39,931 research outputs found

    Mixed integer-linear formulations of cumulative scheduling constraints - A comparative study

    Get PDF
    This paper introduces two MILP models for the cumulative scheduling constraint and associated pre-processing filters. We compare standard solver performance for these models on three sets of problems and for two of them, where tasks have unitary resource consumption, we also compare them with two models based on a geometric placement constraint. In the experiments, the solver performance of one of the cumulative models, is clearly the best and is also shown to scale very well for a large scale industrial transportation scheduling problem

    SALBPGen - A systematic data generator for (simple) assembly line balancing

    Get PDF
    Assembly line balancing is a well-known and extensively researched decision problem which arises when assembly line production systems are designed and operated. A large variety of real-world problem variations and elaborate solution methods were developed and presented in the academic literature in the past 60 years. Nevertheless, computational experiments examining and comparing the performance of solution procedures were mostly based on very limited data sets unsystematically collected from the literature and from some real-world cases. In particular, the precedence graphs used as the basis of former tests are limited in number and characteristics. As a consequence, former performance analyses suffer from a lack of systematics and statistical evidence. In this article, we propose SALPBGen, a new instance generator for the simple assembly line balancing problem (SALBP) which can be applied to any other assembly line balancing problem, too. It is able to systematically create instances with very diverse structures under full control of the experiment's designer. In particular, based on our analysis of real-world problems from automotive and related industries, typical substructures of the precedence graph like chains, bottlenecks and modules can be generated and combined as required based on a detailed analysis of graph structures and structure measures like the order strength. We also present a collection of new challenging benchmark data sets which are suited for comprehensive statistical tests in comparative studies of solution methods for SALBP and generalized problems as well. Researchers are invited to participate in a challenge to solve these new problem instances.manufacturing, benchmark data set, assembly line balancing, precedence graph, structure analysis, complexity measures

    Query-Driven Sampling for Collective Entity Resolution

    Full text link
    Probabilistic databases play a preeminent role in the processing and management of uncertain data. Recently, many database research efforts have integrated probabilistic models into databases to support tasks such as information extraction and labeling. Many of these efforts are based on batch oriented inference which inhibits a realtime workflow. One important task is entity resolution (ER). ER is the process of determining records (mentions) in a database that correspond to the same real-world entity. Traditional pairwise ER methods can lead to inconsistencies and low accuracy due to localized decisions. Leading ER systems solve this problem by collectively resolving all records using a probabilistic graphical model and Markov chain Monte Carlo (MCMC) inference. However, for large datasets this is an extremely expensive process. One key observation is that, such exhaustive ER process incurs a huge up-front cost, which is wasteful in practice because most users are interested in only a small subset of entities. In this paper, we advocate pay-as-you-go entity resolution by developing a number of query-driven collective ER techniques. We introduce two classes of SQL queries that involve ER operators --- selection-driven ER and join-driven ER. We implement novel variations of the MCMC Metropolis Hastings algorithm to generate biased samples and selectivity-based scheduling algorithms to support the two classes of ER queries. Finally, we show that query-driven ER algorithms can converge and return results within minutes over a database populated with the extraction from a newswire dataset containing 71 million mentions

    Learning scalable and transferable multi-robot/machine sequential assignment planning via graph embedding

    Full text link
    Can the success of reinforcement learning methods for simple combinatorial optimization problems be extended to multi-robot sequential assignment planning? In addition to the challenge of achieving near-optimal performance in large problems, transferability to an unseen number of robots and tasks is another key challenge for real-world applications. In this paper, we suggest a method that achieves the first success in both challenges for robot/machine scheduling problems. Our method comprises of three components. First, we show a robot scheduling problem can be expressed as a random probabilistic graphical model (PGM). We develop a mean-field inference method for random PGM and use it for Q-function inference. Second, we show that transferability can be achieved by carefully designing two-step sequential encoding of problem state. Third, we resolve the computational scalability issue of fitted Q-iteration by suggesting a heuristic auction-based Q-iteration fitting method enabled by transferability we achieved. We apply our method to discrete-time, discrete space problems (Multi-Robot Reward Collection (MRRC)) and scalably achieve 97% optimality with transferability. This optimality is maintained under stochastic contexts. By extending our method to continuous time, continuous space formulation, we claim to be the first learning-based method with scalable performance among multi-machine scheduling problems; our method scalability achieves comparable performance to popular metaheuristics in Identical parallel machine scheduling (IPMS) problems
    • …
    corecore