
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

2002

Dependability-Assured Software Transformation

Luqi; Liang, Xianzhong
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/65080

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NPS-SW-02-008

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Dependability-Assured Software
Transformation

Technical Report

By

Luqi, Xianzhong Liang

July2002

Approved for public release; distribution is unlimited.

Prepared for: NSF

PROJECT SUMMARY
The proposed research is to create new paradigm of software transformation and analysis tools that will incorporate
computer-aided prototyping system (CAPS) into dependability-assured software transformational platform (DAST)
for highly dependable embedded systems (HDES). DAST extends CAPS with software architecting and
composition technologies to transform macro dependability (global qualitative requirements) into micro
dependability (quantitative constraints). Based upon rapid prototyping, the dependability-assured transformational
process from a rapid-prototyped system to the highly dependable embedded system will involve quantitative
constraint abstraction in multiple perspectives, software transformation, and formal method applied to verify the
correctness of the eventual-evolved system. The proposal shows some distinguished features, however, the gap
between software requirements and system implementations results in the following problems that must be solved:

❖ Perspective confusion problem: software-intensive systems inevitably involve different stakeholders:
application customers, software architects / engineers and system implementers. Each kind of stakeholders
will share a different perspective.

❖ Model construction problem: a formal model is needed to reflect different perspective, but how to, with
dependability-assurance, transform one kind of perspective into the other becomes crucial, because there
exists a big gap between software requirement and system implementation.

❖ Attribute identification problem: In macro view, the dependability of software systems is abstracted as
availability, reliability, safety, confidentiality, integrity and maintainability. How to transform qualitative
global requirement into quantitative constraints becomes the key.

❖ Software tool support problem: to transform intellectual models into automatic analysis will be the main
challenge. Formal method and suitable representation for reasoning and manipulation by CASE tools hold
the promise for mechanical analysis process.

In order to provide systematic solution towards dependability-assured software transformation from rapid
prototyping to highly dependable systems, the proposed work is to develop new techniques for quantifying
dependability and mechanical analysis tools. There are five research thrusts in our initiative:

• Studying networked computing via test-bed facilities. Software artifacts of significant scale provided by
test-bed facilities represent mission-critical systems for both NASA and IT industry. As autonomous
systems, they are characterized by networked distributed computing and communication, and are useful for
the proposed work to collect requirements of desired properties and experiment with test-bed facilities.

• Modeling embedded system via multiple perspectives. Multiple perspectives are characterized by collection
of computational activities (customer's concem), or a set of rules of compositional architectures governing
the interdependencies and interactions among components (architect's concern), as well as evolutional
implementation and component links for interoperability within the architecture (implementer's concem).

• Architecting software-intensive system via compositional patterns. As a system is decomposed into
components, heterogeneous interactions among them are used to compose the system from components.
Consistently engineering a system with software architecting is to capture such properties as granularity
and heterogeneity, patterns to guide the composition and quantified constraints on the patterns.

• Evolving rapid prototype via dependability-assured transformation. A prototype is a hierarchy of networks
of structured objects with semantics, which allows software transformation. The constraints provide formal
method and means to reason about the validity of transformations. Both :functional behaviors and non
functional properties are specified so that the system can be transformed in dependability-assured way.

• Verifying software system integrity via quantified constraints. System integrity refers to the correctness of
the software-intensive system operation with respect to the interfaces and interactions among components.
The system must satisfy the non-functional properties imposed by the compositional architecture so that
application requirements concretely embody the high-level dependability.

A distinguished feature of the project is that we present a formal model for software transformation, on which three
perspective are developed to reflect computational activities, compositional architectures and evolutional
implementation, so that automated software process and mechanical analysis are to be processed as easily and as
productively in engineering highly dependable embedded systems. The goal of the project is to develop new
software transformation methods and tools to provide rigorous means and dependability-assured transformational
process from a rapid prototyped system developed in CAPS into a highly dependable embedded system, and then
verifying the eventual system with quantitative constraints dispensed on the compositional patterns.

A-1

PROJECT DESCRlPTION
We propose a four-year research initiative at Software Engineering Automation Center (SEAC), Naval Postgraduate
School to create new paradigm of software transformation and analysis tools that will incorporate the computer
aided prototyping system (CAPS[LuqiSS-l, Luqiss-2J) into the dependability-assured software transformational platform
for highly dependable embedded systems.

C.1 Objectives and Significance
The main objective of the proposed work is to enable dependability-assured software transformation (DAST) for
highly dependable embedded systems (HDES). F01mal methods involve a number of technical activities, including
formal system specification, specification analysis and proof, transformational development and program
verification 110111

'
0

' 1• We propose to develop a formal model for compositional architecture that is characterized by
collaborative roles components play, architectural sty les specified for interactions among them and co111111u11icatil'e
protocols used for data transportations. The quantitatiw constraints abstracted from rapid prototyping and software
architecting are specified as measurable attributes that will be dispensed on the proposed formal model.

We also seek to develop methods for dependability-assured transformation from a rapid-prototyped ~ystem to the
highly dependable embedded systems, and for reverse analysis from the existing systems to the formal model that is
useful to verify the correctness of the eventual-evolved ~ystems,

C.1.1 Significance and Benefits
New techniques, automated tools and methodologies that are proposed to develop will incorporate rapid prototyping,
dependability-assured transformation and formal verification techniques into highly-automated, easily-applied
CASE tools. There are five research thrusts in our initiative:

• Studying networked computing via test-bed facilities. Software artifacts of significant scale provided by
test-bed facilities represent mission-critical systems for both NASA and IT industry. As autonomous
systems, they are characterized by networked distributed computing and communication, and are useful for
the proposed work to collect requirements of desired properties and experiment with test-bed facilities.
Esp., distributed embedded computing entity for next-generation air traffic control is ideal target to study.

• Modeling system via multiple perspectives. Multiple perspectives are characterized by collection of
computational activities (customer's concern), a set of rules of compositional architectures used to govern
the interdependencies and interactions among components (architect's concern), as well as evolutional
implementation and physical component links for distributed interoperability within the compositional
architecture (implementer's concern).

• Architecting system via compositional patterns. As decomposition of a system into hierarchical-grained
components, heterogeneous interactions among components are inevitably to be introduced to advocate
system composition. Engineering a system with software architecting is to capture such architectural
properties as granularity of components and heterogeneity of interactions, with well-designed patterns to
guide the composition from components and quantified constraints to be dispensed on the patterns.

• Transforming prototype via dependability-assured evolution. A prototype is represented as a hierarchy of
networks of structured objects with semantic (formal) constraints, which allows software transformation.
The constraints provide formal method and means to reason about the validity of transformations. Both
functional behaviors and non-functional properties are technically specified, based on which a system can
be evolved in dependability-assured way.

• Verifying system property via quantified constraints. System integrity refers to the correctness of the
software-intensive system operation with respect to the interfaces and interactions among distributed
components. The system must satisfy non-functional properties, such as compositionality, autonomous
synchronization, timing and resource constraints. Especially, non-functional properties imposed by the
compositional architecture and application requirements concretely embody the high-level dependability.

C.1.2 Technical Barriers
To transform a rapid-prototyped system into the highly dependable system will involve formal methods that are used
to model systems and to quantify desired properties, such as granularity of components, heterogeneity of interactions
and quantified constraints on the interfaces among components. A rapid-prototyped system can be described in
PSDL[LuqiSS-lJ as a hierarchy of networks of structured objects with semantic constraints. Theoretically, the structure

C- 1

PROJECT DESCRJPTION
allows us to transform a software and the semantic constraints, including the extensional and intentional behavior of
the system, provides formal method and means to reason about the validity of transformations. Software
transformations and formal methods have been extended towards performance and reliability evaluation[Clar961,
however, the big gap between requirements and implementations results in following issues that must be solved.

❖ Perspective confusion problem: software-intensive systems inevitably involve different stakeholders:
application customers, software architects / engineers and system implementers. Each kind of stakeholders
will share a different perspective.

❖ Model construction problem: a formal model is needed to reflect different perspective, but how to, with
dependability-assurance, transform one kind of perspective into the other becomes crucial, because there
exists a big gap between software requirement and system implementation.

❖ Attribute identification problem: In macro view, the dependability of software systems is abstracted as
availability, reliability, safety, confidentiality, integrity and maintainability. How to transform qualitative
global requirement of dependability into quantitative constraints becomes the key.

❖ Software tool support problem: to transform intellectual models into automatic analysis will be the main
challenge. Formal method and suitable representation for reasoning and manipulation by CASE tools hold
the promise for mechanical analysis process.

C.2 Technical Approach
In order to construct highly dependable embedc.lcc.l systems, DAST try to quest for such questions: how to assuredly
capture the macro dependability from stakeholder' s informal needs, how to accurately quantify micro dependability
in the formal model, and how to mechanically analyze those attributes and reason about the correctness of the
eventual-evolved system via software transformation.

C.2.1 Strategic Approach to Highly Dependable Embedded Systems
The proposed research is to provide a systematic solution toward dependability-assured transformation. The solution
is characterized as one formalized core that specifies quantitative constraints of micro dependability, two
evolutionary cycles that transform software requirements into system implementation via rapid prototyping and
software architecting, and three perspective tiers that shift the focuses on different perspectives, stated in Fig. 1.

Customer's
Perspective { ~

{
rn { Implementer's

Perspective

Architect's
Perspective

Dependabm!Y-ASSYJ"~<t§§l©:wate 'E~ansformation,
Fig. 1 Synthesis of one formalized core, two transforming cycles and three perspective tiers

C.2.1.1 One Formalized Core
The formalized core is closely associated with a formal model that is used to identify the components from which
the system is built, and interaction among those components, patterns to guide their composition, and constraints on
these patterns. The dependability of software-intensive systems is viewed as qualitative requirements and
quantitative constraints. The former brings forth concepts such as availability, reliability, safety, confidentiality,

C-2

PROJECT DESCRIPTION
integrity and maintainability with following the path of system decomposition, while the latter are associated with
such quantitative constraints as real time constraints, architectural constraints, componential granularity, interactive
heterogeneity, consistency and compatibility of interfaces among components and so forth. Furthermore, the formal
model is used to collect quantitative constraints from both rapid prototyping and software architecting [Luqiss-i. Luqiss-z,

1<ram93• Luqi93,LxzhOI-I,Lxzho21, so as to provide patterns to guide system implementation and composition.

C.2.1.2 Two Evolutionary Cycles
The rapid prototypin~ cycle comprises rapid prototyping for reiterating requirement and analysis, specification and
validation lLuqiSs-i , Luqi s-21 . Rapid prototyping is particularly effective for ensuring that the requirements accurately
reflect the user 's real needs, increasingly reliability and reducing costly requirements changes. The incre111ental
evolutionary cycle comprises rapid prototyping rev ision, so ftware architecting and composition, and system
implementation for building compositional architecture that identify such architectural constraints as componcntial
granularity, interactive heterogeneity, and consistency and compatibility of interfaces among components.

C.2.1.3 Three Perspective Tiers
From the point of view of system engineering, consistently engineering a software-intensive system involves
customer' s requirements, technical management and engineering implementation [DoDJoo, A

n
<lr<J8J, which is inevitably

associated with customer, software architect or engi neering, and system implementers. DAST allows different
personnel's concerns located on different perspective tiers with formalized core centered .
Customer 's perspective in functio nal tier emphasizes com pu ta tiona I activities, i.e., what act ivit ics arc needed and
how their interactions are associated with workflows, networking and plans necessary to support customer's
operations [DoDJOo, LuqiSS-IJ_ Architect's perspective in technical tier focuses on compositional architectures, i.e., a set
of technical factors or rules are needed to govern the arrangement, interaction and interdependencies among
comgonents[DoDJOO,Shaw961 .Jmplementer's perspective in physical tier concentrates on evolutional implementations
[DoD o, LxzhOI-4J, i.e., how to fulfill physical components and make them autonomous and independent, undertaking the
compositional architecture with the constraints on the interfaces and interaction among components.

C.2.2 A Formal Model for Compositional Architecture
.Jn order to provide a formal model for compositional architecture that is used to capture quantitative constraints,
,semantics of concurrent behavior, and architectural properties, DAST initiatively introduces architectural design
entities known as Computer Software Compositional Pattern (CSCP). Assuredly, a CSCP involves three kinds of
important factors with constraints dispensed on: role that component plays in system composition, style by which
interaction is specified, and protocol used for communication during building interconnection among components.

C.2.2.1 Patterned Compositions
The explicit treatment of software architecting and composition makes CSCP first-class design entity [LxzhOJ-I, LxzhOJ-4J

that is designed for specifying collaborative roles, architectural styles and communicative protocols. A CSCP is used
to build interconnection between two collaborative roles via specific architectural style while complying with
specific communicative protocol, so that the interconnection between real components can be built by gluing the
related role with the component.
Fig. 2 illustrates that: for a given interaction between two components, these two components will play specific roles
r, architectural style s specifies how one component interacts with the other, while communicative protocol p builds
specific communication channel for transporting data during the interaction. In order to construct the components as
autonomous and independent entities, the CSCP assigns two roles as the representatives for the concrete
components. On behalf of the components, the roles will deal with interactive behaviors (non-functional properties)
and let the components have more flexibility in implementing their functional activities.
Supposing that there are three sets: R { role pairs that interact with each other } , S { architectural styles in which
interaction performs}, and P { communicative protocols specified for given interaction}:

R={
(Caller, Definer),
(Announcer, Listener),
(Outflow, Inflow),
(Source, Repository),
(Request, Reply),

S={
Explicit-invocation,
Implicit-invocation,
Pipe-filter,
Rep-lmowledge,
Interoperable distribution,

P={
Parameter-passing,
Access-memory,
Dataflow-stream,
Sampled-stream,
Datagram-stream,

C-3

~ :, LJ ./
Fig. 2 Compositional pattern between components

PROJECT DESCRIPTION
A composition is defined by that there exists an interaction between role pairs via a style while complying with a
protocol, so cross product R x S x P collects all possible compositions:

Compositions = R x S x P
A computer software compositional pattern will involve some quantitative constraints in order to guarantee desired
properties of the interaction between two collaborative roles. The constraints on the pattern have several aspects:
consistency, validity and effectiveness. For example, an interaction between two collaborative roles should be done
via specific architectural style while complying with specific communicative protocol, which states both consistency
and validity. With respect to effectiveness, for instance, there is hard real time constraint on role Producer:
Producer must provide dataflow stream within maximum execution time1'-uqi

93 l, to satisfy needs for role Consumer to
consume the data. So compositional patterns a1·e compos itions with quantitative constraints dispensed on:

CSCP = {Rx S x PI <constraints on role pairs, style and protocol> }
That is, a CSCP is defined as a relation on R x S x P with quantitative constraints that are reasonably dispensed on
roles, styles and protocols. Typ ical compositional patterns are li sted as follows:

CSCP procedural-call { (Caller, Definer), Explicit-invocation, Parameter-passing }
CSCP Event-driven { (Announcer, Listener), Implicit-invocation, Access-memory }
CSCP pipeline { (Outflow, Inflow), Pipe-fi lter, Dataflow-stream }
CSCP Reposito,y { (Source, Repository), Rep-Knowledge, Sampled-stream }
CSCP Interoperable { (Request, Reply), Int-Distribution, Datagram- stream }

The most important factors in CSCP are collaborative roles that will be on behalf of the components to interact with
the other. Collaborative roles are formally abstracted as generalized role wrappers (GRW) -- a kind of generic and
abstract class (in object-oriented philosophy), so that concrete components can be wrapped for building
interconnections among them via the wrappers. The formal CSCP is defined as FmtO.

FmtO: Computer Software Compositional Pattern

CSCP(R, S, P) = {(n, rj)ER, sES,pEP, grw(n~ grw(rj) I Const(n, rj, s,p)}
Where

• grw(r): role r is wrapped by generalized role wrapper, which represents the separation of non-functional
behavior (GRW performs) from the functional behavior (role component performs)

• ~: the interaction among role-wrapped components is specified via specific architectural style while
complying with specific communicative protocol for data transportation.

• Const(ri> rj, s, p): constraints dispensed on roles, styles, and protocols are used to build a compositional relation
on the cross product R x S x P.

Compositional patterns provide a good level of abstraction not only for reasoning about the desired properties of
highly dependable embedded systems, but also for dependability-assured transformation from a rapid-prototyped
system into the eventual-evolved system.

C.2.2.2 Generalized Specification

The CSCP (compositional patterns) in DAST are treated as reusable architectural entities that involve generalized
role wrappers to enforce interactions among components via specific architectural styles while complying with
specific communicative protocols. Furthermore, generalized role wrappers need more genericity so .that physical
components can be evolved with ease. The formal specification of compositional patterns provides excellent
reusability with parameterized template, abstracted class and actively glued collaboration, stated as follows:

• Parameterized template: a compositional pattern is treated as a generic module (e.g., generic package in Ada or
template in C-t+) and allows generic parameters to be substituted via instantiation, such as constants, types and
procedures to ensure the reusability for generalized role wrappers.

• Abstracted class: a generalized role wrapper is defined as an abstracted class that is designed for adherence to
restricted, plug-compatible interfaces for composition; some of interfaces that are characterized as functional behaviors
of components are expected to override during evolving the components.
Actively glued collaboration: the glued collaboration is onw concerned with the instances of generalized role
wrappers that are autonomously and concurrenti executed Lxzh9sJ_ Computational behavior of generalized role
wrappers is described by CSP-based notation[Lxzh 9• LxzhOHJ that is suitable for automatic generation of concurrent
control in threads (Java) or tasks (Ada95) and deadlock detection.

The typical CSCP is Pipeline that exhibits excellent architectural properties (e.g., loose component coupling,
asynchronous communication, possible data buffering), and is used to enforce interaction between components with

C-4

PROJECT DESCRIPTION
dataflow stream, shown as Example 1. So, the parameterized CSCP provides well-defined template for generalized
role wrappers, and we can instantiate different kinds of pipelines (see Example 2).

Example 1. Pipeline pattern Example 2. Instances
compositional Pipeline is
generalized

type Data is private;
Size: Integer := 100;
procedure Consume(d: Data);

style as <#pipe-filter#>;
protocol as <#datajlow-stream#>;
wrnppcr as CSCI

rule Outllow is
port

procedure Oulpul(d: Data):
procedure Pwducc(d: Data) is abstract;

cu111p11ta1iu11
Produce (d);

*[Output (d) • Produce (d) 'v met() • exception;]
end Outllow;
role lnllow is
port

procedure lnpul(d: Datn) ;
proceuure Consu111e(d: Data) is abslract;

COIIIJllllation
*[Input (d)• Consume (d)'v 111rt() • exccplion;]

cml lnllow;
collaboration

Outflow· Produce(d);
*[Ouljloiv•Output(d)
D not Buffer•Full
D not Bziffer• Empty
• Inflow• Input(d)
l

end Pipeline;

• Ouljlow-Produce(d)
• Buffer·Put (d)
• Buffer-Get (d)
• lnflow•Consume (d)

-- Instance Pipeline for integer data item:
compositional Int-Pipel ine is new Pipeline (

Data=> Integer, -- dataflow with integer
Size=> 300, -- 300 items buffered

);
Consume=> I-Consume -- specific procedure

-- Instance Pipeline for Adt data item:
compositional Adt-l'ipdinc is new Pipeline(

);

Da1a ~> Adt, -- ua1allow with i\dt
-- dcfoult hulkr size

Co11s11111c=>A-Cons11111e -- spccilic procedure

With respect to computational activity of components, CSP-based semantics provides not only synchronous
constraints but also asynchronous control transit, for instance: *[Output (d) • Produce (d) 'v met() • exception;]

$,loth Output(d) in Outflow (a role wrapper) and Input(d) in Inflow are treated as execution guards that coordinate
concurrent synchronization. For instance, with considering real-time constraints, the role Outflow is subjected to
maximum execution time (met) and the role Inflow is subjected to maximum response time (mrt). Both met() and
mrt() are transformed as asynchronous control transit for hard real time constraints. That is, when outputting a
produced data onto the given Pipeline, the role Outflow requires to be synchronized within met(), otherwise the
synchronization is considered failure and MET_EXCEPTION is triggered ('v represents asynchronous select).
Similarly when inputting a data from the pipeline, the role Inflow requires to be synchronized within mrt(),
otherwise the synchronization is considered failure and MRT_EXCEPTION is triggered.

C.2.2.3 Constraints on Patterns
A CSCP transforms the interaction between physical components into the interaction between generalized role
wrappers via specified style while complying with specified protocol. In this way, many non-functional constraints
can be quantified as measurable attributes and dispensed on roles, styles and protocols, respectively. For instance, a
given CSCP involves role pairs, e.g., (Producer, Consumer), specific style and protocol. The interconnection
between Producer and Consumer holds some significant attributes suitable for automated analyzing and reasoning:

• Consistency: a CSCP provides adherence to restricted, plug-compatible interfaces for composition, checking some
attributes[LxzhOI-4,LxzhOI-Sf can reveal consistencies, including style consistency (for interaction), protocol consistency (for
communication), port-computation consistency (for gluing collaboration) and so forth.

• Compatibility: a CSCP is also associated with port-role compatibility (for wrapper and components), granularity
responsibility compatibility (for composition), heterogeneity-coupling compatibility (for architecting), parameter
substitution compatibility (for generalization-instance).

• Timing constraints: GRW can be subjected to timing constraints which are specified by giving bounds on the durations
of various kinds of time intervals[Luqiss-2

• Luqi93l, such as maximum execution time (met), maximum response time I
minimum period (mrt I mp), period and finish within, and precedence constraints (for time-critical schedule).

• Synchronous constraints: most embedded systems are autonomous systems that are constructed as loosely coupled sets
of concurrent entities. Synchronization between concurrent entities is needed to ensure proper functioning of the
system. It is difficult to track down the sources of synchronization bugs in using traditional code inspection techniques.

C-5

PROJECT DESCRJPTION
• Deadlock free: interoperability between autonomous components will result in asynchronous. control transit and

restricted scheduling process, especially the computing is associated with timing constraints[Luq,ss-2
, Luq•93l_ Deadlock

detection involves roles deadlockfree (for wrapper computation), glue deadlockfree (for col!aborationil.xzh02
• Lxzhs9J

C.2.3 Architectural Properties with Software Architecting
A software-intensive system will involve hierarchical-grained components from which the system is built, and
interaction among those components, patterns to guide their composition, and constraints on these pattems[Shaw961

•

Engineering a system with software architecting and composition is to capture such architectural prope1iies as
componential granularity and interactive heterogeneity, with well-designed patterns to guide the composition from
components and quantified constraints to be dispensed on the patterns. DAST will specify components (operators in
PSDL) with granularity, and interconnections (edges in PSDL) among operators with heterogeneity, because both
granularity and heterogeneity are metric factors for consistentl y engineering so ftware-int ensive systems. 13y
specifying architectural properties, we can assess the quality and reliability of software and predict future
maintainability of the product.

C.2.3.l Granularity via Hierarchical Decomposition

Introducing Collaboration-1\l!ission-Function-Task responsibility schema shown in Fig. 3, we can decompose the
system into hierarchical-grained components. The components of different granularity will undertake different
responsibility and require specific interaction with other componellls . Good granularity is a key factor for increasing
productivity because it improves the understandability, re liability and maintainability.

As the system is hierarchically decomposed, granularity naturally adheres to the decomposed components according
to the responsibility the component undertakes in the system. The significant granularities for hierarchical
components are described as follows:

Granularity = { CSCS, CSCI, CSCC, CSCU j <according to responsibility schema> } or

Granularity={ CSCS, Computer Software Complex System is the top-level component and undertakes global
activity characterized as distributed and concurrent collaboration.

}

CSCI, Computer Software Configuration Item is the 1st level component and undertakes specific
mission as a part of the CSCS collaboration.

CSCC,

cscu
Computer Software Common Component is the . 2nd level component and undertakes
specific function as a part of the CSCI mission.
Computer Software Computing Unit is the 3rd level component and undertakes specific
task as a part of CSCC function, essentially supported by programming facilities such as
Ada packages, C++ / Java classes.

From the point of view of system-of-systems, each of CSCI components can be seen as a subsystem (embedded
system), so that CSCS composed from those CSCis is a system-of-systems. In this way, the componential
granularity will determine important properties, for instance, the component of CSCI granularity should be
developed as an autonomous and intelligent entity that takes autonomous responsibility, while the component of
CSCU granularity will perform relatively-simple task, so that it does not need to be autonomous any more.

cscs

CSCI

Collaboration

/ I~
Mission 1 Mission 2 Mission 3

cscs

CSCI

/ I~ cscc

cscu
7tio~ =ction n

Task 221 Task 222

Function 21

Fig. 3 Hierarchical Responsibility Schema Fig. 4 Heterogeneous composition

C-6

PROJECT DESCRIPTION
C.2.3.2 Heterogeneity via Taxonomic Composition
Interactive heterogeneity is inevitable, because most fundamentally, different architectural styles have different
strengths and weaknesses, and a system architecture should be chosen to fit the problem at hand [Shaw9SJ. Just as
inevitably, diverse components and systems will have to work together. Distinct architectural styles often require
different component packaging and interactions; these complicate the interoperation problem.

Since components of different granularity will inevitably require specific interaction with other components, we
classify interconnections among hierarchical-grained components into heterogeneous-coupled interactions,
according to Distributed-Loose-Tight coupling schema, shown in Fig. 4. The interaction of the heterogeneity will
have different performance, and allow the same component interacts with other components in proper ways. For
instance, a component playing role Announcer and role Producer interacts with a Listener component via event, am!
with a Consumer component via datatlow, respective ly. Interactions via event or datatlow embody the interactive
heterogeneities. As the system is decomposed into components of different granularity, interactive heterogene ity
will adhere to the interconnections among components according to the heterogeneous coupling needs in the system.
The significant heterogeneities for taxonomic interactions are described as follows :

Heterogeneity= [Oil, LC!, TC!, HE! I <according to coupling schema>] or

Heterogeneity={ DI L

LCI,

TCI,

HEI

}

Distributed In teroperable Interactions arc used for CSCS-compos ition from CSC I
co111ponents lo enforce di stribut..:d interactiv..: collaboration (111ayb..: platform-cross
computing)
Loosely Coupling Interactions arc used for CSC!-composition from CSCC components to
encourage flexible configuration with minimal communication between components (maybe
language-independent programming).
Tightly cohesive interactions are used for CSCC-composition from CSCU components to
emphasize independent partition of components, with low external and high internal
complexity
Heterogeneous interactions are used for the composition from different-grained components
to advocate heterogeneous interaction among them, e.g., the same component interacts with
other components via Implicit-invocation and Pipe-filter

:an order to enforce interaction among hierarchical-grained components, some architectural facilities as well as the
way in which how interactions are performed are needed. For instance, Pipe in Unix is the special facility that
enforces two more processes to interact with the others so as to systematically compose the new software from the
processes. The reusable architectural entity library built from all kinds of compositional patterns can ensure the
heterogeneity to meet the needs for different interaction. Fig. 4 states that interactive heterogeneities can effectively
enforce heterogeneous composition from those hierarchical-grained components.

C.2.3.3 Compatibility between Granularity and Heterogeneity

In quantifying componential granularity and interactive heterogeneity, there exists compatibility between granularity
and heterogeneity. That is, a given interaction of specific heterogeneity can only applied to promote the composition
from the components of specific granularity, which means compatibility between granularity and heterogeneity.

According to the responsibility schema, componential granularity taking different responsibility reflects not only the
complexity of internal structure but also complexity of external interconnection. Obviously, the interaction ofDII is
more complex than that of LCI. Architecturally, interactive heterogeneity is one of important factors by which the
granularity is determined.

For instance, Pipeline and Event-based invocation belong to loosely coupling interactions but which embody
different interactive heterogeneities, because of Pipeline via Datajlow while implicit-invocation via Event. This can
provide guide that CSCC could be involve asynchronous access buffer, event trigger mechanism and so forth.

C.2.4 Real-Time Constraints with Rapid Prototyping
The requirements of hard real-time systems include timing constraints that must be met in the worst case for the
system to be considered correct [Luqi93l_ Rapid prototyping can be accomplished using CAPS/PSDL to aide the
designer in handling hard real-time constraints[Luqiss-i, Luqiss-21• The time critical operations are modeled with
maximum execution times (MET), maximum response times (MRT), minimum periods (MP) and period and finished
with (PFW), all of which are considered measurable attributes for highly dependable embedded systems.

C-7

PROJECT DESCRIPTION
C.2.4.1 Quantitative Constraints on Operators
Timing constraints for operators include maximum execution times, maximum response times and minimum period,
and so on. According to the firing way by which the operator is triggered, operator will be sporadic and periodic.
Any component can be subjected to timing constraints that are specified by giving bounds on the durations of
various kinds of time intervals. The significant timing constraints are described as follows:

Timing-constraint= {MET, MRT, MP, PFW j <according to firing way> }

C.2.4.2 Data Stream Properties on Edges

In order to build interconnections among operators, PSOL exploits data stream that carries instance of abstract data
type associated with the edges. Data stream is categorized into dataflow and sampled stream ILuqi

93l_ Considering the
demand for network-centric and concurrent distributed computing, we will extend a new stream for PSDL: datagram
stream. ln distributed computing environment, the stream over the internet / intranet is only a stream packet without
the meaning of data value. According to the properties that data stream is transported and used on edges, the
significant data streams are described as follows:

Data-Stream = { Data flow, Sampled, Datagram I < transportation and usage>}

Data streams on edges in PSDL can be translated into architectural properties, that is, a data stream can be specified
as communicative protocol with specific ai-chitccturnl styles in the formal model for compositional architecture.

C.2.4.3 Constraints Dispensed on Compositional Patterns

In order to specify real-time constraints on operators and data streams on the edges with compositional patterns, a
formal model is created for compositional architecture, so that those properties in PSDL should be dispensed on the
three important factors in the compositional pattern: generalized role wrapper, architectural styles and
communicative protocols.

Because the semantic behavior of components in a distributed embedded system is concerned with real-time
constraints, the generalized role wrappers are subjected to real-time constraints in their semantic behavior. Example
1 shows the idea about how to specify timing constraints in the computational behavior in CSP-based description.

Compared with specifying real-time constraints as semantic behavior, data streams are easier to be specified by
communicative protocols associated with the specific architectural style. For instance, below compositional patterns
can more conveniently establish "edges" (interconnections) among operators:

CSCP pipeline { (Outflow, Inflow), Pipe-filter,
CSCP Repository = { (Source, Reposito,y), Rep-Knowledge,
CSCP Interoperability = { (Request, Reply), Interactive-Distributed,

C.2.5 Formal Method for Dependability-Assurance

Dataflow-stream }
Sampled-stream }
Datagram-stream }

The term "formal method" includes a number of different activities, including formal specification, specification
analysis and proof, transformational development and program verification[Iamsoll_ All of these activities depend on a
formal specification of the software that holds quantitative attribute for dependability.
This proposed research is to develop the formal specification to create a formal model for compositional
architecture, and based on which the three perspectives can be transformed so as to reflect different personnel's
concerns. Because of well-defined inherent relationships among those perspectives, it is practical for different
perspectives to be evolved by means of software transformation and analysis tools[DoDJOO,Andr9SJ.

C.2.5.1 Multiple Perspectives

Functional Perspective (FP)
FP is a useful tool to acquire stakeholder' s needs, based on which requirements and analysis is developed. FP is
represented as hierarchical networks of components with specific responsibility and semantic constraints. For highly
dependable embedded systems, FP is concerned with macro dependability such as availability, reliability, safety,
confidentiality, integrity and maintainability. The formal FP, involving three elements: components from which the
system is built, interconnections enforcing interactions among components, and constraints on both components and
interconnections, is defined as Fmtl.

C- 8

PROJECT DESCRIPTION
Fmtl: Functional Perspective:: FP = [COM, INT, Const(COM, INT)]
Where:

• COM: Components from which the system is built
• INT: Interconnections that enforce interactions among components
• Const(COM, INT): Constraints on components and interconnections

As the system is decomposed into low-level components, interconnections need specifying as interactions among
those components. Since decomposition follows the uniform method in PSDL, the data stream (edges) among
components are mapped into interactions among the components, which is shown as Fig. 5.

.................. ...

9!)[l

----------.-----:--i;J~g;
.0!:>[l i / f

;
;

i j
i j

..--~~-.''
: i

······J.···

1 Pipeline Pattern
I ,r===s. l' <1.-- Outflow ..,

"I Role

i .. ---- ·· - ·· - ·- ··- ·· -··- .J

Legend:
<] Aggregation

D Association

0 Derivation

Fig. 5. Decomposition and Functional Perspective Fig. 6. Technical and Physical Perspective

'Technical Perspective (TP) ,,.
TP provides rigorous formal specification for specifying quantitative constraints on the compositional architecture.
For a given system, TP is essentially a set of CSCP (compositional patterns) that are characterized as collaborative
roles, architectural styles and communicative protocols. For highly dependable embedded systems, TP is concerned
with micro dependability (quantitative constraints) such as componential granularity and interactive heterogeneity
(architectural properties), timing constraints (real-time properties) and synchronous constraints (distributed
concurrent properties). Some of these properties can be abstracted as measurable attributed in temporal logic that fits
with model checking techniques [Clar9

6T. The formal TP, represented as hierarchical-grained components, from which
the system is built, and interactions among components, patterns to guide their compositions, and constraints on
these patterns, is defined as Fmt2.

Fmt2: Technical Perspective:: TP = [GRW(R) ~ GRW(R), CSCP(R, S, P), Const(R, S,
P)]
Where:

• GRW(R): under compositional architecture, components play specific roles abstracted as generalized role
wrappers (GRW) and GRW provide adherence to restricted, plug-compatible interfaces for composition.

• -t:j}:1- : interactions among role-wrapped components are specified via specific architectural style while
complying with specific communicative protocol for data transportation.

• CSCP(R,S,P): compositional patterns is used to guide system composition from components and essentially
characterized by three factor sets R, S and P,

• Const(R, S, P): constraints mapped on composition patterns will be naturally dispensed on three essential
factors: collaborative roles, architectural s !es and communicative rotocols.

By identifying interactive heterogenei[among the decomposed components, the TP will capture the architectural
features via compositional patterns l xzhOI-I,LxzhoI-4J_ Furthermore, TP provides generalized role wrappers with
adherence to the restricted, plug-compatible interfaces for composition, which is shown as Fig. 6. Since architectural
properties are based on compositional patterns, semantic constraints (e.g. timing constraints and data stream) will be
dispensed on generalized role wrappers, architectural styles and communicative protocols (see Example I).

C-9

PROJECT DESCRIPTION
Physical Perspective (PP)
PP is useful tool for system implementers to evolve physical components by means of generalized role wrappers.
PM is represented as a set of physical components and object-oriented relationships with GRW, such as association,
derivation and aggregation, For highly dependable embedded systems, PP is mainly concerned with generalized role
wrapper and redefinition or override of restricted, plug-compatible interfaces under the support of reusable
architectural facilities provided by compositional patterns (see Fig. 6). The fonnal PP, closely associated with
generalized role wrappers, is defined as Fmt3.

Fmt3: Physical Perspective:: PP= [COM u GRW(R), INT(R, S, P), Const(R, S, P)]
Where:

COM LJ GRW(R): COM and GRW(R) fulfill the physical co111po11c11ls to meet the rcquirc111rnts of their externally
visibk behaviors and the i111crco1111cctio11 a11101H! 1hc111.
INT(R,S,P): i111crco1111cctions arc n:prcscntcd a; interactions bcl\\CCll collahorali\'c roks via arcl1itcc1ural styles \\hilc
complying with communicative protocols under the compositional architecture.
Const(R,S,P): constraints mapped 011 composition patterns will be naturally dispensed on their esscntial factors:
collaborative roles, architectural styles and communicative protocols.

The evolutional process from technical perspective (the formal model for compositional architecture) to physical
perspective involves three relationships with the generalized role wrappers: association, inheritance and aggregation .
Three evolutiona l methods a1·e stated as follows:

• Association allows components to be associated with architectural properties (from GR W) in order to reline their own
functional behaviors.

• Inheritance allows components to be derived from correspondent GRW (for architectural properties) in order to extend
their functional behaviors.

• Ai!gregation allows components to aggregate more than one set of architectural properties (from GRW) in order to
refine their own functional behaviors.

C.2.5.2 Transformations among Perspectives
Based on the formalized core (Fig. 1) and formal specification provided by compositional patterns, the
transfonnations among three perspectives create visual scenarios by software tools, that is, our focus on
compositional architecture (TP with constraints specified) can be zoomed-out on functional activities (FP with
qualitative requirements analyzed) or zoomed-in on physical implementation of components and their links (PP with
constraints implemented). Fig. 7 illustrates software transformation among multiple perspectives.

Collecting micro dependability from rapid prototyping and software architecting process, the technical perspective
specifies them as formal semantics, measurable attributes in tangible compositional patterns. As an intermediate
perspective, TP is not only the evolutional basis from which PP is transformed but also the formal foundation on
which model checking is performed to verify the correctness of the eventual-evolved system.

Architecting Extension for Rapid Prototyping

DAST extends PSDL with compositional patterns to create a compositional architecture which is characterized as
collaborative roles, architectural styles and communicative protocols. Generalized role wrappers are used to glue the
components between which interactions are made. Following formula states the scenario from FP to TP.

[

COM, l [CSCP(R,S,P), l
Architecting FP• TP = INT, compositional patterns• GRW(R) ---J:p-• GRW(R),

Const(COM, INT Const(R,S,P)

By specifying tangible compositional patterns, the components and interconnections among them are abstracted as
general role wrappers, and interaction among collaborative roles via architectural styles while complying with
communicative protocols, respectively. And the constraints on components and interconnections are reasonably
dispensed on the roles, styles and protocols.

Forward Evolution via Software Transformation
By means of object-oriented evolutional relationships with generalized role wrappers, e.g., association, derivation
and aggregation, PP can be evolved from TP via software transformation. That is, the focus is shifted from
compositional architecture to evolutional implementation. Following formula states the scenario from TP to PP:

C - 10

PROJECT DESCRIPTION

Evolution TP• PP = GRW(R)-$-+GRW(R) object-oriented evolution• COM U GRW(R),

Const(R,S,P) Const(R,S,P)

CSCP(R,S,P), INT(R,S,P), J
Under the support of reusable architectural facilities provided by compositional patterns, physical components
wrapped by generalized role wrappers only need to extend or refine their own functional activity. That is, the
evolved components will be associated with GRW, or will be derived from GRW, or will aggregate one more GRW,
and then refine (extend) their own functional activities.

Reverse Extraction via Soft"varc Analysis

By means of source code analysis, many properties can be extracted from PP so that the formal model for
compositional architecture can be built. Those properties include topological structure among synchronization
(concurrent propert ies), precedence constraints (rea l-time schedule), components and class rclntionship among them
(association, inheritance and aggregation). Following formula states the scenario from PP to TP:

[

INT(R,S,P), J {CSCP(R,S,P), }
Extraction PP• TP = COM U GRW(R), source code analysis GRW(R)-$--,- GRW(

Const(R,S,P) Const(R,S,P)

By identifying three kinds of factors for composition.ii pntterns, generalized role wrappers can be extracted from the
physical implementation, which is the crucial step to specify the interconnections among components.

rn
Computational

Activity

Fig. 7 Transformation: Architecting, Evolution and Extraction

C.2.5.3 Formal Verification on Formal Model

~~~~==► 
Fig. 8 Top-down validation and bottom-up verification 

Verification and Validation (V & V) is the checking and analysis processes that ensure that software conforms to its 
specification and meets the needs of the customers who are paying for that software. V & V is an expensive process 
for highly dependable systems because which are associated with complex non-functional constraints[IamsotJ. 

Based on the formal specification for compositional architecture, we are to develop a set of software tools that 
provide automatic analysis of the source text of a system or associated document in order to analyze and check 
system representations such as the requirements document, design diagrams and the program source code, which is 
illustrated in Fig. 8. 

Validation is well stated as "Are we building the right product" [BoemSIJ, which refers to a different set activities that 
ensure that the software that has been built is traceable to customer requirementsCiamsoiJ_ Requirements validation is 
concerned with showing that the requirements actually define the system which the customer wants. CAPS[Luqiss-tJ is 
a software engineering environment that provides necessary tools for engineers to quickly develop, analyze, and 
refine real-time software systems. The environment is useful for requirements analysis, feasibility studies, and the 
design oflarge embedded systems. 

Formal verification and automated analyses are static V & V techniques as they do not require the system to be 
executed. Automated source code analysis and formal verification used to check the correspondence between the 
eventual-evolved system and its specification (verification). Translating source code to highly-abstracted finite-state 

C-11 



PROJECT DESCRlPTION 
automaton for model checking is a practical approach [Jameoo,Davioo,MattooJ, which is insuring correspondence between 
the properties of the source code that are to be reasoned about and the properties of the automaton to be checked. 

GOODS[Lxzh9
ll is a Graphical Object-Oriented Development and analysis environment that provides two-way 

software transformations: topological structures, programming units, and implementation body described by 
conceptual diagram can be automatically generated into source code in Ada (CIC++); reverse analyzer of source 
code is useful to extract unit specification, body and topological structure into conceptual diagram. 

Both CAPS and GOODS are extendable for dependability-assured transformation. The strategic approach is 
accompanied with multiple perspectives, rapid prototyping (CAPS), software analysis (GOODS), and formal 
verification to check that the system meets its specified functional and non-functional requirements (constraints). 

C.3 General Plan of Work 

C.3.1 Plan Overview 
We envision the CAPS that we currently have as the starting points for additional research and extension of CAPS 
with software architecting via compositional patterns follows. Using rigorous mathematical formalism, we define 
formal model as compositional patterns on which three perspectives are constructed; using patterned composition 
facilities, we thoroughly study dependability-assured transformation rnnong multiple perspectives; using rapid 
prototyping techniques, the formal description from functional perspective to technical perspective embodies 
requirement validation; using software analysis, the automated extraction of formal model from physical perspective 
to technical perspective will advocates formal verification of correctness of the eventual-evolved system. Related 
enhancements include: 

1) Taxonomic interactions among components are crucial for patterned compositions that are treated as 
reusable architectural facilities, furthermore, the identification of interactive roles and specification of 
architectural styles and communicative protocols are key aspects in building heterogeneous interconnection 
among large-grained components. 

2) Measurable attributes abstracted from rapid prototyping and software architecting are specified as timing 
constraints, architectural properties such as granularity for components, heterogeneity for interactions and 
restricted and plug-compatible interfaces for composition. And they are the basis on which a predictable 
level of dependability is achieved. 

3) Three perspectives such as computational activities, compositional architectures and evolutional 
implementation derived from the formal model are used to promote dependability-assured transformation 
and system property analysis, so that formal verification of the correctness of the eventual-evolved systems 
can be performed based on the formal model with constraints dispensed on. 

Test-bed facilities provide software artifacts of significant scale that represent mission-critical systems for both 
NASA and IT industry. As autonomous systems, they are characterized by networked distributed computing and 
communication, and are useful for the proposed work to collect requirements of desired properties and experiment 
with test-bed facilities. In our proposed research, we will use test-bed facilities in following ways: 

1) Collaboration infrastructure is used to support information transportation, coordination among autonomous 
and concurrent components, and quantitative constraints performance checking. 

2) Software artifacts of significant scale that represent mission-critical systems are used to demonstrate real
time constraints that are dispensed on the formal model for compositional architectures. 

3) The background domain knowledge is used to perform experiments of micro dependability for highly 
dependable embedded systems on the artifacts that are well documented, packaged, and configurated. 

C.3.2 Broad Design Activities 
The steps in implementing dependability-assured software transformation from rapid prototyping are: 

1) Study current architectural approaches, and abstract useful facilities for interoperability. 
2) Build reusable architectural entities, and Create PSDL extensions with compositional patterns, 
3) Study to dispense current timing and data streams in PSDL on the patterns 
4) Add CSP-based semantics to describe synchronous constraints on the restricted interfaces. 
5) Abstract generalized role wrappers as easy-derived and parameterized templates for code generation. 

C-12 



PROJECT DESCRIPTION 
C.3.3 Deliverables 

1) Rigorous formal model for compositional architecture 
2) PSDL-extension language for compositional patterns and automatic transformation 
3) Architecting taxonomy to enhance compositional pattern library 
4) Measurable attributes adherence to technical model and automatic checking procedure 
5) Prototype of software tools for software transfonnation and model extraction 

C.3.4 Description of Procedure 
Building on our strengths, we will perform the following: 

I) Further develop the formal basis of reusable architectural facilities to compositional patterns, semantic 
formal constraints, and generalized representations based on excellent programming languages. 

2) Construct prototype software tools that realize the method enabled by 1) 
3) Perform formal analysis for domain-specific application 
4) Design reusable architectural facility library for compositional architecture 
5) Seek the mapping rules between formal specification and highly-abstracted mechanism in programming languages 

The software transformation and analysis tools will aid designer to fulfill transformation among multiple 
perspecti ves. This capability will be demonstrated for typical rapid prototype of real-Lime embedded systems. 

C.3.5 Evaluation Factors 
C.3.5.1 Dependability-Assured Transformation 

Presently, people recognize that non-functional properties become crucial for successful construction of highly 
dependable embedded systems, and computational activities can be only guaranteed under consistent and compatible 
interconnections among components with the quantitative constraints dispensed on the compositional patterns. 

C.3.5.2 Measurable Dependability Attributes 
Many quantitative attributes such as timing constraints (real-time), resources constraints (embedded applications), 
synchronous constraints (for concurrent distributed systems), and so on, are treated as measurable dependability 
attributes which are predictable via mechanical analysis. 

C.3.5.3 Replaceability of computational components 
Generalized role wrappers within specific compositional pattern deal with almost all non-functional properties so 
that interoperability between components is encouraged with loose coupling and computational components are only 
concerned with their own activities. For a specific component to be replaced, once it keeps the same external 
behaviors, the other side components that are interacting with it will not care. 

C.3.5.4 Formal verification enforcement 
Development of new verification methods and tools is to provide a rigorous means for checking the integrity and 
correctness of designs for these systems before they are deployed on target platforms. The proposed formal model 
for compositional architecture will be extendable basis for formal verification via the extraction of existing systems 
and requirement validation via rapid prototyping. Abstracting desired properties from quantitative constraints is 
based on the formal specification and static analysis for these properties embodies automated verifying process. 

C.3.6 Schedule 
1) Study current architectural approaches, and abstract useful facilities for interoperability. 
2) Build reusable architectural entities, and Create PSDL extensions with compositional patterns, 
3) Study to dispense current timing and data streams in PSDL on the patterns 
4) Add CSP-based semantics to describe synchronous constraints on the restricted interfaces. 
5) Abstract generalized role wrappers as easy-derived and parameterized templates for code generation. 

C.3. 7 Comparison with Other Research 
Work related to the topics discussed in this proposal includes research in the areas of software transformation, 
modeling dependable embedded systems from multiple perspectives, software architecture, component wrapping 
techniques and formal verification based on the formal model. 

C-13 



PROJECT DESCRIPTION 
In present, software research community focuses on highly dependable systems. Since system development takes 
place at many tiers and each tier appropriately deals with different concerns, three perspective tiers for different 
personnel are computational activity (for customer), compositional architecture (for architect) and evolutional 
implementations (for implementer), respectively. The key factors for consistently engineering a highly dependable 
system are coarser-grained components from which the system is built and interactions among them, patterns to 
guide their composition, and constraints on these patterns. And the solution toward highly dependable systems is 
explicit treatment of software architecting and co111positio11 , as well as support tools[Shaw%, Mcdvoo. DoDJoo, Au<lr9SJ_ 

A number of techniques, frameworks and approaches have recently emerged to address the problem of engineering 
highly dependable systems. In general, the widely embraced efforts have been fallen into three categories: functional 
perspective (e.g., rapid prototyping [LuqiSS-IJ), technical perspective (e.g., software architecture [Shaw%, Perr9lJ and JTA 
Framework [A

nd
'
98

' 
0001001

.), physical perspective (e.g., Java8ean, COM+ and CORBA[SUNMno. Orfa%. 
50

''971) . And they 
all foc us on composing software systems from coarse-grai ned components and some of which inevitably involve 
formal methods. Formal methods include a number of technical activities: such as formal specification, specification 
analysis and proof, transformational process and program verification [JomsOIJ . 

Functional perspective is mainly concerned with requirement validation. Rapid prototyping approach [LuqiSS-JJ uses 
a computer-aided prototyping system (CAPS) and its associated prototyping bnguage (PSDL) lo aide the designer in 
handling hard real-ti111e co11s1rai11ts that must be met in the worst case for the system to be considered correct [ l.llqi

9
JJ_ 

CAPS provide a useful environment for requirements analysis, and feasibility studies, hut which needs extending in 
combining with compositional architecture and evolutional implementation. 

Technical perspective is generally concerned with two aspects: what kinds of rules are used to govern the 
interdependencies and interactions among components, and how to specify the validated requirements as 
architectural and quantitative constraints dispensed on the architecture. Software architecture approach typically 
separates computation (components) from interaction (connectors) in a system. Architectural and quantitative 
constraints are represented as consistency and compatibility on interfaces and interactions among components, real
time constraints, as well as synchronization semantics [Medvao. Metboo, Garl97J, Despite of this, connectors are often 
considered to be explicit at the level of architecture, but intangible in the system implementation [Metboo, LxzhO l-4J_ JTA 
Framework specifies three views of information architecture and defrnes a set of products that describe each view, 
but the framework does not provide a process for architecture design [AlexooJ. 

Physical perspective is concretely concerned with how to evolve those components that represents activities 
undertaking the compositional architecture into the highly dependable system. Componentware (JavaBean) and 
midclleware techniques (COM+/CORBA), assume a homogeneous architectural enviromnent in which all 
components adhere to certain implementation constraints (e.g., design, packaging, and runtime constraints) [lo, 111

• 

They provide an unalterable architecting mechanism that does not create to be easily extended to support 
heterogeneous composition. 

Some of above-mentioned approaches involve formal methods with specific constraints dispensed on different 
perspectives, but only CAPS / PSDL allows the designer to specify measurable attributes treated as timing 
constraints in software design specification, and this kind of dependability can be assuredly lasted in the 
implementation by means of code generation via reusable components [LuqiSS-l, Luqiss-21• Current formal verification 
techniques are used to check the correspondence between the eventual-evolved system and its specification 
(verification) by means of automated source code analysis that translates source code of existing systems to highly
abstracted finite-state automaton for model checking [Jameoo,Davioo,MattOoJ, but which can not provide full support from 
requirement to implementation. DAST extends CAPS with software architecting and composition to transform. 
macro dependability into micro dependability ( quantitative constraints) and uses two evolutionary cycles to cover 
cover full life cycle of software development. 

C.4 Broader Impact 
If the form.al model for compositional architecture works well then the following can be take place: 

1) The gap between rapid-prototyped systems and the eventual-evolved systems will be bridged by reusable 
architectural entities which result in the reduction of development time 

C-14 



PROJECT DESCRlPTION 
2) The gap between qualitative requirements of dependability and quantitative constraints on interfaces and 

interactions among components will be fulfilled by compositional patterns suitable for formal verification. 
3) The focus of software development is shifted from computational activities onto compositional 

architectures with large-grained components replaceable, which supports flexible configuration for HCES. 
4) The proposed formalized core collecting two aspects of measurable attributes from rapid prototyping and 

software architecting will make model-intensive verification practical and reasonable. 

C.4.1 Transition of Technology 
Technology transfer will be addressed by integrating the proposed new capabilities with an existing code developed 
under CAPS projects. By re-using commonly used language like PSDL and Ada-adapted architectural description 
instead of creating fully new languages, general acceptance of our approach is enhanced. Publish results in ACM, 
and IEE sponsored conferences and making toolkit available can facilitate acceptance. 
The Software Engineering Group at the Naval Postgraduate School offers M.S. and Ph. D degrees. The students as 
NPS will contribute to this research and development effort. Their involvement will facilitate information transfer 
into the DoD further. We also plan to integrate emerging technologies into the courses we teach. 

C.4.2 Experimentation and Integration Plan 
The faculty of the Software Engineering Group at the N::ival Postgraduate School and their Ph. D and M. S. students 
will perform the work. The principle investigators will be responsible for coordination of the following plan 
previously stated in section C.3 .6 for schedule: 

1) Study current architectural approaches, and abstract useful facilities for interoperability. 
2) Build reusable architectural entities, and Create PSDL extensions with compositional patterns, 
3) Study to dispense current timing and data streams in PSDL on the patterns 
4) Add CSP-based semantics to describe synchronous constraints on the restricted interfaces. 
5) Abstract generalized role wrappers as easy-derived and parameterized templates for code generation. 

C.5 Related Work 
C.5.1 CAPS: Computer-Aided Prototyping System 
CAPS[LuqiBB-IJ is a useful software engineering environment for requirements analysis, feasibility studies, and the 
design of large embedded systems. CAPS is based on the PSDL, which provides facilities for modeling timing and 
control constraints within a software system. The CAPS data flow diagram and PSDL program can be augmented 
with timing and control constraint information which allows the user to model the functional and real-time aspects 
of the prototype. In this proposed project, CAPS is located in the rapid prototyping cycle that is responsible for 
requirement analysis, measurable attribute capture and generation of a pilot version of intended software system. 

C.5.2 GOODS: Graphical Object-Oriented Design System 
GOODS[Lxzh9IJ is an Ada-based software development and analysis environment that provides two-way software 
transformations: topological structures, programming units, and implementation body described by conceptual 
diagram can automatically be generated into source code in Ada (C/C++ ); reverse analyzer of source code is useful 
to extract unit specification, body and topological structure into conceptual diagram. In this proposed project, 
GOODS is located in the bottom of the incremental evolutional cycle that is responsible for implementation of 
functional components and reusable architectural entities. 

C.5.3 Architectural Styles with Ada95 
Software development is shifting its focus from lines-of-code to coarser-grained components. Software architecture 
has been proposed to respond such a high level design that invokes the elements composing systems, interactions 
among those elements, patterns guiding their composition, and constraints on these patterns [Shaw96

, MedvOOJ. Since 
ADLs need developing in their apf licability, to adapt traditional programming languages to ADLs is a significant 
approach. Previous researches[Shaw9 ,LxzhOO,LxzhOZ,LxzhOI-Z,LxzhOl-3J shows the possibilities that by means of adding specific 
architectural patterns, traditional programming languages might be improved into architectural description 
languages. Since Ada has been broadly used for large-scale, embedded real time, mission-critical and high reliable 
systems, related work has been done to firstly unify object model[LxzhOI-Z,LxzhOl-3! in Ada95 and then enhance Ada to 
support specific architectural patterns[LxzhOO,LxzhozJ, which is considered valuable for proposed model. 

C-15 


	NPS-SW-02-008BW_0001
	NPS-SW-02-008BW_0002
	NPS-SW-02-008BW_0003
	NPS-SW-02-008BW_0004
	NPS-SW-02-008BW_0005
	NPS-SW-02-008BW_0006
	NPS-SW-02-008BW_0007
	NPS-SW-02-008BW_0008
	NPS-SW-02-008BW_0009
	NPS-SW-02-008BW_0010
	NPS-SW-02-008BW_0011
	NPS-SW-02-008BW_0012
	NPS-SW-02-008BW_0013
	NPS-SW-02-008BW_0014
	NPS-SW-02-008BW_0015
	NPS-SW-02-008BW_0016
	NPS-SW-02-008BW_0017

