
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1996

Real-Time Scheduling for Software Prototyping

Luqi

Journal of Systems Integration, 6, 41-72 (1996)

http://hdl.handle.net/10945/42328

Journal of Systems Integration, 6, 41-72 (1996)
�9 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Real-Time Scheduling for Software Prototyping

LUQI
Computer Science Department, Naval Postgraduate School, Monterey, CA 93943

M. SHING
Computer Science Department, Naval Postgraduate School, Monterey, CA 93943

Abstract. This paper presents several real-time scheduling algorithms developed to support rapid prototyping
of embedded systems using the Computer Aided Prototyping System (CAPS). The CAPS tools are based on the
Prototyping System Description Language (PSDL), which is a high-level language designed specifically to support
the conceptual modeling of real-time embedded systems. This paper describes the scheduling algorithms used in
CAPS along with the associated timing constraint and hardware models, which include single and multi-processor
configurations.

Keywords: Computer-aided software engineering, rapid prototyping, hard real-time systems, real-time schedul-
ing.

1. Introduction

The correctness of a hard real-time system depends not only on the logical result of com-
putation, but also on the time at which the results are produced [28, 26]. One of the major
differences between a hard real-time system and a conventional system is that the appli-
cation software must meet its deadlines even under worst case conditions. Large scale,
parallel and distributed, hard real-time systems are important to both civilian and military
applications. Examples of hard real-time systems include air traffic control systems, con-
trols for automated factories, telecommunication systems, space shuttle avionics systems
and C3I systems. Hard real-time software systems are typically embedded in larger sys-
tems, performing critical control functions. These real-time control functions may require
the software system to interact with a wide variety of hardware/software subsystems via
networks. The design and development of these systems is often plagued with uncertainty,
inconsistency, unpredictability, and brittleness.

Rapid prototyping can be used to reduce the risks of producing hard real-time systems
that do not meet customer needs [14]. The Computer Aided Prototyping System (CAPS)
[18, 21] supports an iterative prototyping process characterized by exploratory design and
extensive prototype evolution. It enables the engineers to produce complex systems that
match user needs and reduces the need for expensive modifications after delivery by pro-
viding automated decision aids for designers and customers. Demonstrations of proposed
system behavior can be effective for validating system requirements, especially for new
or unfamiliar application areas. Unlike traditional approaches to software development,
which produce working code only near the end of the process, rapid prototyping, when
utilized during the early stages of the development life cycle, allows validation of the re-
quirements, specification, and initial design before valuable time and effort are expended
on implementation software. Prototyping of real-time systems depends on automated real-

42 LUQI AND M. SHING

(time critical)

(periodic ,) Q sporadic)

Q operator)

(non time critical)

Figure 1.

time scheduling. This paper describes the scheduling methods used by CAPS and outlines
directions for improvements.

2. Handling Timing Constraints in Caps

The CAPS tools are based on the Prototyping System Description Language (PSDL) [13],
which is a high-level prototyping language designed specifically to support conceptual
modeling of real-time embedded systems, including the timing aspects of hard real-time
systems in single and multi-processor hardware configurations. The features of PSDL for
specifying the real-time behavior of concurrent operations and their formal semantics are
given in [12, 15, 20 and 22] and are briefly reviewed in this section.

PSDL models software systems as networks of operators communicating via data streams.
This model can be represented as an augmented directed hypergraph whose nodes are
operators and whose edges are streams. Edges can have multiple sources (operators writing
into the stream) and multiple sinks (operators reading from the stream). The operators are
state machines with zero or more private state variables. When an operator fires, it reads
one data value from each of its input streams, updates zero or more of its state variables,
and writes at most one data value into each of its output streams. The operators can only
interact via the streams, which are the only shared resources in the model. The hypergraph
is augmented by associating timing and control constraints with the operators and streams.
The timing and control constraints determine the conditions under which the operators are
activated (i.e. can be fired).

2.1. P S D L Real-Time Constraints

This section focuses on the timing constraints because they determine the scheduling prob-
lems that CAPS must solve. PSDL operators can be classified according to their timing
constraints as shown in Fig. 1. An operator is time-critical if it has at least one timing
constraint associated with it, and is non-time-critical otherwise. A time-critical operator is
periodic if it is activated by a periodic temporal event, and it is sporadic if it is activated
by the arrival of data. The types of timing constraints associated with PSDL operators and
streams are summarized in Table 1.

REAL-TIME SCHEDULING FOR SOFI'WARE PROTOTYPING 43

Table 1. Types of PSDL timing constraints.

Constraint Abbreviation Applies to Constrains Default

maximum execution time MET time critical operators cpu time
period P periodic operators (activation, next activation)
finish within FW periodic operators (activation, completion) P
maximum response time MRT sporadic operators (activation, completion) heuristic
minimum calling period MCP sporadic operators (activation, next activation) MRT-MET
latency L streams (write, next read) 0
minimum period MP streams (write, next write) 0

The maximum execution time (MET) is the maximum amount of CPU time required to
execute an operator under worst-case conditions. PSDL maximum execution times are
expressed relative to the host hardware for the CAPS system; these times must be scaled by
the scheduler if the target hardware for the prototype has a different execution speed. Every
time-critical atomic operator must have a maximum execution time to enable the scheduler
to allocate enough CPU time to meet its deadline. The allocated CPU time must start after
the operator is activated and must end before the operator is due to be completed. This
CPU time needs not be all in one contiguous interval, and it needs not be all on the same
processor. However, schedules consisting of several disjoint time intervals and possibly
different processors for the same operator must supply additional time within and between
the intervals sufficient for context switching and interprocessor communication.

All of the other timing constraints are bounds on durations of time intervals defined by
pairs of events (see Table 1). These bounds are specified by constants that have units of
physical time. Consequently the representations of all timing constraints other than the
maximum execution time are independent of the target hardware.

Periodic operators are activated at regular, predictable intervals: the time between one
activation and the next is always exactly equal to the specified period. However, note that
there can be a delay between the activation time, when firing is enabled, and the starting
time, when firing actually begins. This delay, which is controlled by the scheduler, cannot
exceed the bound (FW-MET), and is called the slack of the operator. The scheduler is
free to choose the starting time for the first firing of a periodic operator oi (denoted by
starting_time(oi,t)), subject to the dataflow precedence constraints defined in Section 2.2.1
and the following initialization constraints:

beginning_time < activation_time(oi, l) = starting_time(oi, l)

< beginning_time + P(oi),

where beginning_time denotes the time at which the system begins firing the very first
operator in the prototype. Denote the k th instance of an operator oi by oi,k. The absolute
times of all the activations of the periodic operator oi and the corresponding deadlines are
determined by the time of the first activation as follows.

deadline(oi,k) = activation_time(oi,~) + FW(oi)
activation_time(oi,k+l) = activation_time(oi,k) + P(oi)

44 LUQI AND M. SHING

Sporadic operators are activated (or triggered) by the arrival of new data on the input
streams specified in the operator's control constraints. The activation time is the earliest time
the triggering data is available for reading by the operator; this is the time the data is written
plus any interprocessor communication delays due to a possibly distributed implementation.
Scheduling is based on the following constraints.

deadline(oi,k) = activation_time(oi,k) + MRT(oi)
activation_time(oi,k+l) > activation_time(oi,k) -+- MCP(oi)

Sporadic operators can be realized with finite computational resources only under the
assumption that the activation rate is bounded. The required bound is specified by the
minimum calling period if it is given, and defaults to the highest activation rate supported
by all realizations of the required maximum response time (Table 1). If the required
maximum response time is not known, the scheduler helps formulate the requirements by
approximately determining the smallest value that can be realized under the assumption that
all time critical sporadic operators without specified maximum response times are entitled
to equal shares of available CPU time.

PSDL can also model communication delays and bandwidth constraints imposed by fixed
allocations of external data sources and software functions to physical nodes of a distributed
system. The latency of a stream is an upper bound on the time between the instant a data
value is written into a stream and the instant that data value can be read from the stream. The
minimum period is a lower bound on the time between two successive write events on the
stream. The latencies and minimum periods declared in PSDL are external requirements
that constrain the scheduler and the implementation. Additional constraints on latencies
and minimum periods due to hardware constraints and resource allocations made by the
scheduler are calculated by the scheduler based on the chosen hardware model, and are
provided to the designer as feedback.

2.2. Scheduling Constraints

The order in which PSDL operators can be scheduled is infuenced by precedence and mutual
exclusion constraints, and the times at which operators can be scheduled are influenced by
constraints derived from the specified model for the target hardware for the prototype.

2.2.1. Precedence Constraints

The dataflow precedence constraint requires the initial firings of all operators with timing
constraints to occur in an order consistent with the dataflow ordering, which means the
operators that write into a stream without a declared initial value must be fired before the
first firing of an operator that reads from the stream. Formal definitions of this concept can
be found in [22]. Assume that the periodic operator ol precedes another periodic operator
o2 in a given prototype. The instances Ol,i and o2,j are subject to additional synchronization

REAL-TIME SCHEDULING FOR SOFTWARE PROTOTYPING 45

precedence constraints if (i - 1) x P(ol) = (j - 1) x P(o2). In such a case:

(1) the i th instance of operator Ol must complete firing before the jth instance of operator
o2 can fire, and

(2) the jth instance of operator o2 must read its inputs before the (i + 1) st instance of
operator ol can fire.

The purpose of these constraints is to ensure the instance o2,j operates on the data produced
by the instance Ol,i. The first constraint is needed to ensure that the output of ol,i has been
produced before it is used by o2,j, and the second constraint is needed to ensure that the
output of ol,i is not over-written by the output of Ol,i+l before it can be read by o2,j. In
distributed architectures, if two instances of periodic operators subject to a synchronization
constraint are allocated to different processors, then the scheduler must provide sufficient
time between their execution intervals to cover any possible interprocessor communications
delays.

2.2.2. Mutual Exclusion

Since updates to state variables must be serialized to preserve the integrity of the data, any
pair of operators that belong to a common cycle in the expanded dataflow graph 1 must not
be scheduled concurrently. If two such operators are allocated to different processors of a
distributed target architecture, then the scheduler must provide sufficient time between the
completion of one such operator and the start of the next to account for possible interpro-
cessor communication delays.

2.2.3. Pipelining

A time-critical operator whose period or minimum period is less than its maximum execution-
time can be only be realized if it can be pipelined (i.e. more than one instance of the operator
can be firing at the same time). A PSDL operator can be pipelined if and only if the operator
does not appear on a cycle in the expanded dataflow graph, and the operator does not have
internal states.

2.3. Hardware Models

The semantics of PSDL is independent of the hardware model, but scheduling and the
feasibility of realizing the declared real-time constraints depend on the architecture and
characteristics of the hardware system on which the proposed system will run. In particular,
methods for static scheduling are strongly influenced by the hardware model. All of the
hardware models associated with PSDL are based on the following assumptions [22]:

(1) The speed of a processor is independent of the type of program it is executing.

(2) The entire capacity of the hardware is available for critical real-time computations.

46 LUQI AND M. SHING

(3) The capacity of the hardware configuration is known before execution begins and does
not change with time.

The hardware models associated with PSDL can be characterized by the number of
processors N, a vector of processor speeds Si, a matrix of interprocessor delays Di,j, and
a matrix of inverse link speeds (seconds per bit) T/,y, where Di, i : 0, T/,i : 0, and 1 < i,
j < N. Some useful special cases are a single processor (N = 1), identical processors
(Si = s), shared memory (Di,j : 0), unlimited bandwidth (Ti,j = 0), and a homogeneous
network (Di,j = d for j r i). The derived latency for the transmission of a data value b
bits long from processor i to processor j is Di, j -I- b x Ti,j.

2.4. Feasibility

To provide useful diagnostic information, the scheduler checks the following necessary
conditions for the existence of a feasible schedule and reports violations to the designer.

(1) Basic CPU time requirements imply that periodic operators must have MET < FW and
sporadic operators must have MET < MRT.

(2) In the absence of pipelining we must also have MET < P for periodic operators and
MET < MCP for sporadic operators.

(3) MET(x) < P(y) for any two operators x and y which are placed on the same processor.

(4) For a set of periodic operators to be schedulable on N processors, the load factor,
which equals Y~ MET(x)/P(x) over all periodic operators x in the prototype, must be
< N .

The scheduler also checks each operator-pair connected by dataflow streams to ensure
that the consumer's period is not greater than that of the producer. Stream buffer overflows
will result if this constraint is violated. Furthermore, the scheduler in the current version
of CAPS does not handle operators which require pipelining. Any prototype that contains
operators with MET > P will be considered unschedulable and the scheduler will report
the violations to the designer.

3. Real-Time Scheduling Methods in CAPS

One of the major tasks in rapid prototyping is to determine whether the timing constraints
of a given specification can be satisfied by some real-time program. The feasibility analysis
is usually done either via static timing analyzers [27, 33] or pre-run-time schedulers [34].
One drawback of static timing analyzers is that the analysis works well only if the hard real-
time system runs exactly as specified in the high-level description. This can be difficult to
achieve in a portable fashion due to operating system dependencies. Hence, CAPS chooses
to demonstrate the schedulability of a prototype via the generation of a static run-time
schedule that enforces all hard real-time-constraints under the worst case conditions.

REAL-TIME SCHEDULING FOR SOFTWARE PROTOTYPING 47

Table 2. LCM optimizations.

Operators MET Initial Period New Period

1 20 100 100
2 50 500 500
3 80 600 600
4 100 800 800
5 165 1035 1000

LCM 828000 3000

Load Factor 0.718 0.723

Like [23], the scheduler converts all sporadic time critical operators into equivalent pe-
riodic operators. As shown in [16, 4], the "equivalent period" of the sporadic operator
must be < min(MRT-MET, MCP) and the finish within must be set to (MRT - "equivalent
period") to catch every set of triggering data and process it within MRT. Since it is desirable
to set the "equivalent period" as large as possible in order to minimize the impact on the
load factor of the prototype, it seems logical for the scheduler to use min(MRT-MET, MCP)
as the default "equivalent period" for the sporadic operators. However, such defaults may
result in a set of periods with a very large LCM. (For example, the set of initial periods
shown in Table 2 has an LCM of 828,000.) We observed in our early experiments that
prototypes with large LCM's are less likely to be schedulable. Furthermore, a very small
change in the periods, while only affects the load factor slightly, may be sufficient to get
rid of some prime factors of the LCM and reduce the LCM significantly. (For example,
changing the period 1035 to 1000 in Table 2 reduces the LCM from 828,000 to 3,000.)
Hence, we have developed a heuristic algorithm to minimize the LCM of a prototype [4].
The algorithm allows the user to specify the range of acceptable values for the period of
each operator and tries to reduce the LCM by replacing the periods containing the prime
factors that was driving up the LCM with other values within the allowable range. An early
experiment with the algorithm on 50 randomly generated prototypes shows that the new
LCMs represent an average of 47% reduction over the original ones.

We shall assume that all time critical operators are periodic for the rest of the paper. A set
O of non-preemptive periodic operators with precedence relationship is schedulable if there
exists a static schedule such that the starting and completion time of every operator instance
satisfy the timing and scheduling constraints in Section 2. It is a well known and accepted
result that the least common multiple (LCM) of their periods provides a finite interval of
time, for which a cyclic schedule can be calculated, if one exists, and repeated forever
[23]. Many interpret the above statement to mean that a cyclic feasible schedule must only
exist in the closed interval [0, LCM], meaning that each operator instance that starts within
the interval [0, LCM] must complete its execution by time LCM. Such an interpretation
is overly restrictive. Consider a set with two operators ol and 02 shown in Fig. 2a, with
MET(o~) = 190, P(ol) = FW(ol) = 600, M E T (o 2) = 20, and P(o2) = FW(o2) = 200.
Since ol precedes o2, the first instance of o2 cannot start before time 190, forcing the
third instance of o2 to start at time 590 and complete at time 610. Hence, no feasible

48 LUQI AND M. SHING

(a)

(b)

o2

i i~ ii �84 ii iH

0 200

Transient
Schedule

LCM

I I I I
400 600 800 1000

Cyclic Schedule I

H H
2 LCM

N I
I

1200

Figure 2.

schedule exists if we require every operator instance that starts within the interval [0, 600]
to complete its execution by time 600, even though the schedule shown in Fig. 2b satisfies
all the constraints outlined in Section 2.

In [4], Cordeiro proved that

"If there exists an infinite feasible schedule S without any inserted idle time 2 for
a set of periodic operators with precedence constraints, such that the first instance
of every operator oi must start by time P(oi), then there exists an infinite schedule
S' consisting of a transient portion of length at most LCM, followed by a cyclic
portion of length LCM that repeats forever."

For example, in the schedule shown in Fig. 2b, the third instance of 02 has to start at time
590 in order to allow itself and the second instance of ol to both meet their deadlines.
This forces the second instance of ol to delay its actual starting time to 610 and the fourth
instance of 02 to delay its actual starting time to 800, resulting in feasible schedule with a
transient portion of length 390 following by a cyclic portion of length 600.

Based on Cordeiro's observation, it suffices to compute the cyclic schedule within [0, 2 •
LCM). This is done by considering a scheduling constraint graph CG that contains all task
instances that must start in the interval [0, 2 x LCM). The scheduling constraint graph can
be constructed using the algorithm in Table 3. (For example, applying the algorithm to the
expanded data flow graph shown in Fig. 3a results in the scheduling constraint graph shown
in Fig. 3c.) Note that the CAPS scheduler does not construct the scheduling constraint
graph CG explicitly. It computes the precedence constraints described by CG dynamically
as it builds the static schedule based on the global precedence graph G' of the prototype,

REAL-TIME SCHEDULING FOR SOFTWARE PROTOTYPING 49

Table 3. Construction of the scheduling constraint graph.

Given the expanded dataflow graph G, define the scheduling constraint graph CG = (V, E) as follows:
(1) First, obtain a global precedence graph G I by removing all edges in G which represent state variables

and then taking the transitive closure of the resultant graph.
(2) For each operator oi in G I, create a vertex for each instance of oi that must appear in the static

schedule. Denote the vertices created by {oi,1, oi,2 Oi,ni }, where 1/i = 2 x LCM/P(oi), the number
of instances of oi that can be activated within a interval of 2 x LCM.

(3) For 1 < k < n i - - 1, add an edge oi,k -+ Oi,k+l of zero latencyto CG.
(4) For any two vertices oi.p and oj.q obtained in Step (1), add the edges oi.p ~ Oj,q oflatency L(oi --+ oj)

and Oj.q -+ ol.p+l of latency L(oj ~ oi) ifoi precedes oj in G ~ and synchronization is needed.
(L(oj ~ ol) = 0 if the edge oj ~ oi is not present in G.)

(5) For any two vertices oi and oj in G ~, if oi precedes oj and mutual exclusion exists between the two
vertices, then, for 1 < k < ni, add the edges oi.k --~ Oj,k with latency L (o i --+ o j) and oj.k -+ Oi,k+l with
latency L(oj ~ oi) to CG.

(6) Creme a dummy vertex DUMMY with MET = 0 and P = 2 x LCM.
(7) For each vertex oi,1 that has no incoming edges after Steps (1) and (2), connect DUMMY to oi,1 with

the edge DUMMY --+ oi,1 and set the latency of the edge to zero.

which can be obtained from the expanded dataflow graph G by removing all edges in G
which represent state variables and then taking the transitive closure of the resultant graph.
For brevity, the notations shown in Table 4 will be used throughout the remaining paper.

3.1. T h e P S D L S c h e d u l i n g P r o b l e m

Given a scheduling constraint graph C G and a set of N identical processors with a common
shared memory, a s t a t i c s c h e d u l e , is function that maps each instance of the operators that
must start within [0, 2 • LCM) to a triple (pid, st, cO where p i d is the label of the processor
that executes the operator instance, s t is the exact execution start time for the operator
instance and c t = s t + MET, the time by which the operator instance must complete its
execution. A static schedule is said to be l ega l i f the relative ordering of the operator-
instances (i.e. vertices of C G) in the schedule satisfies the precedence constraints imposed
by C G . A static schedule is said to b e f e a s i b l e if the schedule is legal and every operator-
instance when executed according to the schedule meets its deadline. The c o s t of a schedule
is defined to be maximum tardiness over all operator-instances in C G . Hence, any legal
schedule with zero cost is a feasible schedule.

The static scheduling problem is to decide if there is a feasible schedule for the given
scheduling constraint graph C G on a set of N identical processors. (See [29] for a survey
of the complexities of various real-time scheduling problems.) Since the static scheduling
problem is NP-hard [30, 31, 35], it not likely to have efficient algorithms for solving
the general static scheduling problem. Hence, both exponential-t ime optimal scheduling
algorithms and fast heuristic scheduling algorithms are considered in the CAPS system.

50 LUQI AND M. SHING

P(Ol) = 60 P(o 2) = 30 P(o3) = 20

P(o4) = 60

(a) The Expanded DataFlow Graph

(b) The Global Precedence Graph

(c) l n e ~ScneOuimg

Constraint Graph

Figure 3.

3.2. Single Processor Scheduling

The static scheduling algorithms currently available in CAPS for the uniprocessor configu-
ration fall into three categories: the exponential-time optimal algorithms, the fast heuristic
algorithms, and the parameterized search algorithms [2, 5, 11, 17]. Algorithms in the
first category (exhaustive-enumeration and branch-and-bound) guarantee finding a feasible
schedule if one exists, but their long running times limit their usefulness to small problems.
Algorithms in the second category (earliest-starting-time-first, and earliest-deadline-first)
on the other hand, are very efficient. Given a scheduling constraint graph, each of these
algorithms only tests one legal schedule for feasibility, and can fail to find the feasible
schedule even if one exists. In order to increase the chance of finding a feasible sched-
ule, CAPS provides two parameterized search algorithms (simulated annealing and limited
backtrack) which allow users to control the trade off between computational time and the
number of legal schedules tested with a set of parameters.

REAL-TIME SCHEDULING FOR SOPTWARE PROTOTYPING 51

Table 4. Summary of notations.

Notation

act(ol,k)
st(oi,k)
ct(ol.k)
d(oi.k)
lardiness(oi,k)
ready(oi,k)
parent(ol,k)
children(ol,k)

where
ready(DUMMY)
ready (oi, 1)

Meaning

the beginning of the k th period of the operator oi
the actual starting t ime of oi,~
the completion t ime of oi,~
denote the deadline (i.e. latest completion time) of oi,k
the amount of t ime by which oi,k misses its deadline
the earliest t ime when oi can actually fires in the k th period
the set of parents ofoi,k in C G
the set of children ofoi,k in C G

= s t (DUMMY) = c t (DUMMY) = 0,
= max{ct(u) + L(u ~ oiA) [for all u E parent(o/)},

0 < ready(o/ j) < st(oiA) < P(oi),
d(oi,1) = min{P(oi) + MET(oi) , d(oj,1) - IVI~T(oj) - L(Oi.l ~ oj,1)

I for all ojA c children(o/A)},
i.e., d(oi,1) is the latest t ime oi has to complete its first
instance so that all other first instances o L t following oi,1
in C G can also complete their firing by P(oj) + MET(oj)

ct(oi. 1) = st(oi, 1) + MET(oi) ,
tardiness(o/A) = max{ct(oi.1) - d(oi,1), 0}.

And for k > 1,
act(oi,k) = s t (o i j) + (k - 1) x P(oi)
ready(oi,k) = max{act(oi,k), ct(u) + L(u ~ oi,k) [for all u ~ parent(oi,k)},

act(oi,k) < ready(oi,k) < st(oi,k),
Ct(oi.k) = St(oi,k) + MET(ol) ,
d(oi,k) : act(oi,k) -I- F W (oi),
tardiness(ol,k) = max{ct(o/,k) - d(oi,t), 0}.

3.2.1. Exhaustive-Enumeration and Branch-And-Bound

Exhaustive-enumeration (Table 5) is a very simple algorithm that inspects all legal schedules
one by one and returns the first feasible schedule it finds.

Since we are only interested in feasible schedules, the algorithm will cut off any partial
schedule that has an operator-instance with a positive tardiness. One way to further reduce
the running time of the exhaustive-enumeration method is by modifying Line (8) of the
BackTrack procedure to cut off a partial schedule based on an estimated cost, resulting in
the Branch-and-Bound procedure shown in Table 6. The estimated cost is a lower bound
on the cost of all the legal schedules generated from the common partial schedule, and is
computed by the function Estimate_Cost shown in Table 7.

3.2.2. Earliest-Starting-Time-First and Earliest-Deadline-First

Both the earliest-starting-time-first and the earliest-deadline-first algorithms follow the logic
of the topological-ordering algorithm (shown in Table 8), which produces a legal schedule
by sorting the vertices in CG topologically. They only differ in the way in which vertices

52 LUQI AND M. SHING

Table 5. The Exhaustive-Enumeration Algorithm.

The Exhaustive_Enumeration Algorithm:
Begin
(1) Last_Stop_Time := 0;
(2) Partial_Schedule := empty;
(3) Ready_Set := DUMMY;
(4) Best_Schedule := empty;
(5) BackTrack(Last_Stop_Time, Partial_Schedule, Ready_Set, Best_Schedule);
(6) if Best_Schedule/= empty then
(7) Output "Schedule Found";
(8) Output Best_Schedule;
(9) else
(10) Output "Schedule Not Found";
(t l) end if;
End.

Procedure BackTrack(Last_Stop_Time, Partial_Schedule, Ready.Set, Best_Schedule):
Begin
(1) Working_Ready_Set := Ready_Set;
(2) Found := false;
(3) while not Found and Not_Empty(Working_Ready_Set) loop
(4) Temp_Schedule := Partial_Schedule;
(5) v := Remove_Item..From_Set(Working_Ready_Set);
(6) st(v) := max {Last_Stop_Time, ready(v)};
(7) ct(v) := st(v) + MET(v);
(8) if ct(v) < d(v) then
(9) Add_Item_To_Schedule(v, Temp_Schedule)
(10) Temp_Ready_Set := Ready_Set - {v};
(11) For each child u o fv in CG loop
(12) if all parents ofu are in Temp_Schedule then
(13) Add_Item_To_Set(u, Temp_Ready_Set);
(14) end if;
(15) end loop;
(16) if Not-Empty(Temp_Ready_Se0 then
(17) BackTrack(ct(v), Temp_Schedule, Temp_Ready_Set, Best_Schedule);
(18) Found := Non_Empty(Best_Schedule);
(19) else -- no unscheduled vertex
(20) Best_Schedule := Temp_Schedule;
(21) Found := true;
(22) end if;
(23) end if;
(24) end loop;
End.

REAL-TIME SCHEDULING FOR SOFrI'WARE PROTOTYPING 53

Table 6. The Branch-and-Bound Procedure.

Procedure Branch_And_Bound(Last_Stop_Time, Partial_Schedule, Ready_Set, Best_Schedule):
Begin
(1) Working_Ready_Set := Ready_Set;
(2) Found := false;
(3) while not Found and NoLEmpty(Working_Ready_Se0 loop
(4) Temp_Schedule := Partial_Schedule;
(5) v := Remove_ltem_From_Set(Working_Ready_Set);
(6) st(v) := max {Last_Stop_Time, ready(v)};
(7) ct(v) := st(v) + MET(v);
(8) Add_Item_To_Schedule(v, Temp_Schedule)
(9) if Estimate_Cost(Temp_Schedule) < 0 then
(10) Temp_Ready_Set := Ready_Set -{v};
(11) For each child u of v in CG loop
(12) if all parents of u are in Temp_Schedule then
(13) Add_Item_To_Set(u, Temp..Ready_Set);
(14) end if;
(15) end loop;
(16) if Not..Empty(Temp_Ready_Set) then
(17) Branch_And_Bound(ct(v), Temp_Schedule, Temp_Ready_Set, Best_Schedule);
(18) Found := Non_Empty(Best_Schedule);
(19) else -- no unscheduled vertex
(20) Best_Schedule := Temp_Schedule;
(21) Found := true;
(22) end if;
(23) end if;
(24) end loop;
End.

Table 7. Estimating the lower bounding cost of a partial schedule.

Function Estimate_Cost(Partial_Schedule):
Begin
(1) Lower_Bound := max{0, ct(v) - d(v) I for all vertex v in Partial_Schedule};
(2) Last_Stop_Time := ct(w) where w is the last scheduled vertex in Partial_Schedule;
(3) For each unscheduled vertex oi,k in CG loop
(4) Lower_Bound := max{Lower_Bound, est(oi,k) -I- MET(oi) -- ed(oi,k) }

where
est(oi.k), lower bound on the starting time of Oi,k, equals

Last_Stop_Time + ~ MET(u) over all unscheduled ancestors u of oi,,~ in CG,
ed(ol,k), upper bound on the deadline of oi.k, equals

St(OlA) q- (k - 1) x P(oi) -I-FW(oi) ifk > 1,
and equals P(oi) q- MET(oi) if k = 1.

(5) end loop;
(6) return(Lower_Bound);
End.

54 LUQI AND M. SHING

Table 8. The Topological-Ordering Algorithm.

The Topological_Ordering Algorithm:
Begin
(1) Ready_Set := {Dummy};
(2) Schedule := empty;
(3) Last_Stop_Time := 0;
(4) While Not_Empty(Ready_Set) loop
(5) v := Remove_Item_From_Set(Ready_Set);
(6) st(v) := max {Last_Stop_Time, ready(v)};
(7) ct(v) := st(v) + MET(v);
(8) Add_Item_To_Schedule(v, Schedule)
(9) Last_Stop_Time := ct(v);
(10) For each child u of v in CG loop
(11) if all parents of u are in Schedule then
(1 2) AddJtem_To_Set(u, Ready_Set);
(13) end if;
(14) end loop;
(15) end loop;
(16) if Cost(Schedule) = 0 then
(17) Output "Schedule Found";
(18) else
(19) Output "Schedule Not Found";
(20) end if;
(21) Output Schedule;
End.

are removed from the Ready_Set in Line (5) of the topological-ordering algorithm.
The earliest-starting-time-first algorithm works like the topological-ordering algorithm,

except that it always removes the vertex with the earliest ready time among all the vertices
in the Ready_Set (Table 9).

The earliest-deadline-first algorithm, on the other hand, always removes the vertex with the
earliest deadline among all the vertices v in the Ready_Set with ready(v) < Last_Stop_Time
(Table 10). I f every vertex v in the Ready_Set has ready(v) > Last_Stop_Time, then the one
with the earliest starting time will be chosen to minimize the CPU idle time.

3.2.3. S imulated-Anneal ing

The major drawback of the previous two algorithms is that they both take a hit-or-miss
attitude, since they only test one legal schedule for feasibility. One way to increase the
chance of finding a feasible schedule without spending exponential execution time is the
use of stochastic search. CAPS provides a fifth algorithm that finds feasible schedules using
simulated annealing (Table 11). Simulated annealing is a search technique based upon the
Metropolis Algorithm, which simulates a complex system of particles (molecules) in a heat
bath [24]. Recognizing concepts similar to optimization, Kirkpatrick et al. [10] and Cerny
[1] independently developed simulated annealing. Since then, many researchers have used
it to solve a variety of combinatorial optimization problems [8, 9, 25, 32].

REAL-TIME SCHEDULING FOR SOFTWARE PROTOTYPING 55

Table 9. The Earliest_Starting_Time_First Algorithm.

The Earliest_Starting_Time_First Algorithm:
Begin
(1) Ready_Set := {Dummy};
(2) Schedule := empty;
(3) Last_Stop_Time := 0;
(4) While Not_Empty(Ready_Set) loop
(5) v := RemoveJtem_With.Earliest_Start_Time(Ready_Set);
(6) st(v) := max{Last_Stop_Time, ready(v)};
(7) ct(v) := st(v) + MET(v);
(8) AddJtem_To_Schedule(v, Schedule)
(9) Last_Stop_Time := ct(v);
(10) For each child u of v in CG loop
(11) if all parents of u are in Schedule then
(1 2) Add_Item_To_Set(u, Ready_Set);
(13) end if;
(14) end loop;
(15) end loop;
(16) if Cost(Schedule) = 0then
(17) Output "Schedule Found";
(18) else
(19) Output "Schedule Not Found";
(20) end if;
(21) Output Schedule;
End.

Starting from the initial infeasible legal schedule S, the algorithm randomly perturbs
this schedule to obtain a new legal schedule Temp_S. As in the standard local iterative
improvement approach, the algorithm always replaces S with Temp_S if the change in cost,
AC, is non-positive. However, unlike the local iterative improvement approach, Temp_S is
accepted with probability = e x p (- A C / T) if AC is positive.

The control temperature, T, is a value in the same units as the cost function. It regulates
the probability distribution that defines the acceptance criteria of the new schedules with
degrading costs. At each temperature, T, the procedure attempts up to either a total of
L trials or La acceptance moves. The temperature is then reduced by a cooling factor R.
The resulting behavior is a downward-biased random walk through the solution space, with
the ability to escape local minima. Gradually decreasing control temperature changes the
exponential probability distribution. This tightens the acceptance criteria against larger
degradations. The value of T for which no degradations are reasonably expected and
no more improvements can be found is Tf, the freezing temperature. At this stage the
algorithm returns the best solution, and halts. Since we are only interested in finding
a feasible schedule, i.e. a legal schedule with zero cost, we have modified the simulated
annealing algorithm to halt as soon as it encounters such a schedule. To utilize the simulated
annealing algorithm, we must provide efficient and effective ways to

(1) obtain the initial legal schedule,

(2) perturb the existing schedule to obtain new legal schedules, and

56 LUQI AND M. SHING

Table 10. The Earliest_Deadline_First Algorithm.

The Earliest_Deadline_First Algorithm:
Begin
(1) Ready_Set := {Dummy};
(2) Schedule := empty;
(3) Last_Stop_Time := 0;
(4) While Not_Empty(Ready_Set) loop
(5) Earliest_Deadline_Set := {v [v ~ Ready_Set and ready(v) <= Last_Stop_Time};
(6) if Not_Empty(Earliest_Deadline_Set) then
(7) v := Remove_Item_With_Earliest_Deadline(Earliest_Deadline_Set);
(8) Ready_Set := Ready_Set - {v};
(9) else
(10) v := Remove_Item_With_Earliest_Start_Time(Ready_Set);
(11) end if;
(12) st(v) := max{Last_Stop_Time, ready(v)};
(13) ct(v) := st(v) + MET(v);
(14) Add_Item_To_Schedule(v, Schedule)
(15) Last_Stop_Time := ct(v);
(16) For each child u of v in CG loop
(17) if all parents of u are in Schedule then
(18) Add_Item_To_Set(u, Ready_Set);
(19) end if;
(20) end loop;
(21) end loop;
(22) if Cost(Schedule) = 0 then
(23) Output "Schedule Found";
(24) else
(25) Output "Schedule Not Found";
(26) end if;
(27) Output Schedule;
End.

(3) controls the number of legal schedules being examined at each temperature T and the
rate at which T is lowered.

Although annealing can begin from any solution in the search space, empirical evidence
suggested that reasonably good initial solutions can often provide better final results [8, 25].
Hence, we always run the earliest-deadline-first algorithm before the annealing algorithm.
The result generated by the earliest-deadline-first algorithm will be used as the starting
solution of the annealing process if it is not a feasible schedule.

The method for adjusting a given schedule to generate new schedules must maintain the
precedence relationships between the tasks as defined by the constraint graph CG. The
Adjust_Schedule routine (Table 12) produces a new schedule either by (1) constructing a
brand new schedule from scratch using a randomized version of the topological-ordering
algorithm or (2) local re-arrangement of the operator instances in the current schedule.
Although local re-arrangement is a much faster operation than generating a brand new
schedule, our empirical data show that local re-arrangement often causes the search process
to be trapped at local minima. Hence, the Adjust_Schedule routine is designed to bias
towards generating brand new schedules.

REAL-TIME SCHEDULING FOR SOFTWARE PROTOTYPING 57

Table 11. The Simulated-Annealing Algorithm.

The Simulated_Annealing Algorithm:
Begin
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
End.

Use Earliest.Deadline_First algorithm to find a legal schedule S;
if Cost(S) = 0 then

Output "Schedule Found";
Output S;

else
Found := false;
Best_Schedule := S;
To := 2 x Cost(S);
T.f := 1;
L := 100;
La := 35;
R := 0.85;
while (T > Tf and not Found) loop

N := 0; -- keep track the number of schedules sampled at current T
Na := 0; -- keep track the number of schedules accepted at current T
while (N < L and Na < La and not Found) loop

Temp_S := Adjust_Schedule(S);
N : = N + I ;
if Cost(Temp_S) = 0 then

BEST_SCHEDULE := Temp_S;
Found := true;

else
if Cost(Temp_S) < Cost(Best.Schedule)then

Best_Schedule := Temp_S;
end if;
AC := Cost(Temp_S) - Cost(S);
if (AC < 0 or else random() < exp(-AC/T)) then

-- set initial temperature
-- set freezing temperature
-- set maximum number of schedules sampled at each temperature
-- set maximum number of schedules accepted at each temperature
-- set cooling factor

S := Temp_S;
Na := Na + l;

end if;
end if;

end loop;
T := T x R;

end loop;
if not Found then

Output "Schedule Not Found"
else

Output "Schedule Found";
end if;
Output Best_Schedule;

end if;

58 LUQI AND M. SHING

Table 12. The Adjust_Schedule Routine.

Function Random.Schedule0:
Begin

generates a new schedule from scratch by randomly removing vertices among
all the vertices in the Ready_Set in Line (5) of the topological-ordering algorithm.

End.

Function Adjust_Schedule(S):
Begin
(1)
(2)
(3)
(4)

if random() < 0.6 then
return Random_Schedule0;

else
start randomly at some point in the schedule S, traverse up the

schedule and find the first task, say v, with a positive tardiness.
(5) If no task with a positive tardiness is found, then

return Random_Schedule();
(6) else -- move v as far up the schedule as possible
(7) Let u be the task immediately before v in the schedule S.
(8) ifu is a parent ofv or ready(v) > st(u) then -- cannot move v at all
(9) return Random_Schedule0;
(10) else
(11) While u is not a parent ofv and ready(v) < st(u) loop
(12) interchange(u, v);
(13) end loop;
(14) Update st(w) and ct(w) for each vertex w affected by the move.
(15) end if;
(16) end if;
(17) end if;
End.

The choice for To, Tf, R, L provides the t rade-off be tween the running t ime and the

effect iveness o f the anneal ing algori thm. The higher the initial temperature To, the larger

the coo l ing factor R, and the larger the number o f trials L at each temperature wil l resul t in

a more thorough search o f the solution space. To avoid excess ive sampl ing at a part icular

temperature, the anneal ing a lgor i thm keeps track o f the number o f schedules accepted at

each temperature and forces the anneal ing process to reduce its temperature when a total

o f La schedules have been accepted. These parameters are normal ly establ ished f rom trial

and error exper imenta t ion [6]. The goal in choosing these parameters is to ensure that a

sufficient, but not excessive, number o f solutions are examined. The fo l lowing parameters

used in our experiment:

To ---- twice the cost o f the starting solution,

Tf = 1.0,
R = 0.85,

L = 100,
La = 35.

REAL-TIME SCHEDULING FOR SOFTWARE PROTOTYPING 59

3.2.4. Limited-Backtrack

Early experimentation with the earliest-deadline-first algorithm showed that the algorithm
is very fast and very effective for prototypes with load factor below 0.6. A closer inspection
of the infeasible schedules showed that, in many cases, either no feasible exists, or a simple
interchanging of the relative ordering among the operator-instances with the three earliest
deadlines will result in a feasible schedule. Hence, a sixth algorithm, limited-backtrack,
was developed to take advantage of this observation.

The limited-backtrack algorithm (Table 13) enumerates the legal schedules like the
exhaustive-enumeration algorithm. However, it differs from the exhaustive-enumeration
algorithm in the way in which vertices are removed from the Working_Ready_Set in Line (5)
of the BackTrack procedure. The vertices are removed from the Working_Ready_Set in the
order of non-increasing deadlines and at most Backtrack_Limit vertices will be expanded
at each backtrack level.

3.2.5. Performance Evaluation

All the algorithms described in the previous subsections have been implemented in Ada and
tested on several of prototypes [19]. Early tests show that the exponential-time algorithms
(exhaustive-enumeration and branch-and-bound) take too much time to run except for very
small problems, although they always guarantee finding a feasible solution if one exists.
Furthermore, due to the fact that the Estimate_Cost is a very time consuming operation,
the branch-and-bound algorithm actually ran slower than the simple exhaustive-search
algorithm in most of the cases tested.

The earliest-deadline-first and the earliest-starting-time-first algorithms are very efficient
and perform equally well for most of the prototypes we tested. In order to better judge the
performance of these two algorithms under different load factors and scheduling constraint
graph complexity, we conducted a second empirical study where we applied the CAPS
scheduler to a total of 2700 prototypes generated by the PSDL random graph generator
developed by Cordeiro [4]. The 2700 prototypes are made up of 9 groups of expanded
dataflow graphs. The prototypes in each groups are generated based on aunique combination
of dataflow graph size and edge density. 3 (See Table 14 for a summary of the random
prototypes.)

Among the 2700 random prototypes, 356 prototypes have load factors exceeding 1.0 and
are rejected by the scheduler. The remaining 2344 prototypes are used to test the efficiency
and effectiveness of the earliest-deadline-first and the earliest-starting-time-first algorithms.

Efficiency of the algorithms are measured by the elapsed time taken by the algorithms to
produce a schedule from a global precedence graph. Since the elapsed time is based on the
real-time clock on a Sun SPARCstation and may vary significantly depending on the system
load, it only provides a rough measure of the efficiency of the algorithms. The average
running times shown in Table 15 clearly indicate that both algorithms are very efficient,
with the earliest-starting-time-first algorithm slightly faster than the earliest-deadline-first
algorithm in most of the cases.

60 LUQI AND M. SHING

Table 13. The Limited-Backtrack Algorithm.

Procedure Limited_BackTrack(Backtrack.Limit, Last.Stop_Time,
Partial_Schedule, Ready_Set, Best_Schedule):

Begin
(1) Working_Ready_Set := Ready_Set;
(2) Found := false;
(3) Count := 0;
(4) while not Found and Not_Empty(Working_Ready.Set) and Count < Backtrack_Limit loop
(5) Count := Count + 1;
(6) Temp..Schedule := Partial_Schedule;
(7) Earliest..Deadline_Set := {v I v in Working_Ready_Set and ready(v) <= Last_Stop_Time};
(8) if Not_Empty(Earliest_Deadline_Set) then
(9) v := Remove_Item_With_Earliest_Deadline(Earliest_l)eadline_Set);
(10) Working_Ready_Set := Working.Ready_Set - {v};
(11) else
(12) v := Remove_Item_With_Earliest_Start_Time(Working_Ready_Set);
(13) end if;
(14) st(v) := max{Last_Stop_Time, ready(v)};
(15) ct(v) := st(v) + MET(v);
(16) if ct(v) < d(v) then
(17) Add_Item_To_Schedule(v, Temp_Schedule)
(18) Temp_Ready_Set := Ready_Set -{v};
(19) For each child u of v in CG loop
(20) if all parents of u are in Temp_Schedule then
(21) Add_Item_To_Set(u, Temp_Ready_Set);
(22) end if;
(23) end loop;
(24) if Not.Empty(Temp_Ready_Set) then
(25) Limited_BackTrack(Backtrack_Limit, ct(v), Temp_Schedule, Temp_Ready_Set, Best_Schedule);
(26) Found := Non_Empty(Best_Schedule);
(27) else -- no unscheduled vertex
(28) Best_Schedule := Temp_Schedule;
(29) Found := true;
(30) end if;
(31) end if;
(32) end loop;
End.

Ideally, the effect iveness o f a heurist ic a lgor i thm should be measured by the ratio

success-rate o f the heurist ic a lgor i thm

success-rate o f an opt imal a lgor i thm

where success-rate o f an a lgor i thm is defined as the ratio

number o f feasible schedule found

number o f prototypes tested

Unfortunately, it is impractical , i f not impossible , to run the exhaus t ive-enumera t ion algo-

r i thm on all 2344 prototypes, so we shall only use the success-rate o f the heurist ic a lgor i thm

as a relat ive measure on the effect iveness o f the algori thms. Since the success-rate varies

REAL-TIME SCHEDULING FOR SOFTWARE PROTOTYPING 61

Table 14. Summary of the prototypes for the uni-processor algorithms.

Group prototypes prototypes operators edge average edge vertices average edge
ID generated accepted count per density count per count per count per

prototype prototype constraint constraint
graph graph

1 200 169 8 0.1 2.94 24 38.90
2 200 173 8 0.3 8.10 24 82.72
3 200 179 8 0.5 14.07 24 279.73
4 ~300 286 16 0.1 12.06 48 136.28
5 300 274 16 0.3 36.22 48 390.33
6 300 276 16 0.5 60.32 48 538.41
7 400 324 32 0.1 49.23 96 680.33
8 400 324 32 0.3 148.40 96 1916.45
9 400 324 32 0.5 246.91 96 2307.28

Table 15. Average running time of the uni-processor EDF and ESF algorithms.

Average Running Time (sec.)
Group ID 1 2 3 4 5 6 7 8 9

Earliest-Deadline-First 0 .16 0 .39 0 .86 5 .02 5 .14 9 .32 44.48 97.35 169.34
Earlist-Starting-Time-First 0 .12 0 .33 0 .73 4 .19 4.93 8.71 40.48 98.87 170.57

significantly for prototypes with large load factors, we further subdivide the prototypes in
each group into the five subgroups based on the following load factor ranges: [0.0, 0.6],
(0.6, 0.7], (0.7, 0.8], (0.8, 0.9] and (0.9, 1.0]. The success-rate of the two algorithms over
the 9 groups of prototypes are shown in Table 16.

The earliest-deadline-first algorithm is very effective in finding feasible solutions for
prototypes with load factor 0.7 or below. For prototypes with load factor above 0.7, its
success-rate decreases significantly as the complexity of the scheduling constraint graphs
increases. While the earliest-deadline-first algorithm may have difficulties in finding the
feasible schedules in more complicated graphs, the number of graphs which have feasible
schedules also decreases as the graphs become more complicated. Hence, the actual perfor-
mance of the earliest-deadline-first algorithm could be much better than what the success
rate indicates.

The earliest-starting-time-first algorithm also performs quite well for prototypes with load
factor 0.7 or below, but its overall performance is worse than that of the earliest-deadline-first
algorithm algorithm for large load factors.

Since the schedule produced by the earliest-deadline-first algorithm is also the first sched-
ule examined by both the simulated-annealing algorithm and the limited-backtrack algo-
rithm, the latter two algorithms are at least as effective as the earliest-deadline-first algo-
rithm. In an attempt to find out whether they can really out-perform the earliest-deadline-first
algorithm, we tested the two algorithms with the 179 prototypes which the earliest-deadline-
first algorithm failed to find feasible solutions in test groups 4, 5 and 6. Each algorithm was
allowed to spend up to one hour on each prototype and the Limited-Backtrack algorithm

62 LUQI AND M. SHING

@

[,z.,

' - ' ~ ~ ~
o',1o o o o o ~ o ~ �9

R N N N N N ~
~ d d d d N d d d d

o l
0Ol

-o r ' : ,

',,Ol

0

REAL-TIME SCHEDULING FOR SOFTWARE PROTOTYPING 63

was allowed to expand up to four vertices in each backtrack level. As shown in Table 17,
both algorithms take a long time to run. Among the 179 prototypes tested, the simulated-
annealing algorithm found 7 feasible schedules and was timed out for the remaining 172
prototypes. The limited-backtrack found 6 feasible schedules, was timed out in 84 times,
and stopped and returned no feasible schedule for the remaining 87 prototypes.

Table 17. Simulated-annealing and limited-backtrack results.

Simulated-annealing Limited-backtrack

Group prototypes prototypes feasible prototypes feasible
ID tested timed out schedules timed out schedules
4 12 11 1 8 3
5 75 71 4 52 3
6 92 90 2 24 0

Assuming that a backtrack limit of 4 is sufficient to locate all feasible schedules for
prototypes with 16 operators, then we can eliminate the 87 prototypes which the limited-
backtrack algorithm reported to have no feasible schedules from the test groups 4, 5 and
6, resulting in the improved success-rates for the earliest-deadline-first algorithm and the
earliest-starting-time-first algorithm shown in Table 18, a further indication that the earliest-
deadline-first algorithm is very effective for CAPS uni-processor scheduling.

3.3. Mult iple Processor Scheduling

Since the next generation of CAPS will run in a multi-processor configuration, we have
also extended the earliest-deadline-first, the earliest-starting-time-first, and the limited-
backtrack algorithms (Table 19, 20 and 21) to handle multi-processor scheduling for hard
real-time systems [3, 7]. The reason for choosing these three algorithms is because they
are the most practical ones (in terms of efficiency/effectiveness trade-offs) for the rapid
prototyping environment.

The algorithms assume a shared memory, multi-processor configuration (i.e. Si = s,
D i , j ~ 0, and T/.j = 0). The major difference between single processor scheduling and
multiple processor scheduling is that, in addition to deciding which task is to be executed
next, the multiple processor scheduling algorithms must decide which processor the task
should run on. Given a constraint graph CG and N identical processors, the N-processor
schedule S is a N-tuple of linear tables [SI, $2 SN] that partitions the vertices in C G
into N disjoint sets.

All three algorithms uses two arrays SCHEDULE_ARRAY[1..N] and LAST_STOP_
TIME_ARRAY[1..N] to keep track of the vertices assigned to each of the N processors,
and the completion time of the last scheduled vertex in each of the processors respectively.
They follow the same logic as their uni-processor counter parts in removing vertices from
the Ready_Set and the Working_Ready_Set, and always assign the vertices to the processor
with the smallest Last_Stop_Time value to minimize the CPU idle time.

64 LUQI AND M. SHING

g..1

t

~ d d o

d o

REAL-TIME SCHEDULING FOR SOFTWARE PROTOTYPING 65

Table 19. The Multi-Processor Earliest-Starting-Time-First Algo-
rithm.

The Multi_Proeessor_Earliest_Starting_Time_First Algorithm:
Begin
(1) Ready_Set := {Dummy};
(2) Schedule_Array[1..N] := lempty..empty];
(3) Last_Stop_Time_Array[1..N] := [0..0];
(4) While Not_Empty(Ready_Set) loop
(5) i := Id of the processor with smallest Last_Stop_Time value;
(6) v := Remove-Item_With_Earliest_Start_Time(Ready_Set);
(7) st(v) := max {Last_Stop_Time_Array[i], ready(v)};
(8) ct(v) := st(v) + MET(v);
(9) Add_Item_To_Schedule(v, Schedule.Array[i])
(10) Last_Stop_Time_Array[i] := ct(v);
(11) For each child u of v in CG loop
(12) if all parents of u are in Schedule_Array then
(1 3) AddJtem_To_Set(u, Ready_Set);
(14) end if;
(15) end loop;
(16) end loop;
(17) if Cost(Schedule_Array) = 0 then
(18) Output "Schedule Found";
(19) else
(20) Output "Schedule Not Found";
(21) end if;
(22) Output Schedule_An'ay;
End.

3.3.t. Performance Evaluation

All three algorithms have been implemented in Ada. To evaluate their performance, we set
N, the number of processors, to 4 and applied the algorithms to a total of 3900 prototypes
generated by the PSDL random graph generator developed by Cordeiro [4]. The 3900
prototypes are again made up of 9 groups of expanded dataflow graphs shown in Table 22,
and none of the 3900 random prototypes is rejected by the scheduler since they all have
load factors less than 4.0.

Like their uni-processor counter parts, both earliest-deadline-first and earliest-starting-
time-first algorithms are very efficient, as indicated by the average running time shown in
Table 23. The average running time of the Multi-processor EDF and ESF algorithms is
actually less than their uni-processor counter-parts. This abnormality can be explained by
the fact that the two experiments were conducted under different system loads.

Table 24 shows the success-rate of the two algorithms under different load factors. The
earliest-deadline-first algorithm was able to locate 3200 feasible schedules out of the 3900
prototypes tested. Both algorithms perform very well for prototypes with load factors up
to 1.6, and then deteriorate as load factors increase above 1.6.

In order to find out whether the decrease in success-rate is caused by the inability of the
algorithms in finding feasible schedules or the infeasibility of the prototypes themselves,
we apply the limited-backtrack algorithm to the 700 prototypes which the earliest-deadline-

66 LUQI AND M. SHING

Table 20. The Multi-Processor Earliest.Deadline_First Algorithm.

The Multi_Processor_Earliest.Deadline_First Algorithm:
Begin
(1) Ready_Set := {Dummy};
(2) Schedule_Array[1..N] := [empty..empty];
(3) Last_Stop_Time_Array[1... N] := [0... 0];
(4) While Not.Empty(Ready_Set) loop
(5) i := Id of Processor with smallest Last_Stop_Time value;
(6) Earliest_Deadline_Set := {v I v in Ready_Set and ready(v) <= Last_Stop_Time[i]};
(7) if Not_Empty(Earliest_Deadline_Set) then
(8) v := Remove_Item_With_Earliest_Deadline(Earliest_Deadline_Set);
(9) Ready_Set := Ready_Set - {v};
(10) else
(11) v := Remove_Item_With_Earliest_Start_Time(Ready_Set);
(12) end if;
(13) st(v) := max {Last_Stop_Time_Array[i], ready(v)};
(14) ct(v) := st(v) + MET(v);
(15) Add_Item_To_Schedule(v, Schedule_Array[i])
(16) Last_Stop_Time_Array[i] := ct(v);
(t7) For each child u of v in CG loop
(18) ifaU parents ofu are in Schedule_Array then
(1 9) Add_Item_To_Set(u, Ready_Set);
(20) end if;
(21) end loop;
(22) end loop;
(23) if Cost(Schedule_Array) = 0 then
(24) Output "Schedule Found";
(25) else
(26) Output "Schedule Not Found";
(27) end if;
(28) Output Schedule_Array;
End.

first algorithm failed to find feasible solutions. With a backtrack l imit of 4 and a t ime-out
l imit of one hour, the l imited-backtrack algorithm found 6 feasible schedules, was t imed
out once, and stopped and returned no feasible schedule for the remaining 693 prototypes.

Again, assuming that a backtrack limit of 4 is sufficient to locate all feasible schedules
for prototypes with up to 32 operators, we can eliminate the 693 prototypes which the
l imited-backtrack algorithm reported to have no feasible schedules from the 3900 proto-
types, resulting in the improved success-rates for the earliest-deadline-first algorithm and the
earliest-starting-time-first algorithm in Table 25, which shows that the earliest-deadline-first
algorithm is very effective for both uni-processor and multi-processor real-t ime scheduling.

4. Conclus ions

This paper presents a collection of algorithms for generating static schedules for the time
critical operators in a software prototype. These algorithms solve the general problem of

REAL-TIME SCHEDULING FOR SOFTWARE PROTOTYPING 67

Table 21. The Multi-Processor Limited-Backtrack Algorithm.

Procedure Limited_BackTrack(Backtrack_Limit, Last_Stop_Time_Array,
Partial_Schedule_Array, Ready_Set, Best_Schedule_Array):

Begin
(1) Working.Ready_Set := Ready_Set;
(2) Found := false;
(3) C o u n t : = 0 ;
(4) while not Found and Not_Empty(Working..Ready_Set) and Count < Backtrack_Limit loop
(5) Count := Count § 1;
(6) Temp_Schedule_Array := Partial_Schedule_Array;
(7) i := Id of the processor with smallest Last_Stop_Time value;
(8) Earliest_Deadline_Set := {v I v in Working_Ready_Set and ready(v) <= Last_Stop_Time_Array[i]};
(9) if Not_Empty(Earliest_Deadline_Set) then
(10) v := Remove_Item_With_Earliest.Deadline(Earliest_Deadline_Set);
(11) Working_Ready_Set := Working_Ready_Set- {v};
(12) else
(13) v := Remove_Item_With_Earliest_Start_Time(Working_Ready_Set);
(14) end if;
(15) st(v) := max {Last_Stop_Time_Array[i], ready(v)};
(16) ct(v) := st(v) + MET(v);
(17) if ct(v) < d(v) then
(18) AddJtem_To_Schedule(v, Temp _Schedule_Array [i])
(19) Temp_Ready_Set := Ready_Set - {v};
(20) Temp_Stop_Time_Array := Last_Stop_Time_Array;
(21) Temp_Stop_Time_Array[i] := cv(t);
(22) For each child u of v in CG loop
(23) if all parents of u are in Temp_Schedule_Array then
(24) Add_Item_To_Set(u, Temp_Ready_Set);
(25) end if;
(26) end loop;
(27) if Not_Empty(Temp_Ready_Set) then
(28) Limited_BackTrack(Backtrack_Limit, Temp_Stop_Time_Array,

Temp_Schedule_Array, Temp_Ready_Set, Best_Schedule_Array);
(29) Found := Non.Empty(Best_Schedule_Array);
(30) else -- no unscheduled vertex
(31) Best_Schedule_Array := Temp_Schedule_Array;
(32) Found := true;
(33) end if;
(34) end if;
(35) end loop;
End.

68 LUQI AND M. SHING

Table 22. Summary of the prototypes for the multi-processor algorithms.

Group prototypes prototypes operators edge average edge vertices average edge
ID generated accepted count per density count per count per count per

prototype prototype constraint constraint
graph graph

1 200 200 8 0.1 2.73 24 39.52
2 200 200 8 0.3 8.50 24 82.33
3 200 200 8 0.5 13.85 24 122.84
4 500 500 16 0.1 12.16 48 137.16
5 500 500 16 0.3 35.78 48 396.96
6 500 500 16 0.5 60.11 48 540.89
7 600 600 32 0.1 49.48 96 793.51
8 600 600 32 0.3 148.78 96 1944.89
9 600 600 32 0.5 248.68 96 2328.68

Table 23. Average running time of the multi-processor EDF and ESF algorithms.

Average Running Time (sec.)
Group ID 1 2 3 4 5 6 7 8 9

Earliest-Deadline-First 0.04 0.08 0.14 0.38 2.41 3.61 15.22 73.36 117.07
Earlist- St arting-Time_First 0.03 0.07 0.12 0.33 2.30 3.32 14.43 74.19 116.46

Table 24. Success-rate of the multi-processor EDF and ESF algorithms.

Group
ID

Earliest-Deadline-First

Load Factors
[0, 1.21 (1.2, 1.6] (1.6, 2.0] (2.0, 2.4]

1.00 1.00 x x
0.99 0.67 x x
0.91 0.25 x x
1.00 1.00 0.96 0.83
0.98 0.79 0.46 0.20
0.89 0.17 0.00 0.00
1.00 1.00 0.99 0.90
0.99 0.80 0.32 0.07
0.80 0.06 0.00 0.00

Earliest-Starting-Time-First

Load Factors
[0, 1.2] (1.2, 1.6] (1.6, 2.0] (2.0, 2.41

1.00 1.00 x x
0.99 0.67 x x
0.91 0.25 x x
1.00 1.00 0.97 0.83
0.98 0.79 0.43 0.20
0.89 0.17 0.00 0.00
1.00 1.00 0.99 0.90
0.99 0.78 0.28 0.07
0.80 0.06 0.00 0.00

x - no prototype generated for this case

REAL-TIME SCHEDULING FOR SOFTWARE PROTOTYPING 69

Table 25. Adjusted success-rate of the multi-processor EDF and ESF algorithms.

Group
1D

Earliest-Deadline-First

Load Factors
[0, 1.2] (1.2, 1.6] (1.6, 2.0] (2.0, 2.4]

1.00 1.00 x x
1.00' 1.00" x x
1.00" 1.00" x x
1.00 1.00 0.97* 0.83
1.00" 1.00" 0.96* 1.00"
1.00' 1.00" y y
1.00 1.00 0.99 0.90
1.00" 1.00" 1.00" 1.00"
1.00" 1.00" y y

Earliest-Starting-Time-First

Load Factors
[0, 1.2] (1.2, 1.6] (1.6, 2.0] (2.0, 2.4]

1.00 1.00 x x
1.00" 1.00" x x
1.00" 1.00" x x
1.00 1.00 0.99* 0.83
1.00" 1.00" 0.91" 1.00'
1.00" 1.00" y y
1.00 1.00 0.99 0.90
1.00' 0.98* 0.90* 1.00"
1.00' 1.00" y y

x - no prototype generated for this case
y - all prototypes are eliminated by the limited-backtrack algorithm
* - improved success-rates

automated pre-run-time scheduling of processes with arbitrary release times, deadlines and
precedence relations in hard real-time systems as defined by the PSDL specification. Em-
pirical studies show that the earliest_deadline_first algorithm is very efficient and effective
enough to support the rapid prototyping environment provided by CAPS. The limited-
backtrack algorithm, on the other hand, is a good complement to the earliest_deadline_first
algorithm since it allows user to trade-off between efficiency and effectiveness through a
simple backtrack-limit parameter. We have applied the earliest-deadline-first algorithm to
several prototypes with 300 time-critical operators (and scheduling constraint graphs with
900 vertices) and it took at most 2 hours to process each prototype. Since the current imple-
mentation neither generates the scheduling constraint graph explicitly nor uses efficient data
structures to keep track of the parents and children of each operator-instance in the constraint
graph, the algorithms spend a lot of time checking the parents of each operator-instance
for no-unscheduled-parent condition. The algorithms will be able to handle even larger
prototypes once we improve their efficiency with the help of additional data structures.

The ability to generate executable schedules automatically is a valuable asset of a rapid
prototyping environment. Constructing and fine tuning a static schedule manually is a
slow, labor intensive, and error prone process. An alternative manual approach, centralized
implementation through an interrupt driven prioritization scheme, produces a dynamic
schedule whose effects are difficult to predict and control. The timing requirements are
difficult for the user to provide and for the analysts to determine. As the software is modified,
various aspects of its execution behavior change, including maximum execution times and
execution precedences for the subfunctions. Without automated schedule generation, these
changes are often observed only after the fact: the system crashes during testing, or required
functions don' t get processed when needed. The availability of a non-preemptive static
schedule, though conservative, guarantees that all the specified timing requirements will
be met even under the worst case situation. Such information is particularly useful at the
design level, where many of the timing requirements are being firmed up through prototype
simulation.

70 LUQI AND M. SHING

The results reported in this article also identify several weaknesses and areas which
requires improvement within CAPS and PSDL.

(1) More efficient implementation of existing algorithms:

As mentioned earlier, existing algorithms spend a lot of time checking the parents of
each operator-instance for no-unscheduled-parent condition. The algorithm can be
speeded up tremendously if the above operation can be made more efficient with the
help of additional data structures.

(2) Interactive Timing Analysis:

Most of the feasibility checks for the prototypes are currently enforced by the scheduler.
Such an approach requires the engineers to go through the "edit, save file, then schedule"
cycle in order to find out if the timing constraints violate any feasibility constraint. The
prototyping process can be made much more efficient and user-friendly if these checks
are enforced by the CAPS PSDL syntax-directed editor, where users can detect and
receive warnings as they enter the design.

(3) More intelligent execution profiler:

Prototype execution can reveal a lot of information about the dynamic behavior of the
design. Current CAPS has a very simple run-time executive which only checks for
the violation of deadlines. It will be very beneficial to the designers if the run-time
executive can also collect information like how often each operator fires, how often an
operator misses its deadline, the average and worst-case tardiness of an operator.

(4) Operators with soft deadlines:

The timing model described in this paper only allows two kinds of operators, time-
critical (TC) operators which have hard deadlines and non-time-critical (NTC) operators
which have no deadlines. In many real-time systems, there is often a third kind of
operators, those with a "soft deadline". Operators with soft deadlines (STC) are of
lower priority than those with hard deadlines, but of higher priority than those with no
deadlines [22]. Under the current timing model, a NTC operator can starve for a long
time before its execution in prototypes with high load factors. The purpose of a soft
deadline is to allow the designers to request the system to allocate enough time for the
STC operators over a period of time. It is allowable for the STC operators to miss their
deadline once a while. But the CAPS run-time executive should issue a warning if the
frequency of missing deadlines by a STC operator exceeds some specified threshold.

Acknowledgment

The authors would like to thank Valdis Berzins for helpful suggestions in revising the
manuscript.

This research was supported in part by the National Science Foundation under grant
number CCR-9058453 and the Army Research Office under grant number ARO 111-95.

REAL-TIME SCHEDULING FOR SOFTWARE PROTOTYPING 71

Notes

1. An expanded dataflow graph ofa PSDL program can be obtained from the top-level dataflow graph that contains
the single root node by successfully replacing all composite operators with their decomposition graphs. See
[22] for details.

2. That is, we only allow the processors to idle if no operator is available for execution.

3. The edge density is the probability of having an edge between any two vertices in the random graph

References

1. V. Cerny, "A thermodynamical approach to the traveling salesman problem: An efficient simulation algo-
rithm?' Journal of Optimization Theory and Application 45, pp. 41--45, 1985.

2. J. Cervantes, "An optimal static scheduling algorithm for hard real-time systems specified in a prototyping
language," Master's Thesis, Computer Science, Naval Postgraduate School, Monterey, CA, Dec. 1989.

3. T. Chang, "Static scheduler for hard real-time tasks on multiprocessor systems" Master's Thesis, Computer
Science, Naval Postgraduate School, Monterey, CA, Dec. 1989.

4. M. Cordeiro, "Distributed hard real-time scheduling for a software prototyping environment," Doctoral
Dissertation, Computer Science, Naval Postgraduate School, Monterey, CA, March 1995.

5. B. Fan, "Evaluations of some scheduling algorithms for hard real-time systems," Master's Thesis, Computer
Science, Naval Postgraduate School, Monterey, CA, September 1992.

6. B.F•annery••984.NumericalRecipesinC-TheArt•fScienti•cC•mputing•CambridgeUniversityPress:
New York, NY.

7. L. Hsu, "Multiprocessor scheduling for hard real-time software," Master's Thesis, Computer Science, Naval
Postgraduate School, Monterey, CA, June 1990.

8. D. Johnson, C. Aragon, L. McGeoch, and C. Schevon, "Optimization by simulated annealing: An experi-
mental evaluation; Part I, Graph partitioning." Operations Research 37, pp. 865-892, 1989.

9. D. Johnson, C. Aragon, L. McGeoch, and C. Schevon, "Optimization by simulated annealing: An experi-
mental evaluation; Part II, Graph coloring and number partitioning." Operations Research 38, 1990.

10. S. Kirkpatrick, C. Gelatt, Jr., and M. Vecchi, "Optimization by simulated annealing." Science 220, pp. 671-
680, 1983.

11. M. Kilic, "Static schedulers for embedded and hard real-time systems," Master's Thesis, Computer Science,
Naval Postgraduate School, Monterey, CA, June 1990.

12. B. Kraemer, Luqi, and V. Berzins, "Compositional semantics of a real-time prototyping language." 1EEE
Trans. on Software Engineering SE-19, pp. 453-477, 1993.

13. Luqi, V. Berzins, and R. T. Yeh, "Prototyping language for real-time software." IEEE Trans. on Software
Engineering SE-14, pp. 1409-1423, 1988.

14. Luqi and V. Berzins, "Rapidly prototyping real-time systems" IEEE Software 5, pp. 25-36, 1988.
15. Luqi and V. Berzins, "Semantics of real-time languages," in Proceedings of the Real-'Eme Systems Sympo-

sium, Huntsville, AL, 1988, pp. 106-110.
16. Luqi and V. Berzins• ``Executi•n •f a high-•eve• real-time •anguage •• in Pr•ceedings •f the Real- Time Systems

Symposium, Huntsville, AL, 1988, pp. 69-76.
17. J. Levine, "Efficient static schedulers for the CAPS systems" Master's Thesis, Computer Science Depart-

ment, Naval Postgraduate School, Monterey, CA, June 1991.
18. Luqi and M. Ketabchi, "A computer aided prototyping system." 1EEE Software 5, pp. 66--72, 1988.
19. Luqi, M. Shing, P. Barnes, and G. Hughes, "Prototyping hard real-time Ada systems in a slassroom en-

vironment;' in Proc. of the Seventh Annual Ada Software Engineering Education and Training (ASEET)
Symposium, Monterey, CA, 1993, pp. 103-117.

20. Luqi• ``Hand•ingtiming c•nstralnts in rapid pr•t•typing••• in Pr•ceedings •f the 22nd Annual Hawaii •nter-
national Conference on System Science, Kallua-Kona, Hawaii, 1989, pp. 417-424.

21. Luqi, "Computer-aided prototyping for a command-and-control system using CAPS" IEEE Software 9,
pp. 56-67, 1992.

22. Luqi, "Real-time constraints in a rapid prototyping language" Computer Language 18, pp. 77-103, 1993.

72 LUQI AND M. SHING

23. A. Mok, "Fundamental design problems of distributed systems for the hard real-time environment," Ph.D.
dissertation, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, MA, 1983.

24. N. Metropolis, A. W. Rosenblnth, M. N. Rosenbluth, A. H. Teller, and A. E. Teller, "Equation of state
calculations by fast computing machines." Journal of Chemical Physics 21, pp. 1087-1092, 1953.

25. S. Nahar, S. Sahni, and E. Shragowitz, "Simulated annealing and combinatorial optimization" in Proc. 23rd
Design Automation Conference, 1986, pp. 293-299.

26. L. Sha and J. G••den•ugh• ``Rea•-time schedu•ing the•ry and Ada.•• •EEE C•mputer 23(4)• pp. 5 3-62• Apri••
1990.

27. A. Stoyenko, V. Hamacher, and R. Holt, "Analyzing hard real-time programs for guaranteed schedulability."
IEEE Trans. on Software Engineering SE-17, pp. 737-750, 1991.

28. J. Stankovic and K. Ramamritham, 1988. Tutorial on Hard Real-Time Systems. IEEE Computer Society
Press: Washington, D.C., 1988.

29. J. Stankovic, M. Sprui, M. Di Natale, and G. Buttazzo, "Implications of classical scheduling results for
real-time systems." IEEE Computer 28, pp. 16-25, 1995.

30. J. U••man• ``NP-c•mp•ete schedu•ing pr•b•em •• J•urnal •f C•mputer and System Sciences ••• pp. 384-393•
1975.

31. J. U••man• ``C•mp•exity •f sequence pr•b•em •• in C•mputer and J•b-Sh•p Scheduling The•ry. J•hn Wi•ey
& Sons: NY, 1976.

32. M. Vecchi and S. Kirkpatrick, "Global wiring by simulated annealing" IEEE Trans. on Computer-Aided
Design CAD-2, pp. 215-222, 1983.

33. H. Wedde, B. Korel, and D. Huizinga, "Static analysis of timing properties for distributed real-time pro-
grams." Real-Time Systems Newsletter 7, pp. 88-95, 1991.

34. J. Xu and D. Parnas, "Scheduling processes with release times, deadlines, precedence, and exclusion rela-
tions?' IEEE Trans. on Software Engineering 16, pp. 360-369, 1990.

35. S. Zdrzalka• ``Schedu•ing j•bs •n a sing•e machine with peri•dic re•ease date/dead•ine interva•s •• Eur•pean
Journal of Operations Research 40, pp. 243-251, 1989.

