60 research outputs found

    The effect of bending on laser-cut electro-textile inductors and capacitors attached on denim as wearable structures

    Get PDF
    In this paper we present the design, fabrication and characterization of electro-textile inductor and capacitor patterns on denim fabric as a basis for the development of wearable e-textiles. Planar coil inductors have been harnessed as antenna structures for the development of Near Field Communication (NFC) tags with temperature sensing capability, while interdigitated electrode (IDE) capacitors have been used as humidity sensors for wearable applications. The effect of bending in the electrical performance of such structures was evaluated, showing variations below 5% in both inductance and capacitance values for bending angles in the range of interest, i.e. those fitting to human limbs. In the case of the fabricated NFC tags, a shift in the resonance frequency below 1.7% was found, meaning that the e-textile tag would still be readable by an NFC- enabled smartphone. In respect of the capacitive humidity sensor, we obtained a minimum capacitance variation of 40% for a relative humidity range from 10% to 90%. Measured thermal shift was below 5% in the range from 10 to 40oC. When compared to the 4% variation due to bending, it can be concluded that this capacitive structure can be harnessed as humidity sensor even under bending strain conditions and moderate temperature variations. The development and characterization of such structures on denim fabrics, which is one of the most popular fabrics for everyday clothing, combined with the additional advantage of affordable and easy fabrication methodologies, means a further step towards the next generation of smart e-textile products

    Analysis of Current State of The Art of RFID IC Chips

    Get PDF
    Radio Frequency Identification (RFID) is a constantly developing technology particularly in the ultra-high-frequency (UHF) band for its long operating range, power efficiency, and maintenance-free characteristics. It has been successfully developed for many applications already, that includes identification, sensing, tracking, monitoring, etc. In terms of tag, the integrated circuit (IC) or chip play an essential part in the functionality of the tag, where logical information is programmed into. Nowadays, the chips come in a variety of memory options, sensitivity, supported protocols, with an optional battery-assisted mode, additional commands, and features. There are various methods that are followed to fabricate RFID tags, i.e. inkjet-printing, painting, 3D printing, etching, etc. On the way of completion of these procedures, some of the methods involve the use of chemicals, producing waste, which is unfavorable in respect of the cost, and as well as the environment. In addition, the substrate impacts tag’s performance. If the tag is going to be attached for instance, on a metal surface the radiation properties of the tag antenna would experience changes, as the electromagnetic waves will reflect on the metal surface, which will basically degrade tag’s performance. Maintaining multiple applications on a single chip has become common to a certain extent. It requires additional power than usual, which is an issue for passive tags. In order to overcome this hurdle, energy harvesting system is required, which is going to suffice the need for a power source. In this paper, the functionalities and applications of the RFID chips have been reviewed and some suggestions have been proposed on how RFID can be commercially manufactured, in terms of fabrication methods, supplying enough power for applications, and ensuring security of the tagged object

    Antenna sensing for wearable applications

    Get PDF
    As wearable technologies are growing fast, there is emerging trend to increase functionality of the devices. Antennas which are primarily component in communication systems can offer attractive route forward to minimize the number of components functioning as a sensing element for wearable and flexible electronics. Toward development of flexible antenna as sensing element, this thesis investigates the development of the flexible and printed sensing NFC RFID tag. In this approach, the sensor measurement is supported by the internal sensor and analog-to-digital convertor (ADC) of the NFC transponder. Design optimisation, fabrication and characterization of the printed antenna are described. Besides, the printed antenna, NFC transponder and two simple resistive sensors are integrated to form a fully flexible sensing RFID tag demonstrating applicability in food and health monitoring. This thesis also presents development of two antenna sensors by using functional materials: (i) An inductor-capacitor (LC) resonant tank based wireless pressure sensor on electrospun Poly-L-lactide (PLLA) nanofibers-based substrate. The screen-printed resonant tank (resonant frequency of ~13.56 MHz) consists of a planar inductor connected in parallel with an interdigitated capacitor. Since the substrates is piezoelectric, the capacitance of the interdigitated capacitor varies in response to the applied pressure. To demonstrate a potential application of developed pressure sensor, it was integrated on a compression bandage to monitor sub-bandage pressure. (ii) To investigate the realization of sensing antenna as temperature sensor simple loop antenna is designed and in this study unlike the first study that the sensing element was the substrate, the conductive body of the antenna itself is considered as a functional material. In this case, a small part of a loop antenna which originally was printed using silver paste is replaced by Poly(3,4-ethylenedioxythiophene): polystyrene (PEDOT: PSS). The sensing mechanism is based on the resonant frequency shift by varying temperature. While using functional materials is useful for realization of antenna sensor, another approach also is presented by developing stretchable textile-based microstrip antennas on deformable substrate which can measure joint angles of a human limb. The EM characteristics of the meshed patch antenna were compared with its metallic counterpart fabricated with lithography technique. Moreover, the concept of stretchable UHF RFID-based strain sensor is touched in the final part of this thesis

    Technological Integration in Printed Electronics

    Get PDF
    Conventional electronics requires the use of numerous deposition techniques (e.g. chemical vapor deposition, physical vapor deposition, and photolithography) with demanding conditions like ultra-high vacuum, elevated temperature and clean room facilities. In the last decades, printed electronics (PE) has proved the use of standard printing techniques to develop electronic devices with new features such as, large area fabrication, mechanical flexibility, environmental friendliness and—potentially—cost effectiveness. This kind of devices is especially interesting for the popular concept of the Internet of Things (IoT), in which the number of employed electronic devices increases massively. Because of this trend, the cost and environmental impact are gradually becoming a substantial issue. One of the main technological barriers to overcome for PE to be a real competitor in this context, however, is the integration of these non-conventional techniques between each other and the embedding of these devices in standard electronics. This chapter summarizes the advances made in this direction, focusing on the use of different techniques in one process flow and the integration of printed electronics with conventional systems

    Printed Spiral Coil Design, Implementation, And Optimization For 13.56 MHz Near-Field Wireless Resistive Analog Passive (WRAP) Sensors

    Get PDF
    Noroozi, Babak. Ph.D. The University of Memphis. June 2020. Printed Spiral Coil Design, Implementation, and Optimization for 13.56 MHz Near-Field Wireless Resistive Analog Passive (WRAP) Sensors. Major Professor: Dr. Bashir I. Morshed.Monitoring the bio-signals in the regular daily activities for a long time can embrace many benefits for the patients, caregivers, and healthcare system. Early diagnosis of diseases prior to the onset of serious symptoms gives more time to take some preventive action and to begin effective treatment with lower cost. These health and economy benefits are achievable with a user-friendly, low-cost, and unobtrusive wearable sensor that can easily be carried by a patient with no interference with the normal life. The easy application of such sensor brings the smart and connected community (SCC) idea to existence. The spread of a designated disease, like COVID-19, can be studied by collecting the physiological signals transmitted from the wearable sensors in conjunction with a mobile app interface. Moreover, such a comfortable wearable sensor can help to monitor the vital signals during fitness activities for workout concerns. The desire of such wearable sensor has been responded in many researches and commercial products such as smart watch and Fitbit. Wireless connection between the sensor on the body and the scanner is the key and common factor of all convenient wearables. This essential feature has been currently addressed by the costly techniques which is the main impediment to be widely applicable. The existing wireless methods including WiFi, Bluetooth, RFID, and NFC impose cost, complexity, weight, and extra maintenance including battery replacement or recharging, which drove us to propose a low-cost, convenient, and simple technique for wireless connection suitable for battery-less fully-passive sensors. Using a pair of coils connected by the near-field magnetic induction has been copiously used in wireless power transfer (WPT) for medical and industrial applications. However, near field RFID and NFC rely on this technique with active circuits. In contrast, we have proposed a wireless resistive analog passive (WRAP) sensor in which a resistive transducer at the secondary side, affects the primary quality factor (Q) through the inductive connection between a pair of square-shaped Printed Spiral Coils (PSC). The primary 13.56 MHz (ISM band) signal is modulated in response to the continuous change of bio-signal and the amount of response to the unit change in transducer resistance is defined as sensitivity. A higher sensitivity enables the system to respond to the smaller bio-signals and increases the coils maximum relative mobilities. The PSCs specifications and circuit components determine the sensitivity and its tolerance to the coils displacements. We first define and formulize the objective function for coil and components optimization to achieve the maximum sensitivity. Although the optimization methods do not show much different results, due to the speed and simplicity, the Genetic Algorithm (GA) technique is chosen as an advanced method. Then in second optimization stage, the axial and lateral distances that affect the mutual inductance are introduced to the optimization process. The results as a pair of PSCs profiles and the associated circuit components are obtained and fabricated that produced the maximum sensitivity and misalignment tolerance. For the sake of patient comfort, the secondary coil size is fixed at 20 mm and the primary coil is optimized at 60 mm with the maximum (normalized) sensitivity 1.3 m for 16 mm axial distance. If the Read-Zone is defined as the space in which the center of secondary coil can move and the sensitivity keeps at least half of its maximum value, the best Read-Zone has a conical shape with the base radius 22.5 mm and height 14 mm. The analytical results are verified by the measurement results on the fabricated coils and circuits

    Fabrication, Characterization and Simulation of Sputtered Pt/In-Ga-Zn-O Schottky Diodes for Low-Frequency Half-Wave Rectifier Circuits

    Get PDF
    Amorphous In-Ga-Zn-O (IGZO) is a high-mobility semiconductor employed in modern thin-film transistors for displays and it is considered as a promising material for Schottky diode-based rectifiers. Properties of the electronic components based on IGZO strongly depend on the manufacturing parameters such as the oxygen partial pressure during IGZO sputtering and post-deposition thermal annealing. In this study, we investigate the combined effect of sputtering conditions of amorphous IGZO (In:Ga:Zn=1:1:1) and post-deposition thermal annealing on the properties of vertical thin-film Pt-IGZO-Cu Schottky diodes, and evaluated the applicability of the fabricated Schottky diodes for low-frequency half-wave rectifier circuits. The change of the oxygen content in the gas mixture from 1.64% to 6.25%, and post-deposition annealing is shown to increase the current rectification ratio from 10 5 to 10 7 at ±1 V, Schottky barrier height from 0.64 eV to 0.75 eV, and the ideality factor from 1.11 to 1.39. Half-wave rectifier circuits based on the fabricated Schottky diodes were simulated using parameters extracted from measured current-voltage and capacitance-voltage characteristics. The half-wave rectifier circuits were realized at 100 kHz and 300 kHz on as-fabricated Schottky diodes with active area of 200 μm × 200 μm, which is relevant for the near-field communication (125 kHz - 134 kHz), and provided the output voltage amplitude of 0.87 V for 2 V supply voltage. The simulation results matched with the measurement data, verifying the model accuracy for circuit level simulation

    The role of printed electronics and related technologies in the development of smart connected products

    Get PDF
    The emergence of novel materials with flexible and stretchable characteristics, and the use of new processing technologies, have allowed for the development of new connected devices and applications. Using printed electronics, traditional electronic elements are being combined with flexible components and allowing for the development of new smart connected products. As a result, devices that are capable of sensing, actuating, and communicating remotely while being low-cost, lightweight, conformable, and easily customizable are already being developed. Combined with the expansion of the Internet of Things, artificial intelligence, and encryption algorithms, the overall attractiveness of these technologies has prompted new applications to appear in almost every sector. The exponential technological development is currently allowing for the ‘smartification’ of cities, manufacturing, healthcare, agriculture, logistics, among others. In this review article, the steps towards this transition are approached, starting from the conceptualization of smart connected products and their main markets. The manufacturing technologies are then presented, with focus on printing-based ones, compatible with organic materials. Finally, each one of the printable components is presented and some applications are discussed.This work has been supported by NORTE-06-3559- FSE-000018, integrated in the invitation NORTE59-2018-41, aiming the Hiring of Highly Qualified Human Resources, co-financed by the Regional Operational Programme of the North 2020, thematic area of Competitiveness and Employment, through the European Social Fund (ESF), and by the scope of projects with references UIDB/05256/2020 and UIDP/05256/2020, financed by FCT—Fundação para a Ciência e Tecnologia, Portugal

    Flexible strain and temperature sensing NFC tag for smart food packaging applications

    Get PDF
    This paper presents a smart sensor patch with flexible strain sensor and a printed temperature sensor integrated with a Near Field Communication (NFC) tag to detect strain or temperature in a semi-quantitative way. The strain sensor is fabricated using conductive polymer poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) in a polymer Polydimethylsiloxane microchannel. The temperature sensor is fabricated by printing silver electrodes and PEDOT:PSS on a flexible polyvinyl chloride (PVC) substrate. A customdeveloped battery-less NFC tag with an LED indicator is used to visually detect the strain or temperature by modulating the LED light intensity. The LED shows maximum brightness for relaxed or no strain condition, and also in the case of maximum temperature. In contrast, the LED is virtually off for the maximum strain condition and for room temperature. Both these could be related to food spoilage. Swollen food packages can be detected with the strain sensor, serving as beacons of microbial contamination. Temperature deviations can result in the growth or survival of food-spoilage bacteria. Based on this, the potential application of the sensor system for smart food packaging is presented
    • …
    corecore