11 research outputs found

    Enhancing the Physical Layer Security of Dual-functional Radar Communication Systems

    Full text link
    Dual-functional radar communication (DFRC) system has recently attracted significant academic attentions as an enabling solution for realizing radar-communication spectrum sharing. During the DFRC transmission, however, the critical information could be leaked to the targets, which might be potential eavesdroppers. Therefore, the physical layer security has to be taken into consideration. In this paper, fractional programming (FP) problems are formulated to minimize the signal-to-interference-plus-noise ratio (SINR) at targets under the constraints for the SINR of legitimate users. By doing so, the secrecy rate of communication can be guaranteed. We first assume that communication CSI and the angle of the target are precisely known. After that, problem is extended to the cases with uncertainty in the target's location, which indicates that the target might appear in a certain angular interval. Finally, numerical results have been provided to validate the effectiveness of the proposed method showing that it is viable to guarantee both radar and secrecy communication performances by using the techniques we propose.Comment: 6 pages, 5 figures, accepted by IEEE GLOBECOM 201

    Performance of multi-hop cognitive MIMO relaying networks with joint constraint of intercept probability and limited interference

    Get PDF
    In this paper, we propose a multi-hop multiple input multiple output (MIMO) decode-and-forward relaying protocol in cognitive radio networks. In this protocol, a multi-antenna secondary source attempts to send its data to a multi-antenna secondary destination with assistance of multiple intermediate multi-antenna nodes, in presence of a multi-antenna secondary eavesdropper. A primary network includes a primary transmitter and a primary receiver which are equipped with multiple antennas, and use transmit antenna selection (TAS) and selection combining (SC) to communicate with each other. Operating on the underlay spectrum sharing method, the secondary source and relay nodes have to adjust their transmit power so that the outage performance of the primary network is not harmful and satisfy the quality of service (QoS). Moreover, these secondary nodes also reduce their transmit power so that the intercept probability (IP) at the eavesdropper at each hop is below a desired value. To improve the outage performance of the secondary network under the joint constraint of IP and limited interference, the TAS/SC method is employed to relay the source data hop-by-hop to the destination. We derived exact closed-form expressions of the end-to-end (e2e) outage probability (OP) and IP of the proposed protocol over Rayleigh fading channels. Monte Carlo simulations are then performed to verify the theoretical derivations

    A Comprehensive Survey on Cooperative Relaying and Jamming Strategies for Physical Layer Security

    No full text
    Physical layer security (PLS) has been extensively explored as an alternative to conventional cryptographic schemes for securing wireless links. Many studies have shown that the cooperation between the legitimate nodes of a network can significantly enhance their secret communications performance, relative to the noncooperative case. Motivated by the importance of this class of PLS systems, this paper provides a comprehensive survey of the recent works on cooperative relaying and jamming techniques for securing wireless transmissions against eavesdropping nodes, which attempt to intercept the transmissions. First, it provides a in-depth overview of various secure relaying strategies and schemes. Next, a review of recently proposed solutions for cooperative jamming techniques is provided with an emphasis on power allocation and beamforming techniques. Then, the latest developments in hybrid techniques, which use both cooperative relaying and jamming, are elaborated. Finally, several key challenges in the domain of cooperative security are presented along with an extensive discussion on the applications of cooperative security in key enablers for 5G communications, such as nonorthogonal multiple access, device-to-device communications, and massive multiple-input multiple-output systems.peerReviewe
    corecore