1,921 research outputs found

    HaTS: Hardware-Assisted Transaction Scheduler

    Get PDF
    In this paper we present HaTS, a Hardware-assisted Transaction Scheduler. HaTS improves performance of concurrent applications by classifying the executions of their atomic blocks (or in-memory transactions) into scheduling queues, according to their so called conflict indicators. The goal is to group those transactions that are conflicting while letting non-conflicting transactions proceed in parallel. Two core innovations characterize HaTS. First, HaTS does not assume the availability of precise information associated with incoming transactions in order to proceed with the classification. It relaxes this assumption by exploiting the inherent conflict resolution provided by Hardware Transactional Memory (HTM). Second, HaTS dynamically adjusts the number of the scheduling queues in order to capture the actual application contention level. Performance results using the STAMP benchmark suite show up to 2x improvement over state-of-the-art HTM-based scheduling techniques

    Tuning the Level of Concurrency in Software Transactional Memory: An Overview of Recent Analytical, Machine Learning and Mixed Approaches

    Get PDF
    Synchronization transparency offered by Software Transactional Memory (STM) must not come at the expense of run-time efficiency, thus demanding from the STM-designer the inclusion of mechanisms properly oriented to performance and other quality indexes. Particularly, one core issue to cope with in STM is related to exploiting parallelism while also avoiding thrashing phenomena due to excessive transaction rollbacks, caused by excessively high levels of contention on logical resources, namely concurrently accessed data portions. A means to address run-time efficiency consists in dynamically determining the best-suited level of concurrency (number of threads) to be employed for running the application (or specific application phases) on top of the STM layer. For too low levels of concurrency, parallelism can be hampered. Conversely, over-dimensioning the concurrency level may give rise to the aforementioned thrashing phenomena caused by excessive data contention—an aspect which has reflections also on the side of reduced energy-efficiency. In this chapter we overview a set of recent techniques aimed at building “application-specific” performance models that can be exploited to dynamically tune the level of concurrency to the best-suited value. Although they share some base concepts while modeling the system performance vs the degree of concurrency, these techniques rely on disparate methods, such as machine learning or analytic methods (or combinations of the two), and achieve different tradeoffs in terms of the relation between the precision of the performance model and the latency for model instantiation. Implications of the different tradeoffs in real-life scenarios are also discussed

    Transparent support for partial rollback in software transactional memories

    Get PDF
    The Software Transactional Memory (STM) paradigm has gained momentum thanks to its ability to provide synchronization transparency in concurrent applications. With this paradigm, accesses to data structures that are shared among multiple threads are carried out within transactions, which are properly handled by the STM layer with no intervention by the application code. In this article we propose an enhancement of typical STM architectures which allows supporting partial rollback of active transactions, as opposed to the typical case where a rollback of a transaction entails squashing all the already-performed work. Our partial rollback scheme is still transparent to the application programmer and has been implemented for x86-64 architectures and for the ELF format, thus being largely usable on POSIX-compliant systems hosted on top of off-the-shelf architectures. We integrated it within the TinySTM open-source library and we present experimental results for the STAMP STM benchmark run on top of a 32-core HP ProLiant server. © 2013 Springer-Verlag

    Analytical/ML Mixed Approach for Concurrency Regulation in Software Transactional Memory

    Get PDF
    In this article we exploit a combination of analytical and Machine Learning (ML) techniques in order to build a performance model allowing to dynamically tune the level of concurrency of applications based on Software Transactional Memory (STM). Our mixed approach has the advantage of reducing the training time of pure machine learning methods, and avoiding approximation errors typically affecting pure analytical approaches. Hence it allows very fast construction of highly reliable performance models, which can be promptly and effectively exploited for optimizing actual application runs. We also present a real implementation of a concurrency regulation architecture, based on the mixed modeling approach, which has been integrated with the open source Tiny STM package, together with experimental data related to runs of applications taken from the STAMP benchmark suite demonstrating the effectiveness of our proposal. © 2014 IEEE

    Model-Based Proactive Read-Validation in Transaction Processing Systems

    Get PDF
    Concurrency control protocols based on read-validation schemes allow transactions which are doomed to abort to still run until a subsequent validation check reveals them as invalid. These late aborts do not favor the reduction of wasted computation and can penalize performance. To counteract this problem, we present an analytical model that predicts the abort probability of transactions handled via read-validation schemes. Our goal is to determine what are the suited points-along a transaction lifetime-to carry out a validation check. This may lead to early aborting doomed transactions, thus saving CPU time. We show how to exploit the abort probability predictions returned by the model in combination with a threshold-based scheme to trigger read-validations. We also show how this approach can definitely improve performance-leading up to 14 % better turnaround-as demonstrated by some experiments carried out with a port of the TPC-C benchmark to Software Transactional Memory

    Clock gate on abort: Towards energy-efficient hardware transactional memory

    Get PDF
    Transactional Memory (TM) is an emerging technology which promises to make parallel programming easier compared to earlier lock based approaches. However, as with any form of speculation, Transactional Memory too wastes a considerable amount of energy when the speculation goes wrong and transaction aborts. For Transactional Memory this wastage will typically be quite high because programmer will often mark a large portion of the code to be executed transactionally. We are proposing to turn-off a processor dynamically by gating all its clocks, whenever any transaction running in it is aborted. We have described a novel protocol which can be used in the Scalable-TCC like Hardware Transactional Memory systems. Also in the protocol we are proposing a gating-aware contention management policy to set the duration of the clock gating period precisely so that both performance and energy can be improved. With our proposal we got an average 19% savings in the total consumed energy and even an average speed-up of 4%.Peer ReviewedPostprint (published version

    Performance Optimization Strategies for Transactional Memory Applications

    Get PDF
    This thesis presents tools for Transactional Memory (TM) applications that cover multiple TM systems (Software, Hardware, and hybrid TM) and use information of all different layers of the TM software stack. Therefore, this thesis addresses a number of challenges to extract static information, information about the run time behavior, and expert-level knowledge to develop these new methods and strategies for the optimization of TM applications

    PIM-STM: Software Transactional Memory for Processing-In-Memory Systems

    Full text link
    Processing-In-Memory (PIM) is a novel approach that augments existing DRAM memory chips with lightweight logic. By allowing to offload computations to the PIM system, this architecture allows for circumventing the data-bottleneck problem that affects many modern workloads. This work tackles the problem of how to build efficient software implementations of the Transactional Memory (TM) abstraction by introducing PIM-STM, a library that provides a range of diverse TM implementations for UPMEM, the first commercial PIM system. Via an extensive study we assess the efficiency of alternative choices in the design space of TM algorithms on this emerging architecture. We further quantify the impact of using different memory tiers of the UPMEM system (having different trade-offs for what concerns latency vs capacity) to store the metadata used by different TM implementations. Finally, we assess the gains achievable in terms of performance and memory efficiency when using PIM-STM to accelerate TM applications originally conceived for conventional CPU-based systems.Comment: To be published in 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS '24), April 27-May 1, 2024, La Jolla, CA, US
    • …
    corecore