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Abstract
In this paper we present HaTS, a Hardware-assisted Transaction Scheduler. HaTS improves
performance of concurrent applications by classifying the executions of their atomic blocks (or
in-memory transactions) into scheduling queues, according to their so called conflict indicators. The
goal is to group those transactions that are conflicting while letting non-conflicting transactions
proceed in parallel. Two core innovations characterize HaTS. First, HaTS does not assume the
availability of precise information associated with incoming transactions in order to proceed with
the classification. It relaxes this assumption by exploiting the inherent conflict resolution provided
by Hardware Transactional Memory (HTM). Second, HaTS dynamically adjusts the number of the
scheduling queues in order to capture the actual application contention level. Performance results
using the STAMP benchmark suite show up to 2x improvement over state-of-the-art HTM-based
scheduling techniques.
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1 Introduction

Without reservation, in-memory transactions have experienced a significant growth in ad-
option during the last decade. Specifically, the advent of Hardware Transactional Memory
(HTM) support in commodity processors [27, 7, 16, 30] has changed the way concurrent
programs’ execution is handled, especially in terms of performance advantages. Whether
a multi-threaded application implements atomic blocks using locks or transactions, HTM
can be exploited in both cases (e.g., using Hardware Lock Elision [26] in the former case or
Restricted Transactional Memory [27] in the latter case) to accelerate its performance.
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Hardware transactions are significantly faster than their software counterpart because
they rely on the hardware cache-coherence protocol to detect conflicts, while Software
Transactional Memory (STM) [18] adds a significant overhead of instrumenting shared
memory operations to accomplish the same goal [9]. Relying on the cache-coherence protocol
also makes HTM appealing for mainstream adoption since it requires minimal changes in
hardware. However, this inherent characteristic of HTM represents an obstacle towards
defining contention management and scheduling policies for concurrent transactions, which
are crucial for both progress and fairness of HTM execution in the presence of conflicting
workloads. In fact, most TM implementations achieve high concurrency when the actual
contention level is low (i.e., few transactions conflict with each other). At higher contention
levels, without efficient scheduling, transactions abort each other more frequently, possibly
with a domino effect that can easily lead to performance similar to, if not worse than,
sequential execution [22, 21, 8].

A Contention Manager (CM) is the traditional, often encounter-time technique that
helps in managing concurrency. When a transaction conflicts with another one, the CM is
consulted to decide which of the two transactions can proceed. A CM collects statistics about
each transaction (e.g., start time, read/write-sets, number of retries, user-defined parameters)
and decides priorities among conflicting transactions according to the implemented policy.
Schedulers are similar to CMs except that they may proactively defer the execution of some
transactions to prevent conflicts rather than react to them. In both cases, performance is
improved by decreasing abort rate and fairness is achieved by selecting the proper transaction
to abort/defer [20, 31, 30].

The conflict resolution strategy of current off-the-shelf HTM implementations is provided
entirely in hardware, and can be roughly summarized as follows:

the L1 cache of each CPU-core is used as a buffer for transactional read and write
operations1;
the granularity of conflict detection is the cache line; and
if a cache line is evicted or invalidated, the transaction is aborted (reproducing the idea
of read-set and write-set invalidation of STM [11]).

The above strategy thus implies a requester-wins contention management policy [6], which
informally means that a transaction T1 aborts another transaction T2 if T2 performed an
operation on a memory location that is physically stored in the same cache line currently
requested by T1, excluding the case of two read operations, which never abort each other.
Due to this simple policy, classical CM policies cannot be trivially ported for scheduling HTM
transaction mainly because of two reasons. First, transactions are immediately aborted when
one of the cache lines in their footprint is invalidated, which makes it too late for CM to avoid
conflicts or manage them differently (e.g., by deciding which transaction is more convenient
to abort). Second, it is hard to embed additional metadata to monitor transactions behavior,
since all reads and writes executed within the boundaries of transactions are considered
transactional, even if the accessed locations store metadata rather than actual data.

In this paper we introduce HaTS (Hardware-assisted Transaction Scheduler), a transaction
scheduler that leverages the unique characteristics of HTM to accelerate scheduling in-memory
transactions. To overcome the aforementioned limitations of HTM, HaTS neither aims at
altering HTM’s conflict resolution policy nor adds metadata instrumentation inside hardware
transactions, but instead relies on it to relax the need for the scheduler to define a non-

1 In some HTM implementation [27], reads can be logged on the L2 cache to increase capacity.
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conflicting schedule. HaTS effectively arranges incoming transactions according to a set
of metadata collected either at compilation time (leveraging developer’s annotations) or
at run time (after transactions commit/abort). HTM is then used to execute transactions
concurrently while maintaining atomicity, isolation, and performance.

In a nutshell, HaTS works as follows. It uses a software classifier to queue incoming
transactions with the goal of allowing only those transactions that do not conflict with
each other to execute concurrently. The fundamental innovation of HaTS, which makes it
practical, is that it works with incomplete or even erroneous information associated with
incoming transactions. This is because even if the classifier erroneously allows conflicting
transactions to run concurrently, HTM will inherently prevent them from committing (at
least one of the conflicting transactions will abort). Therefore, misclassifications cannot
impact the correctness of the transactional execution.

More in detail, HaTS offers a set of scheduling queues to group conflicting transactions.
Membership of a queue is determined based on a single metadata object associated with
each transaction, called conflict indicator. A conflict indicator might be provided by the
programmer (e.g., the address of a contended memory location accessed transactionally) or
computed by the system (e.g., transaction abort rate).

A queued transaction waits until the scheduler signals it when it becomes top-standing in
its respective queue. When the transaction actually executes, the built-in HTM takes care of
possible conflicts with transactions dispatched from other queues due to misclassification,
which also includes the case where no conflict indicator is provided.

Another key feature of HaTS is that it adapts the number of scheduling queues based on
a set of global statistics, such as the overall number of commits and aborts. This adaptation
significantly improves performance in two common, and apparently dual cases. On the one
hand, since conflict indicators are mainly best effort indicators, a single per transactions
conflict indicator will not suffice when the application workload is highly conflicting. For
this reason, HaTS reduces the number of queues when the overall conflict level increases,
enforcing transactions with different conflict indicators to be executed sequentially. On the
other hand, if the overall conflict level significantly decreases, HaTS increases the number
of queues in order to (re-)allow transactions with different conflict indicators to execute
concurrently. Additionally, when conflict level remains low, it enables dispatching multiple
transactions from the same queue simultaneously, allowing transactions with the same conflict
indicator to execute in parallel. Our framework aims at adaptively converging on an effective
configuration of scheduling queues for the actual application workload. By leveraging HTM
and its built-in atomicity guarantees, transitions between different configurations do not
entail stalling transaction executions.

We implemented HaTS in C++ and integrated it into the software framework of SEER [13].
We contrasted HaTS performance against Hardware Lock Elision (HLE) [26], Restricted
Transactional Memory (RTM) [27], Software-assisted Conflict Management (SCM) [1], and
SEER itself. We used the STAMP suite as our benchmark and we used a testbed of four-
socket Intel platform with HTM implemented through TSX-NI. Results, including speedup
over the sequential non-instrumented code and two abort rate metrics, show that HaTS
outperforms competitors in both high contention and low contention scenarios. This stems
from both leveraging conflict indicators and performing dynamic adjustment of scheduling
queues, which leads to a notable performance improvement (e.g., 2x speedup in execution
time for Kmeans and a 50% improvement for the Vacation benchmarks).

The rest of this paper is structured as follows. We review previous work in Section 2
and the limitations of the current HTM implementations in Section 3. The design and
implementation details of HaTS are presented in Section 4. We compare the performance of
HaTS against state-of-art competitors in Section 5, and we conclude our paper in Section 6.
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2 Related Work

TM schedulers can be classified based on whether they target STM systems [28, 15, 14, 5] or
HTM systems [13, 25, 1, 4, 29, 31]. Although we deploy and test HaTS in an HTM-based
environment, due to its performance advantages, HaTS can be deployed in STM systems as
well.

Among the HTM-based schedulers, the closest one to HaTS is SEER [13]. SEER’s main
idea is to infer the probability that two atomic blocks conflict, basing its observation on the
commit/abort pattern witnessed in the past while the two were scheduled concurrently. Thus,
HaTS and SEER are similar in their best-effort nature: both of them do not require precise
information on the pair of conflicting transactions nor on the memory location(s) where they
conflict, which is the key to coping with the limitations of current HTM implementations.

HaTS differs from SEER in two core points. First, SEER focuses only on managing
HTM limitations, and thus it schedules transactions based on their commit/abort patterns.
On the other hand, HaTS is a generic scheduler that uses HTM to preserve atomicity and
consistency, and thus it defines a generic conflict indicator object that can embed both
online and offline metadata. Second, SEER adopts a fine-grained (pairwise) locking approach
to prevent transactions that are more likely to conflict from running concurrently. HaTS
replaces this fine-grained locking scheme with a lightweight queueing scheme that controls the
level of conflict by increasing/decreasing the number of scheduling queues. Our experimental
results in Section 5 show that this lightweight scheme results in a lower overhead in different
scenarios, as the case of Vacation where the percentage of committed transactions in HTM
is comparable with SEER’s but overall application execution time is about 50% faster.

The work in [1] proposes a Software-assisted Conflict Management (SCM) extension to
HTM-based lock elision (HLE) [26], where aborted transactions are serialized (using an
auxiliary lock) and retried in HTM instead of falling back to a slow path with a single global
lock. The main advantage of this approach is avoiding the lemming effect that causes new
(non-conflicting) transactions to fall back to the slow path as well. As opposed to HaTS,
SCM uses a conservative scheme where all aborted transactions are serialized without any
further (even imprecise) conflict indicators, which limits concurrency. Moreover, SCM does
not leverage the observed conflict pattern to proactively prevent conflicts in the future.

The idea of using scheduling queues to group conflicting transactions has been briefly
discussed in [25], where authors introduced the concept of Octonauts. Octonauts uses
statistics from transactions that committed in HTM to speculate over the characteristics of
the associated transaction profile for future classification. HaTS is an evolution of Octonauts
where a comprehensive software infrastructure, along with conflict indicators and a dynamic
scheduling queuing techniques have been used to improve application performance.

A few other HTM-based schedulers were proposed prior to the release of Intel TSX
extensions [27]. However, they either assume HTM implementations that are different from
the currently deployed hardware [4, 29] or rely on a conservative single-lock-based serialization
scheme similar to SCM [31].

STM-based schedulers rely on more precise information about transactions conflict.
ProPS [28] uses a probabilistic approach similar to SEER but with a precise knowledge of
the pair of conflicting transactions. Shrink [15] additionally uses the history of recently
completed transactions’ read/write-sets to predict conflicts. CAR-STM [14] and SOA [5] use
per-core queues such that an aborted transaction is placed in the queue of the transaction
that causes it to abort. The necessity of precise information represents an obstacle towards
adopting such techniques in HTM-based systems.
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3 Background: Scheduling Best-effort Hardware Transactions

HTM provides a convenient concurrent programming abstraction because it guarantees safe
and efficient accesses to shared memory. HTM executes atomic blocks of code optimistically,
and during the execution all read and write operations to shared memory are recorded in
a per-transaction log, which is maintained in a thread-local cache. Any two operations
generated by two concurrent transactions accessing memory mapped to the same cache
line trigger the abort of one of the transactions. HTM is known to have limited progress
guarantees [3, 8, 24]. To guarantee progress, all HTM transactions are guaranteed to commit
after a number of retries as HTM transactions by exploiting the traditional software lock-
based fallback path [27]. To implement that, hardware transactions check if the fallback
lock is acquired at the beginning of their execution. If so, the transactional execution is
retried; otherwise the execution proceeds in hardware and mutual exclusion with the fallback
path is implemented by leveraging the strong atomicity property of HTM, which aborts any
hardware execution if the fallback lock is acquired at any moment. To reduce the well-known
lemming effect [10] in HaTS, a transaction is not retried in HTM until the global lock is
released.

For simplicity, in the rest of the paper we refer to HTM execution as the above process,
which encompasses hardware trials followed by the fallback path, if needed. It is important
to note that, since HaTS does not assume a specific methodology to provide HTM with
progress, more optimized alternative solutions [22, 8, 12] can be integrated into our HTM
execution to improve performance even further.

The off-the-shelf HTM implementation only provides limited information about reasons
behind aborted transactions, which makes it very hard for programmer to introduce modi-
fications that would increase the likelihood for that transaction to commit. As a result, in
the presence of applications with contention, HTM might waste many CPU cycles until a
transaction can succeed by either retrying multiple times, or by falling back to a single global
lock where the protected HTM execution can be relaxed in favor of the mutual exclusion
implemented by the lock itself.

Contention management for practical transaction processing systems is often formulated
as an online problem where metadata, in the form of statistics (e.g., actual access pattern),
can be collected by aborted and committed transactions in order to fine-tune scheduling
activities. However, this methodology cannot be directly ported to HTM-protected concurrent
executions since HTM cannot distinguish between a cache line that stores actual application
data, or scheduling metadata. Because of that, conflicting accesses to shared metadata
executed by two concurrent hardware transactions may cause at least one of them to abort,
even if at the semantic level no conflict occurred.

The above issues motivated us to design a transaction scheduler where HTM is exploited
as-is, instead of providing software innovations or hardware extensions aimed at influencing the
HTM conflict resolution mechanism [2], which likely lead to degradation of HTM effectiveness.

4 Hardware Transaction Scheduler

In this section we overview the two core components of HaTS, namely the transaction
conflict indicator (Section 4.1) and the dynamic scheduling queues (Section 4.2), along with
a description of the complete transaction execution flow (Section 4.3) and the details of how
threads execution passes through the scheduling queues (Section 4.4).
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Terminology. HaTS has a set of N concurrent queues, called scheduling queues. Each
thread that is about to start a transaction (i.e., an atomic block) is mapped to one of
those scheduling queues, and it starts executing only when HaTS dispatches it from that
queue. Each scheduling queue has one (or more) dispatcher thread(s). As we detail later,
the mapping between each transaction and its corresponding scheduling queue is based on
the transaction’s conflict indicator and the mapping is implemented using hashing. The
overall transaction commit/abort statistics are collected by HaTS and recorded into a shared
knowledge base. HaTS periodically consults the knowledge base to increase/decrease the
number of scheduling queues or the number of dispatcher threads, dynamically.

4.1 Transaction Conflict Indicator
HaTS uses a so called transaction conflict indicator, provided as a parameter to TM-BEGIN
in our experimental study, to represent in a compact way characteristics that affect the
probability of aborting a hardware transaction due to conflict. Having this information is
indeed powerful because it allows HaTS to group transactions that access the same system’s
hot spot in the same conflict queue, which saves aborts and increases throughput.

The transaction conflict indicator is an abstraction that can be deployed in many different
ways. A simple and effective example of conflict indicator is the address of the memory
location associated with the accessed system hot spot. As a concrete example in a real
application, let us consider a monetary application where transactions work on given bank
accounts. A transaction would use the address of the accessed bank account, which uniquely
identifies that object (or memory location) in the system, as its conflict indicator. This way,
although transactions might still (occasionally) conflict on other shared memory elements,
HaTS will be able to prevent conflicts between accesses to the same bank account, which is
one of the most contended set of objects in the system. Because of its effectiveness, in our
evaluation study we focused on system hot spots as the transaction conflict indicator.

Other examples of transaction conflict indicators include:
Abstract data types of accessed objects: transactions accessing (possibly different) objects
of the same abstract data type will have the same conflict indicator. This represents a
more conservative approach than our adopted (per-object) conflict indicator, and it can
work better in workloads with higher contention levels.
HLE fallback lock(s): if hardware transactions are used for lock elision (HLE) [26], the
fallback paths of HTM transactions acquire the elided locks rather than a single global
lock, as in RTM. Using this fallback lock as a conflict indicator, transactions that elide
the same lock are grouped together.
Profile of aborted transactions: HaTS’s knowledge base can record the profile identification
of aborted transactions within a window of execution, and group incoming invocations of
those transactions using a single conflict indicator. This can significantly reduce abort
rate because those transactions are more prone to conflict in the future as well. To avoid
unnecessary serialization, the knowledge base can record only transactions aborted due to
conflict, and exclude transactions aborted for any other reason (i.e., capacity and explicit
aborts).
Core ID: transactions running on the same physical core are assigned the same conflict
indicator. This can be beneficial because multiple hardware threads running on the
same physical core share the same L1 cache, which means that transactions concurrently
invoked by those threads are more prone to exceed cache capacity and abort.
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The last two points reflect similar ideas already used in literature in different ways [13, 1,
28, 15, 14, 5]. Although we refer to Section 2 for a detailed comparison of these approaches
with HaTS, it is worth to mention here that HaTS’s innovations relies on the fact that it
deploys those ideas in an abstract way, using conflict indicators, which allows for a better
scheduling management.

HaTS allows for the specification of a single conflict indicator per transaction. Although
a single indicator might seem limited in terms of expressiveness, we adopt this approach
because of the following reasons. First, there will always be a trade-off between the precision
achieved by allowing multiple indicators and the additional cost needed to analyze them.
Our decision is the consequence of an empirical study, that we excluded for space limitations,
where we analyzed this trade-off. Second, the way HaTS adapts the number of scheduling
queues (as detailed in the next section) is a dominant factor to manage contention that
mitigates the effect of having imprecise, yet lightweight, conflict indicators. Finally, it is
still possible to extend HaTS’s infrastructure to support multiple indicators. For example,
Bloom Filters can be used to compact multiple indicators and bit-wise operations (using
either conjunction or disjunction operators) can be used to hash each bloom filter to the
corresponding queue. As a future work, we plan to study the trade-off mentioned above;
however, our current evaluation shows that even with a single indicator, HaTS outperforms
existing approaches.

4.2 Dynamic Distribution of Scheduling Queues

Mapping transaction conflict indicators to scheduling queues is critical for achieving the goal
of HaTS because it guarantees that transactions with the same conflict indicators are grouped
in the same queue. However, using a static number of scheduling queues in such a mapping
might lead to issues such as unbalancing, unfair scheduling, and poor adaptivity to some
application workloads. For this reason, HaTS deploys a dynamic number of scheduling queues
to cope with application workloads and effectively provide an elastic degree of parallelism.
As we detailed in Section 4.3, this number is decided at run time according to the overall
commit/abort statistics calculated in HaTS’s knowledge base.

The following two examples clarify the need for having a dynamic set of scheduling queues.
First, consider two incoming transactions with different conflict indicators. Since we have a
finite number of scheduling queues, it is possible that those two transactions are mapped to
the same queue. When the number N of queues is increased, the probability of mapping
those transactions to the same queue decreases, and the level of parallelism increases. Second,
consider a workload where transactions are highly conflicting so that the conflict indicator is
not sufficient to capture all raised conflicts. In this case, decreasing the number of queues
reduces parallelism and potentially reduces abort rate.

Adaptively changing the number of queues also covers more complex, yet not uncommon,
cases. For example, it covers the case when transactions’ data access pattern is hard to
predict; therefore having a single conflict indicator per transaction may not be sufficient (e.g.,
when each transaction accesses multiple system hot spots). Also, it covers the cases when no
effective conflict indicator can be defined but the workload experiences high abort rates due
to other reasons (e.g., aborts due to false sharing of the same cache lines). Finally, it allows
schedulers to temporarily disable the usage of conflicting indicator as a medium for grouping
transactions, in favor of a random policy, without hindering performance.

As will be clear in Section 4.3, dynamically changing the number of scheduling queues
neither introduces blocking phases nor trades off correctness, thanks to the underlying HTM.

OPODIS 2019
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4.2.1 Multiple Dispatchers
An interesting example that is not covered by the aforementioned policy is when transactions
with the same conflict indicator (and hence grouped in the same queue) are actually able to
execute concurrently. Although it may appear as an infrequent case, we recall that conflict
indicators are best-effort indicators that can be imprecise. Also, since conflicts are raised at
runtime according to the transaction execution pattern, it may happen that two conflicting
concurrent transactions succeed to commit even if they run concurrently (e.g., one of them
commits before the other one reaches the conflicting part).

HaTS addresses this case by allowing multiple dispatcher threads for a single scheduling
queue. Similar to the way we increase/decrease the number queues, we use abort rate
as an indicator to increase/decrease the number of dispatchers per queue. For additional
fine-tuning, we allow programmers to statically configure the number of scheduling queues.
In that sense, transactions with the same conflict indicator are executed in parallel only if
the overall contention level is low.

4.3 Transaction Execution Flow
Transactional operations are executed directly by application threads, without relying on
designated worker threads managed by HaTS. In fact, HaTS’s role is to dispatch thread
executions.

Scheduling Queues

Figure 1 HaTS software architecture and high-level threads execution flow.

HaTS restricts transactions mapped to the same scheduling queue to run sequentially,
while offloading the concurrency control handling to the underlying HTM engine. Figure 1
shows the execution flow of a transaction T executed by an application thread Tr. Tr first
hashes the conflict indicator of T (using module N hashing, where N is the current number
of scheduling queues) in order to find the matching scheduling queue Q (Step 1). After that,
Tr effectively suspends its execution by enqueuing itself into Q (Step 2) and waiting until a
dispatcher thread resumes its execution (Step 3).

HaTS provides one (or more) dispatcher thread TQ per conflict queue Q. Each dispatcher
thread resumes one waiting transaction execution at a time, in a closed-loop manner, meaning
the next queued transaction execution is resumed only after the previous one is successfully
committed. For the sake of fairness, each queue is implemented as a priority queue, where
the priority of each transaction is proportional to the number of aborts its enclosing atomic
block experienced in former executions (similar to the approach used in SEER [13] to infer
the conflict pattern between atomic blocks.).
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When a thread execution is resumed, the corresponding transaction starts to execute
leveraging the HTM implementation (Step 4). During the hardware transaction execution,
TQ waits until Tr completes its transactional execution. After Tr’s commit, TQ takes control
(Step 5) and performs two operations: it updates the knowledge base with the needed
information (namely the number and types of aborts before committing); and it dispatches
the next thread execution waiting in Q.

A special background thread, called updater, is used to dynamically change the number
of scheduling queues depending upon the effectiveness of the parallelism achieved by the
current scheduling queues configuration. To do so, the updater thread queries the knowledge
base and decides, according to the transaction abort rate measured so far, whether the
total number N of scheduling queues should be increased, decreased, or unchanged (Step 6).
In our implementation, we adopt a simple hill-climbing approach similar to the one used
in [17, 12]. Briefly, if the observed abort rate is greater (less) than the last observed rate, we
decrease (increase) the number of queues by one. The maximum number of queues is set to
the number of physical cores and the minimum is set to one. We also allow programmers
to override this policy by setting a fixed number of scheduling queues in order to eliminate
the overhead of this dynamic behavior, especially when the most effective configuration is
known. Interestingly, as we show later in our experimental results, this simple approach pays
off in most of the tested benchmarks. As a future work, we plan to investigate more complex
approaches, such as collecting more detailed information (e.g., the types of aborts) an use
reinforcement learning to reach better estimates.

Changing the scheduling queues configuration does not cause stalls of the transaction
execution and does not affect execution correctness. This is a great advantage of leveraging
HTM conflict detection. Let us consider two incoming transactions T1 and T2 that in the
current scheduling queues configuration would map to the same scheduling queue Q1. Let
us assume that the scheduling queues configuration changes after T1 is enqueued in Q1
and before T2 is enqueued. In this case, there is the possibility for T2 to be mapped to
another queue Q2 in the new configuration, which ends up having T1 and T2 in two different
queues (even though it might be the case they were both to be mapped to the same queue
Q2 in the new configurations). Although one can consider this scenario as an example of
misclassification of incoming transactions due to ongoing change of N , safety cannot be
affected because of leveraging the HTM execution. Even if those transactions are conflicting,
they will be correctly serialized by (likely) enforcing one of them to abort and fallback to
HTM’s global locking phase.

4.4 Suspending/Resuming Executions with Scheduling Queues
As we mentioned in the previous section, a thread that wants to execute a transaction
suspends and enqueues its execution until a dispatcher thread of the mapped queue resumes
it. In order to synchronize this suspend/resume process, we use two synchronization flags2,
one handled by the application thread and the other handled by the dispatcher thread.

Figure 2 pictures the synchronization scheme between an application thread Tr performing
a transaction T and a dispatcher thread TQ responsible for handling the scheduling queue Q

that matches T ’s conflict indicator. Numbers represent the sequence of operations completion.
When Tr wants to execute T , it creates a flag object LTr initialized to 0 and (atomically)

enqueues it in Q, which effectively suspends its execution. After that, Tr spins until LTr

is set to 1. When LTr becomes top standing in Q, TQ dequeues it. Then, TQ sets a flag

2 Flags are implemented as volatile shared memory locations.
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Transaction T executed
by thread TR

Dispatcher Thread TQ for 
scheduling Queue Q 

Initialization 1. Generate LQ for Q
2. LQ = 0

1. Create LTR for T
2. LTR = 0
3. LTR enqueued in Q
4. Wait until LTR = 1

Execution of T
5. LTR dequeued from Q
6. LQ = 1
7. LTR = 1
8. Wait until LQ = 09. HTM execution of T

10. LQ = 0
11. Dispatch next transaction

Figure 2 Synchronization between application threads and dispatcher threads. For simplicity,
the example accounts for a single dispatcher thread per scheduling queue.

associated with Q, called LQ, and also sets LTr to 1 (in that order). By setting LTr , Tr will
be signaled to proceed with its HTM execution. By setting LQ, TQ is suspended until the
completion of T by Tr. This suspension is implemented by spinning over the LQ flag. When
T is committed, Tr resets LQ so that TQ can dequeue the next thread execution waiting on
Q. Note that TQ is not notified if T is aborted and restarted for another HTM trial or if T ’s
execution falls back to the software path. TQ is resumed only after T ’s successful completion.

In our implementation we use simple flags to synchronize two threads (i.e., application
thread and dispatcher thread) because we deploy one dispatcher thread for each scheduling
queue. As introduced earlier, HaTS allows for multiple dispatcher threads per queue in order
to cope with the case where the mapping between conflict indicators and scheduling queues
is unnecessarily unbalanced, meaning many transactions, possibly with different conflict
indicators, are grouped on the same scheduling queue. In the case where multiple dispatcher
threads are deployed per conflict queue, the same synchronization scheme illustrated before
applies, with the following differences. First, LTr flags should be atomically set (e.g., using a
Compare-And-Swap operation) to synchronize between dispatcher threads. Also, multiple
LQ flags, one per dispatcher thread, are needed to signal each dispatcher thread that it may
proceed to schedule the next transaction.

Scheduling queues are implemented in a lock-free manner [19] in order to speed up
the thread execution’s suspension step. Also, in the above description we simplified the
presentation by saying that application threads and dispatcher threads spin over flags to
suspend/resume their execution. In the actual implementation, threads yield their execution
in order to let computing resources available so that the machine can be oversubscribed (if
needed) to maximize CPU utilization.

5 Evaluation

HaTS is implemented in C++ and integrated into the software framework of SEER [13]. An
advantage of using a unique software architecture for all competitors is that independent
optimization of low-level components does not bias performance towards some implementation.
In other words, the performance differences reported in our plots are due to the algorithmic
differences between competitors.

Our goal is to assess the practicality of HaTS in standard benchmarks for in-memory
transactional execution. Hence, we used STAMP [23], a benchmark suite of eight concurrent
applications that span several application domains with different execution patterns. Due to
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space limitations, we present in detail the results of two applications, Kmeans and Vacation,
since they cover two different and important cases in which the characteristics of HaTS are
highlighted. Then, we summarize the results with the other applications.

We compare HaTS against the scheduling techniques provided in the SEER framework,
which are (in addition to SEER itself): Hardware Lock Elision (HLE) [26], Restricted
Transactional Memory (RTM) [27], and Software-assisted Conflict Management (SCM) [1].
Shortly, SEER is the state-of-the-art probability-based scheduling mechanism that uses
fine-grained (pairwise) locks to prevent transactions that are likely to conflict from executing
concurrently. HLE transforms atomic blocks protected by locks into hardware transactions
and its software fallback path is protected by the original lock itself. In STAMP, a single lock
for each atomic block is deployed. RTM supports a configurable number of retries before
falling back to a single global lock shared among all hardware transactions. SCM implements
a scheduling technique that serializes the aborted transactions to decrease the chance of
further aborts. In all implementations, except HLE, transactions try at most five times in
hardware before migrating to the software fallback path.

Experiments were conducted using a multi-processor platform equipped with 4 Intel Xeon
Platinum 8160 processors (2.1GHz, 24 cores per CPU). The machine provides 96 physical
cores and a total of 768 GB of memory divided into 4 NUMA zones. In our experiments we
ran up to 64 application threads to leave resources for dispatcher threads (one per queue)
and the updater thread. The maximum number of scheduling queues is statically set to 30
prior execution, and we used the default operating system policy to map application threads
to cores.

In Figure 3, we report for each application three performance metrics: (left column) spee-
dup over sequential non-instrumented execution; (middle column) percentage of transactions
committed through HTM; (right column) among those committed in HTM, percentage of
transactions retried more than one time. Generally, the last two metrics are indicators of
the scheduling effectiveness in reducing abort rate. The speedup metric is an indicator of
whether such a reduction in abort rate is reflected in overall performance improvement or the
scheduling overhead nullifies performance benefits. Performance at one application thread
represent the slowdown of the sequential instrumented execution. All results are the average
of 10 repeated tests.

The first application is Kmeans, a clustering algorithm that groups points into K clusters.
Transactions are used by the application to synchronize the concurrent updates to the same
cluster’s center node. For this reason, we select the address of the center node updated by
the transaction as its conflict indicator. We implemented that by passing the address of this
center node as a parameter to STAMP’s TM-BEGIN function. Our main observation is that
identifying this conflict indicator allows HaTS to significantly reduce abort rate, reaching up
to 1.5x reduction with respect to the closest competitor, and improve performance, reaching
up to 2x better speedup over the closest competitor. SEER’s probabilistic approach is the
second best in terms of abort rate, which means that its approach is still able to capture
conflicts, but not as effectively as using HaTS’s conflict indicator. Moreover, SEER’s speedup
significantly decreases with higher number of threads, due to its locking overhead.

HLE does not perform well due to the lemming effect, which is visible as soon as few
transactions fall back to locking. RTM is generally better than HLE due to its multiple
retries in HTM before falling back to locking. SCM provides the worst performance. This is
because the way SCM serializes conflicting transactions does not prevent new conflicts of
incoming transactions, as opposed to the proactive scheduling approach, such as the one of
HaTS and SEER. Also, the probability SCM executes non-conflicting transactions serially is
higher than HaTS because it does not use any conflict indicators.

OPODIS 2019
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Figure 3 Results with applications of STAMP benchmark. For each row, the left plot shows
speedup over sequential (non-instrumented) execution; center plot shows the ratio of committed
transactions in HTM; the right plot shows the ratio of transactions retried more than one time.
X-axis shows number of application threads.

The difference between the high and low configuration of Kmeans is mainly in the
maximum achieved speedup. However, the patterns of the compared algorithms remain
the same, which shows the capability of HaTS to gain performance even in relatively low-
contention workloads.

The second application is Vacation, which simulates an online reservation system. Unlike
Kmeans, most transactions in Vacation apply operations on a set of randomly selected
objects, therefore with this pattern it is hard to identify a single conflict indicator per
transaction. For that reason, we adopt an approach where each transaction uses a unique
conflict indicator, with the exception of transactions that access a single customer object,
where we use the customer ID as a conflict indicator. Our rationale behind this decision is
that even if transactions are conflicting, HaTS’s dynamic adjustment of scheduling queues
reduces the level of parallelism and saves aborts. Indeed HaTS achieves an abort rate similar
to SEER, and moreover it scales better than SEER.

Summarizing our results of the other STAMP benchmarks (Figure 4) Intruder and Yada
give the same conclusions: the lightweight queuing approach in HaTS allows it to perform
better than SEER, especially for high number of threads, due to the overhead of SEER’s
locking mechanism. SSCA and Genome are low-contention benchmarks, and their abort rates
are very low even without scheduling or contention management. Hence, none of the compared
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Figure 4 Performance results on the remaining applications of STAMP benchmark. X-axis shows
number of application threads.

algorithms had a significant improvement over the others. However, HaTS maintains its
performance better than others when the number of threads (and thus contention level)
increases. We excluded Bayes and Labyrinth because it is known they provide unstable,
and thus unreliable, results [13].

6 Conclusion

In this paper we presented HaTS, a Hardware-assisted Transaction Scheduler. HaTS groups
incoming transactions into scheduling queues depending upon the specified conflict indicators.
HaTS exploits the HTM conflict resolution to cope with the possibility of having erroneous
conflict indicators or when conflict indicators are complex to identify. Results using the
STAMP benchmark show that HaTS provides improvements in both high contention and
low contention workloads.
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