15,104 research outputs found

    The Complexity of Power-Index Comparison

    Get PDF
    We study the complexity of the following problem: Given two weighted voting games G' and G'' that each contain a player p, in which of these games is p's power index value higher? We study this problem with respect to both the Shapley-Shubik power index [SS54] and the Banzhaf power index [Ban65,DS79]. Our main result is that for both of these power indices the problem is complete for probabilistic polynomial time (i.e., is PP-complete). We apply our results to partially resolve some recently proposed problems regarding the complexity of weighted voting games. We also study the complexity of the raw Shapley-Shubik power index. Deng and Papadimitriou [DP94] showed that the raw Shapley-Shubik power index is #P-metric-complete. We strengthen this by showing that the raw Shapley-Shubik power index is many-one complete for #P. And our strengthening cannot possibly be further improved to parsimonious completeness, since we observe that, in contrast with the raw Banzhaf power index, the raw Shapley-Shubik power index is not #P-parsimonious-complete.Comment: 12 page

    Order-Revealing Encryption and the Hardness of Private Learning

    Full text link
    An order-revealing encryption scheme gives a public procedure by which two ciphertexts can be compared to reveal the ordering of their underlying plaintexts. We show how to use order-revealing encryption to separate computationally efficient PAC learning from efficient (ϵ,δ)(\epsilon, \delta)-differentially private PAC learning. That is, we construct a concept class that is efficiently PAC learnable, but for which every efficient learner fails to be differentially private. This answers a question of Kasiviswanathan et al. (FOCS '08, SIAM J. Comput. '11). To prove our result, we give a generic transformation from an order-revealing encryption scheme into one with strongly correct comparison, which enables the consistent comparison of ciphertexts that are not obtained as the valid encryption of any message. We believe this construction may be of independent interest.Comment: 28 page

    High-Multiplicity Fair Allocation Using Parametric Integer Linear Programming

    Full text link
    Using insights from parametric integer linear programming, we significantly improve on our previous work [Proc. ACM EC 2019] on high-multiplicity fair allocation. Therein, answering an open question from previous work, we proved that the problem of finding envy-free Pareto-efficient allocations of indivisible items is fixed-parameter tractable with respect to the combined parameter "number of agents" plus "number of item types." Our central improvement, compared to this result, is to break the condition that the corresponding utility and multiplicity values have to be encoded in unary required there. Concretely, we show that, while preserving fixed-parameter tractability, these values can be encoded in binary, thus greatly expanding the range of feasible values.Comment: 15 pages; Published in the Proceedings of ECAI-202
    • …
    corecore