable sofrware 
components with object-oriented methods. 

The problem of extracting encapsulated reusable 
software components from legacy systems is an area of 
active research. The concept of the object module as a 
means of restructuring FORTRAN code into an object- 
oriented style was introduced in [8] .  While code structured 

4 3  



as object modules is not truly object-oriented, it marked 
the beginning of progress along that path. The problem of 
object identification has been approached by first 
developing a formal specification of the code and then 
identifying objects from the formal specification in some 
methods [9]. In an informal approach, Sward translates 
code to natural language descriptions and then applies 
object-oriented analysis and design techniques, such as 
OMT, to create the object design [lo]. A design recovery 
approach which automatically extracts task flow 
information utilizing both source code and non-source 
code information is found in Holtzblatt’s work [ 1 I]. Other 
research that addresses behavior abstraction includes 
object extraction and translation to C++ using data flow 
analysis [ 121, partial evaluation for code comprehension 
[ 131, and development of new Ada programs by reusing 
FORTRAN code [ 141. 

In other related work, a complete translation to an 
intermediate form in the UNIFORM language is used in 
Lano’s work [I51 as a bridge to a functional description 
language and then finally to a Z specification. In some 
methods, COBOL code is reverse engineered to Z++ and 
then reengineered to COBOL code using refinement as a 
part of the REDO (Re-engineering, Documentation, and 
Validation of Systems) project [ 161. A transformation 
process that creates C++ code from COBOL code is given 
in [ 171. Other work on reverse engineering of COBOL 
systems to SSADM specifications is a part of the 
RECAST (Reverse Engineering into CASE Technology) 
method in which information extracted from source code 
is represented in PSL to eventually produce input for the 
physical design phase of SSADM [18]. In an approach 
that requires a large set of transformations, Ward 
translates assembler code to a wide-spectrum language 
(WSL) which contains primitive statements, such as 
assertions and guards; compound statements, including 
sequential composition, choice and recursive procedures; 
and other language extensions including a command 
language, loops with multiple exits, and mutually 
recursive procedures [ 191. In some approaches, code 
semantics are expressed as logic specifications [20]. 

Research that involves the extraction of modules and 
reusable components from legacy code includes 
algorithms that construct a hierarchical structure from an 
implementation description [2 13, methods to identify 
abstract data types based on user defined data types [22], 
direct slicing to extract specific types of code segments 
[23], identification of cliches to recover program design 
[24], program segmentation based on focusing and 
factoring operations on COBOL code [25, 261, and 
component identification based on formal parameter types 
and global variables [27]. Methods to abstract the 
behavior of programs by deriving mathematical 
expressions from prime programs are found in Hausler’s 
work [28]. An enabling technology which represents 
software in the form of annotated abstract syntax trees in a 
persistent object-oriented database and then uses an 

executable specification language for analysis is described 
in Markosian’s work [29]. 

We use an incremental approach based on graph- 
theoretic and set-thcoretic concepts. We have investigated 
reusable component constructed from procedural code to 
produce intermediate representations from functional and 
data viewpoints. We then use the intermediate 
representation to define a high-level object view of the 
legacy system. Our code and concept abstraction methods 
include the identification of candidate objects along with 
their associated attributes and methods. 

Our object extraction algorithms are based on the 
following object model for object 0: 

0 = <A, MD> 
A =  {A,, A?, ......, An} 

MD = {MDI, MD2. . . . . . ., MD,} 
where A represents attributes and MD represents 
operations that act on members of A. Our approach is both 
data-driven and bottom-up. The granularity of a pro,pm 
is viewed at the program, subroutine, and statement levels; 
however, the primary focus for the unit of  functionality is 
the subroutine. Using the parameters necessary for the 
execution of each subroutine, the goal is to find the 
smallest set of parameters needed to obtain the strongest 
cohesive unit, which becomes a candidate set of attributes 
for an object type. 

We use a greedy approach to the derivation of the A 
component of 0 which considers both actual parameters 
and global variables. To partition the set of actual 
parameters, AP, where 

a graph-theoretic approach is used. We define an 
undirected graph G with nodes Mi, 1 l i  I n and with 
edges connecting APi and APj if the two parameters both 
occur in at least one subroutine call. A weight function, 
W, is then defined to give values to the edges of G. W is 
computed for all pairs of parameters, APi, APj E AP, with 
respect to each subroutine invocation. A constant is used 
to indicate positive, negative or null contribution to 
cohesiveness. We define a weighted adjacency matrix M 
where the value of each M(i, j) is the cumulative value of 
W(APi, APj) over all subroutine invocations. Thus, M(i, j) 
represents a measure of the degree to which parameters 
APi and APj are hnctionally related. 

AP = {API,APz. ......, APn} 

Following the derivation of the weighted adjacency 
matrix, an initial set of  object attributes is determined by 
using a threshold approach. The potential threshold values 
are the non-negative real numbers r, such that r E M. For 
each r, the transitive closure is computed to obtain the 
attribute sets that are related at that threshold level. The 
objective is to select the threshold level that produces the 
largest data sets with the strongest cohesion. Domain 
knowledge used by a design engineer is encouraged for 
the selection of the optimal threshold level. 

4 4  



Building on the actual parameter analysis, a similar 
approach for determining strength among global variables 
is used. Issues related to the global variables, including 
aliasing, were resolved. After the determination of the 
attributes, the method component for an object is 
determined. We use a state change approach to attach 
methods to objects. In order to derive the state change 
information needed, we modified the concept of program 
slicing from its original definition in Weiser’s paper [7]. 
We perform slicing for each attribute set on a subset of the 
subroutines and the resultant set becomes a method in the 
corresponding object. 

The result of applying these algorithms is a set of 
candidate objects. Class abstractions need to be defined 
over this set to take advantage of the abstraction and 
inheritance features of object orientation. We have only 
begun to investigate the class abstraction process. 
Enhancement of the class abstraction methods is a part of 
our ongoing work. 

33.  JAWUS (A) CASE STUDY 

The objective of the case study was to re-engineer an 
object-oriented architecture for the Janus(A) legacy 
system. The first step in our process, system and 
requirements understanding, took the form of a series of 
brief meetings with the client, TRAC-Monterey, which 
also included a short demonstration of the current 
software system. We asked questions and made notes on 
the system’s operation and its current functionality. We 
paid particular attention to the client’s view of the system 
to gather their ideas on its strengths, weaknesses, and 
desired and undesired functionality. Additionally we 
collected copies of the Janus User’s Tutorial manual, 
Janus User Manual, the Software Design Manual from a 
previous version of Janus (3.X/UNIX), and the Janus 
Version 6.88 Release Notes. Our goal was to gather as 
much information as we could about the currently existing 
system to aid in gaining a clearer understanding of its 
present functionality. The intent of this procedure was to 
ensure that the system’s current functionality was not lost 
nor misrepresented in the transformation into a more 
abstract, modular format, and to identify aspects of current 
system functionality that did not match user needs. 

The focus of the re-engineering effort was to 
abstractly capture the system’s knctionality and then 
produce system models that would most accurately 
represent that functionality, while factoring out 
independent concerns and aspects that were likely to 
change. 

Armed with the Janus source code, we proceeded to 
divide the code by directories amongst the team members. 
Each team member was assigned roughly six to seven 
directories to explore, examine and gather information. 
Using manual techniques supported by UNIX commands 

and review procedures, we were able to get a fairly good 
idea of what each subroutine was designed to do. We also 
used the Software Programmers’ Manual to aid in 
understanding each subroutine’s intended function. In 
doing so we were able to group the subroutines by 
functionality to get a better understanding of the major 
data flows between programs. 

Using that knowledge, we developed functional 
models from the data flows. We used an automated tool 
known as CAPS [3], Computer-Aided Prototyping 
Systems, version 2.0, developed by Professor Luqi and the 
Software Engineering group at the Naval Postgraduate 
School, to assist in developing the abstract models. CAPS 

,allowed us to rapidly graph the gathered data and 
transform it into a more readable and usable format. 
Additionally, CAPS enabled us to develop our diagrams 
separately with the associated information flows and 
stream definitions, and then join them together under the 
CAPS environment, where they can be used to generate an 
executable model of the architecture. 

Next, we proceeded to develop object models of the 
Janus System using the aforementioned materials and 
products, to create the modules and associations amongst 
them. This was probably the most difficult and most 
important step. It required a great deal of analysis and 
focus to transform the currently scattered sets of data and 
functions into small, coherent and realizable objects, each 
with its own attributes and operations. In performing this 
step, we used our knowledge of object-oriented analysis 
and applied the OMT techniques and the UML notations 
to create the classes and associated attributes and 
operations. This was a crucial step because we had to 
ensure that the classes we created accurately represented 
the functions and procedures currently in the software. 
We used the HP-UNIX systems at the TRAC-Monterey 
facility to run the Janus simulation software to aid in 
verifying and/or supplementing the information we 
obtained from reviewing the source code and 
documentation. This step enabled us to better analyze the 
simulation system, gaining insight into its functionality 
and further concentrate on module definition and 
refinement. 

During this phase of the project, the re-engineering 
team met several times each week for a period of two and 
a half months to discuss the object models for the Janus 
core elements and the object-oriented architecture for the 
Janus System. They presented the findings to the Janus 
domain experts from TRAC-Monterey and RoIands & 
Associates at least once per week to get feedback on the 
models and architectures being constructed. In addition, 
the re-engineering team also presented the findings to 
members of the OneSAF project, the Combat21 project, 
and the National Simulation Center. Based on the 
feedback from the domain experts, the re-engineering 
team revised the object models for the Janus core elements 
and developed a 3-tier object-oriented architecture for the 

45  



Janus System. This revision required creative human 
effort, as described next. 

We used our approach to reuse the information 
extracted from the old system. The most important type of 
reuse was reuse of implicit domain models. We reused the 
domain analysis and knowledge since the domain was 
stable across the re-engineering transformations. This 
greatly reduced the time and effort that rieeded be spent on 
domain related work, such as the analysis of the domain 
dependent functions. Second was reuse of implementation 
concepts. This kind of reuse included the user 
functionalities, functional abstraction, task flow, and user 
interface specifications. Third was the reuse of data 
models. The reuse of data models was very helpful to re- 
organize the data information although we needed to 
transform the old data structures into new data structures. 
Fourth was the reuse of algorithms. The code could not be 
reused directly because it had to be transformed into 
another language (Ada). However, the main algorithms 
were the same - we did not need to redesign the 
algorithms, we just rewrote them in new languages. 

The new architecture of Janus uses an explicit priority 
queue of event objects to schedule the simulation events. 
Each event object has an associated simulation object, 
which is the target of the event. There are 14 event groups, 
which correspond to the 14 event subclasses. An object 
oriented approach enabled us to reduce the number of 
event types needed in the simulation, compared to the 
legacy code. Depending on the subclass to which an event 
object belongs, the "execute" method will invoke the 
corresponding event handler of the associated simulation 
object to handle the event. The simulation object 
superclass defines the interface of the event handlers for 
the event groups, and provides an empty body as the 
default implementation for the event handlers. The 
methods are overridden by the actual event handler code 
at the subclasses that have non-empty actions associated 
with the events. 

This approach enables the same code to handle all 
kinds of events, including those for future extensions that 
are yet to be designed. Event objects are created and 
inserted into the event queue either by the initialization 
procedure at the beginning of the simulation, by the 
constructors of simulation objects, or by the actions of 
other event handlers. Depending on the actual 
implementation of when and how events are inserted into 
the priority event queue, it may be necessary to allow 
events to change their priorities while waiting in the 
queue. The priority of an event is determined by the time 
at which the event is supposed to occur, and by event type 
in case more than one event is scheduled at the same time. 

One of the objectives of the reengineering effort was 
to add the capability for a Janus simulation to interact with 
other simulations in a distributed environment. To 
accomplish this, World Model object subclasses were 

created to provide specialized methods for the world 
modeler to update objects from other simulators. 
Information concerning objects local to the Janus 
simulator can be broadcast over the simulation network, 
either periodically by an active world modeler object, or 
by individual local objects whenever they update their 
own states. 

3.4. EVALUATIOX OF RESULTS 

We tested our methods for identifying objects on a set 
of programs ranging from 500 lines of code to 10,000 
lines of code. As a part of our test bed, we used programs 
from the Janus (A) which were developed by DoD. Our 
test protocol was to begin the testins process with small 
programs so that the dependency and slicing information 
could be validated manually. The testing strategy was to 
choose test programs that exhibit different code 
characteristics, particularly related to the use of global 
variables. We were able to manually verify the accuracy 
of the extraction routines on small systems. 

We then applied the methodology to medium-sized 
programs and evaluated the results. Our evaluation 
process included the identification of a set of metrics 
against which to measure the designs. Metrics in the 
reverse engineering area are sparse. We adopted the 
approach of measuring our success using the following 
three metrics: 

M. I Fimctional equivalence of new+ created and original 
designs. 
M.2 Quality of newh created design. 
M 3  Reuse rate of the originnlprogram. 

M.1 Functional equivalence of newly created and 
original designs 

The design of a program S1 is functionally equivalent to 
the design of program S2 if when they are executed with 
identical inputs, they produce identical outputs. This is a 
critical measure. To assess the functional equivalence of 
our abstracted designs, we implemented the designs in an 
object-oriented environment and then ran test cases on the 
new and the old systems. Based on our test cases, the test 
systems were functionally equivalent. 

M.2 Quality of new designs 

Our view of a significant metric is the quality of the 
resulting design; however, measuring quality is far from 
straightforward. We based our findings in this area on the 
traditional view of design quality in terms of 
modifiability, modularity, levels of abstraction, loose 
coupling, and high cohesion [30]. We also considered 
metrics that have been derived specifically for object- 
oriented designs, including depth of inheritance tree 
(DIT), number of children (NOC), response for a class 

4 6  



(RFC), and lack of cohesion in methods (LCOM) [31]. 
Coupling can be measured by DIT and NOC; cohesion 
can be measured by LCOM; abstraction measured by DIT 
and NOC; modifiability can be measured by RFC and 
LCOM; and modularity measured by DIT and NOC. 

For our case studies, we found low measures for both 
DIT and NOC which is expected based on the 
conservative view of creating the subclasses, medium 
measure for RFC due to global variable usage, low LCOM 
because the methodology insures cohesion in the creation 
of the objects. Thus, the designs were low on coupling, 
high on cohesion, and generally good on modifiability. 

h1.3 Reuse rate of orginal program 

Reuse rate of the program is measured by the percent of 
the progam that is actually utilized in the extraction 
process. If reuse rate is not loo%, one of two cases 
occurs: 1) some of the system finctionality may not be 
preserved, or 2) statements not extracted represent dead 
code. However, 100% reuse rate does not imply functional 
equivalence, and vice versa. The reuse rate for our test 
programs was in all cases greater than 40%. This measure 
gives another perspective from which to assess the quality 
of the newly created design abstractions. 

4. CONCLUSION 

Successful re-engineering requires a delicate balance 
between creative concepts for requirements enhancement 
and computer aid. Bottom-up tools can help guide this 
creative process and help to ensure its accuracy. 

Our experience in this case study suggests that 
prototyping and reuse can be a valuable aid in re- 
engineering of legacy systems, particularly in cases where 
radical changes to system conceptualization and software 
structure are needed. 

In particular, we found that constructing even a very 
thin skeletal instance of the proposed new architecture 
raised many issues and enabled us to correct, complete, 
and optimize the architecture for both simplicity and 
performance. 

The computer-aided prototyping tools in the CAPS 
system enabled us to do this with a minimal amount of 
coding effort. The bulk of the code was generated 
automatically, enabling us to concentrate on system 
structuring issues, to consider and evaluate various 
alternatives, and to improve the design while doing 
detailed manual implementation for only a few pages of 
critical code. 

[ 11  Rivera, R., “Knowledge-Based Metalangauge-Based 
Object Abstraction for Automatic Program 
Transformation“, Proceedings of the 4th Systems Re- 
engineering Technologv Workshop, 1994, pp. 3 19- 
326. 

[2] Jiang Guo and Luqi, “Object Modeling to Re- 
engineering Legacy Systems”, Proceedings ofthe I I” 
International Conference on Sofmare Engineering 
and Knowledge Engineering, Kaiserslautem, 
Germany, June 1999, pp. 346-353. 

131 Luqi, “Computer-Aided Prototyping - Status and 
Experiments“, Proceedings of International 
Symposiirm and Workshop on New Models for 
Soffivare Archirectirre, Kanazawa, Japan, Nov. 8, 

141 Luqi, “Sofhvare Evolution via Rapid Prototyping”, 
IEEE Computer, vol. 22, no. 5, May 1989, pp. 13-25. 

[5] Dijsktra, E. W., A Discipline of Programming 
Prentice Hall, 1976. 

[6] Boehm, C and Jacopii, G., “Flow Diagrams, Turing 
Machines, and Languages with only Two Formation 
Rules”, Communications of the ACM, vol. 9, no. 5, 
May, 1966, pp. 366-371. 

[7] Weiser, M., “Program Slicing”, IEEE Transactions 
on Sofhare Engineering, vol. SE-b, No.4, July, 1984, 
pp. 352-357. 

[S] Zimmer, J. A., “Restmcturing for Style”, Software 
Practice and Experiend, vol. 20, no. 4, 1990, pp.365- 
389. 

[9] Gannod, G. C. and Cheng, B. H. C., “A Two-Phase 
Approach to Reverse Engineering Using Formal 
Methods”, Proceedings of Formal Methods in 
Programming and Applications Conference, June, 
1993, pp. 335-348. 

[lo] Sward, R. E., and Steigenvald, R. A., “Issues in 
Reengincering from Procedural to Object-Oriented 
Code”, Proc. 41h Systems Re-engineering Technology 
Workshop”, 1991, pp. 327-333. 

[l 11 Holtzblatt, L. J., Piazza, R. L., Reubenstein, H. B., 
Roberts, S., and Hams, D. R., “Design Recovery for 
Distributed Systems”, IEEE Transactions on Software 
Engineering, vol. 23, no. 7, July, 1997, pp. 461 - 472. 

[12] Ong, C. L. and Tsai, W. T., “Class and Object 
Extraction from Imperative Code”, Journal of Object- 
Oriented Programming, April, 1993, pp. 58-68. 

[ 131 Blazy, Snadrine, and Facon, P., “Partial Evaluation 
as an Aid to the Comprehension of FORTRAN 
Programs”, .Proceedings of 2nd Workshop on 
Program Comprehension, 1993, pp. 46-54. 

[ 141 Wilkening D, Loayll, E., Pitarys, M, and Littlejohn, 
K., “A Reuse Approach to Computer-Assisted 
Software Re-engineering,” Proceedings of the 
Systems Re-engineering Technology Workshop. 1994, 

1993, pp. 23-30. 

pp. 83-90. 

REFERENCES 

47 



[ 151 Lano, K. and Haughton, H., “Integrating Formal and 
Structured Methods in Reverse Engineering”, 
Proceedings of the Working Conference on Reverse 
Engineering, Baltimore, MD. May, 1993, pp. 17-26. 

[I61 Bowen, J. P., and Hanchey, Michael G., “Ten 
Commandments of Formal Methods”, IEEE 
Computer, April 1995, pp. 56-63. 

[I71 Leite, J.C., Sant, M., and Prado, A., “Porting 
COBOL Programs Using a Transformational 
Approach”, Joirrnal of Soflware Maintenance, vol. 9, 
no. 1, 1997, pp. 3-30. 

[I81 Edwards, H. and Munro, M., “RECAST: Reverse 
Engineering from COBOL to SSADM 
Specifications”, Proceedings of 5th Int. Conference 
on Software Engineering, pp. 499-508. 

[I91 Ward, M. P., and Bennett, K. H., “A Practical 
Program Transformation System for Reverse 
Engineering”, Proceedings of Working Conference on 
Reverse Engineering, 1992, pp. 212-221. 

1201 Gannod, G. C. and Cheng, B.H.C, “Using Informal 
and Formal Techniques for the Reverse Engineering 
of C Programs”, Proc. 3rd Working Conference on 
Reverse Engineering, 1996, pp. 249-258. 

[21] Choi, S. C. and Scacchi, W., “Extracting and 
Restructuring the Design of Large Systems”, IEEE 
Sofiware, January, 1990, pp. 66-73. 

[22] Canfora, G., Citile, A. and Munro, M., “A Reverse 
Engineering Method for Identifying Reusable 
Abstract Data Types”, Proceedings of the Working 
Conference on Reverse Engineering, May, 1993, pp. 

[23] Cutillo, F., Fiore, P and Visaggio, G., “Identification 
and Extraction of Domain Independent Components 

73-82. 

in Large Programs”, Proceedings of Working 
Conference on Reverse Engineering, 1993, pp. 83-92. 

[24] Rich, C. and Wills, L., “Recognizing a Program’s 
Design: A Graph-Parsing Approach”, IEEE Sofmare, 
Jan. 1990, pp. 82-90. 

[25] Ning, J. Q.. Engberts, A. and Kozaczynski, W., 
Recovering Reusable Components from Legacy 
Systgems by Program Segmentation”, Proceedings of 
Working Conference on Reverse Engineering, 1993, 

[26] Ning J. Q., Engberts, A., and Kozaczynski, W., 
“Automated Support for Legacy Code 
Understanding”, Cornrnirnications of the ACM, vol. 
37, no. 5, May, 1994, pp. 50-57. 

[27] Liu, Sying-Syang and Wilde, N., “Identifying 
Objects in a Conventional Procedural Language: An 
Example of Data Design Recovery”, Proc. 1990 
Conference on Sofbvare Maintenance, pp. 266-27 1. 

[28] Hauler, Phillip A. and Pleszkock, Mark G., “Using 
Function Abstraction to Understand Program 
Behavior”, IEEE Sofmare. Jan. 1990, pp. 55-64. 

[29] Markosian, Lawrence, Newcomb, P. Brand, R., 
Burson, S. and Kitzmiller, T., “Using an Enabling 
Technology to Reengineer Legacy Systems”, 
Cornrnirnications of the ACIM. vol. 37, no. 5, May, 

[30] Achee, B. L. and Carver, D. L., “Creating Object- 
Oriented Designs From Legacy Code”, Jozirnal of 
Systems and Sofiware. February 1997, pp. 30-41. 

Suite for Object-Oriented Design”, IEEE 
Transactions on Sofiware Engineering, vol. 20, no. 6, 
June, 1991. 

pp. 64-72. 

1994, pp. 58-70. 

[3 I] Chidamber, S. R., and Kemerer, C. F., “A Metrics 

48 



A Survey of Software Reuse Repositories* 

Jiang Guo 
Research Associate 

US National Research Council 
NPS/CS, Monterey, CA 93943, USA 

Gj@cs. nps. navy. mil 

Abstract 
Reuse libraries are orgaiiizations of personnel, 

procedirres. tools, and sofnvare components directed 
toward facilitating soffitlare component reuse to meet 
specific cost-effectiveness and productivity goals. The 
paper gives a survey of the major sofhiare reusable 
coniponent repositories. This survey will be a base to 
develop futrrre eficientb searchable, irser-fn'endly, useful, 
and wel/-organizeci repositories. 

1. Introduction 

Reuse libraries are directed toward facilitating 
software life cycle component reuse to meet cost- 
effectiveness and productivity goals [ I]. The principal 
rationale for the existence of a reuse library is to provide 
ready access to reusable components by the staff of 
development and maintenance organizations, and to 
support system composition and rapid prototyping [2, 31. 
The number of cases in which library systems are 
successhlly being used to maintain code and other 
reusable sofware life cycle components continues to 
increase. It is essential that the library system support 
deveiopers and other users in the process of locating, 
retrieving, comparing, and maintaining reusable software 
components. 

Reuse libraries are only one critical element of 
successhl reuse program. In the past, reuse has primarily 
been the result of opportunistic success, where one 
program was able to take advantage of the efforts of 
another. There must be a paradigm shift from current 
software engineering and development practices to a 
sofnvare engineering process in which software reuse is 
institutionalized and becomes an inseparable part of the 
sofnvare development process. Reuse must be systematic, 
driven by a demand for sofhvare components identified as 
a result of domain analysis and architecture development. 
Reuse needs to be treated as an integral part of engineering 
and acquisition activities. Most importantly, it is essential 
that an organizational infrastructure be implemented to 

Luqi 
Department of Computer Science .. 

US Naval Postgraduate School 
Monterey, CA 93943, USA 

Luqi@cs.nps.navy.mil 

manage domains, define products and standards, establish 
ownership criteria, allocate investment resources, and 
direct the establishment and population of reuse libraries. 
An effective infrastructure will guide reuse activities to 
avoid duplication of effort, impose necessary 
standardization, and ensure library population is user 
demand-driven. 

2. Library Mechanism 

Usually, critical reuse library capabilities include the 
following: 
- automated library system with a Graphical User 

Interface, for browsing, searching and retrieval; 
- standard component framework (e.g., to include 

purpose, finctional description, certification level, key 
environmental constraints, historical results of usage 
and legal restrictions); 

- effective classification scheme for each domain; and, 
- thorough system and component documentation. 

Each library system must be designed to provide as 
much automated support as possible to users in 
identification, comparison, evaluation, and retrieval of 
similar reusable components. Support for adapting, 
transforming, and specializing components is desirable. It 
must .also provide a range of support to users in locating 
and comparing the relative reusability of individual library 
components. Furthermore, the system must be readily 
available to system developers if it is to be used, and must 
support access from a variety of platforms. As the library 
acquires significant number of Reusable Software 
Components (RSCs), an automated search and retrieval 
system becomes indispensable [4, 5 ,  61. Whatever tool is 
used, the library must have a way to classify RSCs so that 
a user can quickly find what is wanted without frustration 
and delay. Sophisticated, expert system, knowledge-based 
approaches and new technologies for high-speed text 
search are the subjects of current research efforts. . 
Generally speaking, software reusable component retrieval 

This research was supported by ARO(38690-MA) and DARPA(99-F759). 
49 



methods include browsing, keyword searching, facet 
approach, syntactic matching, and semantic matching [ 13. 

Standard component frameworks help ease the 
process of comprehension and comparison of similar 
components, and include data such as relative numeric 
measures for reusability, reliability, maintainability and 
portability [7]. Inclusion of testing and component 
documentation provides additional information to help the 
potential user gauge the effort required to tailor the 
component for reuse. 

Effective classification schemes are essential to assist 
the user in locating and comparing library components, 
and to speed the process of identifying appropriate 
components for the task at hand [8, 93. Finally, system and 
component documentation complete the cycle of 
evaluation, and enable the reuser to determine which 
components have reuse potential with regard to specific 
requirements, and to hlly comprehend the process of 
obtaining components for reuse in a new application. 

In addition, other equally important requirements have 
been identified that require resolution in order to support 
cohesive, wide reuse. These include 1) integration of 
library capabilities and procedures within the system 
development and acquisition process; 2) identification and 
support of specific requirements associated with the 
security and integrity of reusable components 
implementing Trusted Computing Base (TCB) or other 
security capabilities; and 3) intercommunication and 
interoperabllity among diverse library systems. Experience 
has shown that these requirements can only be resolved 
through the combination of developing technology, 
standard procedures and evolution or revision of existing 
policies. 

There are different communities for which a 
repository is necessary, and each community has 
somewhat different repository requirements. These 
communities include the national or horizontal 
communities; the local or, internal communities, and a 
number of domain-specific vertical communities [ 101. 

3. Library Operation 

The reuse library, while essential, is but one 
ingredient in a successful reuse program. Experience has 
shown that actual support of reuse activities within a target 
domain must include a range of programmatic and 
technological support that includes domain analysis 
activities, user indoctrination and training, metrics 
collection and analysis, reuse engineering support, and 
component certification and reengineering. 

The importance of domain analysis activities as an 
initial step in implementation of a reuse library cannot be 
over-emphasized. Domain analysis activities are 
considered to be an integral part of providing reuse support 
to various programs. Standard products of domain analysis 
include identification of high-demand categories of 

reusable Components, domain-specific models and 
architectures, and domain specifications and taxonomies. 
These direct products also provide the basis for 
development of long-term implementation plans and 
domain knowledge bases. 

In order to measure reuse success, the library must 
collect and analyze considerable data in a continuing 
assessment of the library's procedures and tools, the 
usehlness of its RSC collection, the accuracy of RSC 
classifications, and the general responsiveness of the 
library to the needs of users. 

The library staff receives direction in the form of 
specific operational objectives, principally aimed at 
making sofnvare reuse cost-effective. In addition to 
ensuring that RSCs are available, the library is in a 
position to provide other support to help ensure that the 
benefits of reuse are realized, including the distribution of 
published manuals like Standards and Guidelines and user 
documentation for library tools. In addition, on-call 
assistance should be made available to users. Reuse 
engineering support encompasses a wide range of 
engineering activity. These activities will include working 
within individual system development and maintenance 
efforts to assist in (1) identification, selection and 
reapplicatlon of existing reusable sofhvare components, 
(2) quantification of potential savings or cost avoidance as 
a result of reuse, and (3) design and implementation of 
software products that will themselves be reusable in 
future efforts. 

Another key area is thorough library system 
documents. Documentation has proven to be an essential 
aspect in establishing and operating a library. 

4. Some Reusable Software Component 
Repositories 

4.1. Commercial Repositories 

0 +lReuse Repository 

The +lReuse system was developed by +1 Software 
Engineering Co. in California [31]. I t  is now running on 
Sun Workstation platforms. Operating system is Solaris. 
GUI is based on OpenWindows, Motif, and CDE. 

The +1 Reuse system supports reuse repositories 
created and maintained by the user, project-wide 'lfiltered" 
repositories under strict quality controls, and selective 
reuse. Selective reuse enables reuse of any submodel from 
an existing or re-engineered +IEnvironment project. In a 
sense, every +lEnvironment project is a reuse library. 
Selective reuse significantly improves a user's ability to 
reuse all source code and documentation from all previous 
projects and at any granularity. (To the best of our 
knowledge, they are the only company to support this 
feature.) 

50 



The +lReuse system supports reuse of: design, 
documentation, source code, header files, test cases, test 
shell scripts, expected test results, and modeling 
information. 

All source code reversed engineered or developed 
using the +lEnvironment can be reused. +lReuse 
addresses reuse issues such as reuse of source code under 
configuration management and duplicate file names. 
+I  Reuse supports three forms of reuse: User-Defined 
Reuse Library, Filtered Reuse Library, and Selective 
Reuse. Since a programmer‘s productivity can be increased 
by reusing existing code and documentation, +lReuse 
helps to make all source code, documentation, header files, 
and test files reusable by its support of submodels. After a 
submodel has been selected, + 1 Reuse copies the submodel 
and its associated files to the new project and helps to 
resolve a number of problems which may arise (e.g., 
identical file names and files checked in under 
configuration management). 

Software Asset Library Management System 
(SALMS) 

SALMS is a system for classifying, describing, and 
querying reusable assets [32]. Reuse of software assets at 
all phases of the software engineering life-cycle is 
recognized as being one of the major enablers for 
productivity and quality improvements. However, a 
common inhibitor to company-wide reuse is often the lack 
of visibility of reusable assets within the developer 
community. 

A central repository for reusable assets provides a 
solution to this problem. The main purpose of such 
repository is to provide mechanisms for classification and 
storage of software assets, along with techniques for 
efficiently retrieving them. 

SALMS (Software Asset Library Management 
System) is a software product which provide these 
mechanisms. It fills the gap between development for- 
reuse activities (building, acquiring, or re-engineering of 
reusable assets) and the development with-reuse activities 
(using reusable assets in the creation of new software 
products). It plays a central role in the implementation of a 
company’s reuse program. 

In addition, SALMS also provides features for the 
requirement management activity, and for the creation and 
management of a company’s technical library. SALMS can 
be distributed over customer’s network of PCs or UNIX 
workstations and thus be accessible by all developers 
within a software organization. The user interface is based 
on WEB Technology. 

In SALMS, an asset can be viewed as a collection of 
artifacts produced throughout the life-cycle, such as 
requirements, architecture models, design specifications, 
source code, or test scripts. 

0 Automated Software Reuse Repository (ASRR) 

The Automated Software Reuse Repository (ASRR) 
tool provides users with a searchable repository of reuse 
information [33]. It consists of two main parts, the 
administration tool and the reuse repository. The 
administration portion of the tool performs user 
administrative functionality including: the ability to add, 
delete, or change users and their attributes. The attributes 
include the following: security levels, group and security 
permissions to add, edit and delete modules. The reuse 
repository allows the user to upload modules and store 
them in a searchable repository. 

The ASRR provides the following functions: 
Program Control. Provides complete login control for 
the ASRR. 
Protection. The ASRR can limit a user’s edit, delete, 
viewing, add, upload and download module 
permissions through the administration portion of the 
tool. 
Security. The ASRR tool provides extra security for 
inactive users by logging them out of the ASRR after 
a 30-minute period of inactivity. 
Easy Access to Reuse Items. The ASRR tool allows 
registered users flexibility in searching for reuse items 
in the reuse repository by allowing the users to search 
for strings of words using “not”, “or”, or “and” in 
searching. 
Reuse Information Readily Available for Users. 
Specific information is available for reuse module 
items including the platforms utilized, ease of reuse 
and any additional information obtained from users. 

The Universal Repository 

The Universal Repository was developed by Unisys 
[34]. It is designed to help customers move forward into a 
repository-based development environment. 

The Universal Repository, which is based on object- 
oriented principles, can function as the backbone of a 
flexible workgroup or enterprise development 
environment. At the core of this repository is the 
Repository Services Model (RSM) - which can encompass 
representations of all tools, database management systems 
(DBMSs), programming languages, business rules, and 
data. 

Customers can extend the Universal Repository by 
adding their own models based on the structures provided 
in the RSM. The summation of all models defined in a 
repository is called the information model. Each part of 
customers’ development environment becomes an 
integrated piece of the whole when customers use the 
models encompassed within the information model. This 
unified view enables both developers and customers to 
achieve inter-tool integration. 

51 



In addition to its modeling capabilities, the Universal 
Repository offers features that enhance customers' 
development environment, manage organizational 
information, and make such information available to 
everyone in a customers' organization. 

Unisys is dedicated to improving customers' product 
lines with the Universal Repository. Support and training 
are available to help customers quickly adopt this new 
technology. By providing a shared catalog of all software 
components, a repository promotes reuse. It makes it easy 
to locate and access components for reuse in multiple 
applications. Reusing software components can enhance 
quality. Customers can develop, validate, and verify a 
component for use in one product. When customers reuse 
that component, they expend less time and fewer resources 
to validate and verify that component for use in other 
products [I I]. A single change to correct a defect in a 
reused component is reflected in all tools using that 
component. Such consistency among products ensures 
their integration and interoperability when you port them 
to different operating platforms. 

~ 

AIRS 

AIRS is an AI-based library system for sofhvare 
reuse, which was developed by E.J. Ostertag, J.A. Hendler, 
R. Prieto-Diaz, C. Braun [12]. AIRS allows a developer to 
browse a software library in search of components that 
best meet some stated requirement. A component is 
described by a set of (feature,tenn) pairs. A feature 
represents a classification criterion, and is defined by a set 
of related terms [lo, 123. AIRS also allows representation 
of packages, that is, logical units that group a set of related 
components. As with components, packages are described 
in terms of features. Unlike components, a package 
description includes a set of member components. 
Candidate reuse components (and packages) are selected 
from the library based on the degree of similarity between 
their descriptions and a given target description [ 131. 
Similarity is quantified by a non-negative magnitude 
(called distance) that represents the expected effort 
required to obtain the target given a candidate. Distances 
are computed by hnctions called comparators. Three such 
functions are presented: subsumption, closeness, and 
package comparators. The AIRS classification approach is 
based on a formalization of the concepts and is similar to 
faceted classification [44]. The functionality of a prototype 
implementation of the AIRS system is illustrated by 
application to two different software libraries: a set of Ada 
packages for data structure manipulation, and a set of C 
components for use in Command, Control, and 
Information Systems. 

Reuse Library Toolset (RLT) 

EVB Software Engineering, Inc. announced the 
commercial release of the Reuse Library Toolset (RLT) in 
1994 [35]. RLT is a system for creating and managing 
collections of reusable assets independent of programming 
language, design method, or development process. To 
represent all life-cycle assets l U T  employs the Extended 
Faceted Classification System, controlled keyword, 
attribute value (frames), and asset interdependencies. 

Experience has shown that the cost of producing 
software is significantly reduced when reuse is an integral 
part of the process. RLT supports all reuse oriented tasks, 
from library management through domain analysis to asset 
search and retrieval. With its intuitive graphical user 
interface, RLT is easy for beginners to learn, yet provides 
powerful functionality for advanced users with complex 
needs. 

RLT provides reuse and library metrics, client-server 
architecture, and ability to exchange library information 
across multiple platforms and databases. These include: 
DEC Alpha OSFI, HPKJX, SGI, SunOS, Solaris, 
Informix, Oracle, and Sybase. Additional platforms have 
been supported in 1995 include: Windows 3.1/NT and 
OS/2. 

RLT's open architecture allows easy integration with 
existing CASE and development tools, such as structure 
design tools, versioning systems and configuration 
management systems. 

0 HSTX Reuse Repository 

The HSTX Reuse Repository was developed by 
Hughes STX Corporation [36]. The mechanisms are 
designed so users can searchhrowse the contents of the 
Reuse Repository for what they need and submit 
contributions to the Reuse Repository librarian through 
WWW pages. 

4.2. Government Repositories 

Defense Software Repository System @SRS) 

The DSRS is an automated repository for storing and 
retrieving Reusable Software Assets (RSAs) [14]. The 
DSRS software now manages inventories of reusable 
assets at seven software reuse support centers (SRSCs). 
The DSRS serves as a central collection point for quality 
RSAs, and facilitates software reuse by offering 
developers the opportunity to match their requirements 
with existing software products. 

DSRS accounts are available for Government 
employees and contractor personnel currently supporting 
Government projects. The Account Request Form must be 
approved and signed by the requestor's Government 
Project Manager prior to submission to the SRP. The 
Customer Assistance Office (CAO) is the SRP point cf 

5 2  



contact for both technical and non-technical information 
and support. 

The Defense Software Repository System (DSRS) 
supports reusable asset classification to comply with 
published guidance (DoD 8020.1-M and TAFIM), support 
domain engineering, establish more effective asset 
searching, and increase interoperability. The DoD software 
community is trying to change its sofhvare engineering 
model from its current software cycle to a process-driven, 
domain-specific, architecture-based, repository-assisted 
way of constructing software [IS]. In this changing 
environment, the DSRS has the highest potential to 
become the DoD standard reuse repository because it is the 
only existing deployed, operational repository with 
multiple interoperable locations across DoD. Seven DSRS 
locations support nearly 1,000 users and list nearly 9,000 
reusable assets. The DISA DSRS alone lists 3,880 reusable 
assets and has 400 user accounts. 

DSRS is adaptable to additional types of reusable 
assets and better methods of describing them. The 
description of repository assets is called classification. 
This paper reports the results and recommendations of a 
study of classification methods for storage and retrieval of 
Reusable Assets (RAS) in the DSRS. The Defense 
Software Repository System (DSRS) reusable asset 
classification is changing to achieve policy compliance, 
support domain engineering, establish more effective asset 
searching, and increase interoperability. 

The far-term strategy of the DSRS is to support a 
virtual repository. These interconnected repositories will 
provide the ability to locate and share reusable components 
across domains and among the services. An effective and 
evolving DSRS is a central requirement to the success of 
the DoD software reuse initiative. Evolving DoD 
repository requirements demand that DISA continue to 
have an operational DSRS site to support testing in an 
actual repository operation and to support DoD users. The 
classification process for the DSRS is a basic technology 
for providing customer support [ 161. This process is the 
first step in making reusable assets available for 
implementing the functional and technical migration 
strategies. 

0 Library Interoperability Demonstration (LID) 

The Library Interoperability Demonstration (LID) is a 
prototype library system [17, 181. It is used to illustrate 
how monolithic reuse libraries can be decomposed into 
distinct, functional layers connected by open interfaces, 
such as those specified by Asset Library Open 
Architecture Framework (ALOAF). It is a collaboration 
between SAIC and Unisys. The demonstration shows how 
the physical storage of assets can be separated from the 
cataloging of assets, and how a user can choose a single, 
local, user interface tool to access multiple reuse libraries. 

The STARS Program developed a specification of an 
ALOAF to support an "open systems'' approach to 
constructing asset libraries. The ALOAF evolved to 
incorporate interfaces specifically intended for 
interoperability, culminating in the release of ALOAF 
Version 1.2 [ 191. The LID builds upon the open interfaces 
provided by ALOAF, its associated Asset Interchange 
Language (AIL), PCTE, OSFMotif, and POSIX. As 
shown in the LID Software Architecture diagram, a reuse 
library can be divided into three distinct layers which are 
connected via open interfaces, thus providing opportunities 
for interoperability at each layer. The three layers are: 
- User Interfaces. The demonstration includes two user 

interface tools: a graphical browser derived from the 
Unisys Reuse Library Framework (RLF) and a text- 
based browser modeled after SPS's InQuisiX reuse 
library system. Both tools are built upon Ada bindings 
to OSF/Motif. 
Asset Catalogs. The demonstration shows two asset 
catalogs. The first catalog is derived from the Unisys 
collection of ASW components, and resides on an 
IBM RISC Systed6000 at the STARS Technology 
Center. The second catalog is derived from SAIC's 
collection of flight simulator components, and resides 
on an IBM RISC Systed6000 at the SAIC offices in 
Orlando, FL. The interface between each of the 
catalogs and the user interface tools is defined by the 
ALOAF. 
Asset Storage. In the demonstration, the storage of 
assets is provided by the AFS cell at the STARS 
Technology Center. Neither catalog stores assets 
itself; instead, both catalogs "subcontract" the storage 
finction to the AFS server. 

- 

- 

0 Integrated - Computer Aided Software 
Engineering (I-CASE) 

I-CASE was developed by Air Force Reuse Center 
(AFRC) [38]. The Air Force Reuse Center is the Air Force 
Management Information Systems (MIS) repository for 
reusable software assets. These assets are primarily Ada 
source code modules consisting of Government and 
commercial packages. The library has over 1,200 assets 
including many assets of the system life-cycle, such as 
requirements, designs, documentation and source code. 
Integrated Computer-Aided Software Engineering (I- 
CASE) provides a contract for DoD users to purchase an 
integrated set of tools that will automate many of the MIS 
software development activities over the entire sofnvare 
development and maintenance life-cycle. I-CASE also 
provides the support elements necessary to implement, 
operate, and maintain the I-CASE environment (i.e., 
training, maintenance, and technical support). The overall 
strategy of this project is to automate reuse processes 
through an Integrated-Computer Aided Sofnvare 
Engineering (I-CASE) environment. The specific strategy 

53 



is to implement these reuse processes within a workflow 
environment to certify or re-engineer reusable assets as 
quickly as possible. The EVE3 Reuse Library Tool (RLT), 
supplied as part of I-CASE, is used as the reuse repository 
tool. 

Multimedia Oriented Repository Environment 
( M O W  

As the World Wide Web (WWW) becomes very 
popular among internet users, an increasing number of 
public repositories are using the WWW to promote their 
services. The Electronic Library Services and Applications 
(ELSA) project is the operational part of the Repository 
Based Software Engineering (RBSE) program [20]. RBSE 
is a National Aeronautics and Space Administration 
(NASA) sponsored program dedicated to introducing and 
supporting common, effective approaches to designing, 
building, and maintaining software systems by using 
existing software assets stored in a specialized library or 
repository. 

In addition to operating a software lifecycle 
repository, RBSE promotes software engineering 
technology transfer, academic and instructional support for 
reuse programs, the use of common sofhvare engineering 
standards and practices, sofhvare reuse technology 
research, and interoperability behveen reuse 
libraries/repositories. 

During its life cycle, the ELSA project responded to 
emerging technologies, the growing sophistication of its 
client base, and industry trends by advancing the 
capabilities of its management software. Thus, ELSA 
stands as a customer-driven environment employing an 
advanced library management mechanism, MORE 
(Multimedia Oriented Repository Environment). 

ELSA replaced AdaNet on August 3 1 , 1993 when the 
first public access to its new service was granted. The 
library is the operational part of the Repository Based 
Software Engineering (RBSE) program which is a NASA 
sponsored initiative in software reuse. In a timeframe of 
approximately two weeks, ELSA transitioned its library 
holdings and accompanying metadata from a monolithic 
X-Windows based system to MORE. The improved 
interface employs client'server technology and is 
accessible through the WWW. MORE is a public domain, 
metadata based repository tool employing the WWW as its 
sole user interface. It consists of a set of application 
programs which operate together with a stock httpd server 
to provide access to a database of metadata [21]. The 
entire interface, client browsing and searching, repository 
definition, data entry and other administrative functions, 
are provided through stock Web clients. 

Repository assets are classified using a collection 
(topic) and class (type) paradigm. According to their 
subject matter, they are included in the collections or 
subordinate collections that best represent domain 

coverage. The assets are also classified by media or 
information type through the class approach. Thus, users 
can view the information from a top-down perspective 
through the hierarchy of collections or across collections 
by the hierarchy of classes. 

MORE was designed to support this collection and 
class model. Navigation is achieved through the activation 
of high-level hypertext links which ultimately lead to 
metadata or assets themselves. Searching (Natural 
Language or Pattern Match) is performed against 
information provided in the metadata [22, 23, 241. This 
combination provides users with a reliable and efficient 
means of accessing a high volume of assets. 

Administrative hnctions are specifically designed to 
meet librarians' needs. For instance, assets are stored in 
"developmental" mode which provides a cleanroom 
environment for the performance of population andor 
certification activities. Developmental assets are only 
available for viewing by librarians. Following the 
completion of these processes, each asset is promoted to 
"production" mode and is therefore accessible to the 
general user population. 

Each collection can have one or more groups 
associated with it that are authorized to access the assets 
and subcollections making up the collection. Groups in 
turn are made up of sets of users and other groups; all 
defined through the librarian interface. Users not 
transitively a member of a designated group for a given 
collection will never see the collection, or its contents, 
through any of the browser or search mechanisms. This 
mechanism supports the definition of multiple virtual 
repositories in a single physical repository, reducing 
administrative overhead and allowing direct sharing of 
assets. 

Asset Source for Software Engineering Technology 
(SAICIASSET) 

Asset Source for Software Engineering Technology 
(SAIUASSET) offers products and services in digital 
library support, electronic commerce and software 
engineering with an emphasis on reengineering and reuse 
[26]. SAICIASSET, established by Advanced Research 
Projects Agency (ARPA) as a subtask under the Software 
Technology for Reliable Systems (STARS) program, is 
transitioning to a private enterprise as a division of Science 
Applications International Corporation (SAIC). 

SAICIASSET's primary mission is to provide a 
distributed support system for software reuse with the 
Department of Defense (DoD) and to help foster a 
software reuse industry within the United States. 
SAIC/ASSET's initial and current focus is on sofrware 
development tools, reusable components and documents 
on sofhrare development methods. SAIC/ASSET is 
participating in interoperation with other reuse libraries 
such as: 

54 



0 Comprehensive Approach for Reusable Defense 
Sohvare (CARDS) 

0 Ada and Software Reuse Information Clearinghouse 
Defense Software Repository System (DSRS) 

0 Electronic Library Services & Applications Lobby 
(ELSA) 
The goals SAIC/ASSET are pursuing involve: 

0 Creating a focal point for software reuse information 
exchange 

0 Advancing the technology of software reuse 
0 Providing an electronic marketplace for reusable 

software products to the evolving national software 
reuse indusw. 
To achieve these goals, SAWASSET operates the 

Worldwide Software Reuse Discovery (WSRD) Library. 
The WSRD Library is populated with quality reusable 
software components which can be distributed to its 
subscribers. WSRD contains over 700 assets available to 
over 1500 users throughout the world. The library 
specializes in software lifecycle artifacts and documents 
written specifically to promote software reuse and 
development. SAIC/ASSET users have access to other 
components stored in the CARDS and DSRS reuse 
libraries. Through the WSRD, users can search, browse 
and download asset catalogs in over 30 domains. 
SAIC/ASSET's World Wide Web pages, located at 
http://source.asset.com/, describe products and services 
offered through SAIC/ASSET, as well as information 
related to software reuse. 

The Public Ada Library (PAL) 

Since 1984, the Ada Software Repository (ASR) has 
been a major, publicly available source of Ada code. Now 
called the Public Ada Library (PAL) [27], it provides more 
than 100 megabytes of programs, components, tools, 
general information, and educational materials on Ada. It 
also contains materials on the Very High Speed Integrated 
Circuit (VHSIC) Hardware Description Language 
(VHDL), which is based on Ada. 

For those with access to the Internet, the PAL can be 
accessed via the File Transfer Protocol (FTP). The PAL is 
located on the wuarchive.wustl.edu host, and on mirror 
sites at fip.cnam.fr and ftp.cdrom.com. Also, the PAL can 
be obtained on disk, tape, and compact-disk read-only 
memory (CD-ROM). 

Additionally, the PAL can be accessed by means of 
such internet services as: the Network File System (NFS), 
which allows computers to share files across a network; 
archive, a system of querying anonymous-FTP sites; and 
gopher, via gopher servers wuarchive.wustl.edu and 
gopher.wustl.edu. 

CAPS Software Reusable Component Repository 

CAPS (Computer Aided Prototyping System) is a 
research project developed by the Software Engineering 
Group led by Prof. Luqi at Naval Postgraduate School 
[39]. Initial implementation of CAPS software base was 

'first explored in 1988 [40]. An implementation of the 
software base was accomplished in 1991 by using 
ONTOS, an object oriented data base management system 
that provides an interface to C++ for customization and 
flexibility [41]. The CAPS software base is being changed 
to a software component repository since 1998 [I]. The 
CAPS component repository supports two critical 
functions, component storage and component retrieval. 
Much effort has been made to improve the component 
retrieval method [42, 431. To the best of our knowledge, 
CAPS Repository is the only one that supports profile 
matching and signature matching. It provides high 
precision and recall retrieval method at same time [I]. The 
CAPS repository is still under construction. A prototype 
has been developed to verify the performance of the 
retrieval methods [ 11. 

The Ada Library and the Reuse Library at the 
Defense Information Systems Agency (DISA) 

The Ada Library and the Reuse Library at the Defense 
Information Systems Agency (DISA) are public, non- 
lending, reference libraries for all professionals, students, 
and researchers seeking information on the Ada 
programming language and on software reuse [37]. The 
number of books and articles on Ada and on reuse grows 
daily. Also, there is a wealth of information available on 
the Internet and on the World Wide Web. Putting the Net 
together with the Ada and Reuse Libraries makes a very 
powerful research tool. 

Both Libraries collect and hold information found in 
documents, books, conference proceedings, newspaper and 
journal articles, and other multimedia material. 

The Libraries can provide assistance in bvo ways: 
helping users find publications in each library, and 
conducting on-line searches for published information 
available elsewhere. Users can access these resources in 
person, and via the Web, or they can call DISA to request 
a search. 

Over the Web, go to http://sw-eng.falls-church.va.us. 
There, click on "Library" at the main page of either the 
AdaIC or the ReuseIC. Users can search database by title, 
author, subject, or publisher. 

5. Comparison 

Commercial reusable component repositories usually 
are integrated into a CASE environment [28, 291. 
Currently, some major repositories (ASSET, PAL, and 
DSRS) begin to use web-based techniques to provide 
services. They are utilizing flat files written in HyperText 
Markup Language (HTML). Electronic Library Services 

5 5  
i 



and Applications (ELSA) has gone a step further by using Following are some comparison results for all the 
the Multimedia Oriented Repository Environment repositories listed above. 
(MORE). 

PAL 
CAPS 

Ada Library and Reuse Library (DISA) 

Retrieval Methods Features Web- Integrated into Security 
Based CASE Environment Control 

+ I  Reuse Repository Y Y Browsing 
SALMS Y Y Y Keywords 

Y Y Keywords 

Y Y Browsing and Keywords 
Y Browsing, Keywords, Profile & Sienature Matching 

6. Conclusion 

Web-based reuse is the trend of software Component 
repositories supported by the government. To be a part of 
an integrated CASE environment is the trend of 
commercial sofhvare component repositories. Usually, the 
aim of the first one is to provide a service within a domain, 
organization, or area, such as ASSET for DoD, DSRS for 
DISA etc. This kind of repository is used in a wide scope. 
The aim of the second is to provide an integrated CASE 
environment for a software development organization. So, 
this kind of repository is generally' a part of CASE 
environment and is used in a relatively narrow scope. 

The long-term goal of the CAPS project [ 11 is to 
provide a distributed software component repository to 
support the development of prototype systems through 
intranet technology. So, it will combine the advantages of 
commercial component repositories and government 
supported repositories. This developing research system is 
an example of future software repositories. 

References 

[I] Luqi and Jiang Guo, "Toward Automated Retrieval for a 
Software Component Repository", Proceedings of IEEE 
International Conference and Workshop on the 
Engineering of Computer Based Systems (IEEE ECBS), 
Nashville, USA, March 7-12, 1999. Pp. 99-105. 
A. Mili, R. Mili, and R.Mittermeir, "Storing and retrieving 
software components: A refinement based system," in Proc. 
16th Int'l Conf. on Software Engineering, (Sorrento, Italy), 
pp. 91-100, May 1994. 
B. Fischer, M. Kievernagel, and W. Struckmann;"VCR: A 
VDM-based software component retrieval tool," in Proc. 

[2] 

[3] 

ICSE-17 Workshop on Formal Methods Application in 
Software Engineering Practice, 1995. 
J. Penix, P. Baraona, and P. Alexander, "Classification and 
retrieval of reusable components using semantic features," 
in Proceedings of the 10th Knowledge-Based Software 
Engineering Conference, pp. 13 1-138, Nov. 1995. 
A. M. ' Zaremski, Signature and Specification Matching. 
PhD thesis, Carnegie Mellon University, Jan. 1996. 
A. M. Zaremski and J. M. Wing, "Specification matching 
of software components," in 3rd ACM SIGSOFT 
Symposium on the Foundations of Sofhvare Engineering, 
Oct. 1995. 
J. Penix and P. Alexander, "Design representation for 
automating software component reuse," in Proceedings of 
the first international workshop on Knowledge-Based 
systems for the (re)Use of Program libraries, Nov. 1995. 
R. McDowell, and J. Solderitsch, "The Reusability Library 
Framework," Proceedings of the Unisys Defense Systems 
Software Engineering Symposium, January 1990. 
R. McDowell and K. Cassell, "The RLF Librarian: A 
Reusability Librarian Based on Cooperating Knowledge- 
Based Systems," Proceedings of the 4th Annual Rome Air 
Development Center Knowledge-Based Software Assistant 
Conference, Utica, NY, September 1989. 
Eichmann, D., T. McGregor and D. Danley, "Integrating 
Structured Databases Into the Web: The MORE System," 
First International Conference on the World Wide Web, 
Geneva, Switzerland, May 25-27, 1994, pages 369-378. 
M. A. Durnin, K. Terry, and R. Sullins, "Establishing a 
Repository for Enterprise Wide Software Reuse," in 
Proceedings Fifth Annual Workshop on Sofrware Reuse 
Education and Training, July 29 - A u p s t  1 1996. 
G. Arango and R. Prieto-Diaz, "Domain Analysis Concepts 
and Research Directions", Domain Analysis and Software 
System Modeling, R. Prieto-Diaz and G. Arango eds., 
IEEE Computer Society, 199 1. 

5 6  



[13] J.-J. Jeng and B. H. C. Cheng, “A formal approach to 
using more general components,” in Proceedings of the 9th 
Knowledge-Based Sofbvare Engineering Conference, pp. 
90-97, September 1994. 

[14] DSRS - Defense Technology for Adaptable, Reliable 
Systems URL:http://ssedI .ims.disa.miI/srp/dsnpage.html 

[15] STARS - Software Technology for Adaptable, Reliable 
Systems URL: http://wrvw.stars.ballston.paramax.com/ 
index.html 

[ 161 D. E. Perry and S. S. Popovitch, “Inquire: Predicate-based 
use and reuse,” in Proceedings of the 8th Knowledge-Based 
Software Engineering Conference, pp. 144-1 5 1, September 
1993. 

[ 171 D. Garlan, “Research Directions in Software Architecture”, 
ACM Computing Surveys, 27(2), June 1995. 

[ 181 R. Girardi, “Towards Effective Software Abstractions for 
Application Engineering”, in Procs. NASA Focus on Reuse 
workshop, Sept. 1996. 

[I91 Asset Library Open Architecture Framework, Version 1.2; 

[20] ELSA - Electronic Library Services & Applications URL: 
http://rbse.mountain.net/ELS A/ 

[2 I] L. S. Levy, “A metaprograrnming method and its economic 
justification”, IEEE Trans. Softw. Eng. SE- 12(2), Feb. 

[22] R. Girardi and B. Ibrahim, “Using English to Retrieve 
Software”, The Joumal of Systems and Software, Special 
Issue on Software Reusability September 1995. 

[23] R. Girardi, “Classification and Retrieval of Software 
through their Descriptions in Natural Language”, Technical 
report, University of Geneva - CUI, December 1995. 

[24] R. T. Price and R. Girardi. A class retrieval tool for an 
object-oriented environment. In Procs. 3rd Conf. 
Technology on object-Oriented Languages and Systems, 
pages 26-36, November 1990. 

[25] M. Simos, “The Growing of an Organon: A Hybrid 
Knowledge-Based Technology and Methodology for 
Software Reuse,” Proceedings of 1988 National Institute 
for Software Quality and Productivity (NISQP) Conference 
on Software Reusability, April 1988, pp. E-1 through E-25. 

[26] ASSET - Asset Source for Software Engineering 
Technology URL: http://source.asset.com/asset. html 

[27] PAL - Public Ada Library URL: 
http://web.cnam.fr5anguages/AddPAL/ 

[28] CARDS - Comprehensive Approach to Reusable Defense 
Software URL: http://dealer.cards.com/ 

[29] COSMIC - NASA‘s Software Technology Transfer Center 
URL: http://www.cosmic.uga.edu/ 

STARS-TC-04041/001/02; 14 August 1992. 

1996, pp. 212-277. 

[30] J.-J. Jeng and B. H. C. Cheng, “Using formal methods to 
construct a software library,” in Proceedings of 4th 
European Software Engineering Conference, Lecture Notes 
in Computer Science, vol. 717, pp. 397-417, September 
1993. 

[31] +1 Software Engineeering Corporate Mission, URL 
http://www.plus-onexodcompany .html 

[32] Elisabetta Morandin, “SALMS v5.1: A System for 
Classifying, Describing, and Querying about Reusable 
Software Assets”, The Proceedings of 5th International 
Conference on Software Reuse (ICSR ’98). 

[33] Project Management Tool Suite System (Automated 
Software Reuse Repository), URL http://\w.ewa.com- 
Ism-overview.html 

http://www.marketplace.unisys.com/urepl 
[35] Reuse Library Toolset of EVB Software Engineering, 

http://gopher.metronet.com:70/0inewprod/by-vendor/E- 
/evb-software-e/941208.0 1 

[36] The HSTX Software Reuse Repository, 
seIsvr.stx.com/-eryqs\~reuse/home.html 

[37] STARS Q9 BASELmZ Ada LIBRARY, Technical 
Reports on the Software Reuse CFCSE-IC http://dii- 
sw.ncr.disa.mil/ReuseIC/guidelines/Reusabili~Guidelines. 
html 

[38] Robert Rutherford, “Reuse on I-CASE,” Proceedings of 
Fifth Annual Workshop on Sohvare Reuse Education and 
Training, July 29, 1996 - August 1, 1996. 
http://www.asset.comntiSRDlconferenceslproceedings/su 
mmary/-summary. html 

[39] Luqi, and M. Ketabchi, “A Computer-Aided Prototyping 
System,” IEEE Transactions on Sofnvare Engineering, 
October 1988. 

[40] Robert Steigemald, Luqi, and John McDowell, “CASE 
Tool for Reusable Sofnvare Component Storage and 
Retrieval in Rapid Prototyping,” Information and Software 
Technology, pp. 698-705, 1991. 

[41] Scott Dolgoff, “Automated Interface for Retrieving 
Reusable Software Components”, Master’s Thesis, Naval 
Postgraduate School, September 1992. 

[42] Doan Nguyen, “An Architectural Model for Software 
Component Search”, Ph.D. Dissertation, Naval 
Postgraduate School, December 1995. 

[43] Jeffrey Herman, “Improving Syntactic Matching for Multi- 
Level Filtering,” M.S. Thesis, Naval Postgaduate School, 
September 1997. 

[44] Rubin Prieto-Diaz, “Implementing Faceted Classification 
for Sofnvare Reuse”, Communication of the ACM, pp. 89- 
97, May 199 1. 

[34] Universal Repository, URL 

5 7  



A Risk Assessment Model for Evolutionary Software Projects' 

Luqi, J. Nogueira 
Naval Postgraduate School 
Monterey CA 93943 USA 

Abstract 

Current early risk assessment techniques rely on subjective human judgments and 
unrealistic assumptions such as fixed requirements and lvork breakdown structures. This is a 
weak approach because different people could arrive at different conclusions from the same 
scenario even for projects with a stable and well-defined scope. and such projects are rare. This 
paper introduces a formal model to assess the risk and the duration of software projects 
automatically, based on objective indicators that can be measured early in the process. The 
model has been designed to account for significant characteristics of evolutionary software 
processes, such as requirement complexity, requirement volatility and organizational efficiency. 
The formal model based on these three indicators estimates the duration and risk of evolutionary 
software processes. The approach supports (a) automation of risk assessment and, (b) early 
estimation methods for evolutionary s o h a r e  processes. 

1. Introduction 

Software applications have groLvn in size and complexity covering many human activities of 
importance to society. The report of the President s Information Advisory Committee calls 
software the new physical infrastructure of the information age . Unfortunately. the ability to 
build software has not increased proportionately to demand [Hall, 1997. pp xv], and shortfalls in 
this regard are a growing concern. According to the Standish group. in 1995 53% of software 
projects finished over time or budget, and $80 billion - SlOO billion is spent annually on 
cancelled projects in the US. Developing software is still a high-risk activity. 

There have been many approaches to improving this situation, mostly focused on increasing 
productivity via improvements in technology or management, Although better productivity is 
certainly welcome, closer examination shows that these efforts address only half of the problem. 
A project gets over time or over budget if actual performance does not match estimates. Current 
estimation techniques are far from reliable. and tend to systematically produce overiy optimistic 
estimates. More accurate early estimates could help reduce lvasted resources associated with 
overruns and cancelled projects in two ways: if costs are known to be too high at the outset, the 
scope of the project could be reduced to enable completion within time and budget, or it could 
be cancelled before it starts, and instead the resources could be used to successfully complete 
other feasible projects. 

This paper therefore focuses on improved risk assessment for software projects. We address 
project risks related to schedule and budget, and focus mostly on completion time of the project. 
Current risk assessment standards are weak because they rely on subjective human expertise, 
assume frozen requirements, or depend on metrics difficult to measure until it is too late. This 
paper describes a formal risk assessment model based on metrics and sensitive to requirements 
volatility. Further details can be found in [Nogueira 20001. The model is specially suited for 
evolutionary prototyping and incremental software development. 

Section 2 defines the problem ive are addressing. Section 3 analyzes relevant previous work. 
Section 4 presents and evaluates our project risk model. Section 5 outlines how systematic risk 
assessment fits into iterative prototyping, Section 6 concludes. 

This researcli was supported in part by the U. S. Army Research Office under contract/grant number I 

35037-MA and 40473-MA, and in part by DARPA under contract +99-F759. 

5 8  I 



2. The Problem 

As the range and complexity of computer applications have grown, the cost of software 
development has become the major expense of computer-based systems [Boehm 198 I], 
[Karolak 19961. Research shows that in private industry as well as in government environments, 
schedule and cost overruns are tragically common [Luqi 1989, Jones 1994, Boehm 19811. 
Despite improvements in tools and methodologies, there is little evidence of success in 
improving the process of moving from the concept to the product, and little progress has been 
made in managing software development projects [Hall, 19971. Research shows that 45 percent 
of all the causes for delayed software deliveries are related to organizational issues 
[vanGenuchten 19911. A study published by the Standish Group reveals that the number of 
software projects that fail has dropped from 40% in 1997 to 26% in 1999. However, the 
percentage of projects with cost and schedule overruns rose from 33% in 1997 to 46% in 1999 
[Reel 19991. 

Despite the recent improvements introduced in software processes and automated tools, risk 
assessment for software projects remains an unstructured problem dependent on human 
expertise [Boehm 1988, Hall 19971. The acquisition and development communities, both 
governmental and industrial, lack systematic ways of identifying, communicating and resolving 
technical uncertainty [SEI 19961. 

This paper explores ways to transform risk assessment into a structured problem with 
systematic solutions. Constructing a model to assess risk based on objectively measurable 
parameters that can be automatically collected and analyzed is necessary. Solving the risk 
assessment problem with indicators measured in the early phases would constitute a great 
benefit to software engineering. In these early phases, changes can be made with the least 
impact on the budget and schedule. The requirements phase is the crucial stage to assess risk 
because: a) it involves a huge amount of human interaction and communication that can be 
misunderstood and can be a source of errors: b) errors introduced at this phase are very 
expensive to correct if they are discovered late; c) the existence of software generation tools can 
diminish the errors in the development process if the requirements are correct; and d) 
requirements evolve introducing changes and maintenance along the \vhole life cycle. 

Part of the problem is misinterpreting the importance of risk management. It is usually and 
incorrectly viewed as an additional activity layered on the assigned work, or worse, as an 
outside activity that is not part of the software process [Hall 1997. Karolak 19961. One of the 
goals of our research is to integrate a risk assessment model with previous research on CAPS’ at 
NPS [Ham 991. This integration is required in order to capture metrics automatically in the 
context of a modem evolutionary prototyping and software development process. This should 
provide project managers with a more complete tool that can enable improved risk assessment 
without interfering with the work of a project s software engineers. 

A second source of problems in risk management is the lack of tools [Karolak 19961. The 
main reason for this lack of tools is that risk.assessment is apparently an unstructured problem. 
To systematize unstructured problems it is necessary to define structured processes. Structured 
processes involve routine and repetitive problems for which a standard solution exists. 
Unstructured processes require decision-making based on a three-phase method (intelli, aence, 
design, choice) [Turban et a1 19981. An unstructured problem is one in which none of the three 
phases is structured. Current approaches to risk management are highly sensitive to managers 
perceptions and preferences, which are difficult to represent by an algorithm. Depending on the 
decision-maker’s attitude towards risk, he or she can decide early \vith little information, or can 
postpone the decision, gaining time to obtain more information, but losing some control. 

A third source of risk management problems is the confusion created by the informal use of 
terms. Often, the software engineering community (and most parts of the project management 

I 

59 I 

I 

t 

’ CAPS stands for Computer Aided Prototyping System [Luqi 19881. 



community [Wideman 19921) uses the term "risk" casually. This term is often used to describe 
different concepts. It is erroneously used as a synonym of "uncertainty" and "threat" [SEI 1996, 
Hall 1997, Karolak, 19961. Generally, software risk is viewed as a measure of the likelihood of 
an unsatisfactory outcome and a loss affecting the software from different points of view: 
project, process, and product [Hall 1997, SEI 19961. However, this definition of risk is 
misleading because it confounds the concepts of risk and uncertainty. In general, most parts of 
decision-making in software processes are under uncertainty rather than under risk. Uncertainty 
is a situation in which the probability distribution for the possible outcomes is not known. 

In this paper the term "risk" is reserved to indicate the probabilistic outcome of a succession 
of states of nature, and the term "threat" is used to identify the dangers that can occur. We 
define risk to be the product of the value of an outcome times its probability of occurrence. This 
outcome could be either positive (gain) or negative (loss). This abstraction permits one to 
address not only the classical risk management issue, but also to discover opportunities leading 
to competitive advantage. 

We address the issue of risk assessment by estimating the probability distribution for the 
possible outcomes of a project, based on obsewed values of metrics that can be measured early 
in the process. The metrics were chosen based on a causal analysis to identify the' most 
important threats and a statistical analysis to choose the shape of the probability distribution and 
relate its parameters to readily measurable metrics. 

3. Related Work 

There are three main groups of research related to risk: 

Assessing Software Risk by Measuring Reliability. This group follows a probabilistic 
approach and has successfully assessed the reliability of the product [Lyu 1995, 
Schneidewind 1975, Musa 19981. However, this approach addresses the reliability of the 
product, not the risk of failing to complete the project within budget and schedule 
constraints. These approaches could be used to assess risks related to failures of software 
projects, which are outside the scope of the current paper. A concern with these approaches 
is that the resulting assessments arrive too late to economically correct possible faults, 
because the software product is mostly complete and development resources are mostly 
gone at the time when reliability of the product can be assessed by testing. 

* Heuristic approaches: Other researchers assess the risk from the beginning, in parallel 
with the development process. However, these approaches are less rigorous, typically 
subjective and weakly structured. Basically these approaches use lists of practices and 
checklists [SEI, 1996, Hall 1997, Charette 1997, Jones 19941 or scoring techniques [Karolak 
19961. Paradoxically, SEI defines software technical risk as a measure of the probability and 
severity of adverse effects in developing software that does not meet its intended functions 
and performance requirements [SEI, 19961. However, the term "probability" is misleading 
in this case because the probability distribution is unknown. 

Macro Model Approaches: A third group of researchers uses well known estimation 
models to assess how risky a project could be. The widely used methods COCOMO 
[Boehm 19911, and SLIM [Putnam, 19801 both assume that the requirements will remain 
unchanged, and require an estimation of the size of the final product as input for the models 
[Londeix 19S71. This size cannot be actually measured until late in the project. 

The standard tools used to control all types of projects, including PERT, CPlW, and Gantt, 
do not consider coordination and communication overhead. Such models represent sequential 
interdependencies through explicit representation of precedence relationships between activities. 
This simplified vision of a project cannot address the dynamics created by reciprocal 
requirements of information in concurrent activities, exception management, and the impact of 60 



actor interactions. Since the missing factors increase time requirements, the estimates resulting 
from these generic project estimation models are overly optimistic. 

These issues are addressed by Vit Project [Levitt 1999, Thomsen et al. 19991. Vit Project is 
applicable to projects in which a) all activities in the project can be predefined; b) the 
organization is static, and all activities are pre-assigned to actors in the static organization; c) the 
exceptions to activities result in extra work volume for the predefined activities and are camed 
out by the pre-assigned actors; and d) actors are assumed to have congruent goals. The model is 
well suited for simulating organizations that deal with great amounts of information processing 
and coordination. Such characteristics are extremely relevant in software processes [Boehm, 
198 13. However, this approach requires a fixed work breakdown structure, and therefore does 
not apply at the early stages when requirements are changing and the set of tasks comprising the 
project are still uncertain. 

By using informal risk assessment models, using estimation models based on optimistic 
asstimptions that require parameters difficult to provide until late, and using optimistic project 
control tools, project managers condemn themselves to overrun schedules and cost. 

4. The Proposed Project Risk Model 

Our approach is based on metrics automatically collectable from the engineering database 
from near the beginning of the development. The indicators used are Requirements Volatility 
(RV), Complexity (CX), and Efficiency (EF). 

Reqiiirement Volutilip (RV): RV is a measure of three characteristics of the requirements: a) the 
Birth-Rate (BR), that is the percentage of new requirements incorporated in each cycle of the 
evolution process; b) the Death-Rate (DR), that is the percentage of requirements dropped in 
each cycle; and c) the Change-Rate (CR) defined as the percentage of requirements changed 
from the previous version. A change in one requirement is modeled as a birth of a new 
requirement and the death of another, so that CR is included in the measured values of BR and 
DR. RV is calculated as follows: RV = BR + DR. 

Complexity (CX): Complexity of the requirements is measured from a formal specification. A 
requirements representation that supports computer-aided prototyping. such as PSDL [Luqi 
19961, is useful in the context of evolutionary prototyping. R'e define a complexity metric 
called Large Granularity Complexity (LGC) that is calculated as follon-s: LGC = 0 + D + T, 
where for PSDL 0 is the number of atomic operators (functions or state machines), D is the 
number of atomic data streams (data connections between operators), and T is the number of 
abstract data types required for the system. Operators and data streams are the components of a 
dataflow graph. This is a measure of the complexity of the prototype architecture, similar in 
spirit to function points but more suitable for modeling embedded and real-time systems. The 
measure can also be applied to other modeling notations that represent modules, data 
connections, and abstract data types or classes. We found a strong correlation between the 
complexity measured in LGC and the size of PSDL specifications (correlation coefficient R = 
0.996). Most important, we also found a strong correlation (R = 0.895) between the complexity 
measured in LGC and the size of the final product expressed in non-comment lines of Ada code, 
including both the code automatically created by the generator and the code manually 
introduced by the programmers. 

Eflciency (EF): The efficiency of the organization is measured using a direct observation of the 
use of time. EF is calculated as a ratio between the time dedicated to direct labor and the idle 
time: EF = Direct Labor Time / Idle Time. We found that this easily measurable quantity was a 
good discriminator between high team productivity and low team productivity in a set of 
simulated software projects [Nogueira 20001. 



We validated and calibrated our model with a series of simulated software projects using 
Vit Project. This tool was chosen because of the inclusion of communications and exceptions in 
its project dynamics model, and because it has been extensively validated for many types of 
engineering projects, including software engineering projects. The input parameters for the 
simulated scenarios were RV, EF and CX, and the observed output was the development time. 
Given that the proposed model uses parameters collected during the early phases and given that 
Vit Project requires a complete breakdown structure of the project, which can be done only in 
the late phases, there was a considerable time gap between the two measurements. This time gap 
is less than for a post-mortem analysis, but it is sufficient for model calibration and validation 
purposes. 

The simulation results were analyzed statistically, with the finding that the Weibull 
probability distribution was the best fit for all the samples. A random variable x is said to have a 
Weibull distribution with parameters a, p and y (with a > 0, P > 0) if the probability distribution 
function (pdf) and cumulative distribution function (cdf) of x are respectively: 

The random variable under study, x. can be interpreted as development time in our context. 
The shape parameter u controls the skew of the pdf, which is not symmetric. We found that this 
is mostly related to the efficiency of the organization (EF). The scale parameter j3 stretches or 
compresses the graph in the x direction. We found that this parameter is related to the efficiency 
(EF), requirements volatility (RV), and complexity (CX) measured in LGC. The shifting 
parameter y is shifts the origin of the curves to the right. We found that it is mostly related to the 
complexity measured in LGC. 

Based on best fit to our simulation results, the model parameters can be derived from the 
project metrics using the following algorithm: 

If (EF > 2.0) then a = 1.95; 
y = 22 * 0 . 3 2 * ( 1 3 * l n ( L G C ) - 8 2 ) ;  
p = y /(5.71+(RV-20)*0.046); 

y = 22 * 0.85* ( 1 3 * l n ( L G C ) - 8 2 )  ; 
else a = 2.5 ;  

p = '{ / ( 5  - 4 7 -  (RV-20) *O .114) ; 
end if; 

The model estimates the following cumulative probability distribution for project completion on 
or before time x: 

P ( x )  = 1 - exp(-(((x - y)/p)")) / /  where x is time in days I 
This equation can be inverted to obtain the schedule length needed to have a probability P of 
completing within schedule, with the follon-ing result. 

x = y + j3(-1n(I-p))''" 

The probability P can be interpreted as a degree of confidence in the ability of the project to 
successfully complete within a schedule of length x. Applying the above equation to estimate 
the development time needed for a 95% chance of completion within schedule for 16 different 6 2  



scenarios simulated using Vit Project, we observed a standard error of 22 days. The worst case 
was an error of 60 days for a project of 520 days (12%). The comparison of estimated time and 
simulated time is shown below. 

c 
0 

9. 

.- 
r, 4a3 

E 8 3a3 

-9 2co 

- 

- 
0 
0 

c 
Q 

5 la3 
E .- - 

2 
.f * 5a3 , 

* 
t= &ration 

* estimated - 
t 

+* 
c 4  

,p 
i F -  

& 

Simulated project completion time, daldays 

5. Integrating Risk Assessment into Prototyping 

The model presented in the previous section is designed to support an iterative prototyping 
and software development process. In this process, an initial problem statement. a prototype 
demo or problem reports from a deployed software product trigger an issue analysis, followed 
by formulation of proposed requirements changes, and specification of a proposed adjustment to 
the software requirements, which can be initially empty. At this point in each cycle, the project 
manager should perform a risk assessment step. The results of the risk assessment step guide the 
degree of detail to which requirements enhancements are demonstrated, and the set of 
requirements issues to be considered in the next prototyping cycle, if any. 

6 3  



The first measurement-based risk assessment step can be performed after specification of 
the first version of the prototype architecture, based on the requirements volatility, LGC and 
efficiency measurements from the steps just performed. 

In cases where risk assessments are required even earlier, before any prototyping has been 
done, estimates of team efficiency and requirements volatility can be based on measurements of 
similar past projects, and initial complexity estimates can be based on subjective guesswork of 
the kind currently used in the macro model approaches. This kind of estimate may be less 
reliable than those based solely on measurements, but it can provide a principled and reasonably 
accurate basis for deciding whether or not to start a prototyping process to determine the 
requirements for a proposed development project. Thus parts of our approach can be used truly 
at the very beginning of the process. 

If a prototyping effort is approved, early measurements of the process could be used to 
refine the initial estimates of the model parameters using Bayesian methods, thus providing a 
balanced and systematic transition from subjective guesswork, coded as an a priori distribution, 
to assessments increasingly based on systematic measurement. Such an approach also supports 
incorporation and systematic refinement of measurements from previous cycles of the iterative 
prototyping process. 

The results of risk assessment can provide guidance on the degree to which the project can 
afford to explore requirements enhancements requested by the customers. It can also help 
customers or marketing departments to decide how much they really want possible 
improvements, in the context of the resulting time and cost estimates. Systematic cost/benefit 
analysis becomes possible only with the availability of reasonably accurate estimates. 

The risk assessment step can thus provide a balancing force to stabilize the requirements 
formulation process. In the absence of information on how much potential enhancements will 
cost, stakeholders are prone to unrealistic requirements amplification - of course they would 
always like to have a better system, no matter how good the esisting one is, if you do not ask 
them to pay for the improvements. The proposed risk assessment steps can provide a realistic 
basis for incorporating time and cost constraints and codbenefit tradeoffs early in the process, 
when the situation is fluid and many options are open. 

This process refinement provides some additional insight into the dynamics of iterative 
prototyping: the iterative process should stop when the customers have determined what 
requirements they can afford to realize, and which of many possible improvements they will be 
willing to pay for, if any. It is not necessarily the case that the set of criticisms elicited by the 
final round of prototype demonstrations is empty - that is true only in an idealized world with 
adequate budgets and patient customers. 

6, Conclusion 

This paper introduces a formal risk assessment model for software projects based on 
probabilities and metrics automatically collectable from the project baseline. The approach 
enables a project manager to evaluate the probability of success of the project very early in the 
life cycle, during an iterative requirements formulation process, based on well-defined 
measurements rather than just guesswork or subjective judgments. 

For more than twenty years, estimation standards have been characterized by a common 
limitation: the requirements should be frozen in order to make estimates. This model presented 
in this paper removes this important limitation, facing the reality that requirements are 
inherently variable. 

The model is perfectly suited for any evolutionary software process because it follows the 
same philosophy. The risk assessment and estimation steps are conducted at each evolutionary 
cycle with increasing knowledge and decreasing variance. The research formalizes an 



improvement in the evolutionary software process, introducing a risk assessment stsp that can 
be automated, and that can help shape the planning of the project in the early stages when there 
is still substantial freedom to allocate available time and budget, 

References 

[Boehm 19811 
[Boehm 19881 

[Charette 19971 

[Gilb 19771 
[Hall 19971 

[Ham 19991 

[Jones 19941 

[Karolak 19961 

[Levitt 19991 

[Londeix 19571 

[Luqi 19881 

[Luqi 19891 

[Luqi 19961 

[Lyu 19951 

[Musa 19981 

[Nogueira 20001 

[Putnam 19801 

[Reel 19991 

[SEI 9961 

[Schneidewind 19751 

[Turban et a1 19981 

[vanGenuchten 19911 

[Wideman 19921 

B. Boehm, Sof lare  Engineering Economics, Prentice Hall, 198 1. 
B. Boehm, A Spiral Model of Software Development and 
Enhancement, Computer, May 1988. 
R. Charette, K. Adams, & M. White, Managing Risk in Software 
Maintenance, IEEE Sofhrare, May-June, 1997. 
T. Gilb, Sofhvare Metrics, Winthrop Publishers, Inc., 1977. 
E. Hall, Managing Risk, Methods for Softwnre Systems Development, 
Addison Wesley, 1997. 
M. Ham, V. Berzins, ^Luqi, Computer-Aided Software Evolution 
Ba'sed on a Formal Model, Proceedings of the Thirteenth 
International Conference on Systems Engineering, Las Vegas, 
Nevada, August 9-12, 1999, pp. CS: 55-60. 
C. Jones, Assessment and Control of Sofrtvare Risks, Yourdon Press 
Prentice Hall, 1994. 
D. Karolak, Software Engineering Management, IEEE Computer 
Society Press, 1996. 
R. Levitt, The ViteProject Handbook: A User's Guide to Modeling 
and Analyzing Project Work Processes and Organizations, Vit ' 
1999. 
B. Londeix, Cost Estimation for Software Development, Addison- 
Wesley, 1987. 
Luqi, M. Ketabchi, A Computer Aided Prototyping System, IEEE 
Soffitwe, Vol. 5,  No. 2, p. 66-72, March 1988. 
Luqi, Software Evolution Through Rapid Prototyping I E  E E  
Computer, May 1989. 
Luqi, Special Issue: Computer-Aided Prototyping, Jorrrnal of Systems 
Integration, Vol. 6, Nos. 1-2, March 1996. 
M. Lyu, Sofii.rre Reliability Engineering, IEEE Computer Society 
Press. 1995. 
J. Musa, Software Reliabilip Engineering: More Reliable Software, 
Faster Development and Testing, McGraw-Hill, 1998. 
J. Nogueira, A Formal Risk Assessment Model for Sofrware Projects, 
Ph.D. Dissertation, Naval Postgraduate School, 2000. 
L. Putnam, Sof lare  Cost Estimating and Life-cycle Control: Getting 
the Software Nrimbers, IEEE Computer Society Press, 1980. 
J. Reel, Critical Success Factors in Software Projects, IEEE 
Software, May - June 1999. 
Software Engineering Institute, Software Risk Management, 
Technical Report CMU/SEI-96-TR-O 12, June 1996. 
N. Schneidewind, Analysis of Error Processes in Computer Software, 
Proceedings of the International Conference on Reliable S o f h w e ,  
IEEE Computer Society, 21-23 April 1975, p 337-346. 
E. Turban and J. Aronson, Decision Support Systems and Intelligent 
Svstenzs, Prentice Hall, 1998. 
M. van Genuchten, Why is Software Late? An Empirical Study of the 
Reasons for Delay in Software Development, IEEE Transactions on 
Software Engineering, June, 199 1. 
R. Wideman, Risk Managenlent: A Guide to Managing Project Risk 
Opportunities, Project Management Institute, 1992. 

I 

65 



[Alt+99] 

[Ber+97] 

[B irTau9 81 

[B roRun9 91 

[FIPA] 

[Har+99] 

[IEEE 12201 

[Rob+OO] 

[SEI99] 

[Sta99] 

[ WalUng9 13 

[Wan+99] 

Althoff, K., Birk, A., Hartkopf, S., Miiller, W., Nick, M., Surmann, D., 
and Tautz, C., "Managing Software Engineering Experience for 
Comprehensive Reuse", Proceedings of the Eleventh International 
Conference on Software Engineering and Knowledge Engineering, 
Kaiserslautern, Germany, 1999. 

Berzins, V., Ibrahim, O., Luqi: "A Requirements Evolution Model for 
Computer Aided Prototyping", Proceedings of the 9th International 
Conference on Software Engineering and Knowledge Engineering, 
Madrid, Spain, 1997. 

Birk, A. and Tautz, C., "Knowledge Management of Software Engineering 
Lessons Learned", Proceedings of the Tenth International Conference on 
Software Engineering and Knowledge Engineering. San Francisco Bay, 
California, USA, 1998. 

BroomC, M. and Runeson, P., "Technical Requirements for the 
Implementation of an Experience Base", Proceedings of the Eleventh 
International Conference on Software Engineering and Knon-ledge 
Engineering, Kaiserslautern, Germany, 1999. 

Foundation for Intelligent Physical Agents. httD:/;\\..W~~.cselt.stet.it/fiaa/. 

Ham, M., Berzins, V., and Luqi, "Computer-Aided Software Evolution 
Based on a Formal Model", Proceedings of the 13th International. 
Conference on Systems Engineering, Las Vegas, NV, USA. 1999. 

IEEE Std 1220- 1998, IEEE Standard for Applicnriori and Management of 
the Svstems Engineering Process, Institute of Electrical and Electronics 
Engineers, 1998. 

Robinson, M., Kovaiainen, M., and Auramiiki, E., "Diary as Dialogue in 
Papermill Process Control", Communications of the ACM, Vol. 43, No. 1, 
January 2000. 

Software Engineering Institute, Capability Maturity Modela-Integrated- 
Systems/Software Engineering: Staged Representation - Volume 1, 
Version 0.2b, 1999. 

Statz, J., "Leverage Your Lessons", IEEE Software, Vol. 16. No. 2, IEEE, 
1999. 

Walsh, J. and Ungson, G., "Organizational Memory", Academy of 
Management Review", Vol. 16., No. 1, January 199 1. 

Wangenheim, C., Althoff, K., and Barcia, R., "Intelligent Retrieval of 
Software Engineering Experienceware", Proceedings of the Eleventh 
International Conference on Software Engineering and Knowledge 
Engineering, Kaiserslautern, Germany, 1999. 



Evolutionary Computer Aided Prototyping System (CAPS)* 

Luqi, V. Berzins, M. Shing, R. Riehle and J. Nogueira 
Computer Science Department 

Navnl Postgraduate School 
Monterey, CA 93913-51 I8 

[liiqi, berzins, ninntak)@cs. nps.ncivy. mil 
(rdriehle, jcnogire) @rips. navy. mil 

Abstract 

This paper describes a distributed development environment, CAPS (Computer-Aided 
Prototyping System), to support rapid prototyping and automatic generation of source code 
based on designer specifications in an evolutionary software development process. The CAPS 
system uses a fifth-generation prototyping language to model the communication structure, 
timing constraints, I/O control, and data buffering that comprise the requirements for an 
embedded software system. The language supports the specification of hard real-time systems 
with reusable components from domain specific component 1 ibraries. CAPS has been used 
successfiilly as a research tool in prototyping large real-time control systems (e.g. the 
command-and-control station, cruise missile flight control system, missile defense systems) and 
demonstrated its capability to support the development of large complex embedded software. 

1. Introduction 

Studies have shown that early parts of the system development cycle such as requirements 
and design specifications are especially prone to errors [i].  Problems originated i n  the early 
stages often have a lasting influence on the reliability. safety and cost of the system. 
Evolutionary prototyping offers an iterative approach to requirements engineering to alleviate 
the problems of uncertainty, ambiguity and inconsistency inherent in the process. Moreover, 
prototyping can improve the captiire of change in requirements and assumptions during the 
development process. This effect is particularly observed in projects involving multiple 
stakeholders with different points of view [4, 151. 

Evolutionary driven computer aided sofnvare engineering (CASE) tools for computer-aided 
prototyping provide logical assessment of the consistency and clarity of requirements and 
specifications. Prototypes facilitate the requirements phase in  any type of software projects. 
Particularly. in real-time applications where severe time constraints impose more challenges, 
the use of prototypes helps to describe the requirements in  a clear. precise. consistent and 
executable format. Prototypes can demonstrate system scenarios to the affected parties as a way 
to: a) collect criticisms and feedback for updated requirements: b) early detection of deviations 
from users’ expectations: c) trace the evolution of the requirements: d) improve the 
communication and integration of the users and the development personnel; and e) provide 

* This research was supported in part by the U. S. Army Research Office under contract/grant number 35037-MA 
and 40473-MA. 

67 



early warning of mismatches between proposed software architectures and the conceptual 
structure of requirements. 

The benefits of prototyping are widely accepted. All modern life cycle models such as 
Boehm's spiral [2]. Luqi's graph model [9] ,  rapid application development (RAD), etc. are 
based on prototyping Experience suggests that building and integrating software by 
mechanically processable formal models leads to cheaper, earlier and more reliable products 
[13]. Bernstein estimated that for every dollar invested in prototyping, one can expect a $1.40 
return within the life cycle of the system development [3]. To be effective, prototypes must be 
constructed and modified rapidly, accurately, and cheaply. Software for rapid and inexpensive 
construction and modification of prototypes makes it  feasible [ 10, I 13. 

Software 
Base Editors 

2. The Computer Aided Prototyping System (CAPS) 

Execution Project 
support Control 

The Computer-Aided System (CAPS), a research tool developed at the Naval Postgraduate 
School. is an integrated set of software tools that generate source programs directly from high 
level requirements specifications (Figure 1 )  [S]. CAPS provides the follouing kinds of support 
to the prototype designer: a) timing feasibility checking via the sclieduler; b) consistency 
checking and automated assistance for project planning, configuration management, scheduling, 
designer task assignment, and project completion date estimation via the Evolution Control 
system; c) computer-aided design completion via the editors; d) computer-aided software reuse 
via the software base: and e) automatic generation of wrapper and glue code via the execution 
support system. 

PSDL editor 
Ada editor 
GUI editor 

Translator Evolution Control 
Scheduler . Change Merger 
Compiler Risk Assessment 

Figure 1. The CAPS rapid prototyping environment 

The efficacy of CAPS has been demonstrated in many research projects (e.g. the command- 
and-control station. cruise missile flight control system, SlDS wireless acoustic monitor, and 
missile defense systems) at the Naval Postgraduate School and other facilities. 

There are four major stages in the CAPS rapid prototyping process: softlvare system design, 
construction, execution. and requirements evaluation/modification (Figure 2). 

The initial prototype design starts with an analysis of the problem and a decision about 
which parts of the proposed system are to be prototyped. Requirements for the prototype are 
then generated, either informally (e.g. English) or in some formal notation. These requirements 
may be refined by asking users to verify their completeness and correctness. 

After some requirements analysis, the designer uses the CAPS PSDL editor to draw dataflow 
diagrams annotated with nonprocedural control constraints as part of the specification of a 
hierarchically structured prototype, resulting in a preliminary. top-level design free from 
programming level details. The user may continue to decompose any softivare module until its 

68 



components can be realized via reusable components drawn from the software base or new 
atomic components. 

This prototype is then translated into the target progamming language for execution and 
evaluation. Debugging and modification utilize a design database that assists the designers in 
managing the design history and coordinating change, as well as other tools shown in Figure 1. 

I 1 ’ .  

Reusable 

Generate target 
source code I 

I 

4 I Esecution ; 
I 

I 
I 

I support : 
I Demonstrate System I 
t Prototype I 

requirements 

I 

I ,  I 

I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - l  

Figure 2. Iterative prototyping process in CAPS 

3. Application of CAPS in an evolutionary software process 

3.1 CAPS as a Requirements Engineering tool 

The requirements for a software system are expressed at different levels of abstraction and 
with different degrees of formality. The highest level requirements are usually informal and 
imprecise, but they are understood best by the customers. The lower levels are more technical, 
precise, and better suited for the needs of the system anallsts and designers, but they are further 
removed from the user’s experiences and less well understood by the customers. Because of the 
differences in the kinds of descriptions needed by the customers and developers, it is not likely 
that any single representation for requirements can be the “best” one for supporting the entire 
software development process. CAPS provides the necessary means to bridge the 
communication gap between the customers and developers. The CAPS tools are based on the 
Prototype System Description Language (PSDL), which is designed specifically for specifying 
hard real-time systems [6, 71. It has a rich set of timing specification features and offers a 
common baseline from which users and software engineers describe requirements. The PSDL 
descriptions of the prototype produced by the PSDL editor are very formal, precise and 
unambiguous. meeting the needs of the system analysts and designers. The demonstrated 
behavior of the executable prototype, on the other hand, provides concrete information for the 
customer to assess the validity of the high level requirements and to refine them if necessary. 

I 
I 

6 9  



3.2 CAPS as a System Testing and Integration tool 

Unlike throw-away prototypes, the process supported by CAPS provides requirements and 
designs in a form that can be used in construction of the operational system. The prototype 
provides an executable representation of system requirements that can be used for comparison 
during system testing. The existence of a flexible prototype can significantly ease system 
testing and integration. When final implementations of subsystems are delivered, integration 
and testing can begin before all of the subsystems are complete by combining the final versions 
of the completed subsystems with prototype versions of the parts that are still being developed. 

3.3 CAPS as an Acquisition tool 

Decisions about awarding contracts for building hard real-time systems are risky because 
there is little objective basis for determining whether a proposed contract will benefit the 
sponsor at tlie time when those decisions must be made. It is also very difficult to determine 
whether a delivered system meets its requirements. CAPS, besides being a usefill tool to the 
hard real-time system developers, is also very useful to tlie customers. Acquisition managers 
can use CAPS to ensure that acquisition efforts stay on track and that contractors deliver what 
they promise. CAPS enables validation of requirements via prototyping demonstration. greatly 
reducing the risk of contracting for real-time systems. 

3.4 CAPS as a Risk Assessment tool 

The use of prototypes introduces a problem for project planning because of the uncertain 
number of prototyping cycles required before constructing the product and the amount of 
complexity that should be covered at each cycle. Many existing project management and 
estimation techniques are based on linear layouts of activities. CPM and PERT techniques are 
not well suited to deal with cycles because they are based on acyclic digraphs. 

Figure 3 shows a typical evolutionary prototyping software process that is a directed graph 
with two cycles. Initially, the analysts collect a set of issues, which represent concerns and 
preliminary goals of the customers, and transform them into a more elaborated level of 
description called requirements using a requirements analysis step. The requirements are 
transformed into specifications, probably in PSDL, during the specification design step. In the 
module implementation step the specifications are automatically converted into code using an 
appropriate CASE tool such CAPS. The program integration step transforms the modules 
obtained by the generator are integrated into a program, possibly adding code created by 
programmers and reusable components. This step includes integation testing and debugging. 
The program is demonstrated to the customer as a prototype. There are two possible outcomes: 
a) the customer is not satisfied and introduces criticisms, or b) the product matches the needs 
and expectations of the customer. In  the first case, the process continues by analyzing the 
criticisms during an issue analysis step that produces new issues closing the external cycle in 
the graph. In  the second case, the prototype contains all the required fiinctionalit4., so a set of 
optimizations is introduced during a product implementation step. The resulting product is 
presented again to the customer during a product demo step closing the internal cycle of the 
graph. 

We improved the evolutionary prototyping software process by introducing a new vertex in 
the graph to contain tlie risk assessment step (Figure 4) [14]. A risk assessment step can be 
automatically done after the completion of the specifications. CAPS provides the automation 
needed to derive the complexity of the product from the PSDL specifications. This derivation 



will be used together with personnel and organizational information, and with metrics of 
requirements collected from the baselines, to produce the risk assessment. The requirements 
analysis step integrates these measures with issues in the issue analysis steps. 

Issues 

+el- ments 
[ Specification 1 
I Design Step I 

.f 
Issue Analysis 

Implement Step 

t t 1 

Specifi- - n cations 

Module I 
I Implement Step I 

Modules 6 
Figure 3. A typical evolutionary prototyping software process.  

i t 

t 

Figure 4. The improved evolutionary prototyping software process.  

7 1  



4. A simple example: prototyping a C31 workstation 

To create a first version of a new prototype, users can select "New" from the "Prototype" 
pull-down menu of the CAPS main interface. The user will then be asked to provide the name 
of the new prototype (say "c3i-system") and the CAPS PSDL editor will be automatically 
invoked with a single initial root operator (Lvitl.1 a name same as that of tlie prototype). 

CAPS allows the user to specify the prototype requirements as augmented dataflow graphs. 
Using the drawing tools provided by the PSDL editor, the user can create the top-level dataflow 
diagram of the c3i-system prototype as shown in Figure 5. The c3i-system prototype is 
modeled by nine modules, communicating with each other via data streams. To model the 
dynamic behavior of these modules. the dataflow diagram is augmented with control and timing 
constraints. For example. the user may want PO specify that the weapons-interface module has a 
maximum response time of 3 seconds to handle the event triggered by the arrival of new data in 
the weapon-status-data stream, and only writes output to the weapon-emrep stream if the 
status of the weapon-status-data is damage. service - required, or out - -  of ammunition. CAPS 
allows the user to specify these timing and control constraints using the pop-up operator 
property menu (Figure 6), resulting i n  a top-level PSDL program shown in Figure 7. 

To complete the specification of the c3i-system prototype, the user must specify how each 
module will be implemented by choosing the implementation language for the module via the 
operator property menu. The implementation of a module can be iii either the target 
programming language or PSDL. A module with an implementation in the target programming 
language is called an atomic operator. A module that is decomposed into a PSDL 
implementation is called a composite operator. Module decomposition can be done by selecting 
the corresponding operator i n  the tree-panel on the left side of the PSDL editor. 

The user may choose to implement all nine modules as atomic operators (using dummy 
components) in the first version, so as to check out the global effects of the timing and control 
constraints. Then, lie/she may choose to decompose the comms-interface module into more 
detailed subsystems and implement the sub-modules with reusable components, while leaving 
the others as atomic operators i n  the second \.ersion of the prototype, and so on. 

To facilitate the testing of the prototypes, CAPS provides the user with an execution support 
system that consists of a translator, a scheduler and a compiler. Once the user finishes 
specifying the prototype, he/she can invoke the translator and the scheduler from the CAPS 
main interface to analyze the timing constraints for feasibility and to generate a supervisor 
module for each subsystem of tlie prototype in the target programming language. Each 
supemisor module consists of a set of driver procedures that realize all the control constraints, a 
high priority task (the static schedule) that executes the time-critical operators in a timely 
fashion, and a low priority dynamic schedule task that executes the non-time-critical operators 
when there is time available. The supervisor module also contains information that enables the 
compiler to incorporate all the software components required to implement the atomic operators 
and generate the binary code automatically. The translator/scheduler also generates the glue 
code needed for timely delivery of information between subsystems across the target nehvork. 



ME1 : 

LliP : 

6WT : 

:.%orark -I 

Figure 6. Pop-up operator property menu 

73 



OPERATOR c3i-s ys tern 
S P E C i  F I C A T  ION 

DESCRIPTION 
{ T h i s  module implemezrs a s i m p l i f i e d  vers1oc 0:  

a g e n e r i c  C 3 1  workstztion.) 
END 
IMPLEMENTATION 

GRAPH 

-data 

COBTROL COi:’i?-~.iNTS 
OP E?J.TOR ccxTs-1 i n k s  

PERIOD 30300 MS 

OPE?J-TOR c e v i g a t  ion-s y s  tern 
PERIOD 3 C 2 0 3  MS 

OPERATOR s e x o r s  
PERIOD 3 0 3 0 0  MS 

OPEPATOR weapons-s ys t e3s  
PEXIOD 3 3 0 0 0  P.: 

END 

Figure 7. Top-level specification of the c3i-system 

For prototypes whicli require sophisticated graphic user interfaces. the CAPS main interface 
provides an interface editor to interactively sculpt that interface. I n  the final version of the 
c3jsystem prototype, we choose to decompose the comms-interface, the 
track-database-manager and the user-interface modules into subsystems, resulting in 
hierarchical design consisting of 8 composite operators and twenF-six atomic operators. The 
user interface of the prototype has a total of 14 panels, four of \vhicli are shown in Figure 8. The 
corresponding Ada program has a total of 10.5K lines of sollrce code. Among the 10.5K lines 

7 4  



of code, 3.5K lines come from supervisor module that was generated automatically by the 
translator/scheduler and 1.7K lines that were automatically generated by the interface editor 
u21. 

DISPLAY TRACKS 

EMCON STATUS 

HZAPOFiS STAIL'S 

NETWORK S F N P  

"-1 - WEAPONS STATUS I -: 

OESERVER 

[-I 
E E a  

1-1 

TIME 

[--I( 

[-I 

Figure 8. User  interface of the c3i-system 

75 



To evaluate the benefits derived from the practice of computer-aided prototyping within the 
software acquisition process, we conducted a case study in which we compared the cost (in 
dollar amounts) required to perform requirements analysis and feasibility study for the c3i 
system using the Mil-Std 2167A process, in which the software is coded manually, and the 
rapid prototyping process. where part of the code is automatically generated via CAPS [5]. 

We found that, even under very conservative assumptions, using the CAPS method resulted 
in a cost reduction of $56,300, a 27% cost saving. Taking the results of this comparison, then 
projecting to a mission control software system, the command and control segment (CCS), we 
estimated that there would be a cost saving of 12 million dollars. Applying this concept to an 
engineering change to a typical component of the CCS software showed a further cost savings 
of $25,000. 

5. Conclusion 

CAPS has been used successfully as a research tool in prototyping large war-fighter control 
systems and demonstrated its capability to support the development of large complex embedded 
sohvare. Specific payoffs include: 

(1) Formulate/validate requirements via prototype demonstration and user feedback, 
(2) Assess feasibility of real-time system designs, 
(3) Enable early testing and integration of completed subsystems, 
(4) Support evolutionary system development, integration and testing, 
(5) Reduce maintenance costs through systematic code generation, 
(6) Produce high quality. reliable and flexible software, 
(7) Avoid schedule overruns. 

6.  References 

[ I ]  B. Boehm. Software Engineering Economics. Prentice Hall, I98 I .  
[2] B. Boehm. "A Spiral Model of Software Development and Enhancement". I€€€ Computer, 21(5), pp. 61-72, 

1988. 
[3] L. Bernstein, "Fonvard: Importance of Software Prototyping ". Joiirnal of Srsrenzs Integration - Special Issue on 

Computer Aided Protoyping. 6( I ). pp. 9- 14. 1996. 
[4] J .  Conklin and M. Bcgeman. "GIBIS: A Hypertext Tool for Esploratoq Policy Discussion". ACM Transactions 

on Ofice Information Svstems. 6(4). pp. 303-33 1, 1988. 
[5] M. Ellis. Computer-Aided Protoyping System (CAPS) within the software acqitisition process: a cuse study, 

Master's thesis, Naval Postgraduate School. Monterey. California, June 1993. 
[6] B. Kraemer, Luqi and V. Berzins. "Compositional Semantics of a Real-Time Protot)ping Language", fEEE 

Transaction on Sofiware Engineering. 19(5). pp. 453-477, 1993. 
[7] Luqi. V. Berzins and R. Yeh. "A Prototyping Language for Real-Time Software". I€€€ Transaction on 

Soffware Engineering. 13( lo), pp. 1409- 1423, 1988. 
[8] Luqi and M. Ketabchi, "A Computer-Aided Prototyping System'', I€€€ Software, j(2). pp. 66-72, 1988. 
[9] Luqi. "A Graph Model for Software Evolution", I€EE Transactions on Software Etzgineerrng, 16(8), pp. 917- 

927. 1990. 
[ 101 Luqi and W. Royce, "Status Report: Computer-Aided Prototyping.., IEEE Soffware, 9(6), pp. 77-81, 199 1.  
[ I  11 Luqi. 'Computer-Aided Software Prototyping", IEEE Computer, 24(9). pp. I 11-1  12. 1991. 
[ 121 Luqi. '-Computer-Aided Prototyping for a Command-and-Control System Using C A P S ,  fEEESofhvare, 9( 11, 

[I31 Luqi and J. Goguen, "Formal methods: promises and problems", I€€€Software. 14( I).  pp. 73-85, 1997. 
[ 141 J. h'ogueira, A Fornzal hlodelfor Risk Assessment in Sofware Projects. Doctoral Dissertation, Software 

[ 151 B. Ramesh and Luqi. "Process Knowledge Based Rapid Prototyping Requirements Engineering", Jozirnal of 

pp. 56-67, 1992. 

Engineering. Naval Postgraduate School, Sept. 2000. 

$stems Integration. 5(2). pp. 157-177. 1995. 

76  I 



The Use of Computer Aided Prototyping for 
Re-engineering Legacy Software 

Luqi, V. Berzins, M. Shing, M. Saluto, J. Williams 
J. Guo and B. Shultes 

Abstract 

Re-engineering is typically needed when a system performing a valuable service must 

change, and its current implementation can no longer s~ipport cost-effective changes. The 

process of re-engineering old procedural software to a modern object-oriented 

architecture introduces certain complexities into the software analysis process. The direct 

products of reverse engineering, such as requirements or design specifications, are likely 

to have a functionally based structure. As a result, some transformation of the recovered 

requirements and design specifications is necessary in order to obtain specifications for 

the new structures. It is often very difficult to quickly determine if the transformed 

specification is a true representation of the desired requirements. This paper discusses the 

effective use of computer-aided prototyping techniques for re-engineering legacy 

software. and presents results of a case study which showed that prototyping can be a 

valuable aid in re-engineering of legacy systems, particularly in cases where radical 

changes to system conceptualization and software structure are needed. The CAPS 

system enabled us to do this with a minimal amount of coding effort. 

7 7  



1. INTRODUCTION 

Legacy systems embody substantial institutional knowledge. which includes basic and 

refined requirements, design decisions, and invaluable advice and suggestions from 

domain users that have been implemented over the years. To effectively use these assets, 

it is important to employ a systematic strategy for continued evolution of the current 

system to meet the ever-changing mission, technology and user needs. Re-engineering 

has frequently been proven to be more cost effective than new- development and is also 

known to better promote continuous software evolution. 

However, the institutional knowledge implicit in a legacy system is difficult to 

recover after many years of operation, evolution, and personnel change. These software 

systems were originally written twenty or more years ago using what many now view 

archaic and ad-hoc methods. Such legacy systems usually lack accurate documentation, 

modular structure, and coherent abstractions that correspond to current or projected 

requirements. Past optimizations and design changes have spread design decisions that 

now must be changed over large areas of the code. and may have introduced 

inconsistencies and faults. 

Software re-engineering can be defined as the systematic transformation of an 

existing system into a new form to realize quality improvements, such as increased or 

enhanced functionality, better maintainability, configurability, reusability, performance, 

or evolvability at a reduced cost, schedule. or risk to the customer. This process involves 

recovering existing software artifacts from the system and then transforming and re- 

organizing them as a basis for future evolution of the system. Since typical legacy 

systems were originally designed and implemented using a functionally based approach, 



some transformation of the recovered information is necessary in order to obtain an 

object-oriented model. It is often very difficult to obtain a transformed specification that 

accurately represents the desired requirements. 

Since legacy systems are usually re-engineered only when the existing systems need 

some kind of improvement, it is unlikely that the initial version of the reconstructed 

requirements adequately reflects current user needs. Prototyping provides a means to 

identify and validate changes to system requirements while simultaneously enabling 

prospective users to get a feel for new aspects of the proposed system. It is a well- 

established approach that can be highly effective in increasing software quality [ 151. 

When used in conjunction with conducting a major re-engineering effort, prototyping can 

be extremely useful in assisting in many areas of sofin-are modification, validation, risk 

reduction, and the refinement of new software architectures and user requirements. 

This paper describes a case study that illustrates the effective use of computer-aided 

prototyping techniques for re-engineering legacy software [3, 161. The case study 

consists of developing an object-oriented modular architecture for the existing US Army 

Janus(A) combat simulation system [ 193, and validating the architecture via an 

executable prototype using the Computer Aided Prototyping System (CAPS), a research 

tool developed at the Naval Postgraduate School [14]. Janus(A) is a software-based war 

game that simulates ground battles between up to six adversaries [9]. It is an interactive, 

closed, stochastic, ground combat simulation with color graphics. Janus is "interactive" in 

that command and control functions are entered by military analysts who decide what to 

do in crucial situations during simulated combat. The current version of Janus operates on 

a Hewlett Packard workstation and consists of over 350,000 lines of FORTRAN code. 

79 



The FORTRAN modules are organized as a flat structure and interconnected with one 

another via 129 FORTRAN COMMON blocks, resulting in a software structure that 

makes modification to Janus very costly and error-prone. The Software Engineering 

group at the Naval Postgraduate School was tasked to extract the existing functionality 

through reverse engineering and to create a base-line object-oriented architecture that 

supports existing and required enhancements to Janus functionality. 

The paper presents the re-architecturing process and the resultant object-oriented 

architecture in Sections 2 and 3. Section 4 describes the use of computer aided 

prototyping to validate the resultant architecture and Section 5 draws some conclusions. 

2. REVERSE ENGINEERING 

The re-architecturing process used in the case study consists of 3 major phases: reverse 

engineering, object-oriented design and design validation via prototyping (Figure 1). 

Obiect-oriented 

oriented 
generation modeling 

source code. 
design documents, 

user manual. 
domain experts 

functional 
niodel 

I object-orieni 

Design Validation 
via PrototvDing 

prototype 
demonstration 

Figure 1. The object-oriented re-architecturing process. 

80 



The first phase is reverse engineering. Input to this phase includes the legacy source 

code, design documents, user manuals, and information from domain experts. Since the 

goal of the initial re-engineering effort is to duplicate the functionality of the existing 

system within a modular, extensible architecture and to reuse domain concepts, models 

and algorithms instead of the existing code, we should avoid including any 

requirements/constraints that are consequences of issues related to FORTRAN 

implementation. The best places to extract domain concepts from the existing system are 

the user manuals and the database management system manuals. These manuals were 

written using the lingo of the user community and should be relatively free of 

implementation details. We found the JANUS Data Base Management Program Manual 

[lo] particularly usefhl because it contains detailed information on what kind of data are 

needed to model the battlefield and how they are organized (logically) in the database. 

The top-level structure of the database is shown in Figure 2. 

Not shown in Figure 2 are the interdependencies between the data, whereby data 

entered in one category affect directly or indirectly the data in other categories. For 

example, the barrier delay attributes of the Engineer Data depend on specific weather 

conditions derived from the Weather Data and system functional characteristics derived 

from the System Data. The overall network of interdependencies is highly complex and 

can only be understood through construction and analysis of a functional model of the 

existing Janus software. 

81 



J a m  Database 

" F 
I I 

I 

General I weatlirr I OpticalTThermai 
characteristics Cliaracteristics 

Functional 
Characteristics Engineer 

Volume/Weigh t 
Barrier Delays Detection Genera! 

bfine Vulnerability Characteristics Non-Any Smoke 
POL Round Guidance VEES 
Weapons/Ordinance Grenades Effects 
weapon Selection: PH / PL Data Sets  Smoke Pots 

Firing System By Keapon Large Area 
Weapon Selection/ By  tar^ Generators 

Target System Minefields 
Kill Categories Dispensing 
Vulnerability to Clearing 

Indirect Fire Mine Detection I 
Artillery Systems Duds 
Indirect Fire Activation / Kill 

Lethalities 
Arty Cloud Data 
Optical B Thermal 

Smoke Grenade 

Aircraft Systems 
Radar Systems 

Contrast 

Data 

Sensors 
CMR vs. Contrast 

Range Dependent 
Ciiaracteristics Chemical 

Capability 
Footprints Chemical Rounds 

BClS 
Characteristics 

Flyer Fuselage/Rotor 
Data Status 

Rotor Track Radii 
Rotor Acquisition 

Times 
Fuselage Probability 

-Track 
Fuselay Radar 

X-section 
Jammer/Radar 

Characteristics 
Jammer Effectiveness 
Probabiiit) of 

Detection Data vs. 
Aircrati 

Susceptibility 

Heat Srress 

Figure 2. The top-level structure of the Janus Database. 

Analysis of the legacy implementation is a daunting but inescapable part of this step. 

If printed out at 60 lines per page, 350,000 lines would fill almost 6000 pages. We 

recoiled from the magnitude of this effort and analyzed the Janus User's manual [9], the 

Janus Programmer's Manual [7], the Janus Software Design Manual [8], and the Jams  

Algorithm Document [I81 instead. These documents helped us get started because they 

contained higher level information and were much shorter than the code. However, they 



were also older, and it was a constant struggle to determine which parts were still 

accurate, and which were not. In hindsight, avoiding analysis of the code was a mistake 

that slipped the schedule of the project by several months. Understanding a design of this 

complexity requires time for mental digestion, even with tool support and judicious , 

sampling. We should have started analysis of the code right away and should have 

persistently continued this task in parallel with all other re-engineering activities. Cross- 

fertilization between all the tasks would have helped us recognize some dead-end 

directions earlier and would have enabled us to spend meeting time more effectively. 

Using manual techniques augmented with simple UNIX shell commands, we were 

able to walk through the code and get a fairly good idea of what each subroutine was 

designed to do. We also used the Software Programmers' Manual [7] to aid in 

understanding each subroutine's function. In doing so we were able to group the 

subroutines by functionality to get a better understanding of the major data flows between 

programs and develop functional models from the data flows. We used CAPS to assist in 

developing the abstract models. CAPS allowed us to rapidly graph the gathered data and 

transform it into a more readable and usable format. Additionally, CAPS enabled us to 

concurrently develop our diagrams, and then join them together under the CAPS 

environment, where they can be used to generate an executable model. 

We also had a series of brief meetings with the client, TRAC-Monterey, asking 

questions and making notes on the system's operation and its current functionality. We 

paid attention to the client's view of the system to gather their ideas on its strengths, 

weaknesses, and desired and undesired functionality. These meetings were indispensable 

because they gave us information that was not present in the code. Since we were not 

8 3  



familiar with the domain of ground combat simulation, we were using these meetings to 

determine the requirements of this domain, often playing the role of "smart ignoramuses" 

[4], Domain analysis has been identified as an effective technique for software re- 

engineering [ 171. Our experience suggests that competent engineers unfamiliar with the 

application domain have an essential role in re-engineering as well as in requirements 

elicitation because lack of inessential information about the application domain makes it 

easier to find new, simpler design structures and architectural concepts to guide the re- 

engineering effort. 

3. OBECT-ORIENTED DESIGN 

Next, we developed object models and architecture of the Janus System using the 

aforementioned materials and products, to create the moduies and associations amongst 

them. Information modeling is needed to support effective re-engineering of complex 

systems [ 5 ] .  This was probably the most difficult and most important phase. It required a 

great deal of analysis and focus to transform the currently scattered sets of data and 

functions into small, coherent and realizable objects, each n-ith its own attributes and 

operations. In performing this phase, we used our knowledge of object-oriented analysis 

and applied the OMT techniques [20] and the UML notations to create the classes and 

associated attributes and operations [21]. This was a crucial phase because we had to 

ensure that the classes we created accurately represented the functions and procedures 

currently in the software. 

Restructuring software to identify data abstractions is a difficult part of the process. 

Transformations for meaning-preserving restructuring can be useful if tool support is 

available [6] .  We used the HP-UNIX systems at the TRAC-Monterey facility to run the 



Janus simulation software to aid in verifying and supplementing the information we 

obtained from reviewing the source code and documentation. This step enabled us to 

better analyze the simulation system, gaining insight into its functionality and further 

concentrate on module definition and refinement. 

The re-engineering team met several times each u-eek for a period of two and a half 

months to discuss the object models for the Janus core data elements and the object- 

oriented architecture for the Janus System. We presented the findings to the Janus domain 

experts at least once per week to get feedback on the models and architectures being 

constructed. In addition, the re-engineering team also presented the findings to members 

of the OneSAF project, the Combat21 project, and the National Simulation Center 

project. We found that information from these domain experts was essential for 

understanding the system, particularly in cases where the legacy code did not correspond 

to stakeholder needs. This supports the hypothesis advanced in [l 13 that the involvement 

of domain experts is critical for nontrivial re-engineering tasks. 

Early involvement of the stakeholders in the simulation community also paid off in 

the long run. Both the National Simulation Center and Combat21 projects were able to 

save time and money by reusing our m-ork and came up with designs that look remarkably 

like ours (although much larger). Now. OneSAF developers have been directed to look at 

the Combat21 class design and reuse as much as possible. So, our efforts have directly 

benefited other simulation developers. 

Based on the feedback from the domain experts, the re-engineering team revised the 

object models for the Janus core elements and developed a 3-tier object-oriented 

architecture for the Janus System (Figure 3). 

85 



Tier 1 
User Interface 

J A W S  
User Interface 

L 
I \  8 ,  

,,7' ,,7 7 h P'  
I ,  -' ' ; i '\ . I  

I* ,, ,* I . ,  Tier 2 - I, Applications .' I 

Domain ,.a* 

interface DB Utilitie 

Database DIS!HLA 

Tier 3 
Storase & 
Cominun icatioii 

U u 

Kate: Lines showing tile dependency of'the Combat 5j.stenis DBhtS, Scenario Il/anagement, JA.l&'S 
Combat Stniidation, J.4A WS. POSTP. DB L'tili(ies atid Pass Interface mbsystems on the Core 
Elements packages are oniittedji.on1 the diagram to keep it clear and siniple. 

Figure 3. The proposed 3-tier object-oriented architecture. 

We extracted most of the data and operations from the existing Combat System 

DBMS, Scenario Management, Janus Combat Simulation, JAAWS and POSTP 

subsystems and encapsulated them as simulation objects in the Core Elements package, 

leaving only application specific control codes that use the simulation objects in each of 

these five subsystems. Figures 4 and 5 show the top level class structures of the object 

models of the core elements. Details of the associated attributes and operations can be 

found in [2,23] and are omitted from these diagrams due to space limitations. 

86 I 



[ Scenario 1 

Force 

Command 
& Control 

Aggregate 

Figure 4. The top-level structure of the Janus Core Elements Object Model. 

E Z l  Environment 

Elevation 1 Data ],-d- 

Terrain 1 Features 1 

\ 
I Bulb 1 

Figure 5. The Environment Object Class. 

87 



Central to the Janus Combat Simulation Subsystem is the program RUNJAN, which 

is the main event scheduler for the simulation. RUNJAN determines the next scheduled 

event and executes that event. If the next scheduled event is a simulation event, RUNJAN 

will advance the game clock to the scheduled time of the event and perform that event. 

The existing Janus Simulation System uses 17 different categories to characterize the 

events. RUNJAh' then handles these 17 events using the following event handlers: 

1) 

2) 

3) 

4) 

5 )  

6 )  

7) 

8) 

I 
I 

DOPLAN - Interactive Command and Control activities 

MOVEMENT - Update unit positions 

DOCLOUD - Create and update smoke and dust clouds 

STATEWT - Periodic activity to write unit status to disk 

RELOAD - Plan and execute the direct fire events 

INTACT - Update the graphics displays 

CNTRBAT - Detect artillery fire 

SEARCH - Update target acquisitions, choose weapons against potential targets, 

and schedule potential direct fire events 

9) DOCHEM - Create chemical clouds and transition units to different chemical states 

10) FIRING - Evaluate direct fire round impacting and execute indirect fire missions 

11) IMPACT - Evaluate and update the results of an indirect round impacting 

12) RADAR - Update an air defense radar state and schedule direct fire events for 

"normal" radar 

13) COPTER - Update helicopter states 

88 i 



14) DOARTY - Schedule indirect fire missions 

15) DOHEAT - Update unit’s heat status 

16) DOCKPT - Activity to record automatic checkpoints 

I?) ENDJAN - Housekeeping activity to end the simulation 

The existing event scheduler uses global arrays and matrices to maintain the attributes 

of the objects in the simulation. Hence, one of the major tasks in designing an object- 

oriented architecture for the Janus Combat Simulation Subsystem was to distribute the 

event handling functions to individual objects. However, many of the current event 

handler categories contained redundant code. They did not seem to be independent of 

each other and were not consistent with the class hierarchy tve created. For example, the 

set of event handlers used to simulate the activities of a particular unit to search for 

iargets, select weapons, prepare for a direct fire engagement, and then execute that direct 

fire engagement differs depending upon whether the unit has a normal radar, special 

radar, or no radar at all. The existing Janus Simulation System uses the RADAR event 

handler to carry out the entire procedure if the unit has normal radar. However, it uses 

the SEARCH, RADAR, and RELOAD event handlers to carry out the procedure if the 

unit has special radar. Finally the system uses the SEARCH and RELOAD event 

handlers to conduct the procedure if the unit has no radar at all. We conjecture that this 

lack of uniformity is due to a series of software modifications made by different people at 

different times without full knowledge of the software structure. The example also 

illustrates another problem: the legacy event handlers were not designed to perform 

independent tasks, and had complicated interactions with each other. 

8 9  



It was necessary to redefine some event categories in order to reduce 

interdependencies between the event handlers, to factor simulation behavior into more 

coherent modules, to eliminate redundant coding of the same or similar functions and to 

take advantage of dynamic dispatching of event handling functions in the object-oriented 

architecture. Moreover, the Jams system was originally designed to work in isolation, 

and has since been adapted to interact with other simulation systems. Interactions 

between the simulation engine and the world modeler (the interface to the distributed 

simulation network) are performed implicitly within the various event handlers in the 

existing Janus. Such interactions are made explicit in the new architecture in order to 

provide a uniform framework to update World Model objects during the simulation. 

The new architecture uses an explicit priority queue of event objects to schedule the 

simulation events. We were able to reduce the total number of event handlers needed in 

the simulation, from 17 to 14, by eliminating identified redundant code (Figure 6). The 

14 remaining event handlers are as follows: 

DOPLAN - Interactive Command and Control activities 

MOVE-UPDATE-OBJ - Move and update the objects in the simulation 

SEARCH - Search for potential targets based on the detection devices available to 

the objects 

CHOOSE-DIRECT-FIRE-TARGETS - Once search is complete, choose best 

target to engage. In future simulations, implementations may allow users to choose 

targets 

COUNTERBATTERY - Simulate counter battery radar to detect artillery fire 

90 



DO-DIRECT-FIRE - Execute direct fire events and update ammunition status 

DO-INDIRECT-FIRE - Execute indirect fire events and update ammunition status 

IMPACT-EFFECTS - Calculate results of round impacting 

UPDATE-HEAT-STATUS - Update unit's heat status 

UPDATE-CHEMICAL-STATUS - Update unit's chemical status 

DISPLAY - Update the graphics display 

WRITE-STATUS - Periodic activity to write units status to disk 

CHECK-POINT - Activity to record automatic checkpoints 

END - SIMULATION - Activity to end the simulation 

We tried to make the actions of the new event handlers independent and orthogonal. 

Independent means that one event handler does not invoke or depend on the action of 

another. Orthogonal means that the purpose of one event handler is completely separate 

from that of another. Although our architecture does not completely meet these goals, it 

comes much closer to them than the legacy design does. We believe that these properties 

of the architecture are desirable because they impose a partitioned structure on the system 

that aids future enhancements and modifications. If an enhancement affects only one kind 

of event, then it becomes relatively easy to isolate the affected part of the code. If suitable 

naming conventions are followed, relatively low-tech tool support will be adequate for 

helping system maintainers find the parts of the code that must be understood and 

modified to make a future change to the system. 

91 



- 
Event 

Time-For-Event * Simulation 
Object 

Execute() 

4 
I 

Writestatus DoDirectFire 
1 Execute() 

DoPlan Display CheckPoint 
Esecute() Execute!) Execcite() 

Figure 6. The event class hierarchy. 

Every event has an associated simulation object in the new architecture. This 

associated object is the target of the event. Depending on the subclass to which an event 

object belongs, the "execute" method of the event will invoke the corresponding event 

handler of the associated simulation object (Figure 7) .  The simulation object superclass 

defines the interface of the event handlers for the event groups. At the highest level, it 

provides an empty body as the default implementation for the event handlers. Events are 

dispatched to the appropriate subclass. If there is something more specific that needs to 

be done for instances of the subclass, the event handler of the subclass overrides the 

inherited method in order to simulate the desired behavior. 



Simulation Object 
Origin 
DoPlan( ) 
MoveUpdateObj( ) 
Writestatus( ) 
DoDirectFire( ) 
Display( ) 
CounterBatteqf ) 
Search( ) 
ChooseDirectFireTargets( ) 
UpdateCliemicalStatus( ) 
DolndirectFire( ) 
ImpactEffects( ) 
UpdateHeatStatus( ) 
Checkpoint( ) 
EndSiniulation( ) 

Q 
Scenario 

U'riteStatus( ) 
Display( ) 

CombatEleinent 

Checkpoint( ) 
Endsimulation( ) 

Coinbat Un i t 

DoDirectFire( ) 
CounterBatter).( J 

Search( ) 
ChooseDirectFireTar~cts( ) 
UpdareChemicalStatus( ) 
DoIndirectFire( j 
UpdateHeatStatus( ) - 

A 

lbfinetield 

WM-Mi nctield 

MoveUpdateObj( ) 
DoDirectFire( ) 
CounterBatter).( ) 
Search( ) 
ChooseDirectFireTarsets( ) 
UpdateChemicalStatus( ) 
DolndirectFire( ) 
UpdateHratStatusr ) 

MoveUpdateObj( ) 

DirectFire 
Transaction 

Figure 7. The simulation object class hierarchy. 

9 3  



The above architecture enables a very simple realization of the main simulation loop: 

initialization; 

while not - empty(event - queue) loop 

e := remove event(event queue); 

e. execute(); 

- - 

end loop; 

finalizcuion; 

Note that this same code is used to handle all of the event handlers, including those 

for future extensions that have not yet been designed. Event objects with associated 

simulation objects are created and inserted into the event queue by the initialization 

procedure, the constructors of simulation objects, and the actions of other event handlers. 

Depending on the actual event, events are inserted into an event priority queue based on 

time and priority. 

Our newly designed architecture eliminates the need for the simulation loop to know 

what kind of object it is handling. Thus when adding an object type not yet designed, the 

simulation loop does not require additional code to invoke the new object’s event 

handlers. By localizing all changes to the newly added object class, our architecture 

eliminates the possibility of introducing errors into the existing parts of the simulation. 

4. DESIGN VALIDATION VIA PROTOTYPING 

The process of transforming a design developed using the functional approach into an 

object-oriented design introduces risks of unintentionally altering system behavior. In the 

context of our case study, the resultant object oriented architecture and the new event 

dispatching control structure are areas of high risk since they differ significantly from the 



functional design of the legacy software. UML provides two ways to model behavior. 

One is to capture the behavior of individual objects over time using state machines, and 

the other is to capture the interactions of a set of objects in the system using sequence 

diagrams and collaboration diagrams. While state machines are precise, they only focus 

on a single object at a time and is hard to understand the behavior of the system as a 

whole. The sequence diagrams and the collaboration diagrams, on the other hand, lack a 

formal semantics for precise description of the system behaviors. 

One way to reduce the risk is to validate the dynamic behavior of the proposed 

architecture and to refine the interfaces of subsystems via prototyping at the early design 

stage. To be effective, prototypes must be constructed and modified rapidly. accurately, 

and cheaply. Computer aid for constructing and modifying prototypes makes this feasible 

[lS]. The CAPS system is an integrated set of software tools that generate source 

programs directly from high-level requirement specifications. 

Due to time and resource limitations, we developed a prototype for only a very small 

simulation run, which consists of a single object (a tank) moving on a two-dimensional 

plane, three event subclasses (move, doylnn,  and end - simzilntion). and one kind of post- 

processing statistics (he1 consumption). 

We developed an executable prototype using CAPS. Figure 8 shows the top-level 

structure of the prototype, which has four subsystems: j a m s ,  pi, jaaw and the 

postqrocessor. Among these four subsystems, the janzis and the gui subsystems 

(depicted as double circles) are made up of sub-modules as shown in Figures 9 and 10, 

while the janvvs and the postprocessor subsystems (depicted as single circles) are 

mapped directly to modules in the target language. After entering the prototype design 

9 5  



into CAPS, we used the CAPS execution support system to generate the code that 

interconnects and controls these subsystems. In addition, a simple user interface was 

developed using CAPS/TAE [22] (Figure 11). The resultant prototype has over 6000 

lines of program source code, most of which was automatically generated, and contains 

enough features to exercise all parts of the architecture. The code that handles the motion 

. of a generic simulation object was very simple, but it was designed so that it would work 

in both two and three dimensions without modification (currently the initialization and 

the movement plan of the tank object never call for any vertical motion). The code was 

also designed to be polymorphic. just as u-as the main event loop. This means the same 

code will handle the motion of all kinds of simulation objects without any modifications, 

including new types of simulation objects that are part of currently unknown fbture 

enhancements to Janus and have not yet been designed or implemented. 

Figure 8. Top-level decomposition of the executable prototype. 



Figure 9. The JANUS subsystem of the executable prototype. 

Externrl 

Figure 10. The GUI subsystem of the executable prototype. 

97 



Figure 11. The Graphical User Interface of the executable prototype 

Our prototyping experiment showed that the proposed object-oriented architecture 

allows design issues to be localized and provides easy means for future extensions. We 

started out with a prototype consisting of only two event subclasses (move and 

end - simzrlnfion) and were able to add a third event subclass (doglrrn) to the prototype 

without modifying the event control loop of the Janus combat simulator. 

We also demonstrated the use of inheritance and polymorphism to efficiently 

extendlspecialize the behavior of combat units. For example. the move - update-object 

method of a tank subclass uses the general-purpose method from its superclass to 

compute its distance traveled and a specialized algorithm to compute its fuel 

consumption. We simply include one statement to invoke the move - update-object 

method of its superclass followed by three lines of code to update its fuel consumption. 

Moreover, other combat unit subclasses can be added easily to the prototype without the 

98 



need to mod@ the event scheduling/dispatching code and usually without modifying 

existing event handlers. 

The issues raised by the design of the prototype also resulted in the following 

refinements to the proposed architecture: 

1. Extend the interface of the Execute - Event operation to return the time at which the 

next event is to be scheduled for the same simulation object, and introduce a special 

time value "NEVER' to indicate that no next event is needed. The proposed change 

turns the communication between the event dispatcher and the simulation objects 

from a peer-to-peer communication into a client-server communication. This change 

eliminates dependencies of event handlers on event queue details and allows the event 

dispatcher to use a single statement to schedule all recurring events for all event 

types. 

2. Instead of recording the history of a simulation run in sets of data files. model the 

simulation history as a sequence of events. The proposed change provides a simple 

and uniform way to handle history records for all events, and allows the same 

modular architecture to be used for real-time simulations as well as post-simulation 

analysis. It also eliminates the need for the write-status event, reducing the number of 

events still further. This approach provides the greatest possible resolution for the 

event histories, which implies that any quantity that could have been calculated 

during the simulation can also be calculated by a post-simulation analysis of the event 

history, without any loss of accuracy. The only constraint imposed by this design 

refinement is that the simulation objects in the events must be copied before being 

included in the simulation histoq-, to protect them from further changes of state as the 

9 9  



simulation proceeds. This constraint is easy to meet in a full-scale implementation 

because the process of writing the contents of an event object to a history file will 

implicitly make the required copy. 

The prototyping effort also exposed a design issue - should null events appear in the 

event queue? A nul! event is one that does not affect the state of the simulation, such as a 

move event for an object that is currently stationary. The prototype version adopted the 

position that such events should not be put in the event queue, since this corresponds to 

current scheduling policies in Janus, and appears at first glance to improve efficiency. 

Our experience with the development of the prototype suggests that this decision 

complicates the logic and may not in fact improve efficiency. In particular, the process 

create - neu' - events (see Figure 9) could be eliminated if we allowed null events. This 

process scans all simulation objects once per simulation cycle to determine if any 

dormant objects have become active. and if so, schedules events to handle their new 

activity. The alternative is to have the constructor of each kind of simulation object 

schedule all of its initial events, and to have each event handler specify the time of next 

instance of the same event even if there is nothing for it to do currently. Handlers might 

still set the time of its next event to NEVER in the case of a catastrophic kill; however 

this is reasonable only if it is impossible to repair or restore the operation of the units that 

have suffered a catastrophic kill. The reasons why this design change may improve 

efficiency in addition to simplifying the code are that: 

1. the check for whether a dormant object has become active is done less often - once 

per activity of that object, rather than once persimulation cycle, 

100 



2. executing a null event is very fast - a few instructions at most, so the “unnecessary” 

null events will not have much impact on execution time, and 

3. the computation to find and test all simulation objects periodically would be 

eliminated. 

We recommend allowing null events in the event queue, and explicitly scheduling 

every kind of event for every object unless it is k n o ~ n  that there cannot be any non- 

empty events of that type in any possible future state of the object. For example, under 

the proposed scheduling policy, immobile or irrecoverably damaged objects would not 

need to schedule fbture move events, but those that are currently at their planned 

positions would need to do so, because a change of plan could cause them to move again 

in the future, even though they are not currently moving. The resulting architecture 

enables a very simple realization of the main simulation. 

5. CONCLUSIOK 

Our conclusion is that substantial and useful computer aid for re-engineering is possible 

at the current state of the art. Human analysts and domain experts must also play an 

important part of the process because much of the information needed to do a good job is 

not present in the software artifacts to be re-engineered. Success depends on cooperation 

between skilled people and appropriate software tools. 

The missing information needed for re-engineering is related to deficiencies of the 

current system at all levels, from requirements through design and implementation. 

Thorough and accurate knowledge of these deficiencies is crucial for success. The clients 

never want the re-engineered system to have the exactly same behavior as the legacy 

system - if they were satisfied, there would be little motivation to spend time, effort, and 

101 



resources on a re-engineering project. Even if a system is being re-engineered for the 

ostensible goal of porting to different hardware, the desired behavior at the interface to 

the hardware and systems software will be different. 

In practical situations, the requirements for the re-engineered system are different 

from those for the legacy system. Key parts of the requirements for the new system are 

often missing or incorrect in the legacy documents. Some of that information is present 

only in the minds of the clients, often fragmented and scattered across members of many 

different organizations. Communication is a large part of the process. and that 

communication cannot be automated away, although it can be enhanced by appropriate 

use of prototyping. We found that the most important communications were those 

regarding newly recognized requirements issues, and that such recognition were often 

triggered by discussions between people with different areas of expertise. 

~ 

I 

Uncertainties about the true requirements play a central role in both re-engineering 

and the development of new systems. We therefore hypothesized that prototyping could 

play a valuable role in re-engineering efforts. Our experience in the case study reported 

here support that hypothesis. 

We also found that prototyping can contribute substantially to the process of 

inventing, correcting, and refining the conceptual structures on which the architecture of 

the new system will be based. Most legacy systems are too complicated for individuals to 

understand. 

This maze of details hides potential opportunities for simplifying and regularizing the 

conceptual structure of the system to be re-engineered, and makes it difficult to recognize 

102  



deficiencies in design and architectural structure. The amplification process implicit in 

constructing skeletal prototypes helps expose such opportunities. 

We found that there are fundamental conceptual errors embodied in the legacy 

structures and algorithms. Some of those errors were exposed when structural 

asymmetries and irregularities are discovered in the process of extracting a model of the 

legacy software. Others were discovered only with the help of the oversimplified models 

that are common in the early stages of prototyping a proposed new architecture. 

Constructing a small and simple instance of the proposed architecture raises many of the 

main design issues, and the simplicity of the model makes it much easier to consider and 

evaluate alternative designs to find improved structures. 

To be effective, prototypes must be constructed and modified rapidly. accurately, and 

cheaply. The UML interaction diagrams lack the preciseness to support automatic code 

generation for the executable prototype. This weakness can be remedied by the use of the 

prototype language PSDL [ 12. 131 and the CAPS prototyping environment, which 

provide effective means to model the system’s dynamic behavior in a form that can be 

easily validated by user via prototype demonstration. 

ACKNOWLEDGEMENT 

The authors thank Dr. David Hislop, COL Michael McGinnis, MAJ Gerald Pearman, 

MAJ LeRoy Jackson, MAJ William Murphy, SFC Cary Augustine, Harold Yamauchi 

and Bill Caldwell for their help and support for the project. This research was supported 

in part by the U.S. Army Research Office under contract ff 35037-MA and in part by the 

U. S .  Army Training and Doctrine Analysis Command. 

103 



REFERENCES 

[l] I. Baxter and M. Mehlich, “Reverse Engineering is Reverse Forward Engineering,” 

Proceeding of the 4th Workshop on Reverse Engineering. IEEE Computer Society, 

1997, pp. 104-1 13. 

[2] V. Berzins, M. Shing. Luqi, M. Saluto and J. Williams, Re-engineering the 

Janzis(A) Combat Shdat ion  Systen?. Technical Report NPS-CS-99-004, Computer 

Science Department, Naval Postgraduate School. Monterey, CA, January 1999. 

V. Berzins, M. Shing, Luqi, M. Saluto and J. Williams, “Architectural Re- 

engineering of Janus using Object Modeling and Rapid Prototyping,” to be 

published in the j oumal Design Aiiton7cition .for. Embedded Systems. 

A preliminary version of the paper also appeared in Proceedings ofthe lUth IEEE 

Internationai Workshop in Rapid Sjatems Prototyping. Cieanvater Beach, Florida, 

16- 18 June 1999. pp. 2 16-22 1. 

D. Berry, Formal Methods: The Very Idea. ”Some Thoughts About Why They 

Work When They Work,” Proceedings of the I998 ARO/ONR/NSF/DARPA 

rblonterey Workshop OR Engineering Aiitornation .for. Compiiter Based Systems, 

[3] 

[4] 

1998, pp. 9-18. 

[5] 0. Bray and M. Hess, “Reengineering a Configuration-Management System,” IEEE 

Soffware, Vol. 12, No. 1, Jan. 1995, pp. 55-63. 

V. Cabaniss, B. Nguyen and J. Moregenthaler, ’Tool Support for Planning the 

Restructuring of Data Abstractions in Large Systems,” IEEE TSE, Vol. 24, NO. 7, 

161 

July 1998, pp. 534-558. 

1 0 4  



171 Janus 3.HUNUr' Software Progrcimmer 's Manual, Prepared for: Headquarters 

TRADOC Analysis Center. Ft. Leavenworth, Kansas. Prepared by: Titan, Inc. 

Applications Group, Leavenworth, Kansas, Nov. 1993. 

Jcinus 3.HUNI.X Softivcire Design Manzicil, Prepared for: Headquarters TRADOC 

Analysis Center, Ft. Leavenworth, Kansas. Prepared by: Titan, Inc. Applications 

Group, Leavenworth, Kansas, Nov. 1993. 

[9] Janus Version 6 User's Mnnucil. Simulation, Training & Instrumentation Command, 

Orlando. Florida. 1995. 

[S] 

[ 101 Janus Version 6 Dcitn Bcrse Management Program Manrial, Simulation, Training & 

Instrumentation Command, Orlando, Florida, 1995. 

[ 111 S. Jarzabek and P.K. Tan. "Design of a Generic Reverse Engineering Assistant 

Tool,'' Proceedings of the Second Working Conference on Reverse Engineering 

(TVCRE'95), 1995, pp. 61-70. 

[12] B. Kraemer, Luqi, and V. Berzins, "Compositional Semantics of a Real-Time 

Prototyping Language," IEEE Transcictions on Software Engineering, Vol. 19, No. 

5, May 1993, pp. 453-477. 

[13] Luqi, V. Berzins, and R. Yeh. "A Prototyping Language for Real-Time Software," 

IEEE Transactions on Software Engineering, Vol. 14, No. 10, October 1988, pp. 

1409-1423. 

[ 141 Luqi and M. Ketabchi. "A Computer-Aided Prototyping System," IEEE Software, 

Vol. 5 ,  NO. 2. 1988, pp. 66-72. 

105 I 



[ 151 LUqi. ‘’System Engineering and Computer-Aided Prototyping,” Journal of Systems 

Integration - Special Isszie on Computer Aided Prototyping, Vol. 6,  No. 1, 1996, 

pp.15-17. 

[16] Luqi, V. Berzins, M. Shing, M. Saluto, J. Williams, J. Guo and B. Shultes, “The 

Story of Re-engineering of 350,000 Lines of FORTRAN Code,” Proceedings of the 

I998 ARO/O-j‘WNSF/DARPA Monterey Workshop on Engineering Aiitomation for 

Compriter Based Sptems, Camel, CA, 23-26 October 1998, pp. 15 1-1 60. 

[ 171 M. Moore and S .  Rugaber, “Domain Analysis for Transfonnational Reuse,“ 

Proceedings of 4th Workshop on Reverse Engineering, IEEE Computer Society, 

1997, pp. 156-163. 

[18] J. Pimper and L. Dobbs, Janiis Algorithm Doczlnwnt, Version 4.0, Lawrence 

Livermore National Laboratory, California, 1988. 

[ 191 L. Rieger and G. Pearman, “Re-engineering Legacy Simulations for HLA- 

Compliance,” Proceedings of the Interservice/Ind~istry Training, Simirlation and 

Education Corference (I4TSEC) , Orlando, Florida, December 1 999. 

[20] J. Rumbaugh. M. Blaha, W. Premerlani. F. Eddy and W. Lorenzer, Object-Oriented 

Modeling and Design. Prentice Hall, 199 1. 

[21] J. Rumbaugh. I. Jacobson and G. Booch, The Un$ed Modeling Language 

Reference Mnnrrnl, Addison- Wesley, Reading, MA, 1999. 

[22] TAE Plus C Progrcrmnter s rbfanual (Version 5. I j. Prepared for: NASA Goddard 

Space Flight Center. Greenbelt, Maryland. Prepared by: Century Computing, Inc., 

Laural, Maryland. April 1991, 



[23] J. Williams and M. Saluto, Re-engineering and Prototyping Legacy Software 

Systems-Jnntrs Version 6 4  master’s thesis, Naval Postgraduate School, Dept. of 

Computer Science, Monterey, CA, March 1999. 

107 



Product 

Nadar Nada, Luqi 

h e  

Naval Postgraduate Slhool 
C.S. Dept. Code CS/ 833 Dyer Rd. 

Monterey, CA. 93943 USA 
+18316564075 

nnada,luqi@cs.nps.navy.mil 

Gewpoint and Validation Models 

Khaled Jaber David Rine 
Case Western Reserve Univ. 

C.S. DeptA0900 Euclid Ave. 
Cleveland, OH. 44 106 USA 

+1 860 2149 

George Mason University 
C.S. Dept. MS 4A5 
Fairfax, VA 22030 
+ I  703 993 1546 

jaber@lucent.com drine@gmu.edu 

ABSTRACT 
A product line is a group of systems sharing a common, 
managed set of features that satisfy specific needs of a 
selected market or mission. In the product line approach, 
management. system developers. and a reuse team are 
interested in some views of the product line. In this paper 
a model is defined to present product lines, its derived 
products, and common assets used in these product lines. 
The model is used to convey views of interest to different 
stakeholders: management, system developers, and a 
reuse team in the product line approach. Its purpose is to 
capture information and present this information about 
organizations' product lines. and make it visible to the 
stakeholders inside and outside organizations. 
Management can use the model when producing new 
products of a product line, negotiating with customers. 
and assessing the benefits of adopting the product line 
approach. Product line developers can use the model 
when developing products of  a product line. A reuse team 
can use the model through asset identifications, ensuring a 
successful use of asset base in and across product lines. 
and assessing the level o f  reuse. 

Keywords 
Product line. Product line architecture. COTS. 
Organizational components, Stakeholders, and System- 
unique components. 

1 INTRODUCTION 
Organizations that develop similar products are adopting 
the product line or product family approach to deploy 
systems faster, at a low cost, and a high quality. Systems 
are produced in a product line using common architecture 
and assets that are used across products. Organizations 
reuse common assets, integrated assets, etc. that would 

othenvise have to be needlessly repeated for each system. 

Each stakeholder, i.e. management, systems developers. 
and reuse team is interested in a particular view of the 
product line. Management. for example, might be 
interested in viewing products of  a product line to 
estimate time and schedules. Systems developers might 
be interested in a view of a product line looking for 
common assets. The reuse team might be interested in a 
view of a product line to assess the level o f  reuse in a 
product line. These are some of the interesting views. 

We are presenting a product line viewpoint model that 
sho\vs different views of the product line, its derived 
products, and common assets used. Also we are showing 
how the model conveys particular views interesting to 
management, systems developers. and reuse team. 

Section 2 describes the product line concept. Section j 
describes the product line model. Section 4 describes 
views captured by the model. Section 5 is an empirical 
model for product line validation. Section 6 represents a 
repository support. Section 7 is the conclusion. 

2 PRODUCT LINE CONCEPT 
A product line is defined as a group of products sharing a 
common, managed set of features that satisfy specific 
needs of a selected market or mission [ I ,  41. Products in 
the product line are engineered through customization 
from base requirements and standard product line 
architectures, and integration of common components 
rather than using system-unique software [2]. 

The product line architecture is one of the important 
assets shared by the systems in a product line. It provides 
the structure for building systems in the product line. All 
products are based on the product line architecture. 

Product line assets are used across products in the product 
line. Product line assets depend on the solutions common 
to the products in a product line. Reusing these solutions 
reduces or eliminates work that othenvise would be 
required to build each product [3]. 

In the product line development. a dual life-cycle model 
can be used in which domain engineering is the process 
used to create domain artifacts useful across the entire 

108 



T a b l e  I T h e  V i e w p o i n t  a n d  A t t r i b u t e  T e m p l a t e .  

R e f e r e n c e  
A t t r i b u t e s  

Tasks 

Su b- views 

\ ' i ewpoint  T e m p l a t e  

The v iewpoint  name  
Attributes provid ing  view point  inforniation 
A reference  to  a set  o f  even t  scenarios describing 
how vie i rers  interact with the product l ine and their  tasks 
The n a m e s  of  sub-viewpoints  

' View En t i t i e s  
Product  line 
Product  
Product  line 
architecture release 

Product  release 

COTS Component 
re I ease  
Organizational  
coin p o n e n t re I e a s e 

Sys tem - u n i q u e 
componen t  release 

A t t r i b u t e s  T e m p l a t e  

A t t r i h u t e s  
Name ,  oa.ner,  intended market .  
Name ,  contac t  person,  cus tomer is ) .  
Contac t  person,  release number .  number  of  t imes  reused. development  
time. nuni her  o f  staff. used architectural  style. inter-component used 
c o ni ni u n i c a t i o n ni e c han is m s , operating s !, s t e ni s ( s )and p I at fo rm ( s ) . 
C u s to me r 5. co  ii t ac t d e ve I o p ni en t ti m e , 
developinent  cos t ,  when developed.  n u m b e r  o f  staff! status, opera t ing  
system(s'1 and platform(s).  
Name. vendor.  release number .  contact  person.  cost ,  number  of t imes  
reused,  opera t ing  sys tem(s)  and p la t form(s ,  
Name.  release number .  contac t  person.  dr \  eloped internally or  externally,  
developmenr  cost ,  number  o f  t imes  reused.  development  time. number  o f  
staff ,  opera t ing  system(s) and pla t formis)  
Name: release numher.  contac t  person.  dc re lopn ien t  cost. development  
tinit.. and n u m b e r  ofstaf-f, opera t ing  sys t emis )  and platform(s).  

re 1 e ase n u m b e  r . p e rs o n . 

ti:* 
I I I I I 1.b Product 

~ L1ne Pmduc! 
Line Architecture 

Product Lrne j in spcctf) Common 
ccinponmt 
Ikscnptron 

Architecture 
Reluse 

I 1 1  I 

Figure I Product Line View 3lodcl 

llntrrface 

109 

I 

I 
I 1i.b 

i 
I I 

1 HS Cotnforrnr 
to 

Used 
by Belong 

to 
I 

Common P1.b Hb Product I Cornxon H% 
1 Component Release Corrwncnt 

Afchtt- Lsed Release 

Prcdua 
Relcve Producr 

1 I .  - 1  I .  

I 
I Prdua  

Llne 
\light 

System 
Un1quc 
Component 

I H.u I 



product line, and application engineering is the process 
used to produce a single product by adapting the domain- 
wide assets [l]. 

A product line model that shows different views of a 
product line, its derived products, and common assets used 
is presented in this section. It defines entities and 
relationships between these entities to present product lines. 
It presents different ways to viewing a product line 
keeping in mind enhancement, modification, other models, 
other entities and relationships. Figure 1 depicts the model. 
The following sections describe the product line views- 
point model. 

3.1. Product Line Overview 
A product line is defined as a group of products sharing a 
common, managed set of features that satisfy specific needs 
of a selected market or mission [l,  41. A product line has a 
group of products associated with it; it has a 1:M relation 
with its products. A product line has a common architecture 
associated with it; it has a 1 : 1 relation with its architecture. 

3.2. Product Line Architecture 
Product line architecture provides the structural elements 
and their interfaces by which the system is composed out of 
the product line [18]. Products are customized using the 
product line architecture. Product line architecture might 
evolve during the product line life cycle. New releases of 
the product line architecture could be seen and this is due to 
change in customers’ requirements, new technologies, 
design fixes. etc. It has a 1:M relationship with its releases. 
The early releases of product line architecture specify the 
common components used in the product line architecture; 
they could specify the functionality needed by these 
components and might specify their interfaces. An M: N 
relationship is established between product line architecture 
release and common component descriptionhnterface. After 
common components are developed, later releases of 
product line architecture might refer directly to common 
component releases. A product line architecture release is 
used by many products’ releases; it has a I:M relationship 
with their architectures. 

3.3. Products 
Products in a product line are engineered through 
customization from base requirements, standard product 
line architectures and integration of common components, 
and might use system unique components. Each product is 
associated with its releases. Each product release has 
architecture associated with it called product release 
architecture. Product has a I:M relationship with its 
releases, whereas, product release has a 1 :I relation with its 
architecture. 

3 PRODUCT LINE VIEWS MODEL 

3.4. Product Release Architecture 
Product release architecture is derived from the product line 
architecture release and must conform to the product line 
architecture release. It uses many common components 
described by the product line architecture release; for each 
common component used, it uses one of the releases of that 
component. In addition. it might use many system-unique 
components; for each system-unique component used, it 
uses a release of that component. 

3.5. Components 
Components are the building blocks of products in a 
product line and are classified into two categories: a 
common component and system-unique component. A 
common component is used across products of a product 
line and could be a commercial-off-the-shelf (COTS) 
component or an organizational component. Organizational 
components refer to common components developed by the 
product line organization. They could be developed 
internally by the organization owning the product line or 
externally by a different organization within the business 
unit of xhich the organization is a part. A system-unique 
component is used in specific products. Both types of 
components, common and system-unique, could have 
releases associated with them and have a I:M relationship 
with their releases. They are used in many product releases 
and have an M: N relationship with product architecture 
release. 

3.6. Viewpoint Attributes 
Entities in the viewpoints have some interesting attributes. 
Table 1 represents the viewpoint and attributes template. 
Organizations that adopt the product line approach might 
be interested in other attributes; these attributes can be 
added to the table. The attributes listed in table 1 are used 
to support the views described at section 4 in this paper. 

4 PRODUCT LIRE VIEWPOINT MODEL 
In the product line approach, product Lines share several 
different views that are interesting to management, system 
developers, and a reuse team. Other interesting views might 
be possible. 

4.1. Management View 
Management of an organization that adopts the product line 
approach has authority, vision, and leadership. It manages 
the development of products in a product line. They 
manage staffing. training, cost, directions, and schedules 
through the product line cycle. They have a clear vision 
about the direction of a product line. They interact with 
customers and make business decisions. 

Management in the product line approach can be interested 
in the products derived from a product line, customers of 
these products, and customer contact persons. Also they 
can be interested in cost. contact persons, time intervals, 
and staffing for products and assets used in these products. 



I A 

Phase 
1. Adoption 
2. Planning & Management 
3. Utilization 
4. Expansion 

Viewpoint 
Documentation 

Viewpoint Viewpoint 
Identification Structuring 

Function Data Collection Methods 
Assessment Survey, Legacy 
Measurment & Control Survey, Legacy 
Monitring Case Study, Project Monitor 
Adaptation Case Study. Survey, Legacy 

Figure 2. Viewpoint Development Phases 

Table 2. Experimental Model Phases for Product Line Validation 

This data is supported by the mode. Management can use 
this data when producing a new product of a product line, 
negotiating with customers, and assessing the benefits of 
adopting the product line approach. 

The structural of management view and its relationships 
presented by the model answers questions related to what 
are the products of a product line and assets used in these 
products. Attributes used in model’s entities ansLvei 
questions related to who is the customer, contact person, 
time interval, cost, staffing, etc., of products in a product 
line. 

4.2. Reuse Team View 
A reuse team of an organization that adopts a product line 
approach supports reuse across product lines. They support 
reuse of components through asset identification. With 
systems developers they ensure successful use of asset 
bases in and across product lines. They assess the reuse 
level across product lines. Reuse team can be interested in 
viewing product lines, their derived products, and reusable 
assets (product line architectures and components) used in a 
product line. They can also be interested in the number of 
times an asset is reused, and the type of components used in 
a product line. 

The structural of reuse team view and its relations 
presented by the model shows products of a product line 
and assets used in these products. Attributes used in the 
model’s entities answer question related to the type of 

components used, number of times an asset is reused. 

The reuse team can use this information through asset 
identification, ensuring a successful use of asset base in and 
across product lines, and assessing the level of reuse. 

1.3. Systems Developers View 
System developers in the product line approach are also 
interested in viewing product lines. their derived products, 
the product line architecture, its evolution, assets used and 
their evolution, the operating system(s) and platform(s) are 
used, components types, their interfaces. 

The structural of system developers view and its relations 
presented by the model shows the products derived in a 
product line. the product line architecture, its evolution, 
components used and their evolution. Attributes used in the 
model’s entities answer questions related the contact person 
of an asset, components interface, component type, 
operating system(s) and platform(s). 

4.4. Viewpoints Development 
We used the method called VORD [17] for the 
development of viewpoints. Also, this method is principally 
intended for requirements discovery and analysis, it 
includes steps that help to translate this analysis into a 
viewpoint. We considered only the first three stages of the 
VORD method concerned with viewpoint identification, 
structuring. and documentation. 

a- Viewpo inr Iden tijjutiioii involves discovering 

1lZ 



stakeholder viewpoint and identifying the specific 
attributes, tasks, and sub-viewpoints. 

b- Viewpoint Structuring involves grouping related 
viewpoints into a hierarchy. Common viewpoints are 
provided at higher levels in the hierarchy and are 
inherited by lower-level viewpoints. 

c- Viewpoints cfoainzentcrfion involves refining the 
description of the identified vieivpoints. 

Viewpoints and attributes information in VORD are 
collected using standard forms. The form used for 
viewpoint information (the viewpoint template) and 
attributes information (attributes template) are shosvn in 
Table 1. 

The viewpoints and attributes templates, as well as the 
viewpoint hierarchy diagrams are developed during the 
three phases shown in Table 1. The templates are used to 
structure the information collected. and in general a 
template cannot be completely filled in during single 
activity. 

5 EMPIRICAL MODEL FOR PRODUCT LINE 

In this section an experimental integrated model for 
product line pilot project planning, measurement. and 
assessment is presented. This section discusses how 
qualitative and quantitative process and product line goals 
are established based on customer and business needs. The 
process of flow-down of goals to the level of processes and 
the experimental pilot model is described. Table 2 .  presents 
the empirical and engineering model phases for product 
line validation. 

5.1. Making the Product Line Adoption Decision 
Product line adoption is defined in the context of an 
organization rationale to agree, sponsor. commit, or 
allocate resources for initiating a product line plan or 
project. Product line utilization is defined in the context of 
an organization as the creation of assets with the specific 
"intention" to be reused as well as the utilization of assets 
that had been specifically created Ivith the "intention" of 
being reused. Product line management is defined in the 
context of an organization that manages the creation, 
utilization, and evolution (i.e., maintenance) of reusable 
assets. The application of software reuse technologies to 
planned products (both new and existing) and planned 
product lines is an indicator that software reuse adoption is 
strongly correlated with organizational opportunities. 

Most software development organizations operate 
according to marketing and finance strategies. An 
organization wishing to improve its financial status may 
look for new or extended opportunities in software product 
markets. Product line is one possible approach that may be 
used to leverage decreased time to such markets with 
decreased effort and increased product quality. 

VALIDATION 

SO the first step is to make the product line adoption 
decision based on some empirically validated software 
reuse reference model (RRM) [Nada 971. This in turn will 
lead to a set of decisions balancing market opportunities 
with market risks. This step will also identify reuse 
opportunities, reuse objectives. costs, constraints, and 
options. 

For adoption decision organizations conduct an analytical 
study to decide either to adopt certain product line process 
or technology or not. This study collects both qualitative 
and quantitative benchmark data on the product line 
approach. 

The adoption phase includes several steps to evaluate the 
technical and organizational aspects of the introduced 
product line process or technology. 

5.1. I Orgc[ni:atioii context 

Organization context describes the environment in which 
the organization exists or existed when it launched the 
product line effort. The following lists common factors that 
are used in the adoption phase to evaluate the existing 
environment before applying the product line approach. 
The following factors will be used to record and evaluate 
the contest environment of organizations adopted the 
producr line approach. Also it used by organizations 
exploring the transition to the product line approach. 

Process or technology objective. To adopt the product 
line approach; the objective of developing product lines 
needs to be addressed and defined. This includes defining 
the scope of the product line, how long the organization has 
been building product lines, and the product line life cycle. 

Costs/benefits. Organizations that already adopted these 
processes or technologies should have data related to the 
costs and benefits of this adopting. Organizations that are 
thinking to adopt a software reuse approach might not have 
data about the cost of adopting this technology, but the 
benefits of software reuse approach should be defined. 
Cost varies based on the size and the number of products in 
the organization, the technical experience, organization 
structure needed. skills and training, and tools. 

Commonalties and variabilities. Organizations exploring 
the transition to software reuse approach should identify 
which products can be considered and what their 
commonalties and variabilities 

Common architecture. Organizations exploring software 
reuse approach should consider the feasibility of common 
architecture for their products. Also the style of the 
architecture might be defined, e.g. layered architecture, 
client server architecture, etc. 

Assets used. In software reuse development approach 
products are assembled using common set of assets and 
might use system unique assets. Assets could be domain 

1 1 7 .  



models, communication protocol descriptions, user 
interface descriptions, code components, type of common 
components that developed internally or by using Off-The- 
Shelf “COTS” components. application generators, domain 
knowledge, test plans and procedures, requirement 
descriptions, performance models, metrics, etc. 
Organizations adopted the software reuse approach records 
the common assets used in their products. Organizations 
exploring the transition to the product line approach should 
define what are the common assets exist. 

Level of reuse. One of the benefits of adopting software 
reuse is increasing the level of software assets reuse in 
organizations. Organizations adopting reuse approach 
should have or find other organizations data related to the 
percentage of reuse achieved in adopting the this approach. 
Also the type of reuse used. for esample. horizontal reuse 
or vertical reuse. Horizontal reuse represents wide domain 
width reuse, i.e. a component that can be used in many 
applications. Vertical reuse represents a narrow domain 
width reuse, i.e. a component that can be used in one 
application. 

Organization structure. The organization‘s structure for 
developing one-at-a-time systems might not be suitable to 
product line development. Adopting a product line 
approach has an impact on organization structure. This 
factor defines the impact of the new structure needed to 
adopt the product line approach. The impact might be low. 
medium, or high. 

Process. Process used in developing one-at-a-time systems 
will not be suitable to the product line development. As 
part of adopting reuse technology, existing process might 
be modified and new processes need to be in place, e.g. 
customer interface process, software development 
processes, etc. This factor defines the impact on the 
organization processes by adopting new approach, what 
type of the processes need to be changed, and what type of 
new processes needed. 

Training. Transitioning to new processes or technology 
requires skilled personnel to achieve a successful 
transitioning. This factor defines the type of training 
needed, e.g. in house training, external consultant, etc. Also 
it defines who needs training, e.g. management, systems 
developers, etc. 

Tools. This factor defines which tools are needed in 
software development, e.g. tools to assemble products, 
configuration management tools, tools to record the 
progress of the product line development, etc. 

Software reuse assessment is the main function of this 
phase. Historical methods are used to collect data, e.g., 
survey andfor legacy 

5.2. Product Line Planning 
Organizations use this phase as a plan for the transition to 

product line software development approach. Organizations 
can use this phase to record, evaluate. and assess the 
planning for the product line approach. Organizations 
intending to adopt software reuse use this phase to put the 
software reuse in practice. 

The following include the implementation plan for software 
reuse approach; a list of common factors is described in this 
section as part of the planning phase. 

IManagement Support. Building software products is not 
just an engineering agenda, it precipitates changes in 
personnel, personnel management, incentives, customer 
interface, scheduling, budgeting, and a whole host of 
management practices. It is a new vigorously and actively 
supports the transition, the effort will fail. Software reuse 
strategy means that organizations and managers have less 
direct control over their product developments and 
increased dependency on other organizations to understand 
their requirements and provide acceptable solutions. Giving 
up this control and the necessary dollars to support product 
line technology and application development may be 
difficult. Organizations adopted the software reuse 
approach should record their experience of the management 
support, evaluate, and assess that support. 

Cultural change. The software reuse concepts should be 
defined and understood by people of organizations 
adopting this new approach. A particular attitude that had 
to be overcome was the one-at-a-time mentality of building 
a system for its own sake rather than as a contributing 
effort to the organization‘s strategic goal of fielding and 
building up a base set of core assets. Software reuse 
tenninology should be defined and understood across 
organization. 

Organization structure. Adopting new technology or 
process has an impact on the organizational structure. For 
esample organizations develop product line has a structure 
different than organizations develop one-at-a-time systems. 
Some organizations has a product line structure where a 
marketers group relate product line capabilities to 
prospective customers; relate customer needs to asset and 
application developers. A core assets group develops 
architecture and other assets for product line. An 
application group deliver systems to customer. There are 
different players in the product line approach and they 
should have different skills to launch the product line 
approach. Transitioning to the product line approach 
requires the organization’s structure and players in the 
product line approach to be defined. 

Training and processes. Transitioning to software reuse 
involve education and training on the part of management 
and technicians. Managers need to support the business 
motivation and strategy of the software reuse approach. 
They need to understand and role of the infrastructure 
technologies, understand how to monitor progress and 

1 1 3  



identify potential problems within their area of the 
program. Different type of training might be needed; 
Formal training, on-the-job mentoring from external 
consultants, etc. 

New processes are needed to develop a product line is 
different from processes used in developing one-at-a-time 
systems. These processes might be customer interface 
processes, development process, resource ownership 
processes, etc. 

Training and processes changes should be defined in the 
transition to the product line approach. 

New technologies. Technologies allow organizations to 
stay a competitive edge. Some of the technologies, for 
example, used in the production of product line are domain 
engineering and application engineering. Domain 
engineering used to create artifacts useful across the entire 
product line. Application engineering is used to produce a 
single product by adopting the domain-wide assets. Other 
technologies. for example, using CORBA, COM, etc. 
These technologies need to be defined in the transitioning 
to software reuse development approach. 

Tools support: Using tools to support the new 
development approach increase organizations' productivity. 
Some orsanizations use tools that are used to assemble 
products together. Others use tool to capture domain 
knowledge. etc. These type of tools used needs to be 
defined in the transition phase. 

Software reuse measurement is the main function of this 
phase. Historical methods are used to collect data. e.g.. 
survey andlor legacy. 

5.3. Utilization and Management 
Product line utilization is defined in the context of an 
organization as the creation of assets with the specific 
''intention'' to be reused and the utilization of assets that 
had been specifically created with the "intention" of being 
reused. 

The next step is to decide upon the levels of the RRM 
utilization and management and to look closely at any 
significant changes or impacts on both top and middle 
management. This step includes the assessment of an 
organization's willingness to adopt the RRM, the 
implementation levels. and the incremental investment 
strategies. 

3.3. I The Prodirct Line Utilization. 

Asset Utilization The objective of processes in this family 
is to utilize existing assets in software development and 
evolution (i.e., maintenance) activities. The processes for 
this family consist of developing or selecting criteria for 
asset identification, modifying or tailoring selected asset(s), 
and integrating the selected asset in the system under 
development or evolution 

This step is the actual production phase by applying 
evolutionary approach (Boehm Spiral Life-Cycle Model ) 
to the reuse plan implementation. Our early research results 
have shown that software development organizations at a 
high success (capability) level usually carry out several 
pilot (experimental) projects to help them in the 
construction of a prototype repository, component model 
definition, components classification scheme definition, 
domain model, common architecture, and product-line as 
fol Ioxvs: 

I .  Develop a prototype (pilot project) 

11. Learn and evaluate of risk versus opportunities 

(including assessment of effort. quality, schedule, tools, 
and procedures) 

111. Expand prototype to a safer version of product line 
with the necessary adjustment 

Repeat step (11) and (11) until you achieve a stable product 
line version. 

This approach to the successful learning and evolving the 
RRM within an organization is like the Boehm Spiral Life- 
Cycle Model [8] applied to the RRM implementation plan. 

5.3.2 Prodzict Line ikfnnngenient 

Reuse management is defined in the context of an 
organization that manages the creation. utilization, and 
evolution (i.e.. maintenance) of reusable assets. 

Asset Management and Control: The objective of processes 
in this family is to develop and orsanize collection(s) of 
quality retisable assets, define and develop services and 
capabilities to access these assets (i.e., for asset utilization 
processes), and establish. support, and enact a broker role 
for asset developers (i.e.. from asset creation) and asset 
consumers (i.e.. from asset utilization). 

The reuse management and control is based on the classic 
plan. enact, and learn cycle, The plan, enact, learn cycle in 
the reuse management idiom is based on the following 
principles as described in the STARS CFRP [ 1 13. 

Software reuse monitoring is the main function of this 
phase. Observational and historical methods are used to 
collect data. e.g., survey, case study, historical analyze 
and/or legacy 

5.4. Product Line Expansion 
In this phase, organizations look for new product 
opportunities and asses the customer needs and reuse 
future plan. 

Determining and evolving the future objectives, strategy, 
and scope of a reuse program, resulting in selection of a set 
of suitable domains and products lines in which to apply 
reuse within an organization. Planning. establishing, 
monitoring and evaluating Reuse engineering idiom (asset 



creation, asset management, and asset utilization) projects 
addressing the selected domains and product lines. Looking 
for new market opportunities, market analyze, and assess 
the future financial plans. 

Sofbvare reuse adaptation is the main function of this 
phase. Observational and historical methods are used to 
collect data, e.g., survey, case study, historical analysis 
and/or legacy. 

6 REPOSITORY SUPPORT 
Organizations adopting the product line approach can use a 
repository to implement the model. The repositor) 
supporting the product line approach can capture the 
entities and their related attributes. and the relationships 
between these entities to covey the model's views. A web- 
based repository is a good choice to implement the model. 
It provides and easy access for many users internally or 
externally to organizations developing product lines. The 
Web-based repository can model the entities. some of their 
related attributes, and relationships as Hyper-test links to 
present a complete picture of the entire product line. 

7 CONCLUSIONS 
Organizations that produce similar systems are moving 
towards implementing the product line approach. Products 
in the product line approach are engineered through 
customization from base requirements and product line 
architectures, integration of common components and 
system-unique components. 

The model described in this paper is intended to capture a 
view of the product line. its derived products. and assets 
used in the product line. The model is defined to present 
views interested to management, system developers. and a 
reuse team in the product line approach. 

REFERENCES 
1. 

2. 

3. 

4. 

Bass, L., Clements, P., Cohen. S., Northrop. L.. and 
Withey, J., "Product Line Practice Workshop Report". 
June 1997. 
http:Nwww.sei.cmu.edu/abou~~~,ebsite/indeses/sitelnde 
x~siteIndexTRnum.htm1. 

Cohen, S., Fridman, S., Martin. L.. Poyer, T., 
Solderitsch, N., and Webster. R.. "Concept of 
Operations for the ESC Product Line Approach", Sept. 
1996. 

Brown, A., and Wallnau, K., "Engineering of 
Component-Based Systems", Proceedings of the Znd 
IEEE International Conference on Engineering of 
Complex Systems, 1996. IEEE Computer Society 
Press 1996. 

Brownswod, L., and Clements, P.. "A Case Study in 
Successful Product Line Development". Oct. 1996. 
hnp://~vww.sei.cmu.edu/about/website/indeses/sitelnde 
x/siteIndexTRnum.html 

5. Clements, P.. "Report of the Reuse and Product Lines 
Working Group of WISR8". Aug. 1997, 
http://wwW.sei.cmu.edu/abou~~ebsite/indexes/siteInde 
s/siteIndesTRnum.htmI 

Fraks, W., "Success Factors of Systematic Reuse", 
IEEE software, Sept. 1994. 

7. N. Nada, Software Reuse-Oriented Functional 
Framework, Ph.D. Dissertation, George Mason 
University. fall 1997. 

8. Perry. D.. "generic Architecture Descriptions for 
Product Lines", http://www.bell-labs.com/usr/dep 

9. D. Rine and R. Sonnemann, "Investments in Reusable 
Software: A Study of Software Reuse Investment 
Success Factors". The Journal of Systems and 
Software, Vol. 4 I ,  pp. 17-32. 1998. 

http://www.gmu.eduldepts/survey. 

1 1 .  Shaw. M., and Garlan. D.. "Software Architecture", 
Prentice-Hall, Inc., 1996. 

12. Software Technology for Adaptable. Reliable Systems 
(STARS), "STARS Conceptual Framework for Reuse 
Process (CFRP)". CDRL A0 18, Oct. 1993 

13. Sonimerville. I . ,  Software Engineering. 5th Edition. 
Addison-Wesley, New York, (1996). 

14. The Software Evolution and Reuse Consortium, 
"Solutions for Software Evolution and Reuse", SER 
Deliverable SER-DZ-A, 1995. 

15. Withey, J.. "Investment Analysis of Software Assets 
for Product Lines". Nov. 1996, 
h ttp:/lww\.v.sei.cmu.edu/about/website/indexes/siteInde 
x/sitelndexTRnum.htmI 

16. M. Zelkowitz, "Experimental Models for Validating 
Technology", IEEE Computer. May 1998. 

17. Kotonya and Summerville. Requirements Engineering, 
Wiley, 1992 

18. G. Bootch. J .  Rumbaugh, I .  Jacobson. "The Unified 
Modeling Language User Guide", Addison Wesley, 
1999. 

6. 

10. D. Rine and h'. Nada URL- 

1 1 5  

1 



A Knowledge-Based System for Software Reuse 
Technology Practices 

N. Nada and L. Luqi 
Naval Postgraduate School 

Computer Science Department 
Monterey, CA 93943 

Phone: (831) 656-4075 
Fax: (83 1) 656-3225 

Email: nnada@cs.nps.navy.mil 

ABSTRACT 
The practicing and researching software engineering 
communities are still in need of professional practice 
resources and on-line tutoring systems that can be easily 
used to identify lessons learned and reuse experiences from 
successful enterprises based upon a validated software 
reuse reference model for the software reuse process within 
the general software development life-cycle. This paper 
presents a public Case-Based System using a validated 
Sohvare Reuse Reference Model (CBS-RRM). A CBS- 
RRM allows the software engineers to improve reuse 
practices by being tutored with selected course material 
based on the user profile. This material is combined with 
actual practice-based knowledge derived from different 
positive cases from software development organizations' 
reuse practices. A CBS-RRM provides software engineers 
with a way to be tutored using positive lessons learned by 
other organizations. Our research focuses on achieving 
more effective means for software development 
organizations to find alternative educational (training) 
solutions to problems in successful practice of reuse. The 
paper focused only on the CBS module. 

Keywords 
Case-Based Reasoning Systems. Intelligent Tutoring, 
Distance Learning, Learning Environments, Web-Based 
Training Systems. 

1 OVERVIEW 
1.1 Intelligent Tutoring Systems 
Traditional intelligent tutoring systems are based on the 
assumptions that a student's thinking process can be 
modeled, traced, and corrected. 

D. Rine, E. Damiani, S. Tuwaim 
George Mason University 

Computer Science Department 
Fairfax, VA. 22030 

Phone: (703) 993-1530 
Fax: (703) 993-1710 

Email: drine@cs.gmu.edu 

Based on the principles of Computer Assisted Instruction 
(CAI), intelligent tutoring systems would allow for a 
generic model that can be used for any individual. There 
are four main components of an intelligent tutoring system. 
The student module (1) consists of the incorrect and 
incomplete knowledge that a student begins with. The 
expert module ( 2 )  contains the correct, expert-like 
knowledge that is to be transferred and learned. This 
transfer of learning occurs as a two-way communication 
process, made possible through (3) the graphical user 
interface (GUI). The pedagogical element (4) is the basis of 
the instruction, and it determines what instruction will be 
given at which point. Some intelligent tutoring systems go 
further, and incorporate full simulation as part of the 
instruction. 
The term "intelligent" refers to the system's ability to know 
what to teach, when to teach it, and how to teach it. It must 
have the capacity to understand, learn, reason, and problem 
solve. It must be capable of identifying a student's strengths 
and weaknesses and establish a training plan that is 
consistent with these results. It can pick up relevant 
learning information from the student (such as learning 
style), and apply the best means of instruction for that 
particular individual. Throughout the instruction, the 
system makes judgments about what the student knows and 
how well she/he is processing the information. The 
instruction can then be tailored to the student's needs. [3 1, 
3 , 6 , 2 2 ]  

116 



1.2 Software Reuse Reference Model (SRRM) 
In recent years, reusability has become an important factor 
in the process of software development. In fact, the 
availability of reusable assets in development phases 
provides valuable support to design and implementation 
with software architectures by improving productivity, 
quality, and time-to-market [ 141. Industry has demonstrated 
that reuse of software assets will provide a basis for 
dramatic improvements in quality and reliability, speed of 
delivery, and in long-term decreases in costs for software 
development and maintenance. Some researchers estimate 
that even with a less than 50% reuse rate, component-based 
software development leads to reliability improvement as 
much as ten times that of development that is not 
component-based [7]. 

Opportunistic software asset reuse will not always succeed 
if it is not based upon a supporting reference model for 
developing software 1331. Hence. a Software Reuse 
Reference Model (SRRM) may be considered as a key 
starting element to implement. realize, and quantify such 
savings. The SRRM needs to include both technical and 
organizational activities required to implement reuse 
successfully. 

1.3 Case-Based Systems (CBS) 
Case-Based Systems (CBSs) offer a knowledge architecture 
system for managing, sharing and accessing knowledge. A 
CBS unifies many previous forms of knowledge 
management into a single intuitive mechanism. CBSs 
support such diverse knowledge types as structured data. 
free-text documents. activity patterns. and expert system 
knowledge bases. CBSs unify access methods such as 
query-by-example, free-text retrieval. decision trees, and 
case-based reasoning (CBR). 

There are two primary benefits to the use of CBSs. The first 
is to provide access to a broad spectrum of on-line 
knowledge through a single access method. The second is 
that CBSs are fundamentally superior for certain types of 
access, especially ad-hoc searches for relevant knowledge 
to help answer a question or resolve a problem. 

The CBS approach uses the technique of comparing a 
current situation (e.g. company profile) to a library of 
known solutions (e.g. successful professional practices). 
CBS has been applied to a range of classification and 
construction tasks. It is particularly useful in tasks where a 
formal set of rules, patterns, or algorithms for generating 
solutions is difficult to obtain, but where esamples of 
correct solutions are readily available. These "previous 
solutions" are stored as "cases" in a case base. The case 
base can be used for multiple purposes, including training 
and human and automated decision-making. Because of 
this, a CBS can keep pace with a changing environment by 
adding and improving cases, eliminating the need for 

repeated software upgrades performed by knowledge 
ensineers. Because of the simple knowledge representation, 
using case study templates and patterns, little expertise is 
required to maintain the CBS. The CB manager does not 
need to be a programmer [ 1,5,24,30] 

1.4 CBS and SRRM Correlation 
It is necessary for software developers to have systematic 
procedures supported by a CBS and a validated SRRM to 
provide a real starting point for good software assets reuse 
and adoption decisions, utilization decisions, and 
management activities. In addition to a SRRM, an 
organization interested in moving into a reuse-oriented 
software development methodology also needs more 
detailed knowledge about how to implement the SRRM in 
the organization. Hence, access to a CBS with this more 
detailed knowledge would be very useful. 

It is important for software reuse practitioners and new 
enterprises that are interested in adopting software reuse to 
access lessons learned, access more detailed knowledge 
about how to implement the SRRM in the organization, and 
access reuse experience of successful enterprises based 
upon a validated SRRM for the software reuse process. 
Accessing these three kinds of knowledge is but a first step 
in an iterative software improvement environment. Usually, 
it is important to know what lessons and experiences lead 
to improved software development. But it is equally 
important to be able to implement and practice the skills 
behind these lessons and experiences so that, by doing and 
not just knowing, measured improvements will .occur. 
Hence, a second step is building an educational 
environment. based upon individual tutoring, where the 
knowledge accessed in the CSS can be incorporated into 
individualized learning based on implementation and 
practice of those skills that will, in turn, lead ro measured 
improvement. Measured improvement can, in turn, lead to 
increased software assets quality and increased process 
productivity. Section 2.3 describes such a total CBS-SRRM 
educational environment where learning based upon 
individualized tutoring can take place. 

The existence of a publicly accessed Reuse CB (National 
Reuse CB), via our CBS-RRM will help software industry 
and academia capture best practice-based knowledge 
derived from different software development organizations' 
reuse programs and activities. This reusable set of best 
practices available by use of our proposed CBS-SRRM 
could provide software industry and academia with a 
systematic way to capture and access the lessons learned by 
other organizations. This will promote recurrence of good 
reuse practices and improve current reuse processes by 
increased software quality and decreased effort and time to 
market. 

117 



Having a set of case studies that can be used to derive 
solutions to reuse problems from prior lessons learned will 
help to carry out the following: (1) Describe current 
problems and identify ways to avoid them in the future. (2) 
Predict opportunities and possible successes in applying 
reuse. (3) Derive new knowledge from ongoing research 
projects. (4) Better leverage best reuse practices. ( 5 )  Avoid 
unnecessary risks. (6) Better justify technical and business 
reuse decisions. 

Our assertion is that the case studies and lessons learned 
would be reused more often if organizztions that have 
successfully adopted, utilized, and managed reuse could 
indirectly help organizations with similar environments. 
problems, or situations, and are interested in adopting or 
researching software assets reuse, locate the information 
about best software assets reuse practices and decisions 
about whether or not to adopt. utilize and/or manage 
software development based upon reuse. 

2 WHAT IS MISSING 
Referring to our previous research in the area of software 
assets reuse mada 97, 271, the practicing and researching 
sohvare engineering communities are still in need of the 
following professional practice resources: 

A publicly accessed CBS for the software engineering 
community that can be easily used to identify lessons 
learned and reuse experiences from successful 
enterprises based upon a validated software reuse 
reference model for the software reuse sub-process 
within the general software development processes. 
Use of an applicable. conceptualized. effective, and 
validated software assets Reuse Reference Model that 
considers and incorporates all technical and non- 
technical aspects of the software reuse process. 
On-line Sofnvare Reuse Self-Assessment system. 
On-line Software Reuse Individualized Distance 
Learning system. 
Identification of effective software assets reuses 
processes and products metrics. 
Identification of standardized reuse practices. i.e. 
systematic software reuse methodology. 

3 CBS-SRRM KI\;OWLEDGE BASED TUTORING 
SYSTEM 
Based on the principles of Computer Assisted Instruction 
(CAI), CBS-SRRM tutoring systems would allow for a 
generic model that can be used for any individual who is 
involved in software development and engineering [3 I]. 

3.1 CBS-SRRM Overview 
Our current project, funded by the NSF, investigates 
effective public Case-Based System (CBS) tool-kits using a 
validated Software Reuse Reference Model (SRRM). 

CBS-SRRM allows the software engineer to improve reuse 
practice by capitalizing on effective practice-based 
knowledge derived from different software development 
organizations’ reuse practices. CBS-SRRM provides 
software engineers with a way to utilize lessons learned 
by other organizations. The system also promotes 
recurrence of good reuse practices. 

The research focuses on a more effective means for 
sofnvare development organizations to find alternative 
solutions to problems in successful practice of reuse. We 
demonstrate that developing a CBS-SRRM that wili allow 
software developers to learn how organizations similar to 
theirs have successfully adopted, utilized and manased this 
technology can support improved reuse practices. The plan 
is to research, develop, and make publicly available what 
our affiliates and we have learned through our evolving set 
of case studies, surveys. interviews, and experimental 
results. This plan is carried out by researching and 
developing a publicly accessible reuse practices CBS for 
the software engineering community, using lessons learned 
and reuse experiences from successful enterprises based 
upon a validated SRRM that incorporates important 
technical, organizational, and cultural factors needed in 
adopting, utilizing. and managing reuse technology. 

3.2 CBS-SRRM Objectives 
The main objective of this research is to develop a tutoring 
system including a knowledge-based web-based distance 
assessment module that is technically supported by Case- 
Based Reasoning (CBR) technology. 

The objective is to motivate software developers to access a 
web-based tutoring system including an assessment module 
that will help them improve their software development 
process using reuse practices. The practical implication is 
to provide trainees with a demonstration of a more 
efficient, more effective, and publicly accessed assessment 
and teaching package that will enhance their learning 
outcomes, increase their productivity, and improve their 
products’ quality in shorter time. 

We have collected. and continue to collect, data from 
industry on actual processes used and experiences with 
software reuse. This data is collected and then presented 
on the Web in a standard form based on a validated model. 
The CBS-RRM also provides interface to allow users to 
describe their own environment and objectives and to 
receive the data corresponding to the recorded projects that 
best match their profile. Work such as this can be of great 
value for developers who are under increasing economic 
pressure to avoid building each new system from the 
ground up. It is also of value to the research community as 
an empirical basis for the validation of claims and methods 
related to software reuse. 

118 



3.3 A CBS-SRRM Tutoring System 
There are four main components of the tutoring system. (1) 
The student profiling module that will qualify the student 
for a certain sofhvare engineering domain. and identi@ the 
student’s or trainee’s (user’s) organization size. (2) The 
assessment module that will examine and assess the user’s 
previous software reuse experience and hisher organization 
reuse potential, capability, RRM level, and the depth of 
users’s knowledge and experience in reuse. This step will 
be followed by a pre-test to evaluate the studenvtrainee 
background knowledge on reuse; our prototype can identify 
3 levels: initial, middle, or advanced. Based on the 
outcome of the previous nvo modules and the results of the 
user’s pre-test, the student will be assigned to a certain 
level of training material. (3) The CBS module will use the 
profiling information to match the student with several case 
studies, and present the best software reuse practices that 
have been used by similar organizations. This module 
contains the correct, expert-like knowledge that is to be 
transferred and learned. (4) The fourth module contains the 
course material that fulfills the users’ needs and matches 
their profile. 

Students Profiling _____) 
Input 

The current CBS-SRRM tutoring system allows sofhvare 
developers to learn how organizations similar to theirs have 
successfully adopted. utilized, and rnanased improved 
reuse practices enterprises based upon a validated SRRM 
that incorporates important technical, organizational, and 
cultural factors needed in adopting, utilizing, and managing 
reuse technology. We are researching, developing, and 
making publicly available what our affiliates and we have 
learned through our evolving set of case studies, surveys, 
and interviews, thereby making it available to the whole 
software engineering community. 

. Output 

3.4 CBS-SRRM Architecture 
Using a web-based Distance Assessment and Tutoring 
system combined with the CBR system will provide tools 
to allow students and supervisors to have a good 
educational system to improve the individual’s skills and 
knowledge in software reuse. The CBS-SRRM 
Architecture is depicted in Fig. 1. The remaining part of 
this paper will focus only on the CBS module. 

I 

Rosters 
Course 
Content 

Wl \W I 
i student 

population 

CBS 

Reuse Assessment I Courses Content L=J 
Knowledge Know 
Skills 

I I I 

Fig. 1 CBS-SRRM Architecture 

119 



3.4. I Searching Requirements of the Best Practices CBS 
Believing that analogues may provide a way to predict 
results based upon what has been true in the past, the 
CBS’s searching mechanism will be developed along the 
lines of searching systems. It will maintain a CB of cases 
that represent the performance of best-practiced software 
reuse. When the partially known profile of a new 
organization is presented to the CBS, the search engine will 
search the CB, find the case(s) of organization(s) and 
itshheir profile(s) that is/are most similar with the profile of 
the new organization, and finally predict the level of 
practice of the organization in the CB that will be the level 
of practice assigned to the new Organization. We adopted 
the following CBS Architecture (Fig. 2) 1371. 

Fig. 2 CBS Architecture 

3.4.2 Reuse Practice Cases: Development of CB Study 
Subjects 
The participant subjects are software development 
organizations who ( I )  have already been case study 
participants and who are initially in our CB of best 
practices, and (2) are considering adopting, utilizing and 
managing software reuse. Nada worked on the 
identification and evaluation of new CB subjects. Initially, 
each organization will constitute a case that contains the 
profile of certain user attributes. Cases that include all of 
this information will comprise the space of CB cases. Cases 
that are lacking the final software reuse practice level 
assigned, but contain at least a subset of ,the remaining 
information, will be considered as test (input) cases. The 
choice of organizations that will comprise the CB cases and 
the organizations that will comprise the test cases will be 
‘pseudo-random‘. 

The CBS’s task, researched and developed by our team, 
will be to find an appropriate value for the level of reuse 
practice attribute of an input case; therefore, this attribute is 

considered the solution data for a particular case in this 
domain. 

3.4.3 Matching Requirements of the Best Practices CBS 
During testing of the CBS’s predictive power using new 

subjects, the CBS search engine will need to use matching 
methods [2,38, 9, 23,341. Based on the methods used to 
establish the similarity between certain new test cases and 
current CB cases. the CBS will compare corresponding 
features one at a time. 

Each test case will contain six features. The first two of 
these features will be used to identify the particular 
organization type to which a certain organization belongs. 
The remaining four features will denote the partially known 
organization type software reuse practice level of the same 
organization, and they will be used as indexing features. 
These four features are the organization’s reuse practice 
levels in the first, second, and third stages of reuse 
adoption, utilization. and management. and the 
organization’s practice level at the end of the evaluation 
period. Given this partially known organization type’s 
reuse practice level, i.e., given a test case, the CBS’s task 
will be to predict the organization’s practice level within 
the class of the given organization type. 

This will be done by using the case CB in order to find the 
case or cases that are most similar to the test case. 
Similarity will be determined by comparison of 
corresponding indexing features. For example, 
corresponding indexing features with identical numerical 
values will receive a similarity count of 1 while 
corresponding features such that the absolute value of their 
difference is greater than, e.g., 10 percent will receive a 
similarity count of 0. If the difference is less than, e.g. 10 
percent then the similarity count will be a numerical value 
between 0 and 1. The sum of the similarity counts for each 
feature will constitute the degree of similarity between two 
cases; therefore, the maximum possible match value 
between two cases will be equal to the number of case 
features. For example, the previously shown CB and test 
cases exhibit a certain (e.g. 70) percent matching 
confidence since their degree of similarity is 70 percent. 

4 CONCLUSION 
This paper focused only on the CBS module. The paper 
presents a public CBS using a validated Software Reuse 
Reference Model (SRRM). A CBS-SRRM allows the 
software engineer to improve reuse practice by being 
tutored with selected course material based on the student 
profile. This material is combined with actual practice- 
based knowledge derived from different positive cases 
from software development organizations’ reuse practices. 
A CBS-SRRM provides software engineers with a way to 
be tutored using positive lessons learned by other 

1 2 0  



organizations. Our research focuses on achieving more 
effective means for software development organizations to 
find alternative educational (training) solutions to problems 
in successful practice of reuse. 

Our future work will focus on presenting and integrating a 
comprehensive CBS knowledge-based tutoring system that 
supports distance learning and reuse self-assessment in 
combination with CBR and empirically validated SRRM. 

REFERENCES 

1. 

3 -. 

3. 

4. 

5. 

6.  

7. 

8. 

9. 

Aamodt, A., and Plazas. E. “Case-Based Reasoning: 
Foundational Issues, Methodological Variations, and 
System Approaches.” A1 Communications 7( 1) (1994): 
39-52. 

Goguen, J.; Nguyen, J.: Meseguer, J.; Luqi, L; Zhang. 
D.; Bertins, V. “Software Component Search,” Journal 
of Systems Integration (special issue on Computer 
Aided Prototyping) Vol. 6. No. 2 (1996): 93-134. 

Hall, P. & Wood, P. “Intelligent Tutoring Systems: A 
Review for Beginners.” Canadian Journal of 
Educational Communication 19(3) 1990: 107- 123. 

Jaber., K., Nada, N., and Rine, D. “Towards the 
Design and Integration of Multi-Use Components.” 
Proceedings of the International Conference on 
Information Svstems Analysis and Synthesis, July 
1998. - 
Kolodner, Janet L. Case-Based Reasoning. San 
Francisco, California: Morgan Kaufmann, 1993. 

Laurillard, D. “The Pedagogical Limitations of 
Generative Student Models.” Instructional Science, 17 
(1989): 235-250. 

Lim, W. “Effects of Reuse on Quality, Productivity, 
and Economics.” IEEE Softkvare September 1 l(5) 
(1994): 23-30. 

Lim, W. Managing Software Reuse. Englewood 
Cliffs, NJ: Prentice-Hall. 1998. 

Luqi, Y .  Lee. “Towards Automated Retrieval of 
Reusable Sofnvare Components.” Proceedings of the 
AAAI Workshop on Artificial Intelligence and 
Automated Program Understanding. San Jose. CA. 
July 13. 1992. 85-88. 

10. McDowell. A Reusable Component Retrieval System 
for Prototyping. MS Thesis. Naval Postgraduate 
School, September 199 1. 

11. McClure. C. The Three Rs of Sofnvare Engineering: 
Reengineering - Repository - and Reusability. 
Englewood Cliffs, NJ: Prentice-Hall, 1992. 

12. Morisio, M., Ezran, M., and Tully, C. “Introducing 
Reuse in Companies: A Survey of European 
Experiences.’’ Proceedings of the 1999 Symposium on 
Software Reuse. ICSE-99, IEEE and ACM, 1999. 

13. Nada, N., Rine, D., and Tuwaim, S. “Best Software 
Reuse Practices Require Reusable Software 
Architecture in Product Line Development.” 
Proceedings of the Second Workshop on Software 
Architectures in Product Line Acquisitions, June 1998. 

14. Nada. N., and Rine, D. “Software Reuse Reference 
Model: Development and Validation.” International 
Conference on Software Reuse, Victoria. Canada, June 
- 1998. 

15. Nada. N.. Rine, D., and Tuwaim, S .  “Practices in 
Organizational Structure for Software Reuse.” 
Proceedings of International Conference on 
Information Systems Analysis and Svnthesis, July 
1998. - 

16. Nada, N., Jaber, K, and AI-Daijy. E. “A Product-Line 
Model.” Object-Oriented Programming Systems, 
Languages, and Applications (OOPSLA’98). 
Vancouver, Canada. October 1998. 

17. Nada, N., and Rine, D. “Modeling and Designing 
Global Data and Information Systems Under Software 
Reuse Emerging Technologies.” Fourth International 
Conference On Computer Science and Informatics 
(CS&I’98), Special Session on Sofhvare Reuse, 
October 1998. 

18. Nada. N. and Rine, D. “Component Management 
Infrastructure: A Component-Based Software Reuse 
Reference Model.” Proceedings of the ICSE98 
International Workshop on Component-Based 
Software Engineering. Japan. 

19. Nada, N., Rine, D., and Jaber., K. “Towards 
Cornponents-Based Sofhvare Development.” 
Proceedings of European Reuse Workshop (ERW98). 
Spain, November 1998. 

20. Nada, N.. Rine. D., and Jaber., K. “Using Adapters to 
Reduce Interaction Complexity in Reusable 
Cornponent-Based Sofhvare Development.” 
Proceedings of the Symposium on Sofhvare 
Reusability (SSR98). in coniunction witb the 
International Conference on Software Engineering 
[ICSE’99), Los Angeles. May. 1999. 

1 2 1  



21. Nada. N. and Jaber, K. “Experimental Model to 
Validate Sofhvare Reuse Technology.” Proceedings of 
the International Symposium on Computer and 
Information Sciences (ISCIs’99). Izmir. Turkey, 
October 18-20. 1999. 

22. Newman, D. “Is a Student Model Necessary? 
Apprenticeship as a Model for Intelligent Tutoring 
Systems.” Proceedings of the Fourth- Internationi 
Conference on Artificial Intelligence and Education. 
- 1989. 177- 184. 

23. Nguyen, D. An Architectural Model for Software 
Component Search Ph.D. Dissertation. Naval 
Postgraduate School, December 1995. 

34. Steigenvald, R., Luqi, L., McDowell, J. “A CASE 
Tool for Reusable Software Component Storage and 
Retrieval in Rapid Prototyping.” Information and 
Software Technology England, Vol. 38, No. 9, 698- 
706, Nov. (1 99 1). 

35. Steigenvald, R. Reusable Software Compdnent 
Retrieval via Normalized Alpebraic Specifications. 
Ph.D. Dissertation, Naval Postgraduate School, 
December ( 1  99 1). 

36. Herman, J. Improving Syntactic Matching for Multi- 
Level Filterino. EMS Thesis, Naval Postgraduate 
School, September (1 997). 

37. Inference Inc.. K-Commerce Users Manual. 
24. Riesbeck, C. and Schank, R. Inside Case-Based 

Reasoning. Hillsdale, N.J.: Lawrence Erlbaum, 1989. 

25. Rine, D. and Sonnemann. “Investments in Reusable 
Softuare: A Study of Software Investment Success 
Factors.” Journal of Svstems and Software vol. 41 
(1 998): 17-37. 

26. Rine, D.. Nada, N.. and Tuwaim. S. “Practices in 
Organizational Structure for Software Reuse.” 
Proceedings of the IEEE SCI Conference, vol. 1. 1998. 

27. Rine, D., and Nada, N. “A Validated Software Reuse 
Reference Model Supporting Component-Based 
Management.” Proceedings of ICSEOS, Japan. 

28. Rine, D. and Nada, N. “Software Reuse Reference 
Model: Development and Validation.” Journal of 
Information and Software Technology. in press, 
( 1999). 

29. Rine. D. and Nada, N. “An Empirical Study of a 
Software Reuse Reference Model.’‘ journal submission 
under review, (1  999). 

30. Schank, R., Riesbeck, C., and Kass. A. Inside Case- 
Based Explanation. Hillsdale. N.J.: Lawrence 
Erlbaum, (1  994). 

3 1. Schnackenberg, H. Class Notes, Introduction to 
Educational Computing (ETEC 560!660). Concordia 
University, Montreal. Canada, (1999). 

32. Sonnemann, R. Exploratory Study of Software Reuse 
Ph.D. Dissertation. George Mason Success Factors. 

University, Fairfax, Virginia, Spring. ( 1  995). 

33. Sommerville, I. Software Enzineering. 
New York: Addison-Wesley. 1996. 

5th Edition, 

1 2 %  



Integrated Design and Process Technology, IDPT 1999 
Printed in the United States of America, June, 2000 

0 1999 Society for Design and Process Science 

RISK ASSESSMENT IN SOFTWARE REQUIREMENT ENGINEERING‘ 

Juan C. )Nogueira, Luqi, Valdis Berzins 
Department of Computer Science 

Naval Postgraduate School 
Monterey, CA 

ABSTRACT 

In 1994 Gibbs claimed that “despite 50 years of 
progress, the soffivare industry remains years-perhaps 
decades-short of the mature engineering discipline 
needed to meet the demands of an information-age soci- 
cry', Many researchers have treated the problem using 
different approaches: tools, formal methods, protogping. 
sofnvare processes, etc. However, this assertion remains 
true today. This paper considers the problem from the 
point of view of requirement engineering and risk as- 
sessment. We present an improvement to the evolutionary 
pro togping process model. 

1. Introduction 
In complex software systems, reliability is an impor- 

tant aspect of software quality that has been elusive in 
practice. Since more and more human activities and sys- 
tems are dependent on software, achieving the appropri- 
ate level of reliability in a consistent and economical way 
is crucial. Software failures inconvenience people at best, 
and in extreme cases can kill them. 

Much reliability research has been conducted study- 
ing the behavior of  a system after it is operable. This 
work has strong theoretical statistical foundations and 
many of these models have been shown to be very accu- 
rate. However, post-mortem analysis of the behavior of a 
system gives insights too late to be useful for software 
development. 

This paper describes a way to improve reliability of 
systems from the beginning of the process. Studies have 
shown that early parts of the system development cycle 
such as requirements and design specifications are espe- 

cially prone to errors. Problems originating in the early 
stages often have a lasting influence on the reliability, 
safety and cost of the system. In early stages \ye cannot 
directly assess reliability of products that do not exist yet, 
but we can assess risks that could contribute in the future 
to the lack of reliability, quality and usefulness of the 
system. 

Evolutionary prototyping offers an iterative approach 
to requirement engineering to alleviate the problems of 
uncertainty, ambiguity and inconsistency inherent in the 
process. Moreover, prototyping can improve the capture 
of change in requirements and assumptions during the 
development process. This effect is particularly notorious 
in projects involving multiple stakeholders with different 
points of view. 

Computer Aided Prototyping System (CAPS) [ I ]  is a 
CASE tool that provides a collection of techniques and 
languages for computer-aided prototyping, including 
logical assessment of the consistency and clarity of re- 
quirements and specifications. CAPS methods involve the 
use of real-time constraints and abstract modeling to de- 
scribe the requirements in a clear, precise, consistent and 
executable format. Prototypes can be applied to demon- 
strate system scenarios to the affected parties as a way to: 
a) collect criticisms and feedback that are sources for new 
requirements; b) early detection of deviations from users’ 
expectations; c) trace the evolution of the requirements; 
and d) improve the communication and integration of the 
users and the development personnel. 

2. CAPS (Computer Aided Prototyping Sys- 
tem) 
Real time systems present special difficulties in terms 

of requirement engineering. Some requirements are diffi- 
cult for the user to provide and for the analysts dif€icult to 
determine. The best way to discover these hidden re- 
quirements is via prototyping. CAPS is a tool specially 
suited for this task. It has a graphical easy to understand 
interface that maps to a specification language, which in 

’ This research was supported by the US Army Research Office under grant #38690-MA and grant #40473-MA. 

123 



turns generates Ada code. The main components of 
CAPS are: 
(a) The prototype system description language (PSDL). 

PSDL is based on data flow under real-time con- 
straints. It uses an enhanced data flow diagram that 
includes non-procedural control and timing con- 
straints. 
User interface based on a graphic editor with a pal- 
ette of objects that include operators, inputs, out- 
puts, data flows and operator loops. A search engine 
helps the designer to find reusable components. 
The software database system provides a repository 
for reusable PSDL components. 
The execution support system consists of a transla- 
tor, scheduling mechanisms, execution monitors, 
and a debugger. 

(b) 

(c) 

(d) 

The prototyping process consists of prototype con- 
struction and modification (evolution) based on evolving 
requirements and code generation. Both construction and 
modification are exploratory activities with a common 
target: to satisfy multiple users with different and often 
conflicting points of view. Requirement engineering is a 
consensus driven activity in which mechanisms for con- 
flict resolution and traceability of requirement evolution 
represent critical success factors. 

3. REMAP (Representation and hlainte- 
nance of Process Knowledge) 
The REMAP model [2] represents the conflict reso- 

lution of requirements in a multiple stakeholder environ- 
ment. It is an improvement of the IBIS model introduced 
by [3]. F i p r e  1 shows the conceptual model of REMAP. 

Requirements are the main input and output of each 
demonstration of the prototype. Initially, a small set of 
requirements is collected. The requirements generate con- 
troversy between different stakeholders. The argumenta- 
tion process is covered by the extension to the IBIS 
model. The primitives of IBIS are issues, positions and 
arguments. Issues are questions or concerns. Positions 
represent the points of view of different stakeholders. 
Arguments can support or object to positions, and are 
based on assumptions. Design decisions resolve issues 
introducing constraints, which define design artifacts. 

Decision 

depends on 

I Conslralnl 

depends on 
creates 

removes 
modifies 

1 Oestgn 1 
I 

Figure?: REMAP model 

The requirement engineering process transforms ini- 
tial requirements that usually are informal and imprecise 
into more technical and precise specifications. Specifica- 
tions are required for practical development purposes and 
can be understood by engineers. However, they are not 
well understood by users. So, it is necessary to provide a 
full spectmm of descriptions. For that reason, the primi- 
tives of REMAP have been integrated into the graph 
model [4] in successive efforts [S] and [6]. 

4. The Graph Model 
The graph model is a data graph model for evolution 

that records dependencies and supports automatic project 
planning, scheduling, and configuration management. The 
evolution process is represented by a graph that at any 
given moment models the current and the past state of the 
software system as well as planned future states. 

The model views a software evolution process as a 
partially ordered set of steps. Steps represent activities 
required to produce the system. A step has states that 
reflect the dynamic progression of the activity ffom the 
moment that it is proposed to the moment it is completed 
or abandoned. 

The graph model has experienced its o\%n evolution 
process. Luqi [l] introduced a primitive version of the 
model. Mostov and Luqi [7,4] refined and elaborated the 
model. In [4], the notion of hypergraph was introduced to 



realize automated software evolution in multidimensional 
phases. Further refinements including scheduling and 
team coordination, were introduced by [ S ] .  Conflict reso- 
lution of requirements and criticisms introduced by 
Ramesh [2] and Ibrahim [5]. Luqi [9] extended the graph 
model to a hierarchical hypergraph that improved the 
traceability of the dependencies and introduced the con- 
cept of  hyper-requirements. Finally, Ham extended the 
model to a relational hypergraph model [6]. 

5. Risk assessment driven software evolu- 
tion 
Experience suggests that building and integrating 

software by mechanically processable formal models 
leads to cheaper, and more reliable products sooner. 
Software development processes such the hypergraph 
model for software evolution, or the spiral model [lo], 
have improved the state of the art. However, they have a 
common weakness: risk assessment. 

In the software evolution domain risk assessment has 
not been addressed as part of the model. In the various 
enhancements and extensions the graph model did not 
include risk assessment steps, hence risk management 
remains as a human-dependent activity that requires ex- 
pertise. 

In the evaluation of the spiral model, one of the diffi- 
culties mentioned by Boehm was: "Relying on risk- 
assessment expertise. The spiral model places a great 
deal of reliance on the ability of soffware developers to 
identi3 and manage sources of project risk." "...Another 
concern is that a risk-driven speciJication will also be 
people-dependent. " [ 101. 

Many researches have addressed the problem of risk 
assessment following the perspective of the traditional 
disciplines. The tools for risk assessment are guidelines 
for practices, checklists, taxonomies of risk factors and 
few metrics. All these methods work fine IF carried out 
by a human educated on risk assessment AND with 
enough experience. Unfortunately, such resources are 
really scarce. 

From the point of view of software engineering, it is 
necessary to create a method to support the decision- 
making process during the early stages of the life cycle, 
when changes can be made with less impact on the budget 
and schedule. In our vision, software risk management 
deals with how to administrate complexity and how to 
assign resources. We propose to separate risk assessment 
into three classes: resource risk, process risk and product 
risk. 

Resource risk is the amount of project risk created by 
threats imposed by available resources. It is affected by 
organizational, operational, managerial and contractual 

parameters such as outsourcing, personnel, time and 
budget. The literature is abundant in this area [I 1, 121. 
Various approaches use subjective techniques such as 
guidelines and checklists [13], [ I  I], which require the 
opinion of an expert even when they could be supported 
by metrics. [ 121 has introduced a more rigorous method. 
In this approach, the risk is viewed as a three dimensional 
entity that depends on schedule risk schedule, cost risk 
and technical risk. 

The process risk is the amount of the project risk 
caused by management work procedures such as plan- 
ning, quality assurance, and configuration management. It 
is also caused by technical work procedures related to the 
software processes such as requirements, analysis, design, 
code generation, testing, etc. The more complex a process 
is, the more difficult it is to manage. More education, 
training, standards, reviews, and communication are re- 
quired. Consequently, complexity grows. Software proc- 
ess complexity has been partially addressed by research 
in terms of subjective assessments about maturity level 
and expertise [13, 11, 141. However, we seek a more pre- 
cise and objective method. Several approaches to study 
process complexity in a static way have been introduced 
in the field of management. Simulation can be used to 
measure the complexity of the dynamics of the processes. 

Finally, product risk is related to the final character- 
istics of the product, its conformance with specifications 
and requirements, its reliability and customer satisfaction. 

We think that there exists a dependency between 
these classes of risk. The success of the project depends 
on its own characteristics and in the success of the prod- 
uct and the process. The success of the process depends 
on itself as well as in the success of the project and the 
product. And the success of the product depends on itself 
and on the success of the project and the process. The 
dependencies among the three areas constitute an equiva- 
lence relation because the symmetric, transitive and re- 
flexive properties apply. In our view, this reflects the fact 
that resources, process and product are different facets of 
the same entity: the project. 

Dealing with threats, the decision-maker can apply 
the following strategies: 

Risk absorption, which is to assume the conse- 
quences of the risk as a constraint. 
Risk avoidance, which eliminate the possibility of the 
risk following turn around solutions avoiding the 
threat. 
Risk prevention, which is the typical situation. Pro- 
tection, mitigation and anticipation are the key fac- 
tors to reduce risk. 
Risk transfer, which implies the shift of the conse- 
quences of the risk to another organization. 

1 2 5  



Risk contingency, which implies the use of reserve 
resources to mitigate an actual threat according to a 
previously established contingency plan. 

6. The proposed model for risk assessment 
Transforming the unstructured problem of risk as- 

sessment leads to an objective method able to be trans- 
lated into an algorithm. In order to structure the problem, 
we decompose risk assessment of an engineering project 
in two different visions. First, a micro-vision is required 
for threat resolution. This micro-vision risk assessment 
relates to the identification of the threats, the decision- 
making process to address the problem, and the fonnal- 
ization of the solution in a plan. 

The micro vision is necessary but not sufficient be- 
cause it is impossible to manage a project without a 
global scenario. Hence, a macro vision approach is also 
required. The macro vision approach relates to the inte- 
gration of the evaluation made for each of the threats. The 
macro-vision risk assessment of the project includes three 
risk components: process, product and resources. 

6.1. Micro-vision 
The decision-maker is positioned on the root of a de- 

cision tree, where each branch represents a course of ac- 
tion that implies costs and probabilities of success. When 
a threat is identified, two possible choices are available: 
to avoid the threat or to deal with it. Avoiding a threat is 
usually associated with represent some costs. Typically, 
avoiding a threat implies finding a turn around that can 
have effects on schedule, budget or even on fknctionality. 

If the decision-maker opts to deal with the threat, 
then three possible courses of action are available: to pre- 
vent, to wait, or to transfer the threat. Prevention and 
transfer could have associated costs. The waiting strategy 
postpones the use of resources in the hope that the threat 
will not appear, trying to trade information for time. 

Even if applying prevention, there is no absolute 
guarantee that the threat will not appear. In these cases 
the decision-maker can apply a contingency plan that 
introduces new costs. Again the contingency plan cannot 
guarantee absolute effectiveness. 

If we know or can estimate the probability of each 
branch representing a state of nature, it is possible to cal- 
culate the expected outcome for each one as the weighted 
sum of outcomes. So, we can amve to the root with a 
value for the expected cost. The path that produces an 
optimal expected solution contains the recommended 
course of action. 

To solve the uncertainties, subjective estimation of 
the probabilities of occurrence of the different states of 
nature can be applied. This approach is easy to implement 

but requires a great deal of experience to judge accurately 
the success probability of each alternative. Group consen- 
sus techniques (like the Delphi method) are usually very 
helpful in such situations. 

Decisions trees based on the expected monetary 
value (EMV) could lead to bad decisions because in the 
most common case the decision-maker is confronted with 
a multiattribute problem. Moreover, different people have 
different attitudes toward risk. This issue is applying util- 
ity theory. The decision-maker must provide his estima- 
tion of return for each attribute related to the decision, as 
a vector R = (RI,  R2, ..., Rn). The decision-maker must 
introduce also his preferences as a weight vector W = 
(Wl ,  W2, ..., Wn). The outcomes of each attribute are 
given by Ai, such that: 

Ai = Wi * Ri 
n 

, where Z Wi = 1 
i = O  

The outcome for each alternative is then calculated 
as a function of the sum of the attributes (A 1, A2, . . ., An) 
converted to a value behveen 0 and 1, where 1 is given to 
the best outcome and 0 to the worst. 

6.2. Macro-vision 
As we stated previously, the macro-vision approach 

integrates the assessments done for each of the identified 
threats. Moreover, the macro-vision risk can be used to 
find threats in an automated way. The risk assessment for 
the project is done by the integration of three risk factors 
(process, resources and product), plus two customization 
factors (decision-maker's perceptions of the environment 
and decision-maker's preferences). 

The process introduces risk as consequence of its re- 
quirements and characteristics: complexity, technology 
required, budget required, schedule required, and person- 
nel skills required. The process provides the description 
of its environment and the theoretical requirements to 
execute it. 

The resources represent the actual allowances in per- 
sonnel, tools, budget and schedule. The resources impose 
constraints that may not match the process requirements. 
These mismatches are a source for threats that can be 
identified automatically. 

The product introduces its own risk in terms of quan- 
titative and qualitative attributes. We identified two basic 
product-risk factors: requirement conflicts, and require- 
ment complexity. The second one is consequence of the 
hc t iona l  complexity of the requirements and the quality 
target defined in terms of reliability, maintainability and 
usefulness. 

The risk assessment of the project can be structured 
as the evaluation of the complexities and the degree of 

1 2 6  



mismatch from the product and process characteristics, to 
the resource constraints. The process of collecting risk 
metrics can be automated at least for the principal factors. 
Hence, project risk can be assessed using an automated 
tool. 

and a birth of the new one. This simplification does not 
imply that we lose the history of the evolution. The trace- 
ability of the evolution remains in the hypergraph model. 

j 

r i c ~  presented here are well formed, in the sense that they 
present the following strengths: 

Robust in terms of the verification of their outputs. 

Repeatable. Different observers would amve at the 

stable shrinking 

I 
I 

tions. 
Simple. We use the least number of parameters suffi- 
cient to obtain an accurate measurement. 
Easy to calculate. They do not require complex algo- 
rithms or processes. 
Automatically collected. There is no need of human 
intervention. 

7.1 Metrics for Requirements 
We define birth rate (BR) as the percentage of new 

requirements incorporated in each cycle of the evolution 
process. This metric shows the explosion of new require- 
ments as a percentage. 
BR % = (NR / TR) * 100, where 
NR 
TR 
TR = PR + NR, where PR denotes the number of re- 
quirements in the previous version. 

= number of new requirements, 
= total number of requirements 

We define death rate (DR) as the percentage of re- 
quirements that are dropped by the customer in each cy- 
cle of the evolution process. 
DR % = (DelR / TR) * 100, where 
DelR = number of requirements deleted, 
TR = total number of requirements (before deletion) = PR 
+ NR. 

We define change-rate (CR) as the percentage of re- 
quirements changed from the previous version. 

CR (%) = (ModR / TR) * 100 
where 

From the point of view of the metrics, a change on a 
requirement can be viewed as a death of the old version 

ModR = number of requirements changed. 

0% 10% 100% 

Figure 2: Evolution of requirements in a project 

death-rate 

The simplification just described, enables us to com- 
pare birth rate and death rate in a two-dimensional plot 
that shows four regions: stability region, growing region, 
volatility region and shrinking region (fig. 2). The graph 
is double logarithmic, so the borders of the four regions 
are in the 10% value. Each of these regions has different 
risk connotations. 

The arrow shows the normal evolution of a project as 
the time goes by. During early stages, it is normal for 
projects to be in the growing region. However, if the pro- 
ject continues in this region after many cycles, or return 
to this region after visiting other regions, something 
wrong is happening. The first case, this is an indicator 
that the requirement engineering is not eficient; hence 
some corrective action should be applied. The second 
case, shows evidence of late discovery of some cluster of 
hidden requirements. 

After some cycles, the project should be in the vola- 
tile region. If the project does not evolve into the stability 
region, then there is evidence that the requirements engi- 
neering activity is not being efficient and some corrective 
action is mandatory. It is important to analyze the evolu- 
tion of the stakeholder's issues and criticisms. It could be 
also the case that stakeholders have changed their minds. 

If the project evolves to the shrinking region, and the 
requirements engineering is working properly, there is 
evidence that the customers are cutting down the project. 
This can be an indicator of a severe cut in the budget. 

Finally, any involution to a previous region should be 
considered as evidence of threats. In such cases a detailed 
analysis is required to assess the causes of the anomaly. 

1 2-7 



This set of  metrics can be collected automatically 
form the hypergraph and can give early alerts of the 
threats. 

7.2 Metrics for Complexity 
Complexity has a direct impact on quality because the 

likelihood that a component fails is directly related to its 
complexity. The quality of the product can only be de- 
termined at the end of the process. Hence, it is important 
to measure the complexity as predictor. 

Real time systems present special difficulties in terms 
of requirement engineering. Some requirements are diffi- 
cult for the user to provide and for the analysts difficult to 
determine. The best way to discover these hidden re- 
quirements is via prototyping. CAPS is a CASE tool spe- 
cially suited for this task. 

The prototyping process consists of prototype con- 
struction and modification (evolution) based on evolving 
requirements and code generation. Both construction and 
modification are exploratory activities with a common 
target: to satisfy multiple users with different and often 
conflicting points of view. Requirement engineering is a 
consensus driven activity in which mechanisms for con- 
flict resolution and traceability of requirement evolution 
represent critical success factors. 

Specifications written in PSDL, the prototyping lan- 
guage used in CAPS, are suitable for being analyzed to 
compute their complexity. In PSDL code we observe the 
following components: types, operators, data streams and 
constraints. Types are declarations of abstract data types 
required for the system. Operators and data streams are 
the components of a dataflow graph. Finally, constraints 
represent guard conditions and real-time constraints that 
the system must support. 

We define two complexity metrics for PSDL: Fine 
Granularity Complexity metric (FGC), and Large Granu- 
larity Complexity metric (LGC). The reason to compute 
different metrics is because we want to detect two classes 
of threats. First, we need to be aware of operators that are 
too complex. High complexity on one operator could be 
caused by poor design and possible can be solved by fur- 
ther decomposition. Second, we require a metric to com- 
pute the total complexity of the system. 

FGC expresses the complexity of each operator in 
the system and is a hnction of the fan-in and fan-out data 
streams related to the operator. 

FGC = fan-in + fan-out 
LGC expresses the complexity of the system as a 

function of the number of operators, data streams, and 
types. 

LGC = 0 + D + T 

1 
~~ 

PSDL LOC &large Granularity Complexity (LGC) 

y s 0 07221.1.576 
! 

1 
I U  i s  

I 
0 200 4w 600 800 1wo 1200 140 

! PSOL LOC 

Figure 3: Correlation between PSDL and  LGC 

We examined the correlation behveen LGC and size 
of the specifications and the code. We observed a very 
strong correlation between PSDL lines of code and LGC 
(R = 0.996) (fig. 3). The correlation between non- 
comment Ada lines of code of the projects with their 
complexity measured using LGC, we observe a strong 
correlation also (R = 0.898) (fig. 4). Our complexity met- 
ric correlates better with PSDL than with Ada. The rea- 
son for this difference is because CAPS automatically 
generates PSDL. On the other hand, even if CAPS gener- 
ates part of the Ada code, the designer can add and mod- 
ify the generated code introducing more variability. The 
following graph shows the correlation observed for the 
same set of projects. 

~ ~ _ _ _ _ _  

Ada NCLOC vs Large Granularity Complexity 
(LGC) 

Y = 0.031Zr. 4.6857 I ! 

0 500 two 1sw Moo 25w 

M a  NCLOC 
I 
I 

Figure 4: Correlation between NCLOC (Ada) and LGC 
A caveat of this study is that our sample is too small. 

It includes all information we have available at the mo- 
ment. However, the study suggests the possibility to esti- 
mate code size in terms of requirement complexity with 
useful levels of accuracy. 

8. Integration with the graph model 
The graph model has advantage of being easily ex- 

pandable. The model is based on a hypergraph G = (N, E, 
I, 0) where N is a set of nodes that represent the software 
components and related documents; E is a set of edges 
that represent the steps or tasks required by the process; I 
and 0 are functions that permit the navigation forward 
and backward in the graph. Risk assessment activities can 
easily be incorporated to the model by the extension of 

128 



the class of edges. Figure 5 represents the software evo- 
lutionary prototyping software process. Figure 6 shows 
the proposed software process improvement. From the 
specifications we can derive the complexity of the prod- 
uct. This information is used together with personnel and 
organizational information, and with metrics of require- 
ments collected from the baselines, to produce the risk 
assessment. The risk assessment step integrates these 
measures with issues created by the application of the 

risk assessment provides the decision-maker with objec- 
tive and reliable information. 

REMAP model in the issue analysis steps. The automated LJlILYSlS 

9. Conclusion 
We introduced a framework and metrics able to 

structure the risk assessment problem and to solve it by 
automated tools. Further experiments should be con- 
ducted to validate our preliminary observations on corn- 

Figure 6: The proposed process  

References 
plexity and size. Dl 

We found a method to solve the problem of human 
dependency in risk assessment. This method was de- 
signed for the graph model, however it can be customized 
to any evolutionary prototyping software process. 

[21 

[31 

PRODUCT I 

t ISSUE 
ANMVSIS 

STEP [71 

- 
PROGRIM i[8] 

STEP j 
INTEGRA~ON , 

Figure 5: The evolutionary prototyping software 
process 

[9] 

[101 

Luqi. Software Evolution Through Rapid Prototyping. 
IEEE Computer. May, 1989. 
Ramesh, B. and Luqi. Process Knowledge Based Rapid 
Prototyping for Requirements Engineering. Journal of 
Systems Integration, 5 (157-177) 1995. 
Conklin, J. and Begeman, M. GIBIS: A Hipertext Tool 
for Exploratojl Policy Discussion. ACM Transactions 
on Oflice Information Systems. Vol. 6. October, 1988. 
Luqi. A Graph Model for Software Evolution. IEEE 
Transactions on Software Engineering. Vol. 16 No. 8. 
August, 1990. 
Ibrahim, 0. A Model and Decision Support Mechanism 
for Software Requirements Engineering. Ph.D. Disserta- 
tion. NPS. Monterey, California. 1996. 
Ham, M. Relayional Hypergraph Model. PhD Dissserta- 
tion. NPS. Monterey, California. 1999. 
Mostov, Luqi and Hefher. A Graph Model of Software 
Maintenance. Technical Report NPS52-90-0 14. De- 
partment of Computer Science. NPS. Monterey, CA. 
August 1989. 
Badr, S. A Model and Algorithms for a Software Evolu- 
tion Control System PhD Dissertation, Computer Sci- 
ence Department. NPS. Monterey, CA. 1993. 
Luqi and Goguen, J. Formal Methods: Promises and 
Problems. IEEE Software. January, 1997. 
Boehm, B. A Spiral Model of Software Development 
and Enhancement. Computer. May, 19S8. 
Hall, E. Managing Risk. Methods for Software System 
Development. Addison Wesley, 1997. 
Karolak, D. Software Engineering Management. IEEE 
Computer Society Press, 1996. 
Software Engineering Institute. Software Risk Manage- 
ment. Technical Report CMU/SEI-96-TR-012. June, 
1996. 
Humphrey, W. Managing the Software Process. Addi- 
son-Wesley, 1989. 



Surfing the Edge of Chaos: Applications to Software Engineering 

Juan C. Xogueira 
Carl Jones 

Luqi 
Saval Postgraduate School 

2, University Circle 
hlonterey, CA. 93943 USA 

-1 (831) 656 2093 
icno zuei ‘Z nDs .navv. mi 1 

Abstract 

This paper discusses the problems of sofnixe engineering as the \\cakest link in the dei.elopment 
of systems capable of achieving information superiority. Fast changes in technology introduce ad- 
ditional difficulties in terms of strategic planning. organizational stnm-ure, and engineering of 
softivare dzvelopment projects. In such comples environment, a nen. ivay of thinking! is required. 
IVe analyze the introduction of comples adaptive systems as an alternative for planning and 
change. The strategy of competition on the edge of chaos is analyzed shoiving the risks and the 
skills required navigating on the edge. 1f.e discuss the feasibilit). of using this theon. in sofnvare 
engineering as an alternative to biixaucratic softnare dcvelopmznt processes. \Ye present also 
some recommendations that could help to acquire competitive advantage in softnxe develop- 
ment, hence achieve information supzriority. 

1. Introduction 

As softnxe systems increased in complexity. sofnvare dcveloprnent evolved form a primitive art 
into softivare engineering. Methodologies and software tools ivere developed to help develop- 
ment processes. hlost of the present tendencies (DOD-STD-’, 167A. ISO-9001. SEIl’ChlM) try to 
standardize processes, emphasizinz planning and structurc (Humphrey. 1990). Some authors cnti- 
cize those approaches stating that they underestimate the dynamics of the softivare development 
(Bach, 1994), ( Abdsl-Hamid. 1997). Others question that activities such as research and devel- 
opment are not addressed by TQbl principles (Dooley et al.. 1991). 

In 1991 Gibbs claimed “despite 50 years of progress, the softivare industry remains years- 
perhaps decades-short of the manire engineering discipline needed to meet the demands of an 
information-age society.” Many researchers have treated the problem using different approaches: 
took, formal methods, prototyping. sofbvare processes, etc. HoLvever, this assertion remains true 
today. 

The typical software engineering process is a succession of decision problems trying to transform 
a set of fuzzy expectations into requirements, specifications, designs. and finally code and docu- 
mentation. The traditional \vaterfall software process failed to accomplish their purpose because it 
applied a method valid for \vell-defined and quasi-static scenarios. This hypothesis is far from the 
reality. Today. modem software processes (Boehm, 19SS ). (Luqi, 19S9) are based on evolution 



and prototyping. These approaches recognize the fact that software development presents an ill- 
defined decision problem and they fail in assessing automatically the risk. 

In our view, sofnvare development projects present special characteristics that require to be 
solved in order to achieve an improvement in the state of the art. These particularities affect the 
strategic planning. the organizational structure. and the engineering applied to softlsare. In these 
three areas chaos theory can provide clues for possible solutions. 

2. The strategic planning issue 

Traditional approaches to strategic planning emphasize picking a unique strategy according to the 
competitive advantages of each organization. Porter's five-force approach (Porter, 19SO). as- 
sumes that there esists some d e p e  of accuracy in the prediction of ivhich industries and Lvhich 
strategic positions are viable and for holv long. 

In a high-velocity icenario the assumption of a stable environment is too restrictive. Customers, 
providers. competitors, and potential competitors, as isell as substitute products are evolving 
faster than expected. The introduction of neiv infomiation technology tools, the Internet and the 
globalization of the markets are contributing to this phenomenon, and nothing seems to reverse 
the process. The failure of long-term strategic planning is not a failurc of management; it is the 
nonnal outcome in a complex and iinpredictable environment. A grolving number of consultants 
and academics (Santosus. 1998). (Broivn CP: Eisenhardt. 1999) are looking at complesity theory. 
to help decision-makers improve the ~vay they lead organizations. 

H o ~ .  LljefUl could a map of a t e m t o y  that is constantly changing i t j  topography be? In fast 
changing environments. sunival requir2s a refined ability to sense the esternal variables. Tradi- 
tional approaches rely on strategic planning and \.ision. I-Iowever, in unstable ensironments plan- 
ning ivould not be effective because it i j  impossible to predict the scenario's evolution in terms of 
markets. tcchnolosies, customer's needs. etc. Organizations relying onl?. on one vision supported 
by a tight planning. risk paying little attention to the future. Consequently. their sensing organs are 
blind to foresight the future. A certain amount of inertia and commitment to the plans is required 
to prevent erratic changes caused by reaction diverse variables. 

If the time \vindo\v of the opportunities is shrinking. a different form of thinking is required. The 
present technological situation can be described as a fast succession of short-term niches. The 
ability to change is the key of success for suniving in such a variable enLkonment. In a systemic 
approach, the General Systems Theory establishes that organizations are systems \shose viability 
depends on some basic behaviors (von Bertalanfy, 1976): 

(a) Ability to sense changes in the environment. This is the most primitive form of intelligence, if 
it is not present the probabilities of sunive are minimum. 

(b) Ability to adapt to a new environment modifying the internal stnicnrre and behavior. The S ~ S -  
tern tries to auto-regulate to survive the crisis in hostile scenarios. or take advantage of the 
opportunities in favorable ones. 

(c) Abiliy to learn from the past, anticipating the auto-regulation behaviors and StnlChlr? before 
the environment change. This ability requires intelligence able to infer conclusions from the 
past accordins to the context of the variables sensed on the present. 

1 3 1  



(d) Ability to introduce changes in the environment, makinc it more fa\.orable to the system's 
needs. In this case, the system has developed the technology (know hoiv and tools) to exert 
potver over the environment. 

Any mechanical or computing system has some or all of these abilities. b'e find these saine abili- 
ties in an>. form of life. The more developed the system is, the more of the above characteristics 
has. Danvin's Evolution Theory validates this line of reasoning. Kanlral selection. actin: on inher- 
ited genetic variation through successive generations over the time is the forni of evolution. 
Variation is the way used by biolo,oical systems to probe the environment presenting Inany alter- 
natives. some of them ending on failure but a few xw-y successfill. This process is an incfilcient 
but v e q  effecti\.e uay of improvement. 

Experiments can provide a certain amount of kno\vledse about the future. In some sense. probes 
are mutations in small scale that can cause only small losses. The results gi1.c insights to discover 
new options to compete in the future and stimulate creative thinking. The rsscarch investment 
pays dividends when a ncw \yay of competition is discovered alterins the status quo's rules. 

\\\.'hen the changes in the eni.ironnient occur too fast. sensing thc Lariables becomes more difficult. 
It is possibk that a specialized organ Lvas not able to react on time to record the metric and 
transmit the alert. In this case. the system starts to lose information threatening its oivn \,iability. 
\i-hzn the changes in the environment are too drastic, even if the sensor organs dctect the change. 
the inference organs may not be able ro deteimine an effective course of action because they do 
not have a previous experience. or because the decision-making process requires more time. This 
situation also threats the viability of the systen: in the long run. The effects of drastic variations 
and high rate of change over systems can be visualized Lvith sirnplz experiments: a) increasing the 
speed of transmission in a communication chanilel beyond some l imi t  will provoke the lost of pafi 
or the entire message, b) modifying the pH in the soil beyond a ccrtain limit can caiise the death of 
a plant. 

The same syndrome can be recognized in an). type of organization. We purpose to employ a new 
strategy. "Competing on the Edge" is a neu theory defines strategy as the creation of a relentless 
flou. of competitive advantages that. taken tozether, fonn a semi-coherent strategic direction 
(Brown & Eisenhardt, 1999). The kej- driver for superior perfoniiance is the ability to change. 
reinventing the organization constantly over t h t  time. This factor of success can be applied to 
softivare engineering as \{.ell as to other decision problems n-ith similar characteristics. 

- 

I f  the environment is moving. like in surfing. the best \yay to remain in equilibrium is by being in 
the rhythm. Successfiil corporations such as Intel or Microsoft are in perpetual movement, 
launchin: new products n i t h  certain rhythm. Intel is faithful to its founder's (Moore) law: the 
power of the microprocessors double every eighteen months. hlicrosoft has a proportional pace 
on the software sector. 



3. The organizational issue 

The second unresolved issue is organizational. We think that many of the problems on current 
software projects have organizational roots. This opinion is also supported by (van Genutchen, 
I99 1)' and (Capers Jones.-I 993)'. 

Penow (Burton et al., 199S), introduced a tn-o- 
dimensional classification of the technology 
(Fig. I). The first dimension is the analyzability 
of the problem varying from well defmed to il l  
defined. The second dimension is the task vari- 
ability, which means the number of expected 
exceptions in the tasks. 

In our view, a third dimension is required to 
model the dynamics of the problem. In general. 
any technological scenario will change its ana- 
lyzability and its variability with time. This is 
the case for software engineerins develop- 
itlents. During the initial stages the problem is 
ill-defined and many exceptions occur. After 
several evolution cycles, usualiy comprising 
several prototypes. the requirements become clear and the problem drift gradually into the engi- 
neering quadrant. In figure I .  the gray oval represents the projection of the softuxe piobiems in a 
tu'o dimensional space. 

This kind of scenarios require highly skilled personnel, low formalization and cmtralization, high 
information processing demand, and coordination obtained through meetings is required. In our 
opinion software engineering is not the only discipline in this quadrant. The challenges imposed by 
hyper competition create similar characteristics than in softivare engineering developments. So, 
the niles of engagement proved effective for one discipline could result lisefill in the other. 

A second line of research (Burton &: Obcl. 199s). introduced a classification based on four- 
variable model: equivocality. environmental complesity. uncertainty and hostility. Equivocality is 
'.the existerrce oj'niultiple and conflicting inte~pt.etc~tiorrs", i t  is a measure of the lack of knowl- 
edge or the level of ignorance whether a variable esists in the space. Uncertainty is the lack of 
knowledge about the likelihood of values for the knotvn variables. Environmental complexity is 
the number of factors in the environment affecting the organization and their interdependency. 
Finally, hostility is "the level of conipetition atid /ion, tircile\*oletit the eiii.irotitiie)it is. * *  

In Table 1, lve disregard the fourth variable: hostility. Hostility is a discontinuity of the environ- 
ment. When it is high, then it ovemiles other factors. In highly hostilih scenarios only a highly 
centralized organization ("regular army"). or a lo~v-fomial-lo~~-complex organization ("guerilla") 
are the possible alternatives. 

Van Genuchtcn found that 45% of all the causes for dclnyed sohvare a x  related to organizational ijjicj. 

\so& (90% of the time) and IOU productivity (SYO of the time). 

I 

' Capcrs Jones found that on military soft\vare dcvelopments the t\vo more common threats are excessive pap"- 

1 3 3  



Sofiware development scenarios usually correspond to high equivocalit>., high environmental 
complexity and high uncertainty scenarios (dark gray in the matrix), n-hich correspond to low 
formalization and Ion. organizational complexity, with centralization inverse to the environmental 
complexity. The recommended organization could be ad hoc or matrix \vith coordinstion by inte- 
grator or group meeting. The information exchange is rich and abundant. The incentive policy 
should be based on results. 

Equivocality 

Low 
Low 

Low 

Enviromental [ Uncertainty Formalization Organizational 1 Centraliza- 
Complexity j Complexity 1 tion 

Low i Low 1 High Medium j High 
Low / High I Medium High : , Medium 

High ! Low 1 High Medium I Medium 

Understanding these organizational characteristics inherent of software projects is required to cre- 
ate a more fitted sof tnxe process. The application of a quasi-chaotic process keeps the organiza- 
tion in continuous moimtient ii.ith positive effects its internal behavior. The rhythmic change 
avoids manager's tendency to sloiv donx the process or introduce changes too often. The periodic 
changes create small amounts of chaos that maintain the organization in tht  edge. 

High 

High 

High 

High 

4. The engineering issues 

Despite 50 years of progess. the sof tnxe industry remains immature to meet the demands of an 
information-age economy. hlany researches have treated the problem using different approaches: 
formal methods, prototyping. softivare processes, etc. Hoivever, the problem remains open today. 
The third unresolved issue is a sct of engineering problems concerning softtvare processes. risk 
assessment. and reuse. 

Low 1 Low Medium Medium High 

Low 1 High 1 Low Low ! High 
High LOW I Medium Medium \ Low 

High i High Low Low Low 

4.1. The soJhcire process probient 

Studies have showm that early parts of the system development cycle such as requirements and 
design specifications are especially prone to error (Luqi. 1989). Problems originating in the early 
stases often have a lasting influence on the reliability. safety and cost of the system. This effect is 
particularly notorious in projects involving multiple stakeholders with different points of view. 
Evolutionary sofhvare processes offcr an iterative approach to requirement enginecring to allevi- 
ate the problems of uncertainty, ambiguity and inconsistency inherent in software developments. 
Esperiencs suggests that building and integrating softswe by mechanically processable formal 
models leads to cheaper. faster and more reliable products. hloreover, prototyping can improve 
the capture of change in requirements and assumptions during the development process. Proto- 
types are useful to demonstrate system scenarios to the affected parties as a way to: a) C O k t  

criticisms and fsedback that are sources for new requirements; b) enable early detection of devia- 

1 3 4  



tions from users' expectations; c) trace the evolution of the requirements; and d) improve the 
comnunication and integration of the users and the development personnel. 

Despite the unquestionable benefits of evolutionary sofhvare processes, ~ v e  have some concerns. 
The first concern is that prototyping poses a problem to project planning because of the uncertain 
number of cycles required to construct the product. Most project management and estimation 
techniques are based on linear layouts of activities, so they do not fit completely. 

Second, evolutionary sofbvare processes do not establish the maximum speed of the evolution. If 
the evolutions occur too fast, without a period of relaxation, it is certain that the process will fall 
into chaos. On the other hand if the speed is too slow then the productivity could result affected. 
The correct rhythm for software processes has not been researchsd and remains on the hands of 
the project managcr. 

Third. softuwe processes should be focused on fZesibilir>* and rsrensibilitj. rather than in high 
qiinlin.. This assenion sounds scary. However, n.e should prioritize the speed of the development 
over zero defects. Extending the development in order to reach high quality could result in a late 
delivery of the product, \vhen the opporninity niche has disappeared. This paradigm shift is im- 
posed by the competition on the edse of chaos. 

4.2. The risk a.s~e.s~it~ent urrd estitiintion prohlenrs 

Developing softwxe is still a high-risk activity. Despite the adimces in technology and tools. lit- 
tle progress has been done in improving the management of sofInxe development projects. Part 
of the problem is misinterpretation of the importance of risk manzgement that is usually vieu-ed as 
an extra activity layered on the assigned \vork, or Lvorst, as an outside activity that is not part of 
the softivare process (Hall. 1997), (Karolak, 1996). 
Softnare development processes such the hypergraph model for software evolution (Luqi, 1959). 
or the spiral model (Boehm, 19SS). improved the state of the m. HoLvever. all of them have a 
common Lveakness: risk assessment. 

On the softnme evolution domain, risk assessment has not been addressed as part of the model. 
In the various enhancements and extensions, the graph model did nor include risk assessment 
steps: hence risk management remains as a human-dependent acti\.ity that requires espertije. 

On the evaluation of the spiral model, one of the difficulties mentioned by Boehni kvas: "Re(\*iii,o 
oti ~i.rk-tissessnierrt expertise, tire spirnl tnodel plmes n great c i a 1  of' tdinnce on the cibilin. of' 
sqfrwire c1ei.eloper-s to icletittfv arid tmitiqe sources of project risk." (Boehm, 19S5). 

Many researches have addressed the problem of risk assessment folloning only one perspective. 
The available tools for risk assessment are guidelines for practices. checklists, taxonomies of risk 
factors and few metrics. All these methods u.ork fine if a) therc is a human educated on risk as- 
sessment, and b) hekhe has enough experience. Such resources x e  v e c  scarce and it is difficult 
to leverage their expertise over large organizations. 

The main line of previous research has addressed the problem in parallel tvith the development 
process using informal methods. Basically the proposed methodologies are lists of practices and 
checklists (SEI, 1996), (Hall, 1997) or scoring techniques (Karohk, 1996) that are dependent on 
human expertise. 

135 



The second \veakness on risk assessment is caused by the difficulties in estimate the development 
tiem. The industry has been using three classes of tools to estimate effort and time that can be ap- 
plied at different moments during the lifi cycle, each category being more precise than the previ- 
ous one but arriving later on the life cycle: 
a) Very early estimations. This category includes very crude approsirnations done during the be- 

ginning of the process usually by subjective comparisons using previous projects. 

b) Macro models. This category includes Basic COCOILIO, COCOXIO I1 (application composi- 
tion model), Putnam, Function Points, etc. The estimation is done after completing the re- 
quirements phase. 

c) Micro models. This category includes intermediate and detailed COCOMO, COCOMO I1 
(early design and post-architecture models), and Pert 'CPMGantt techniques. The estimation 
is done after the design \vhen it is possible to have a ivork breakdcnvn StnlChlrS. The project 
estimate is the integration of all module estimates. 

A detailed discussion of these techniques is outside the scope of this paper; the details can be read 
in (Albrecht. 1979 and 1953). (Boehm, 1951 and ZOOO), (Londeis. 1957). (Putnam. 19SO. 1992. 
1996, and 1997). None of these techniques consider the follo\ving characteristics of sofiuare pro- 
jects: 
a) Requirement volatility 
b) Personnel \.olatility 
c) Time consumed by communications, exceptions and noise in the process. All the methods use 

size as an input parameter via some kind of derivation from complexit).. In many cases the 
methods to compute such complexities and sizes are questionable (Kitchenham. 1993 and 
1997). (Kemerer. 1993). 

Recently, NPS developed a formal model for risk identification and assessment for evolutionary 
softbvare processes that solves the problenis of automation. human dependency. and estimation 
(Nogiieira et al. 2000). This research is focusrld on studying soft\vare project risk assessment from 
a different perspective, viewing risk assessmcnt as the prediction of success of the project given a 
set of characteristics, a probabilistic model based on 'A'eibull distribution. and learning from each 
successive cycle on the process. 

4.3. The reuse prohiein 

Even if the industry claims for the use of flesible and extensible architemires from uhich reusable 
components could be integrated as a ivay of generating applications, the reaIity is that the stan- 
dard does not exist. Different architectures are competing for becoming the de facto standard. 
Microsoft proposes the Distributed netLvork Architecture (DNA) based on DCOiM and ActiveS. 
Sun and other OMG members propose the Enterprise Computing - Platform (ECP) based on IIOP 
and CORBA. Each alternative presents advantages and disadvantages and it is not easy to fore- 
cast the winner. 

136 



5. The edge of chaos 

The edge of chaos is 'ii ricitwnl stare between order- cud clicios. a gtzirid cojlzpronzise between 
srt'iictur-e mid srirpt-ise" (Kauffman, 1995). Chaos theov describes a specific range of irregular 
behaviors in systems that move or chanse (James, 1996). Chaotic does not niean random. The.  
primary feature distinguishing chaotic from random behavior is the esistence of one or? more at- 
tractors. Without the esistence of such attractors the quasi-chaotic scenarios could not be repeat- 
able. It is important to realize that a chaotic system must be bounded. nonlinear. non-periodic and 
sensitive to small disturbances and mising. If a system has all these properties can be driven into 
chaos. 

\Ye have the tendency to think that the order is the ideal state of nature. This could bz a big mis- 
take. Research on organizational theory (Stacey, Nonaka. Zimmerman); management (Stacey. 
Levy); and economics (Arthur) support the theory that operation ai\*ay from equilibrium generates 
creativity, self-organization processes and increasing returns (Roos, 1996). Absolute order means 
the absence of variability; consequently this behavior could be very dangerous in environments 
Lvith high equivocality. In such scenarios, a better approach could be a restless series of changes 
aiming competitive advantage niches, ivhich globally form a semi-coherent strategic direction. 

Change occurs Lvhen there is some stnicture so that the change can be organized. but not so rigid 
that it cannot occiir. Too much chaos. on the other hand. can make iinpojsib!e the coordination 
and coherence. Lack of striictiire does not alivays mean disorder. Let illustrat? this idea ivith an 
example. M'e can agree that there is little stnicnlre in a flock of migratoiy ducks in a lake. Hoiv- 
ever. few minutes after they start flying some order appear and the flock creates a V shape forma- 
tion. This self-organized behavior occurs because a loose form of stnicture euists. Experiments 
\vith intelligent agents governed by three rules (a) try to maintain a minimum distance from the 
other objects in the environment. including other agents; b )  try to match the speed of other agents 
in the vicinitl;: and c) try to move tonard the perceived center of mass of the agents in the vicin- 
ity), show the same behavior. Independently of the starting position of the agents. they alivays end 
up in a flock. Even if an obstacle disturbs the formation, the pseudo-ord?r is recovered some time 
later. This self-organized behavior emerges despite the absence of leadership and Lvithout an es- 
plicit order to form a flock. 

A more interesting example is the behavior of software development teams. A recent article 
(Cusumano, 1997). describes the strategies of hlicrosoft to manage large teams as small teams. 
Dr. Cusumano says " CWicit Microsofr tries ro do is allow nicirzy snrcill teciriis arid idi\idrrcils 
enoughjl-eedoni to work in parcillel J E ~  srill jiirictioti ns oiie lcirge teani. so the!. ccui build lcirge- 
sccile pr-odricts relcitive1,v quick(v cirid cliecip(\.. The teanis adhere to njeii .  rigid rides tliot e)force 
ci higA degree of coordination arid coiii~?iii)iiccirioti." This is an exact description of the emerging 
behavior in a complex adaptive system. I t  is self-adaptive because the agents realize the adjust- 
ment to the environment, and it is emergent because it arises from ths system and can only be 
partly predicted. As in the example of the ducks. few rules of interaction betiveen the q e n t s  (in 
this case people) generate a performing behavior. The three rigid niles at Microsoft are: a) devel- 
opers integrate their Lvork daily forcing the synchronization and testing of the ivork; b) developers 
responsible for bugs must fix them immediately. and are responsible for the next day integration: 
and c) milestone stabilization is sacred. 

137 



Complex adaptive systems, as the one just described, are made up \vith multiple interacting 
a,oents. The emergence of the complex behavior requires thee conditions. First. it  is required the 
existence of more than one agent. Second, the asentj must be sufficiently different to each other 
such that their behavior is not exactly the same in all cases. When agents behave exactly the same 
n a y  exhibit predictable, not complex, behavior. Finally, complex adaptive behavior only occurs in 
the edge of chaos. 

6 .  Some of the risks of being in the edge of chaos 

Limiting the stnmire in organizations can be useful in sihlations lvhen innovation is critical Oi 
ivhen is required to revitalize bureaucracies. HoLvever, if the structure is debilitated beyond a cer- 
tain minimum. it can conduct to an undesired state. Some traits can alert the eminence of such an- 
archic situation known as the '-chaos trap" (BroLvn & Eisenhardt, 1999): a) emerging of a ntle- 
breaking culhire. b) missing deadlines and unclear responsibilities and goals, and c)  random com- 
munication floivs. 

On the other hand focusing in hierarchy and disciplined processes, emphasis on scheduks. plan- 
nins and job descriptions may conduct to a steady inert bureaucracy. Organizations in such state 
react too late failing to capture shifting strategic opportunities. This is the case of a '-bureaucratic 
trap". Xvhere there are aIso some observable Xvaming traits: a )  nile-following culture. b) rigid 
stnicture, tight processes and job definitions. and c) formal communication as the only channel. 

The alternative is ''surfing" the edge of chaos avoiding both attractors. That requires limired stmc- 
t~ire combined \vith intense interaction ben1:een the agents, gil-ing enough flesibilin. to develop 
surprising and adaptive behavior. Organizations in this state are characterized by having an adap- 
tive culture. People expect and anticipate changes. A second characteristic is that the feiv key ex- 
isting stnictiircts are never violated. Finally. real time communication is required throughout the 
entire organization. 

Being in the edge of the chaos implies an unstable position. Some perturbations can cause the nip- 
tiire of this delicate equilibrium and the fall into one of the two steady states. A potential pernirba- 
tion factor is the organizational collaboration style. Too much collaboration can disturb the per- 
formance of each agent and consequently, the whole system is affected. On the other hand. too 
little collaboration destroys the advantage of acting organized and leads to paralysis. 

Another sources of pemrbation are the tendency to be tight to the past and cultural idiosyncrasy. 
or by contrary. to loose the link with the past. In one case, the change becomes impossible. In the 
other case, the assets from previous experiences are not capitalized. The equilibrium point is 
called regeneration. In such unstable state, mutation cah occur. Therefore the inherited character- 
istics that give competitive advantage in a certain scenario can be perpetuated, and new variations 
are introduced. If too little variation exists. natural selection fails. This process permits that com- 
plex adaptive systems change over the time folloiving a Darwinian pattern. 

(Kauffman, 1995) introduced the concept of fitness landscape. We can understand this concept 
obsening the behavior of species. In the competition for sun*ival, species attempt to alrzr their 
genetic make-up by taking adaptation trying to move to higher "fitness points" Lvhere their viabil- 
ity ivill be enhanced. Species that are not able to reach higher points on their landscapes may be 
outpaced by competitors xvho are more successful in doing so. If that occurs the risk of extinction 

138 



increases. The same principle applies behveen predator and prey. Each development in the abili- 
ties of one species generates an improvement on the abilities of the other. This concept is called 
co-evolution. 

Certain higher fitness points have morc value to some species than to others. The contribution a 
new gene can make to a species' fitness depends on genes thc species already has. As more com- 
plicated is the genetic pattern (more evolved). the probabilit). of conflict of a neiv adaptation in- 
creases slowing down the speed of variations. 

Natural selection is an effective. but not generally efficient Lvay to evolve. The process requires 
some amount of mutation to a\*oid tht  sudden convergence on suboptimal characteristics. Some 
of the characteristics lost in the past can be reintroduced being usefill in the new scenario. Many 
errors are committed during this blind process. A more efficient tray to ei.olve is by recombina- 
tion of the pool of genes using genetic algorithms. This technique has been applied to improve the 
performance of robots, however the idea can be used to improve the cotnpztencies of organiza- 
tions. If too much or too less variation OCCLirs the result alLvays conduct to the failure of the sys- 
tem. 

7. Application in software engineering 

Chaos in software development co rns  from various sources: a) the intrinsic variable nature of 
requirements, b) the changes introduced by n a v  technologies. c ) the dynamics of ths software 
process, and d) the complex nature of human interaction. T k j e  non-linear charactzristics plus the 
condition of edge of chaos are sufficient for the development of complex adaptive systems in 
which the agents are collaborative developer teams. 

In software development scenarios equivocality. environmental complexity and uncertainty are 
usually high. The suggested organizational stnicture to deal Lvith such scenarios (Burton & Obel, 
1998) should have low formalization and organizational complesity. centralization inverse to the 
environmental complesir-, and rich and abundant information exchange. The recommended or- 
ganization should be ad hoc or matris. kvith coordination by integrator or group meeting. This or- 
ganizational style is difficult to achieve Lvhen the organizations are large. A clear solution to this 
problem was recognized at Microsoft (Cusumano, 1997): a) parallel developments by small teams 
with continuous synchronization and periodically stabilization. b) softuxe evolution processes 
where the product acquires new features in increments as the project proceeds rather than at the 
end of a project, c) testing conducted in parallel as part of the evolution process, and d) focus 
creativity by evolving features and "fixing" resources. Cusumano observed that small development 
teams were more productive because: a) f e u a  people on a team have better communication and 
consistency of ideas than large teams. and b) in research, engineering and intekchial \vork indi- 
vidual productivity has big variance. SoftLvare development requires teamwork, more specifically 
organized work. So we require understanding the dynamics of organizations as artificial social 
entities that exist to achieve a specific purpose. in this case to develop softivare. Such organiza- 
tions are made up of individuals who accomplish diverse desegregate activities that require coor- 
dination and consequently information exchange. 

A shift from the traditional long-tenn development organizations is required. I'irtual teams ere- 
ated as temporary dynamic project-oriented structures, ivith a composition of skills matching ex- 

139 



actly the objectives could improve the current performances. Such virtual orsc omizations are not 
exposed to bureaucratic loads and do not require to absorb the Cost of permanent staff (Sene- 
gupta & Jones. 1999). 

Larger developments could be achieved by parallel projects loosely coupled sharing a common 
architecture such CORBA or DCOM. This paradigm enables the possibility of managing larze dt-  
velopinz organizations as if they Lvere small. In such scenarios, the benefits of complex adaptive 
systems will occur at bvo levels. First at the micro level, that is inside each small project, Lvhere 
the agents are individuals. Second. at the macro level. tvhzre the agents are parallel collaborative 
projects. 

8. Conclusion 

Complex adaptive systems appear as the most attractive ivay to deal with changing em-ironments. 
Besides some indicators introduced by (Brown R: Eisenhardt, 1999). the academic research is not 
maturc enough to assert a methodology for competition on the edge. Some enterprises, such as 
Microsoft and Intel, seem to have discovered and applied this form of strategy since many years 
ago, but little information hat.c permeated. 

We propose a drastic change in the softnme processes using the benefits of programming in the 
small to programming in the large. More even. n.e state the quality-drkm paradigm should bc 
revised. and that the objective should be shorter deiiven times, flexibility and expansibility. 

Despite the obvious differences in terms of hostility, tx.e found several similarities bzhveen u m  
and softtvarz development scenarios. A depth research is required to evaluate the applicability of 
this theory to different fields in ivhich uncertainty is a key factor peace keeping operations. joint 
C'I. and irregular Lvarfare. 

References 

(Abdel-Hamid, 1997) 

(Albrecht. 1979) 

(Albrecht. 19S3) 

(Bach, 1994) 

(Boehm, 19S1) 

(Boehm. 19%) 

Abdel-Hamid. T. Lessons Learned from Modeling the Dynam- 
ics of Softnxe Development. Edited by Kemerer. C. McGraw 
Hill 1997. 
Albrecht, A. blsasuring Application Development Productiviv. 
Proceedings 1BM. October 1979. 
Albrecht, A. and Gaffney, J. Software Function Source Lines of 
Code and Development Effort Prediction. IEEE Transactions 
Software Engineering. SE-9, 19S3. 
Bach, J. The Immaturity of the CMM. American Programmer, 
September 1991. 
Boehm, 8. Software Engineering Economics. Prentice Hall. 
19S1. 
Boehm. B. A Spiral >lode1 of Software Development and En- 
hancement. Computer. May, 19SS. 

1 4 0  



(Brown gL Eisenhardt, 1999 

(Burton & Obel, 1995) 

(Cusumano. 1997) 

(Dooley. 1991) 

(Hall. 1997) 

(Humphrey, 1990) 

(James, 1996) 

(Karolak. 1996) 

(Kauffman. 1995) 

(Kemerer, 1993) 

(Kitchenham, 1993) 

(Kitchenham, 1997) 

(Londeis, 1957) 

(Luqi, 19S9) 

(Nogueira et al., 2000) 

(Porter, 1950) 
(Putnam. 1950) 

(Putnam, 1992) 

Brown, S. and Eisenhardt, K. Competing on the Edge. Strategy 
as Structured Chaos. Hanard Business School Press, 1999. 
Burton. R. and Obel. B. Strategic Organizational Diagnosis ans 
Design. Developing Theon. for Application. Second Edition. 
Kluwer Academic Publishers. 1998. 
Cusumano, Michael How >licrosoft Makes large Teams LVork 
Like Small Teams. Sloan Management Revieiv. Fall, 1997. 
Dooley, K. and Flor, R. "Success and Failure in Total Quality 
Management Initiatives", Proceeding of the Chaos Netn.ork. 
Denver, 1994. 
Hall, E. Managing Risk. hlethods for Soft\vare Systems Devel- 
opment. Addison Wesley, 1997. 
Humphrey, LVatts. Mana,oing the Sofhvare Process. Addison- 
Wesley, 1990. 
James. G. E. Chaos Theon.. The Essentials for hlilitary Appli- 
cations. Naval War College. The Kenport Papers. 1996. 
Karolak, D. Softume Engineerins IManagement. IEEE Com- 
puter Society Press. 1996. 
Kauffinan, Stuart. At Home in the Universe. Oxford University 
Press. 1995. 
Kemercr, C. Reliability of Function Points Measurements: A 
Field Experiment. Communications of XCM, Vol 36 SO 2. 
1993. 
Kitchenham, B., Kansala. K. Inter-item Correlations among 
Function Points. First International Softn-are metrics Sympo- 
sium. IEEE Computer Society Press. 1993. 
Kitchenham, B., Linkman. S. Estimates, Uncertainty. and Risk. 
IEEE Softivare. May-June. 1997. 
Londeix, B. Cost Estimation for Software Development. Addi- 
son-Wesley. 1957. 
Luqi. Software Evolution Through Rapid Prototyping. IEEE 
Computer. May, 1989. 
Nogueira, J.C., Luqi, and Berzins. \I. A Formal Risk Assess- 
ment Model for Software Evolution. Paper submitted to SEKE 
2000. 
Porter, Michael. Competitive Strategy. Free Press. 1950. 
Putnam, L. Sofhvare Cost Estimating and Life-cycle Control: 
Getting the Software Numbers. IEEE Computer SocieQ' Press. 
1980. 
Putnam, L. and hlyers, I\'. Measures for Excellence. Reliable 

~ 

1 4 1  



Software On Time LVithin Budget. )'ourdon Press, 1992. 
Putnam, L. and Myers, \Ir. Executive Briefing. Controlling 
SoftLvare Development. IEEE Computer Society Press. 1996. 
Putnam, L. and Myers, W. Industrial Strength SoftLvare. Effec: 
thre Manazement Using Measurement. IEEE Computer Society 
Press, 1997. 
Roos, Johan. The Poised Organization: Navigating Effectively 
on Knowledge Landscapes, 1996. 
http:ilwtvn. imd.ch 'fac!rooj "DaDer uo.html 
Santosus. hlegan. Simple. Yet Complex. Business Management 
CIO Enterprise Magazine. April 15. 199s. 
Software Engineering Institute. SoftLvare Risk hlanagement. 
Technical Report Ch.IU/SEI-96-TR-012. June, 1996. 
Sengupta. K. and Jones Carl R. Creating Structures for Net- 
nork-Centric Ware fare: Perspectivej from Organizational The- 
ory. Comniand & Control Researc & Technology Symposium. 
CCRP 1999. Naval War College, 1999. 
von Bertalnnfy. L. General System Theory: Foundations. De- 
velopment. Applications. Braziller. 1976. 

(Putnam, 1996) 

(Putnam, 1997) 

(Roos, 1996) 

(Santosus, 1998) 

(SEI. 1996) 

(Senegupta & Jones, 1999) 

(yon Bertalanfy. 1976) 



A Formal Risk Assessment Model for Software Evolution* 
Juan C. Nogueira 

Luqi 
Valdis Berzins 

Sader Xada 

Ka\.al Postgmduate School 
2 .  University Circle. 

hfontercy. CA. 93913 USA 
- 1 8336562093 

j ~ ~ i : o ~ u ~ ~ i ~ ' ~ i  }i~~.\.t7'~~..;.1~i;l 

:IBSTK.ACT 
The currat  state of the art techniques of risk assessment. 
rely on check!ists and human expertise. This constitutes a 
u.eak approach because different people could arrive at 
differen: conclusions from the same sicnario. The 
difficu!ty on estimating the duration of projects applying 
evolutionap softnarc procesjs contributes to add 
intricacy to the risk assessm~nt problem. This paper 
introduces a fomial method to assess the risk 3nd the 
durr?tioil of software prs;ects autoninticnlly. The nicthod 
h33 been designed according the char3cte;istics of 
evolutionary softtvarc processes. l y e  introduce a set of 
riietricj tc) nicasurc productivity. requirement volxility 
and coinpli'xity. \Ye construct a fomiiil method based on 
t h t j t  thitc indicators to estimate t!it duration and risk of  
cvolutionary software processes. The npproxh introduces 
benefit.; in t\vo fields: a)  automation of risk sscssinent 
and. b) caiiy estimution nicthod for cvolutionxy sohvare 
proccssi.5. 

Kc? rrords 
Risk. softivare inctrics. estimation models 

ISI'KODL'CI'IOS 
Despiti' progress in formal methods. prototyping. and 
evolutionar). softuare processes. risk assessment rcrnainj 
as an open issuc dependent on human espertise. Softwxe 
dtvclopmcnt processes such the hypcrgnph model for 
joftrvart evolution [IS]. or the spiral model [3] .  have n 
common weakness: risk asSessment. In the softu.ure 
evolution domain. risk assessment has not been addressed 
:ts part of the model. In the various enhanceiiients and 
extensions. the graph mod4 did not include risk 
a;scwnent stcps, henx  risk management rermins as a 
human-dependent activity that requires espenise. In the 
cvaluation of the spiral model, one of the difficulties 
mentioned by Boehm \v3j: "Rc(v0rg on r i s ~ - ~ i . ~ . ~ ~ , ~ . ~ ~ ~ i t , t r t  
crpcriisc. r l ie  spird nrrxlel pltrces ( I  gretri tltmtr! c?i.rc*liutrLy 
on cihilitv qf' .sn/iwire clerclopcrs to itlc*i:if/j. titit1 

ni~riwge swrce.s ctfprojcw ri.sk. " [;I. 
klany res:.arches [9. 6, 101 have addressed the prob!em of 
risk ;Ljjessment following guidelines. checklists. 

tasonomics of risk factors. and fe;v ii1c;ricj. ,411 these 
methods \vork tin- i f  a) they arc app!i~d by 3 human 
t d u c ~ e d  on risk ~ s s ~ s ~ m e n t .  and b~ htshc has cnotlgh 
experience. Th- \\eaknejj of a!! current risk azjes~nic'nt 
pr3cti::Cs is human dependency. .As a coro!lnrq-. risk 
assessment could not be consist-nr bccause different 
eSpC'rt5 could arrive at different conclusions from the 
jam;: scenario. 
Our research i j  focused on tranjfor;;linp the prcp?nt state 
of thc art about risk ajjesj1ncnt into 3 iomal method. This 
p:iper introduces an autoinaid and fomi;d software 
prc.ject risk assessment mod;.!. b:ijc\C on tarly metrics and 
prob:ibilitics designed for evduthary  S O ~ ~ U . X C  

processes. 

T H E  PKOBLEJl 
Stildiej have shown that early p x t s  of the system 
dcveiopment cyc!: such 2s reqtiirenient; and design 
sp?:ifications are ejpecinlly prcinc to error [ IS]. Prob!cms 
originating in the early stages eften hnve a lasting 
intlucnce on the reliability. safety and cost of th? system. 
This effect is particularly notorious in piojscts involvinp 
niu!tip!e stiktholderj with difftrcnt points @f view. 
Etdtitionar). softlvarc. processts offtr an iterative 
approach to requirement engineei.ng to alleviate the 
probiems of uncertainty, ambigui? and inconsistency 
inheitnt in sofnvare developments. Sloreover. prototyping 
cxi improve the capture of changc in rcquirsments and 
assumptions during the dcvcloprnenr process. Prototypes 
are uscful to demonstrate system scenarios to the affected 
p;lT[irtj 3s a way to: a )  collect criticisms and feedback that 
are jot1rce:S for ncLv requiren1entj: b) enable early 
detection of dcvintions from users' cxptctations: C) tnce 
the evolution of the requirements: and d)  improve the 
comrnunication and integntion or" the users and the 
devc!opnient personnel. 
Dcjpir: the unquc.srionable benc.Zts of evolutionary 
sofnvare processes. we have t\vo concerns. First, the 
automated n'jk a s ~ ~ s j m e n t  issue has nat been resolved. It  
is ujually viewed a j  an extra aztiviiy k~yercd on the 
assigncd \vo-'- ,,,. or \vOrjt. a j  3n outsid:. activity that is not 
pirt of the soft\vsrc proccjj [6. 91. The main line of 

1 4 3  



previous research has addressed the problem in pa;alie[ 
with the development process using informal methods. 
Basically the proposed methodologics are lists of pra2ticr.j 
and checklists [10. 61 or scoring techniques [9] th3: are 
dependcnt on human expertise. 
The second concern is that prototyping poses a prob!:;n to 
project planning because of the uncertain numb-; of 
cycles required to construct the product. The indust? h3 j  
been using three classes of tools to estimate efforr 2nd 
time that can bc applied at different moments dueng the 
life cycle. each category being more precise tha:. the 
previous one but arriving later: 
a) Very ear:y estimations. This catcgorl; includes vey  

crude approsimations done during the beginnkg of 
the process usually by subjective comparisons using 
prcvious projects. 

b) Macro models. This category includes B ~ s j t  
COCOLIO, COCOJIO i I  (application compos 
model). Putnam. Function Points. ctc. The estin: 
is done after completing the requirements phase. 
Micro models. This CategOr). includes intercicdia:e 
and detailed COCOYIO. COCO\IO I I  (early design 
and post-architecture models). and Pert'CP\l Ganit 
techniques. The estimation is done after the deiign 
when it is possible to have a \vork break!oun 
structure. The project estimxe is the integration cfai! 
module estimates based on linear layouts of activities. 
so they do not f i t  completely ivith cvolL;tionuF 
soft\vare processes. 

A dctailed discussion of these techniques is outsiCc thc. 
scope of this paper: the details can he read in [ 1. 1. 1. 6. 
13. 16. 17. IS. 191. Konc ofthew techniques cons;iCi.r thc. 
following characteristics of sohvare projects: a )  
requirement voliitility. b) personnel volatility. and c i  time 
consumed by communications. csceptions and noise in the 
process. All thc methods usc s ix  as a11 input pxxieter  
via some kind of derivation from complesity. I n  many 
Cases the methods to compute such cornplesities and s i 7 ~ j  
are questionable [ 10. 1 1 .  121. 

C) 

31 E*r K I cs 
In this section we dcscribe a small set of inetrics that 
support our risk identification strategy (requirements. 
personnel and complesity). We choose rnetrics presenting 
the following characteristics: a) robustness. b) 
repcatability. c) simplicity in terms of the number of 
parameters. d )  easy to calculate. and e )  automxicaily 
collectable. 

hletrics for requirements 
W e  purpose three rnetrics for requirements: a )  bir '  Ln-rLte. 

b) death-rate. and c) change-rate. lye define birih-mre 
(BR)  as the percentage of new requirements incorporatcd 
in each c y l c  of the evolution process. This metric sho\vs 
the introduction of ncw requirements as a percentage. 
We define drutk-rrrre (DR) 3s the percentage of 
requirenients that arc dropped by the customer in each 
cycle of the evolution process. 
We define clwnXe-rcrtt. (CR) a j  the pcrcmage of 
rcquircmen:s changed from the pre\ ious cycle. 

From the point of view of the nittrics. a change in a 
requirement can be victved as a dexh of the old version 
and a birth of the new one. The simplification just 
dcjcrihed enables comparison of birth-rate and death-rate 
in a bi-dimensional plot t h x  jho\vs four regions: stability 
region. growing region. vo!atiliy region and shrinking 
region (fig. I ) .  Each of thezc regions has different risk 
connotations. The arrou' jho\vs the normal evolution of a 
pioject as time goes by. During early stages. i t  is normal 
for pro-iects to be in the gio\ving region. Hoxvever, if  the 
project remains in this regior. after many cycles. or returns 
to this region after visiting other regions. something 
tvrong happens. The first case is an indicator that the 
requirement engineering is not efficient: hence some 
corrective action should be applied. The second cast 
sho\vs evidence of late discover\. of sollie cluster of 
hidden requiiements. 
After some cycles. the prcject should be in the volatile 
region. If  the project dots not evolve into the stability 
region. then there is evidence that the requirements 
engineering activity is not efficient and some correctivc 
action may be needed. It is important to analyze the 
evolution of the stakeholders' issues and criticisms. It  
could be also the case that j t~keholdtrj  have changed their 
minds. If the project evo1v-j to the shrinking region, and 
rhc rcquiremcnrs engineering is xvorking right. there is 
evidence that the custonxrs are cutting dotvn the project. 
This can be an indicator of :i severe cut in the budget. 
Finally. any return to a previous region should be 
considered as evidence of thretits. In such ci1ji.s a detailed 
ana!ysis is required to a3scl;j thi. causes of the anomaly. 
This set of mctrics can be co!lecti.d auroiiiatically from the 
basline and can give ca1:Iy a!crts of threats. In our 
~ciicinz. requircment vo!atility is related to t\vo risk 
factors: the product and the process. 

,I. ;* 

' stable thrinhng 

Figure I: Evolution of requirements 

Jletrics for fitness 
Lye require measure the fit bet\vr.cn people and their roles 
in the softivart. process. In  order to measure personnel 
both quantitative and qusliutive metrics are required. A 
skill match br.t\vvc.cn person and job is required to estimate 
the speed in processin; information and rate of 
esceptions. On the quan!itative side i t  is important to 
me;lsuic the number of people and the turnover. This last 
one provides information about the espected productivity 
lojscj due to training. learning C U T V ~ S  and 
communications. This set of Inetrics is difficult to collect 

1 4 4  



because peop!~ are very reluctant to being measured. 
During the simulations we found that there esists an easiei 
way to measure the productivity fitness obsening the ratio 
between direct working time and idle time as we \vi!i 
discuss i n  6.1. Fitness is related to t\vo risk factors: the 
resources and the process 

Metrics for complexit! 
Complesity h3j a direct impact on quality because the 
likelihood that a component fails is directly rela:ed to its 
comp!esirl;. The quality of the product can only be 
determined 3t the end of the process. Hcnce. it i j  
important to measure the complexity as an early predictor 
to provide a way to assess the duntion of the project given 
sonic' indicators collected during the requirements phase. 
In such conditions. code is not avai!ablc, so the on$ 
possible measurements should come from the 
specification. Complesity is related to one risk fxtor: the 
product. 

Research on Function Points (FP) [ I .  21 showed that there 
exists a clear relation between comp!esity and size in 
terms of lines ofcode. Howver. FP are not well sxited for 
real time systems or object-oriented developments [ 10. 1 1. 

Formz! speciEcations arc' suitable for being andyzed to 
compute their comp!csity. Lye conducted esperirnents 
trying to derive comp!esity from formal specifications 
crcated by C.APS (Coinpurer .Aided Prototypinp Sl;stcrn) 
[ 151. The too! gencrms specitkitions in a s:nicturcr! 
language cal!ed Prototyping Specification Desigr: 
Langu:ge (PSDL). PSDL code has the fd!lo\ving 
components: ~ p e s .  opcrators. data strt3iiis and 
constraints. Types are declarations of Zbstract d x i  types 
required for the system. Opcrxors are state machines and 
data streanis represent the communication links between 
them. Both operators and data streams are the components 
of a dataflorv graph. Finally. constraints represen: the rea!- 
time constraints that the system must support. The too: 
generates Ada code form PSDL specifications. 
W e  defined ~ M ' O  complesity merrics for PSDL: a) Fiw 
Grnrzirlcrrirj Conrp/cvir.v metric (FGC). and b) L u ~ ~ c  
Gmntrkrriry Conrp/csir.v metric (LGC). The reason to 
compute different metrics is because \ve want to dctcct 
two c1ajsc.s of threats. First, we need to be aware of 
excessively coniples operators. High complexin. of one 
opcntor could be caused by poor design and possibly can 
be solved by funhcr decomposition. Second, we rsquire a 
metric to compute the toral complesity of the system. 
FGC expresses the complesity of each opcrator in the 
systcm and is the sum of the fan-in and fan-out data 
streams related to the operator (FGC = hn-in * fan-out). 
LCC cspressej the cornpiesip of the system as a function 
of thc number of operators (0). data streams ID), and 
types (T) (LGC = 0 - D - 7). 
H'e found 3 strong correlation between PSDL lines of 
code and LGC ( R  z 0.996. fig. 2) .  If ~ v e  cornpar: the .Ada 
non-comment lines of code of the projects n.ith their 
complzsity mc'asiirtd using LGC. we obsene 3 strong 
correlation also ( R  = 0.89s. fig.3). Our complesi:y mttric 
corrdatcs better with PSDL than with Ada because C.L\PS 

I?] .  

automaticaliy generates PSDL; on the other hand. even i f  
CAPS generates part of the Ad.1 code. the designer can 
add and modify the generated code, introducing more 
variabiliv. The size of the project in  thousands of non- 
comment lines of cod? can be estimated 3s: 

.As the comp!esiry grows. the ratio trends to 
approsimxsly 32 LOC for each unit of LGC. This finding 
provided us tvith a method to compute the size of th2 
projects given an early measure of their complexity. This 
conversion is requircd to compare our approach with 
Putnani's and Boehni's approzchcs because thc'y require 

KLOC=(>2 LGC - 150) 1000 [Eq. 11 

-~ - - ----- - 
Ada NCLOC vs Large Granularity Complexity 

( L W  

, z  $:I.:. . r i : j -  
- ~ = X - X -  - $13 -- *- 

PSOL LOC 
uure 3 .  Correlation betneen ;\da code and LCC -5%. -2- 

the size as an input parameter. .A caveat of this study is 
t h v  our ssmple is small. but it  includcs all the information 

hart at the current time. However.'thr. study suggests 
the pojjibiliy of estimaiing size in terms of complesity 
with a uscfu! degree ofaxuracy. 

T H E  RISK .-\SSESS\IEST hlODEL 
A probabi!itp distribution from the W'eibull family can be 
used to model the developttient time given the risk factors 
dijcttjsed above. The piobnbility density function and 
cumu!atirc' density function for the model are: 



a is a shape parameter. It determines the width of the 
pe3k of the distribution and the expected error. IVe 
can associate this bhavior Lvith the efficiency of the 
project, which depends on characteristics of the 
process and the resources. 
p is a scale parameter that stretches or compresses the 
graph in the I( direction and hence controls the 
thickness of the tail. This parameter models the extra 
xork introduced by new requirements or changes in 
requirements. 
Note that the functions start at x = 0. M'e require a 
third parameter to shift the CUnts to the right. For 
that reason w e  introduce a location parameter y. 
\vhich is function of the a!ready discovered system 
comp!esity . 

C:\LIBRA7'109 OF P.4R:\\lETEKS 
TO calibrate productivity (u) and requirement's voixility 
(PI. we conducted simulations with VitSProject [S. I:] 
using the following scenarios (Eg. 4). Each scenario name 
consists of three letters describing the value for each of 
the three variables under study: productivity (a). 
requirements' volatiliy (p). and complesiy (y). Each 
letter could have two va!ues: high ( H )  or low ( L  ). The tool 
was configured to run 100 simulations for each scenario. 
and thc organizational parainctcrs \verc set to match the 
characteristics of soft\c3rc. dcvelopmcnt. 

Figure 4: Scenario's characteristics 

To analyze the effect of productivity. tve compared thc 
results of the simulations of the following scenarios: L L L  
vs HLL. L L H  vs HLH. LHL v j  HHL. and L H H  vs H H H .  
lye found that for high productivity scenarios ( H s s )  the 
development tiinc' improved by 60%. 

To analyze the effect of requirement volutility. \ve 
compared the results of the simulations of the followin2 
scenarios: L L L  vs LHL. LLH vs LHH. H L L  \'j HHL. and 
HLH vs H H H .  b'c. found that hizh requirement volatility 
IxHx) degraded the development time by 209.0. 

To analyze the effect of complexit).. we compared the 
results of the simulationj of the following scenarios: L L L  
vs LLH. L H L  vs LHH. HLL vs HLH. and H H L  vs H H H .  
We found that high complexit). ( x s H )  dcgrade thc 
development time by jOn;0. 

6.1 Productivity (a) 
Literature in  productiviry classifies time spent at work into 
four categories: 
a) Direct. Time spent working and correcting errors on 

the product. In ViteProject terminology, it  is the sum 
of ivork and ren.ork. 

b) Indirect. Time spent in activities supporting the tvork 
such as meetings. coordination. information 
eschangc.~. ctc. In VireProjezt tcnninology. it  is 
knoun as coordination time. 
Idie. Time spent without tvork to do. tvaiting for some 
input.  In  VitcProject tcrminology. i: is kn0n.n as 
waiting rime. 
Pc.rsona1. Time spent doing anything escept the other 
categories. ViteProjca docs not compute this 
c3ttgoq of time. HoLvevcr. it i j  l o ~ ~ s c i ~  related to the 
noise parameter. 

C) 

d )  

If tve exmine the time distr;bution of thejc categnriej we 
can obsene a remarkable pattern that diffcrtntintej high 
productiviry scenarios from the low productivity ones. 
This e f k t  i j  indcpcndent ofthe 0;hi.r two variables of the 
siniu!3tion. Hence. this Suggi'jtj th3t the tiin? distribution 
can be a good indicator for th: px.metc.r CI. 

Figure 5 prcsentj the distribution times for the eight 
scenarios simulated. .4 pnttcrn of time distributions can be 
clearly obsened. Scenarios uirh  lotv productivity have a 
perscntay of idle time greater than 13% of the total 
development time. 

can recognize low productiviry jztnnrios also by the 
ratio of the percentage of direst time over percencage of 
idic time. n-hich we call productive ratio 1 PR): 

PR = u =; Direct",, ' Idlcoo~ [Eq. 51 

For high productivity sccnxios 2 . 0  < FR < 6.0. and for 
Ion. productivity scenarios 0.8 < PR < 2.0 

O'r 2O?b 4;:: CJ-3 a n  r[lO"/r _.. 

I ODlrecl El Indirect 0 Idle 

Figure 5: Time distribution from each scenario 
objemed that using PR as th: value of U. the model 

behaves as the sirnulatiox. That is on high productivity 
scenarios the total developnsnt is 60% shorter than in lo\v 
productivity ones. The rtajonj a.hy the ratio PR is related 
to productivity require further study. However. we 
conjecture the reason cou!d be re1a:c.J to: 
a) Fit ofjob and people ~ k i l l j .  
b) People turnover. genxating noise and productivity 

losses derived from training and learning curves. 
c) Sumber of pcople. influencing the productiviy by 

esces; or default of \\.orking force: 
In the mod4 the use of a ranging from 0.S (low 
productivity) to 6 (highest productivity). corresponds to 
th? results obsened in the ;imulations. 

146 I 



6.2 Requirement's volatility (p) 
j3. the extra delay factor caused by requirements' volatility 
(late requirements and changes in  previous requireinenis). 
is obtained by the following formula: 

p = IST((BR - DR)/  10) [Eq. 61 
Our simulations showed a 20"o increase on thc 
development time uhen the requirement's volatility is 
high. 

6.3 Complexity (y) 
Having found a complexity metric suited for our purpose. 
the next step ivas to find for the esistence of some SOL7 of 
relationship between LGC and development time. 

We conducted a simple csperiment using the converjion 
ratio [Eq. I ]  to obtain the size inputs for the sample. LL'e 
used sample points from 1000 LGC to 30000 LGC. Lvhich 
means sample projects from 32 KLOC to almost IlILOC. 
\t'e compute the avenge estimation for the development 
time using COCOMO and Putnam. The sample points are 
plotted with a smoothing thick line. The logarithmic 
trmdline is plotted 3s a thin red line. Lye found a strong 
logarithmic correlation (R2 = 0.9699) tvith the folloning 
function (Fig. 6).  

Time (months) = -{ = 13 Ln(LGC) - P2 [Eq. 71 

Figure 6: Coniple\it>-time correlation 

This equation gives n conse~a t ive  estimation for projects 
be twen 4000 and 20000 LGC (128 and 6-10 KLOC of 
Ada). The estimation seems to be too optimistic for 
projects smdler than ZOO0 LGC or  greater than 25000 
LGC. Figure 9 shows the effects of complesity over 
different scenarios. The developincnt time increases by 
20Yo when the complexity is high. 

6.4 The complete model 
Our model requires three panmeters (a. p. -0 that c m  be 
derived from metrics automatically collected from thc 
development environment (Eq. 5.  6 and 7). If thc 
development environment does not have the functionality 
to collect metrics, then a manual procedure cou!d provide 
the data. Using these values in Eq.3 tvc obtain the 
probability of  finishing the project at any given time (s in 
months) (Fig. 7). The model enables to refine the 
estimation form the kno\vledge captured nt each 

evolutioxry cycle. ,As the developnicnr progress y 
increases Iknoen complcsity) and !?I decrc2sts (less tail). 

c o s c L L ' s I o S  
Lye intrduced a formd method for risk ssessinent that 
solves I?? issue of  humm dcpcridency. characteristic of  
the cuir?>.t risk assessmerit methodologies. This method is 
jupporicd by a small set of nietris that can be 
automr?ri:3lly col!ected from thc development 
environ:r,mt. 
One of thc mttrics introduced. prodactivity ratio, 
conjtini:?j an objective method to asst's5 the productiviy 
ievel of ~n organization ivithout subjecti\.t judgement of 
espens. 
--..- ~- 

--t?:oSlfirish a: rl  ---' "-. 

Figure 7: Distribution functions 

LVe i n rduccd  a complesity metric we!: suited for red- 
time s>:?ms that h3s strong correlation \vi:h development 
time. .A::?ough. this metric \vaj developed specifisally for 
PSDL. :he method can be gener3:izr.d for other 
mcthodo:ogies using Object Points or n::rnbcr of classes 
instead ~f LGC. 
.An inter-sting side effect of thc model is that provides an 
cr15y KZ:: to estimate. v e v  eariy in the iife cycle. the 
duratio:. of a project. and indirectly. its COG. This method 
eniiblcs 12 earlier assessment of the d u r ~ r i m  of the project 
and sOi.::s the problems of: 
a )  H c x n  dependency on risk assessmcn:. and 
b )  D i5u l t i e s  in estimating time on evolutionary 

prcc,r).ping softtvare processcj. 
Further :?search is required to generalize the method for 
iarger sys tms and for different domains. 

REFEKESCES 
1. A l k x h t ,  A. hleasuring Application Development 

Proixtivity. Proceedings I BXl. October 1979. 
2. Alkch t .  A. and Gaffney. .I. S o h a r e  Function 

S O X ~ X  Lines of Code and Development Effort 
Prt2:ction. IEEE Transactions Soft\vere Engineering, 

3. Bo-kn. B. A Spiral hlodcl of Sofi\vxe Development 
ant Enhancement. Computer. May. 19% 

-1. Bo?kn. €3. Sofnvare Engineering Economics. 
P r c i c e  Hall. 19s I .  

5 .  Bo25m. B.. Xladachy R.. Selby. R. Cost Models for 
FU::~ Softnxre Life Cycle Procesjcs: COCOXlO 
2.0. h~tp:/:'junset.usc.~du'COCO~lOll cocomo.htnil 

6. H3::. E. llanaging Risk. Slethodj for Software 
Sys::mj Development. Addison \VejIey. 1997. 

7. Hu:.?hrey. LV. Managing the Softnarc Procejj. 

SE-4. 19S3. 



Addison-Wesley. 19S9. 
S. Jin. Y. and Leviit. R. (Dspnrtment of Civil 

Engineering. Stanford Lnivcrsiv). The Virtual 
Design Team. Paper to appear in Computational and 
Xlathcmetical Organizstion Theop.  1996. 

9. Karo!ak. D. Sofrwrc Enginssring Slansgemcnt. 
IEEE Computer S o c k 5  Press. 1906. 

10. Kitchenham. B.. K3nsa!s. K. Intx-item Correlations 
among Function Points. First lntcrnntional Soft\vare 
rnetrics Symposium. I E E E  Compurer Society Press. 
1993. 

1 I .  Kitchenham. B.. Linkman. S. Estimates. Uncertainv. 
and Risk. IEEE Sofi\var<. SIJy-June. 1997. 

I ? .  Kertxrer. C'. Rtiiability of Function Points 
Mensurementj: A FieId Erpc+m:nt. Co:nmunicationj 
of.AC51. \'ol 36 S o  1. 199;. 

13. The \'iteFroject Hmdbook: .A L s e r ' j  Guide to 
Modelling and Xnniyzing Project b'ork Processes and 
Organizations. Yite I .  1999. 

14. Londtis. B. Coji Estiinarion for Softtvnr: 
Deve!opment. .I\ddison-\Yc.sley. 19S7. 

15. Luqi and Kctabchi. 51. A Computcr-Aided 
Frotoyping System. IEEE  Softwsre. \larch. 19SS. 

16. Putn2.m. L. Soft\vnre Cost Ejtiniatiny and Life-cycle 
Control: Getting the Sofr\va:e SurnSerj. I E E E  
Computer Society Prcij. I9SO. 

1'. Putnum. L. nnd 5lyxs.  b'. Slc3surcs for Excellence. 
Reliable Sohvarc Or: T i m  \i.i:hin Budget. Yourdon 
Press. 1992. 

IS. Putnan. L. 2nd LIyers. I\'. Esccuriw Briefing. 
Controlling Soft\r.irc Dc\cioprilsrit. IEEE Compurtr 
Society Press. 1996. 

19. Putnnm. L. and \l::ers. \i'. Industriel Strength 
Sofnvnre. Eficctive Llunagenicnt Csing 
Mr..i;urcnient. IEEE Computcr Socitty Press. 1997. 

20. Softtvarc Engineecng 1nstii;:tt. Softtvare Risk 
hlxugcinent. Technical Repon C5IL"SEI-96-TR- 
0 12. June. 1996. 

1 4 8  



A Risk Asscssnient >lode] for Software Prototyping Projects' 

Naval Postgraduate School 
2. University Circle 

X,lonterey, CA. 93943 USA 

Abstract 

1.  Introduction 

I . I .  Inipact of ewlutionarv software processes 

Studit?; ha\c s h o ~ n  [hu t  csrly parts: of the system devel- 
opmcnt cycle such ;is reqEircments and design specifica- 
(ions are especial)! prone to errors (21. Problems originat- 
ing i n  the early stuscs d t e n  have a lastins influence o n  the 
reliahility, s:itdy afiJ cost of the system. This effect is par- 
ticularly notorious in projects invol\'ing rnultiple stake- 
holders u i t h  different points of vie\v. Evolutionary proto- 
typing offers an iterative arproach to requirement engineer- 
i n s  to alleviate the Trohlems of uncertainty, ambiguity and 
incorisigerq inherent in  the process. >loreover. prototjp- 

149 
O-i695-0665-2/00 510.00 0 2000 IEEE 



in: can improve the capture of change i n  requirements and 
assumptions during the dc\eloprncnt process. 

Evolution-driven CASE for computer-aided proto- 
t1Fing provide Iqical  3ssessmcnt of the consistency and 
clarity of requirements and specifications. The use of protc- 
t \ vs  facilitates thc rcquircrnent phase in  any t>pe of soft- 
\varc projects. Particularly. in real-time applications where 
severe time constraints impose more challenses. the use of 
prototypes facilitates 10 describe the rcquirements in  a 
clear. prccisc, consistent 2nd cxea~table format. PrototlFes 
are useful to dclnonstrate system scenarios to the affected 
partics as a u a y  to: a )  colkct criticisms and feedback that 
are sources for new requircmenrs: b) carly detection of dc- 
viations from uscis' espccistions: cj  trace the evolution of 
the rcquircmcnts: and di improle the communication and 
intcgration of thc users anJ the ds\elopment personnel. 

Despite the unquestinnAdc benefits ot' protcmping tve 
havc two concerns. First. the risk asscssmcnt issue has not 
hccn sol\cd. The scconJ ioncern is that prototyping posej a 
problcm t o  project p1anni.g hecause ot the unccrtnin num- 
k r  of cycles rcquircd cm;tructin; the product. >lost parts 
oi' prcjccr rii;ln;lpxi;.nt m.1 cstiimfion rcL.hniquss arc based 
o n  lincar layouts ot acti\.i:iec. so they do not tit ccimplerely. 

1 .?.The cstim:ition problem 

a )  \'cry earl> cstirmrioz>. This category inLlt1dc.s very 
cruds approsiiiiution> &mc d u r i n g  thc bcginriing of the 
prcxcsx usually by suhjc;tivc io i r ip~isons  uyi11g pre\ i -  
o u h  projects. 

h) hlacro ~ i d c l ~ .  Thi- carcpory inc1udi.s Basi: 
COCOlIO. Putnarn. Function f'oints. ctc. The estima- 
tion is donc at'rcr completing the rcquiremenrs phasc. 

Micro mtxicls. This ca!epnr) includes intormcdiate and 
clctailcd COCOMO. and Pr.rt/CPbl/Gantt techniques. 
The eslirnntion is don: after the design Hhen i t  is pOs- 
sihle to have a work breakdoun structure. The project 
cstimate is the integration of all mtxiule estimates. 

c) 

I t  is not our intention t o  discuss these techniques, the de- 
tails can bt. read i n  111. 151. [6] and [7]. However we high- 
light the assumptions lor COCO>lO and Putnam's meth- 
Ocls. COCOMO assumes: 

( I  1 The devcloprncnt pe r id  starts at the heginning of the 
dcsign phasc. That m a n s  thai the rquireincnts phase 
is already donc. 

The cstirnation covers only the direct-charged labor. In 
othcr words, time spent in meetings and communica- 
tion is not considered. 

The model assumes that a rather optimistic working- 
time of 151, hours of productive work per month. 

The model assumes that the project will enjoy "good 
management." 

Finally. the model assumes that the requirements will 
remain unchanged. This is a really restrictive assump- 
tion that does not match the evolutionary prototyping 
prcxess. 

The other de facto standard. Putnam's model. is based on 
thc following assumptions: 

A dsvelopment project is a finite sequence of purpose- 
ful. temporally ordered activities, operating on a h& 
mogcneous set of problcm clemcnts, to meet a specified 
set of objcctives. 

The number of problem elements is unknown but ti- 
nite. 

Prohlerns are dctccted. recognized and solved by apply- 
ing effort. 
Th: cx'currcnce of prohlem solving follo~vs a Poisson 
prcKess. 

Thc nunihr r  of pcnple Lvorkinp in  the project is propor- 
t i t inn1  i o  thc number of problems ready to solve at that 
tirnc. 

Thi. rcquirenients are done, \vhich is very restrictive 
con.4dcrinp evolutionary soft\vare processes. 

Son? of these techniques consider the folloLving charac- 
[cribtic> of sofiu.arc projects: a) rcquircrnent volatility, b) 
pcrmnel volatility. and c )  time consumed by cornmunica- 
lions. c\ccptions and noise in the process. All the methods 
use size a5 input parameter via some kind of derivation 
from cornplcxity. In many cases the niethods to compute 
such complexities and sizes are questionable. Recently, 
Stanford Univcrsity [7] developed a new generation micro- 
rntdcl cstirnation tool (VitCProject) that addresses some of 
o u r  concerns. This tool is useful but requires a complete 
Lvork breakdown of the project, thus it is useful lo control 
the project but cannot be used lor early estimations. How- 
ever, it  is vrry useful to simulate different scenarios. We are 
using this  approach to calibrate our model. 

2. Metrics 
hlerrics is a key factor i n  the identification of threats. 

LVithout metrics i t  is not possible to provide early alerts of 
risks. I n  this section \ye describe a set of mrtrics that sup- 
port our risk identification strategy. We decided to use a 

150 



small set of inctrics presenting the following characteris- 
tics: a) robustness, b) repeatability. c) simplicity in  terins of 
the numtk-r of parameters. d) easy to calculate. and e)  
automatically collectable. 

2.1. Metrics for Requirements 
We define hirrlr rnrc' (BR) as the percentage of new re- 

quirements incorporated in each cycle of the evolution 
process. This metric sh0u.s the explosion of new require- 
ments as n percentage. 

BR = (hT / TR) * 100. uhere 

X? = numtxr of ne\v requirerncnts. 

TR =total numhcr ofrcquiremcnts (including NR). 

We define denrli n i f e  (DR) as the percentage o f  re- 
quirements that are dropped by the cusloincr in  each c>clc 
of the evolution prtwrss. 

(Eq. I )  

DR = (DclR / TR) * 100. \vhcrc (Ey.  2 ,  
DclK = nurnhcr of rcquircnicnts tlclctcd. 

TK = total nunihcr 0 1  rcquircnicnts (hcti)rc Jclction ) 

lye clcfine c . / r t r y c v m ,  t CK) as the percentage (11' re- 
quircnicnts changed from the prcvicius vcrhion. 

CR = (XltJR / TK) 100. tvhcrc tr:.q. 3 )  
1 I d R  = nunihcr of  rcyuircnicnth chanfcd. 
TR = total numher ot'rcquircmcnts. 

1 03% 

3 

stable shrinking 

0% 
0% 10% 10306 

death-rale 

Figure 1: Evolution of requirements 

From the point of \icw of the metrics, a change on a re- 
quirement can be vic\vcd as a death of the old Lersion and a 
hirth of the nc\v one. The simplification just described. en- 
ables to ccrnparc birth rate and death rate in P bi- 
dimensional plot that shows four regions: stability rcpiun. 
grouing region, volatility region and shrinking region. 
Each of these resions has differcnt risk connotations. There 
is a normal evolution of the project as the time gocs by. 
During early ,rages, i t  is normal for projects being in the 

grotving region. Ho\vcvcr. if the project continues i n  this 
region after many cycics. o r  return to this region after visit- 
ing other regions. then soinething \ \ T O I I ~  could happen. In  
the first case, the requirement cnpinccring could not be 
cfficient. The second case cuuld show cvidcnce of late dis- 
covery of sonic cluster of hiddcn rcquircincnts. After some 
cycles. thc project should leave the volatile rc 'gih.  I f  the 
projcct evolvcs to thc shrinking region. and the require- 
ments engineering is \vorkin,o right. there is evidence that 
the custonicrs are cutting dow.n the pr(Jcct. This can hc the 
indicator of a severe cut in  the hudget. Finally. any involu- 
tion 10 a previous region should hc considered as evidence 
of threats. In such cavx a detailed analysis is required t o  
assess the causes ofthe anomaly. 

2.2. lletrics for Personnel 
I n  order to iiicasurc pmonncl hoth cluantitdtivc and 

qunlitativc nictrics arc required. Thc skill inarch hcttvccn 
person anti job is required cstiiiiatc the speed i n  prtcc53- 
iiig infiirniation and r : i ~  of csccp[ions. On thc quantitative 
d c  ~ v c  propohc to iiiciwrc the nunihcr o f  pcoplc and [tic 
turnovcr. This last one prwiJcs inf(irmation ~ ~ h o u t  thc cs- 
pccrcd prtductivity lo.;scz Jut to trainins. learning curvch 
2nd comiiiuni~.ations. 

2.3. Alctrics for Coniplcsity 
Ctiniplcxity has ii direct iiiipact on rlu;ili[> ht.c;iusc [tic 

Iikclihotd that ;I cciiiipcinr.rit fail3 is dircctl! related t o  its 
corriplcsity. The quality 01' the product can only he Jctcr- 
riiincd a t  che end o!  the prcxcss. Hence. i t  is irnportant 10 

incasurt the cornple\ity :ih predictor. This particulxly use- 
tul  in real time sysrrms. ivhich present special difticultics 
in  terms of rcquirciiicnt engineering. Some requirements 
are difficult for the user t i )  provide and for the analysts dit- 
licult to determine. The best tvap to  discover these hiddcn 
requirements is via protot>4ng. Computer Aided Prototjp 
ing System (CAPS) [ 2 ]  is 3 CASE tool specially suited for 
this task. I t  has a graphical casy to understand interface and 
mapped to  a specification language. \vhich in  turns gcner- 
ales Ada code. 

The prototJping prcxess consists of proto1)pe construc- 
tion and modification (evolution) based on evolving re- 
quirements and code generation. Both construction and 
modification are exploratory activities with a common tar- 
get: to satisfy multiple users ivith different and often con- 
tlicting points of view. Requirement engineerins is i? con- 
sensus driven activity in Lvhich mechanisms for contlict 
resolution and traceability of requirement evolution repre- 
sent critical succcss factors. 

151  



Formal spccitiations arc suitable for heins analyzeJ t o  
compute thcir cornplcxity. In the case of CAPS. the tool 
,oenrlrates specifications in a StrUctUrcd language called 
Prototyping Specification Design Lanpuasc (PSDL). PSDL 
codc has the following tokens: t y w .  opcrarors, data 
streams and constraints. Tlpcs arc declarations of abstract 
data t y c j  required for the system. OFtrat(irs and data 
strc?ms 3 x  t h t  components of a dx2!!ilu graph. Finally. 
constraints rcprescnt the real-time constraints that the svy- 

tern must support. 

Ada NCLOC vs Large Granularity Complexity (LGC) 

Figure 2: Correlation between non-comment Ada lines 
of code and LGC 

lye dctin;. t u o  coniplc\it\ nictrich for PSDL: Fine 
Grr! ri u I :ir i :> Corn I2.x i I y met r i 5 ( FCi C). ;in if I .aye G r ;in u I3r - 
it! COfliFlc\il! i x i r i c  (LCiCr. The reason to cortiputc dif- 
ferent rllciri<\ i >  bc~aurc ivc n x i t  to Jctcit  [\w c l r ~ s s c ~  0 1  
ilirc;its. Fi:.:. \vc need to bc a w r c  of opcr:i torh [hat ;ire roo 
~ ~ ~ r i i p l ~ . \ .  Ikgh coinplc.sit!. on one‘ opcrrittrr c.c)uld hc caused 
h! ptx)r d a i g  anJ poscihlc can bc scd~cd  by I'urthcr dc- 
corr:positiil:i. Second. \vc rcquirc :I riicLric t o  co:nputc thi. 
total  coinylr..\ity vl thc sy>tcin. 

FGC c \ p x c b  the cuniplciir! of' each operator i n  the 
system a n j  is ;I function of the fan-in and fan-out d;1t;1 
streams rclL!cd to the upcrator. 

FGC = tan-in + I'm-out (Eq. 1) 
1A;C exprssws rhc cornp!csity of rhr s>srcrn as a func- 

lion of the nunibcr of operators (01. d;il:i ,ireanis (D). and 
t)Tes (T). 

LGC = 0 + D + T (Eq. 5 )  
LYc cxarnir,cd the corrclation hc[\vccn LGC and s i x  of the 
spccificationj and the cudc. lye observed a very strong cur- 
relation hctuecn PSDL lines of code and LGC (R = 0.996). 
The correlation bet\veen Ada non-cummcnr lincs of c d c  of 
the projects u.irh their cornplcxity measured using LGC. LVC 

ohscrvc a strong currelation also ( R  = 0.59s) (Fig. 3). Evcn 
i f  CAPS genmtcs part of the Ada ctdc. [he dcsigncr can 
add and rtidify the generated ctde introducing niorc vari- 
ability. The fullonin,o graph shous the correlation ohserved 
for the same set of projects. The size of the project i n  thou- 
sands of non-cornrntnr lines ofccxle can bc estimated as: 

U O C  = (37- LGC + 150) / 1000 (Eq. 6) 

3. The proposed model 
From the point of vicw of soIr\\are engincerins, i t  is 

necessary to create the methodology to solve the decision- 
inakin2 proc'ess during the early stages of the life cycle, 
Lvhen changes can he done Lvith less impact on the budgct 
and schedule. The most significrint causes of software pro- 
ject failures are: lack of understanding of' user's needs. i l l  
defined scopes. poor riianapenienr ot' project chanses. 
chanpes in thc chosen technology. changes in business 
needs. unrealistic deadlines, user's resistance. loss of spon- 
sorship. lack of pcrsnnnel skills. and poor r;~sna._remenr. 
From thosc pathologies. we condiictcd causal analysis arriv- 
ing to the three risk factors that we will d i scus .  

lYc propose to Ji i idc risk nianageriient in three activities: 
r i h k  identification. risk assessment and risk resolution. Risk 
itltntitication is thc scl ot' techniques designed to alert and 
identity possihlc thrcats. Risk assessinefir is the quantitative 
:indysis of the probabilities and irnpricrs of' the identified 
thrc;its. Risk rcsolurion is the npplicarion of re>ources and 
eltort to avoid. rriiiisfcr. prevent. niitig;itc or assume the 
ri5ks. 

I n  order t o  ;iihic\c r i b k  iiianugcrricnr. :in orsa;iization Ti.- 

quire> ;I rniiiiiiiuiii 10 cl ot' niaturity rhclt can bc asst?ciatcd 
c i t h  ChlXl Ictcl 2 ($1.  It' an orpnir.utiun is niw ahlt' lo col- 
lcit rncrrics. any ;utc.rnpt I<> t;a.niall> iJcntit'? and asses3 
r i sk  is irnposhihlc. 

3.1. The risk major componcnts 

In  o u r  vision. softnarc risks cc~~ild be contrcdlcd it '  \vc 
could rxihter h o w  t o  uclrni nistrate u nccrtai n ry. coriiplrs i ty 
and rcsourccs. T~insforiiiinp the unsrructurrd prohlem ot 
risk risscssrnent Icacl?; to a formal m c t h d  nhlr t o  he trans- 
lated i n t o  an algorirhm. In  order to structure the problem, 
\ve proceeded to analyze the prohlcm dxornposing project 
risk into simpler parts. l i 'e  used causal analysis to tind the 
primitive threat factors. \Ve idtntitird three major factors: 
prrnxss risk. resource risk rind product risk. Each of these 
t:icrors introduces risks by themselves hut mainly due to the 
interaction bctuvcn them. 

Resource risk. is at't'ectcd by organizationa1. operational, 
managerial and contractual parameters such 3s resources. 
outsourcing. personnel. tinic and budget among others. The  
literature is ahundmt in this area. Various appri-nches use 
suhjective technique? such as guidelines and checklists 191. 
[ 101. [ 1 I ) .  which require expert's opinion even Lvhen they 
could be supported hy metrics. 



Ensincering dcvclopmcnt tvork procedures such as s d -  
tvarc development. planning. quality assurance. and con- 
figuration iiianapiicnt cause process risk. The inore com- 
plex a prcxess is. the more diflicult i t  is to manage. and the 
more education, training. standards. rcviclvs. and commu- 
nication arc required. Conscqucntly. complcsity prous. Thc 
sof tnxc  prwcss complexity has been partially covered by 
research i n  tcrnis of subjective assessments about maturity 
level and expertise 191. [lo]. [ 1 I ] .  H w c v c r .  we require a 
more precise and objective method. 

Finally. product risk is related to thc final charactcris- 
tics of the prtdust. its complexity. its conformance ivith 
specifications and requircrncnts, its reliability and custointr 
satisfaction. The product introduces its o\vn risk factors i n  
tcrnis of quantitative and qualitative attributes. Wc idcnti- 
fied t~vo bwic prtdui.1-risk fuctors: rcquircrncnt stahilit!. 
and rcquircrncnt complexity. Requirement stahility i>  
mcasurablc uyinp [lie set o f  mctrics previously described. 
Due t o  lack of' structure i n  intornial rcquircliiciits. i t  is ncc- 
cssary to transforin thein i n t o  spccific;ltions i n  order to 
coniputc coiiiplcsity. Other prtduct Lhr;ictcriytich sui.11 ;I\ 

rcliahility and iii~iiritainabilit! ;ire i i o t  o f  interest to identity 
and ; I ~ C > S  rihk on early stagch. Kcliat.riliry cmi he iiica>urcil 
only  ;illcr cciii:plcricrri (11' :iIiiio\t coiiiplctioii. hl~iiiitainahiiir!. 
can he iiicariirc.cl o~i!y  al'tcr the rlchigii is 5t;irtcd. 1311ih 
iIic:isurcs :iic u.cl'uI t o  control tlic prijcc1 i n  ltiturc phs.~.. 
Thcsc c>tiriialiori\ xrc uscf'ul i n  order to: a)  irlcntiI:\. the 
tradc-otf' tiiiiciil1ti t>Ct\ic.cn error reduction arid cost of' crrcir 
rcductioii. h )  prcnidc cluantitati\c hisis for acccpling o r  
rc-iccting > o l ' i u x c  during functiorial tchtiiip. and c j  IxoLiJc. 
qii;intii:iti\e hasis lor dcciJirig uhcthcr ;idJiticw;il tc5ting i \  
ivarraiiicd tuwd on the cost of  crior Ic~i~ov;iI. 

The prcye>h providcs the description of its cnvironiiicni 
and the ~hctrrctic;il rcquirciiicnts to csccutc i t .  Con>c- 
yucntly. the prtcch!, intrtduccs tlircats clue to its rcquirc- 
iiicnts and characlcri4cs: coinplcsity. technology rcquircd. 
budget required. schcdulc required. xid personnel skills 
reyuircd. The rcsuurccs represent the actual all(nvance> i n  
personnel. tools. budget and schcdulc. They iinposc con- 
straints that could not niatch h e  process requirements. Tht 
prtductivit: is conscquciicc of the matching of these tiio 
facets of the project. 

The dccnrnpn\ition created by causal analysis rcvcaled: n i 
a incthtd to identify risks by comparing thc dcgrcc of mi+ 
matching bcrivr.cn the product and process characteristics. 
against thc rc\ourcc constraints: and h) candidate indicatm 
10 k used in an estimation nitdcl. 

3.2. The forniulation 
W e  can consider software projccts as experiments \vhere 

its cost and schedule :ire the output nicasures. We knwv 

that soli\varc projects tend to overrun costs and schcdulc. 
(this fact has been proved by rcsearch and industry). There 
are two possible ways to interpret the result of the cxpcri- 
nicnt. One hypothesis is that this behavior is abnormal. anJ 
a conscqucncc of lack of process maturity (SEI/Ch,l;L1 ap- 
proach). Another hypothesis is that this could bc EL "false- 
ahnormal" behavior assumcd abnormal as consequence of 
inappropriate measurements. 

How do we create a macro model that considers the prc- 
vious concerns and is able 10 be used during the evolution- 
ary prototjping stages ot tlic process'? Our hyothesis  is that 
a \i'eibull's family distribution can mcdd cach of thc cvolu- 
tion cycles. Lets discuss thc meanins of cach of the vari- 
ables in the function: 

>; is the random variable under study. I n  our case, x can be 
interpreted as dc\clopmcnt time. 

c/. is ;I h a p c  p:iruiictcr.. I t  reduces the \arial?ility narro\vinp 
the shape of the pdt. 

13 i h  a sc;i~c p;ir;iiiictc'r t1i:it strctcIics or ctnnprcsscs [tic. 

Fr;ipli in the .v Jircction. 

\Ve rqiiirc ;I third 1.r;ir;inietcr to h t i i t t  thc curves 1 0  the 
right :I< conscipciicc of system's conceptual ~x~inplrxit> 
rctlccting Ic:irniri~/tr~iininp dc l~~ys .  The fiinaions for the 
pd! and cdt' arc then rcqvcrively: 

Its: -/. (1.. p, = .( ( I l c l .  7 I 
I 0. x c -/ 

"(dp'7 ( 9  -y!rJ I exp;-lI.s - -/r/p]"]. s 2 y 

I 0. x c y 
FI x: y. u. 0 = { rEq. 81 

I 1 - c\p[-\(s - -/) I p1 "1. x 1 -/ 

The dcvclopriicnt life cycle can he visualized a succession 
\ if'  protot!Tiiip dcvel~ymcnts with increasinp functionalit> 
li~lliiwed by :i f inal  oiitiiiiimtion that prtduces the system. 
Each of these phases hiis the same activity pattern. so its 
rta~on:tblr to supposc that the delivery time for cach one 
has ;I prohuhility distribution from the same \Veihull family 
hut \vith different parameters. 

During each protot)pinp cycle a certain n u m k r  of prob- 
lem cvcnts txcur. A prohlem event is an effort-consumin,o 
situation that introduces a certain amount of functional 
complexity to he solved (caused by a new requirement. a 
change on a rcquiremcnt. or as the consequence of' rework). 
and a certain aI:ioun[ ot' information exchange. 

We suppose that the occurrence of problem evcnts in 
cash cycle follows ;I Poisson distribution with different 
mean for each cycle. So. the entire devckyment life cycle is 
a non-hornogcncous Poisson prcccss. lye assumed this dis- 
tribution because: 

153 



(a )  There cxists a certain ratc ol'cxcurrcncc of events. 
(b! The probability ot' mow than one event wcurrins in a 

rinic intcrval dcpcnds on the length of the inrerval. 

( c i  The number of'events during nnc time interval is inde- 
pendent of' the nurnbcr rco5ieJ prior this tirne interval. 

4. Validation 
Ocr mcdcl h3.c btcn calihrateJ and validated in two 

\va)s: aj'intcrnnl consistency FfoVed by mathematics and 
sra[is!ics: and b) black box \slidation by comparing its nut- 
puts in duration and cff'orr u.ith othcr available models. 
Figure 3 shot\.> a cornpxison (>I' durarion cstirnates usins 
COCO3IO. Putnxl i  and this 1tw&l. Our modcl givcj a 
con>crvniive estimation for  projects bctuwn 3000 and 
20000 LGC ( 1 3  and 610 KLOC of Ada). For the compari- 
son. ivt  converted froin LGC to .L\d;i lincs of non-cornmcnt 
cchk using tEq.6). and rh tn  we applied the ohiained size to 
COCO\lO and Pu~nam's IIIOJCI. The c>tirnation seems to 
be i l k )  opiiiiiisiic tor pri$xi5 siiullcr than 2.000 LGC or 
crc;ttr than 73000 I.GC.in m o n t h .  

. 

i 

Figure 3: Comparison with COCOMO and 

Putnarn methods 

5. Conclusions 
W.: addrc;scrl the issue ot h u m a n  dcpcndency in risk as- 

scs;:i:'nt ol the evolutionary wfttvsrc proccsscs incorporat- 
ing Ln ;iuto!ii;itcd risk assessment mcthnd integrated n j t h  
c \o l~t ioni i r~  prototypinp. Oilr approach provides a \vay to 
stru;turc arid xttoimtc the assessment of risk. The pro- 
posx! rncdtl sddresscs p3rt of' the limitations of thc trndi- 
tiunA cstirnation methods. Wc arc calibrating the modcl 
usin; simulations u i t h  VirCProjcct. Softwarc dcvelopment 
is s!i!l a h u m n  dcpcndcnt activity rtquirins lots of human 
coir?munication. and \sithour appropriate nianapcrial dcci- 
sion >upport tiwls. software engineerins u i l l  remain in its 
prcscnt sta!:'. \Ye th ink  that u'e require improving our 
lino-!cJge about the internal phenomenology of the. sofr- 
\yare li!c cyilc. It is in the human aspects of the software 

process \\.here the bottleneck is located now. Automated 
risk assessment tools should consider these aspccts. LVich- 
out such knou.lcdgc, prototyping issues such as incomplete 
specifications. system complexity and development time 
\sill remain unpredictable. 

References 
Van Gcnuchten. hl. M'hy is Sofru.are Late? An Empirical 
IEEE Transxiions on Softuare Engineering. June. 1991. 

Luqi and Gogucn. J .  Formal Methods: Promises and Prob- 
lems. IEEE Software. January, 1997. 

Bcxhrn. B. A Spiral h l d c l  of Sofiv.we Development and 
Enhancement. Compurcr. &lay. 1 9 8 .  

Btuhm. 8. Sofinare Engineering Economics. Prcntic: 
Hall. 19s I .  

Putnam. 1. and XIycrs. h'. Industrial Strength Softuare. 
IEEE Cnmputcr Socicrl; Press. 1997. 

Londcic. B. Cosr Esrimaiion for Software Dc\elopmeni 
Addison-IVcslcy. I9S7. 

The \'iteProjec[ Handhtwk. VirC Q. 1999. 

Csrr. h l .  R i > k  >lun;ifc.mcnr RKIY m i  bc for cvc.:ym. E E E  
Sofr\vure. > l +  -June 1997. 
Sotr\varc Enpinwring Inctitulc. Soitu;m Risk \lamp+ 
nicnr. C.\lC/SEI-')O-TR-OI'. June. 1996. 

HLiIl, E. \l.ri:iping Risk. Xlethtds for Sofnvnrc S-sten:. 
I h ~ i ~ ~ ~ i ~ i c ~ ~ r .  Aclhon \Veslc.), IWi.  

K:irolak. D. Sotruarc Enpinccrinp Xlanapcmeni. IEEE 
Cornpurer Swicrl; Prcss. 1996. 

t luriiphrc>. IV. Xlmuping the Sufr\\arc Proass. .Addisuii- 
IYcslc?.. 1989. 

1 5 4  



INITIAL DISTRIBUTION LIST 

1. 

2. 

3. 

4. 

5. 

6 .  

7. 

Defense Technical Information Center 
8725 John J. Kingman Rd., STE 0944 
Ft. Belvoir, VA 22060-621 8 

Dudley Knox Library, Code 52 
Naval Postgraduate School 
Monterey, CA 93943-5 100 

Research Office, Code 09 
Naval Postgraduate School 
Monterey, CA 93943-5000 

Dr. David Hislop 
U.S. Army Research Office 
P.O. Box 12211 
Research Triangle Park, NC 27709-221 1 

Dr. Man-Tak Shing, CS/Sh 
Computer Science Department 
Naval Postgraduate School 
Monterey, CA 93943 

Dr. Valdis Berzins, CS/Be 
Computer Science Department 
Naval Postgraduate School 
Monterey, CA 93943 

Dr. Luqi, CSLq 
Computer Science Department 
Naval Postgraduate School 
Monterey, CA 93943 

2 

2 

1 

1 

1 

1 

7 

1 5 5  




