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Abstract
We show that there is a language that is Turing complete for NP but not many-one complete
for NP, under a worst-case hardness hypothesis. Our hypothesis asserts the existence of a non-
deterministic, double-exponential time machine that runs in time O(22n

c

) (for some c > 1)
accepting Σ∗ whose accepting computations cannot be computed by bounded-error, probabilistic
machines running in time O(22β2n

c

) (for some β > 0). This is the first result that separates
completeness notions for NP under a worst-case hardness hypothesis.
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1 Introduction

The notion of polynomial-time reductions is pervasive in theoretical computer science. In
addition to their critical role in defining NP-completeness, polynomial-time reductions play
an important role in establishing several results in various areas such as complexity theory,
cryptography, learning theory etc. Informally, reductions translate instances of one problem
to instances of another problem; a problem A is polynomial-time reducible to a problem B if
A can be solved in polynomial-time by making queries to problem B. By varying the manner
in which the queries are allowed to make, we obtain a wide spectrum of reductions. At one
end of the spectrum is Cook/Turing reduction where multiple queries are allowed and the ith
query made depends on answers to previous queries. On the other end is the most restrictive
reduction, Karp-Levin/many-one reduction, where each positive instance of problem A is
mapped to a positive instance of problem B, and so are the negative instances. In between
are truth-table/non-adaptive reductions, and bounded truth-table reductions. Interestingly,
the seminal paper of Cook [7] used Turing reduction to define NP-completeness, whereas the
works of Karp [16] and Levin [19] used many-one reductions.

Understanding the differences between many-one reductions and Turing reductions is
one of the fundamental problems in complexity theory. Compared to many-one reductions,
our knowledge about Turing reductions is limited. Extending certain assertions that are
known to be true for many-one reductions to the case of Turing reductions yield much sought
after separation results in complexity theory. For example, it is known that polynomial time
many-one complete sets for EXP are not sparse [24]. Extending this result to the case of
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Turing reductions implies that EXP does not have polynomial-size circuits. In the context
of resource-bounded measure, it is known that “small span theorem” holds for many-one
reductions. Establishing a similar result for Turing reductions separates EXP from BPP [15].
In addition, Turing reductions are crucial to define the Polynomial-time hierarchy.

The differences between various types of polynomial-time reductions have been studied
in different contexts. Selman [23] showed that if NE ∩ co-NE does not equal E, then there
exist languages A and B in NP such that A polynomial-time Turing reduces to B, but does
not polynomial-time many-one reduce to B. Aida et al. [1] showed a similar result in the
average-case world; if P does not equal NP, then there is a distributional problems (A,µA)
and (B,µB) in DistNP such that (A,µA) Turing reduces to (B,µB) but does not many-one
reduce to (B,µB). The differences between Turing and truth-table reductions have been
studied extensively in the context of random self-reductions and coherence [4, 8, 9, 11]. For
example, Feigenbaum et al. [8] showed that if nondeterministic triple exponential time is not
in bounded-error, probabilistic triple exponential time, there exists a function in NP that is
Turing random self-reducible, but not truth-table random-self reducible.

In this paper we study the differences between many-one and Turing reductions in the
context of completeness. Even though, it is standard to define completeness using many-one
reductions, one can also define completeness using Turing reductions. A language L is Turing
complete for a class C if L is in class C and every language in C Turing reduces to L. To
capture the intuition that if a complete problem for a class C is “easy”, then the entire class
is easy, Turing reductions are arguably more appropriate to define completeness. However,
all known natural languages turn out to be complete under many-one reductions. This raises
the following question: For a complexity class C, is there a Turing complete language that is
not many-one complete? This question was first posed by Ladner, Lynch, and Selman [18].

This question has been completely resolved for the complexity classes EXP and NEXP.
Works of Ko and Moore [17] and Watanabe [27] showed that for EXP, almost all completeness
notions are mutually different. Similar separation results are obtained for NEXP [5]. See
survey articles [6, 14] for more details on these results.

For the case of NP, the progress has been very slow. The first result that achieves a
separation between Turing and many-one completeness in NP, under a reasonable hypothesis,
is due to Lutz and Mayordomo [20]. They showed that if NP does not have P-measure 0
(known as measure hypothesis), then Turing completeness for NP is different from many-one
completeness. Ambos-Spies and Bentzien [2] achieved a finer separation under a weaker
hypothesis known as genericity hypothesis. Subsequently, Turing and many-one completeness
notions are shown to be different under even weaker hypotheses known as NP machine
hypothesis, bi-immunity hypothesis, and partial bi-immunity hypothesis [13, 21, 22].

All of the above mentioned hypotheses are known as almost everywhere hardness hy-
potheses. Informally, these hypotheses assert that there exists a language in NP such that
every algorithm that decides L must take more than subexponential time on all but finitely
many inputs. Even though we believe that NP is subexponentially hard, we do not have any
candidate languages in NP that are almost everywhere hard. All natural problems have an
infinite set of instances that can be decided in polynomial time. Thus these hypotheses are
considered “strong hypotheses”. It has been open whether a separation can be achieved using
a worst-case hardness hypothesis (such as P 6= NP, or NE 6= E). The only partial result in
this direction is due to Gu, Hitchcock, and Pavan [10] who showed that if there exist one-way
permutations and there exists a language in NEEE ∩ co-NEEE that can not be solved in
deterministic triple exponential time with logarithmic advice, then Turing completeness for
NP differs from many-one completeness. Even though the latter hypothesis is a worst-case
hardness hypothesis, the former is a average-case hardness hypothesis.
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In this paper, we separate Turing completeness for NP from many-one completeness using
a worst-case hardness hypothesis. This is the first result of this nature. Below is an informal
statement of our result. Please see Section 3 for a more formal statement.

I Main Theorem. Suppose there exist an NEEXP machine N accepting Σ∗ and running
in time t(n) and a positive constant δ < 1 such that no zero-error, probabilistic machine Z
running in time 2t(n)δ can compute accepting computation of N with non-trivial probability.

Then there is a Turing complete language for NP that is not truth-table complete for NP.
Here we require that t(n) is 22n

c

for some constant c > 1.

The rest of the paper is organized as follows. Section 2 is the preliminaries section. In
Section 3, we formally state our worst-case hardness hypothesis, and provide a proof of
the separation theorem. Section 4 relates the hypothesis used in this paper to a few other
hypotheses studied in the context of separating completeness notions.

2 Preliminaries

We use standard notions and definitions in complexity theory [3]. All languages are defined
over the the binary alphabet Σ = {0, 1}, Σn denotes the set of all binary strings of length n.
We use |x| to denote the length of a string x. Non-deterministic double-exponential time is
defined by NEEXP =

⋃
c>1 NTIME(22n

c

) and co-NEEXP is its complement class. We say
that a non-deterministic machine is a NEEXP machine, if its runtime is bounded by 22n

c

for
some c > 1. A language L is in ZPTIME(t(n)), if there is a probabilistic machine Z running
in time O(t(n)) such that for every x, Pr[Z(x) = L(x)] is atleast 1/4, and the probability
that Z outputs an incorrect answer is zero. The machine Z may output ⊥ with probability
at most 3/4.

I Definition 1. Suppose N is a non-deterministic machine accepting a language S. We say
that a t(n)-time bounded, zero-error, probabilistic machine computes accepting computations
of N if there exists a probabilistic machine Z such that

For every x ∈ S, for every choice of random bits, the machine Z on input x either outputs
a string from Σ∗ or outputs the special symbol ⊥.
for every x ∈ S, Pr[Z(x) is an accepting computation of N(x)] > 1/4, and
for every x ∈ S, Pr[Z(x) 6= ⊥ and is not an accepting computation of N(x)] = 0.

Our proof uses the notion of P-selective sets introduced by Selman [23].

I Definition 2. A set S ⊆ Σ∗ is P-selective if there is a polynomial time computable function
f : Σ∗ × Σ∗ → Σ∗ such that for all strings x, y ∈ Σ∗, (1) f(x, y) ∈ {x, y}, and (2) if either of
x and y is in S, then f(x, y) is in S. The function f is called the P-selector of S.

The well-known example of P-selective sets are the left-cut sets L(r) = {x | x < r}, where
r is an infinite binary sequence, and < is the dictionary order with 0 < 1. The following
lemma is due to Toda [25].

I Lemma 3. For every P-selective set L, there is a polynomial time algorithm that given any
finite set of strings Q as input, outputs a sequence x1, · · · , xm such that {x1, · · · , xm} = Q,
such that for some integer p, 0 ≤ p ≤ m, Q ∩ L = {xi | i ≤ p} and Q ∩ L̄ = {xi | i > p}.

Consider two languages A and B. A is polynomial time Turing reducible to B, denoted
by A ≤P

T B, if there is a polynomial time oracle Turing machine M such that A = L(MB).
Note that M can make at most polynomially many queries to B and they can be adaptive.
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The language A is polynomial-time truth-table reducible to B, denoted by A ≤P
tt B, if there

is a pair of polynomial time computable functions 〈f, g〉 such that for every x ∈ Σ∗, (1)
f(x) is query set Q = {q1, q2, · · · , qk} and (2) x ∈ A ⇐⇒ g(x,B(q1), B(q2), · · · , B(qk)) = 1.
We call f the query generator and g the truth-table evaluator. Given a polynomial time
reducibility ≤P

r , a set B is ≤P
r -complete for NP if B is in NP and for every set A ∈ NP,

A is ≤P
r reducible to B. Note that we only consider polynomial time reductions to define

NP-completeness in this paper.

Notation. Let τ : N → N be a function defined as τ(n) = 22n . The functions of the form
22f(n) , that are used in many places throughout this paper, are not visually appealing; from
now we represent such functions as τ(f(n)). Then τ(δf(n)) represents 22δf(n) . We use τ ε(n)
to denote (τ(n))ε. Further, logc n represents (logn)c.

3 Separation Theorem

In this section we prove the main result of this paper. First, we formally state our hypothesis.

Hypothesis W. There exist a positive constant δ < 1 and an NEEXP machine N1 accepting
Σ∗ that runs in time t(n) such that no 2t(n)δ -time bounded, zero-error, probabilistic machine
can compute the accepting computations of N1. Here t(n) = 22n

c

for some constant c > 1.

I Theorem 4. If Hypothesis W holds, then there is a Turing complete language for NP that
is not truth-table complete for NP.

Before we provide a formal proof, we first describe proof outline. Our proof proceeds in
four steps. Note that Hypothesis W is a “worst-case hardness hypothesis”. This means that
for every probabilistic, 2t(n)δ -time bounded, machine Z1 there exists infinitely many inputs
x such that the probability that Z1(x) computes an accepting computation of N1(x) is very
small. This is equivalent to the following: there exist infinitely many input lengths n for
which there exists at least one string x of length n so that the probability that Z1(x) is an
accepting computation of N1(x) is very small. In the first step (Section 3.1), we amplify the
hardness of N1 and obtain an NEEXP machine N2 with the following property: For every
2t(n)δ -time bounded, probabilistic machine Z2, there exist infinitely many input lengths n at
which for every string x of length n the probability that Z2(x) is an accepting computation
of N2(x) is small.

In the second step (Section 3.2), we first define a padding function pad : Σ∗ → N. Via
standard padding arguments we obtain an NP-machine N running in time p(n) that accepts
a tally set T = {0pad(x) | x ∈ Σ∗}. For ` ≥ 0, let T` = {0pad(x) | x ∈ Σ`}. The NP-machine
N has the following hardness property: For every f(n)-time bounded, probabilistic machine
Z (for an appropriate choice of f) there exist infinitely many integers ` such that Z fails to
compute accepting computations on every string from T`.

Using the NP-machine N , we define the Turing complete language L in step three
(Section 3.3). The language L is formed by taking disjoint union of two NP languages L1 and
L2. The language L1 consists of tuple of the form 〈x, a〉 so that x ∈ C (for some NP-complete
language C), and a is an accepting computation of N(0n) (for some n that depends on x).
In L2, we encode accepting computations of N using a P-selective set. It follows that C can
be Turing reduced to L by first obtaining an accepting computation of N (by making queries
to L2) and then by making one query to L1. The idea of forming L1 is borrowed from [21],
and encoding accepting computations of an NP-machine as a P-selective sets is well known.
For example see [11].
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Finally, in step four (Section 3.4), we show that if L is truth-table complete, then there
is a probabilistic machine Z such that for every ` there exists atleast one string in T` so that
Z computes an accepting computation of N on that string with high probability. Using this,
we in turn show that there exists a probabilistic machine Z2 so that for every input length `,
there exists atleast one string x ∈ Σ` such that Z2(x) outputs an accepting computation of
the NEEXP machine N2(x). This will be a contradiction. The most technical part of the
proof lies in this step.

We now give proof details.

3.1 Hardness Amplification
The first step amplifies the hardness of the NEEXP machine N1 from the hypothesis to
obtain a new NEEXP machine N2.

I Lemma 5. Suppose that the hypothesis W holds. Then there exist an NEEXP machine
N2 accepting Σ∗ and running in time O(2nτ(nc)) and a constant β < δ such that for every
probabilistic machine Z2 that runs in time τ(β2nc), there exist infinitely many input lengths
n > 0 such that for every x ∈ Σn,

Pr[Z2(x) = an accepting computation of N2(x)] ≤ 1/4.

Proof. Let N1 be the non-deterministic machine from Hypothesis W whose running time
is bounded by O(t(n)), where t(n) = τ(nc) (for some c > 1). Length of every accepting
computation of N1(x) is bounded by O(t(|x|)). Consider a machine N2 that behaves as
follows: On an input x of length n, it runs N1(y) on every string y of length n (in a sequential
manner). The running time of N2 is O(2n × t(n)). Since N1 accepts Σ∗, the machine N2
also accepts Σ∗. We claim that N2 has the required property.

Suppose not. Then there is a probabilistic machine Z2 that runs in time O(τ(β2nc)) (for
some β < δ) such that for all but finitely many n, there exists a string yn ∈ Σn such that

Pr[Z2(yn) = an accepting computation of N2(yn)] > 1/4.

By the definition of N2, the accepting computation of N2(x) encodes the accepting computa-
tion of N1(y) for every y whose length is same as the length of x. Consider a machine Z1
that on any input x of length n behaves as follows:

It runs Z2(y) on every y of length n. It verifies that the output of Z2(y) is an
accepting computation of N2(y), and if the verification succeeds, then it extracts the
accepting computation of N1(x) and outputs it. If Z2(y) does not output an accepting
computation of N2(y), then Z1 outputs ⊥.

Let x be any input of length n. By our assumption, there exists a yn ∈ Σn such that
Z2(yn) outputs an accepting computation of N2(yn) with probability at least 1/4. The
above machine clearly runs Z2(yn) on input x. Since an accepting computation of N1(x)
can be retrieved from an accepting computation of N2(yn), the above machine outputs an
accepting computation of N1(x). Thus for all but finitely many n, for every x ∈ Σn, Z1
outputs an accepting computation of N1(x) with probability at least 1/4. The running time
of Z1 is clearly O(2n × τ(β2nc)), which is less than τ(δ2nc) (as β < δ). This contradicts
Hypothesis W. J
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3.2 Defining an NP machine
In this section, we define an NP machine N from the above NEEXP machine N2. Fix ε < β.
Consider the following padding function pad : Σ∗ → N, defined by

pad(x) = bτ ε(logc rx)c,

where rx is the rank of string x in the standard lexicographic order of Σ∗, so that 2` − 1 ≤
rx ≤ 2`+1 − 2, for every x ∈ Σ`. Note that pad is 1-1 and so pad−1(n) (if exists) is well
defined. To keep the calculation simple, we drop the floors henceforth. Now we define the
following tally language based on the padding function:

T =
{

0pad(x) | x ∈ Σ∗
}
.

Our NP machine N that accepts a tally language behaves as follows:

On input 0m, it computes x = pad−1(m). Upon finding such x, it runs N2(x). If no
such x is found, then N rejects.

Note that |x| < (log logm2/ε)1/c. So running time of N is bounded by m3/ε. Thus N is an
NP machine. Note that N accepts the tally language T .

3.3 Turing-complete language
At this point, we are ready to define the language L in NP that we prove to be Turing
complete, but not truth-table complete for NP.

Let LT be the range of the padding function pad.

LT = {τ ε(logc i) | i ∈ N}.

By definition, N accepts only those tally strings whose length is in the set LT . We use ni
to denote pad(i). Given a length n ∈ LT , define an to be the lexicographically maximum
accepting computation of N(0n). Let a be the infinite binary string an1an2an3 · · · where
ni ∈ LT and n1 < n2 < n3 < · · · . Let |an| denotes the length of the accepting computation
an. Let SAT′ consist of the SAT formulas with lengths only in LT , i.e.,

SAT′ = SAT ∩ {x ∈ Σ∗ | |x| ∈ LT }.

Since there exists a polynomial p such that ni+1 ≤ p(ni), it can be shown via padding that
SAT many-one reduces to SAT′ and thus SAT′ is NP-complete.

We define L1 and L2 as follows:

L1 =
{
〈φ, u〉 | |φ| = n, u is an accepting computation of N on 0n, φ ∈ SAT′

}
and

L2 = L(a) = {z | z < a} ,

where < is the dictionary order with 0 < 1. Then our Turing-complete language L is the
disjoint union of L1 and L2, i.e.,

L = L1 ∪· L2 = 0L1 ∪ 1L2.

Note that both L1 and L2 are in NP, and so is L.

I Lemma 6. L is ≤P
T -complete for NP.

Proof. Reduce SAT′ to L: On input φ of length n, make adaptive queries to L2 to find an.
Accept φ if and only if 〈φ, an〉 ∈ L1. J
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3.4 L is not truth-table complete
In this section, we show that L is not truth-table complete for NP. Before we proceed
with the proof, we provide the intuition behind the proof. Suppose that L is truth-table
complete. We achieve a contradiction by exhibiting a procedure to compute accepting
computations of NEEXP machine N2. Since the NP-machine N is padded version of N2, it
suffices to compute the accepting computations of N . We partition T into sets T1, T2, · · · ,
where T` = {0pad(x) | x ∈ Σ`}. Clearly, |T`| = 2` and T =

⋃
` T`. Note that an accepting

computation of N2(x) can be computed by computing an accepting computation of N(0pad(x)),
and if |x| = `, then 0pad(x) ∈ T`.

Recall that N2 has the following property: For every probabilistic machine Z2 that
attempts to compute its accepting computations, there exist infinitely many input lengths
` and Z2 fails on every string at those lengths. Informally, this translates to the following
hardness property of N : For every probabilistic machine Z that attempts to compute
accepting computations of N , there exist infinitely many integers ` such that Z fails on
every string from T`. Thus to achieve a contradiction, it suffices to exhibit a probabilistic
procedure Z such that for all but finitely many `, Z outputs an accepting computation of
N(0n) for some 0n ∈ T`, with non-negligible probability. We will now (informally) describe
how to compute accepting computations of N .

For the sake of simplicity, let us first assume that the NP machine N has exactly one
accepting computation on every input from T . The first task is to define a set S that encodes
the accepting computations of the machine N . One way to define S as

S = {〈0n, i〉 | ith bit of accepting computation of N(0n) is 1} .

Since we assumed that N has exactly one accepting computation, deciding S is equivalent to
computing accepting computations of N . Since S is in NP, there is a truth-table reduction
from S to L. We make another simplifying assumption that all queries are made to L1 part
of L. Consider an input 〈0n, i〉 where 0n ∈ T` (for some ` > 0). All the queries produced
on this input are of the form 〈φ, u〉. It is easy to check if u is an accepting computation of
N(0m) for some m. If u is not an accepting computation, then 〈φ, u〉 does not belong to L,
and thus it is easy to decide the membership of 〈0n, i〉 in S. Suppose that u is an accepting
computation of N(0m) for some m. Then there are two cases. First case is the “short query”
case, where m is much smaller than n. In this case 〈φ, u〉 is in L1 only when |φ| equals m and
φ ∈ SAT′. Since m << n, we can decide whether φ ∈ SAT′ using a brute force algorithm in
time O(2m), this in turn enables us to decide the membership of 〈0n, i〉 in S. Thus if all the
queries are small, we can decide the memberships of 〈0n, i〉 (for all i), and thus can compute
accepting computation of N(0n). The second case is the “large query” case: Suppose that
for some query, m is not much smaller than n. In this case, we are in the following scenario:
The reduction outputs accepting computation of N(0m) and m is somewhat large. In this
case, we argue that for an appropriate choice of n, 0m also lies in T`. This will enable us to
design a procedure that outputs accepting computation of some string from T`. This is the
gist of the proof.

The above argument assumed that N has exactly one accepting computation, which is
not true in general. We get around this problem by applying Valiant-Vazirani lemma [26]
to isolate one accepting computation. Thus our language S will involve the use of isolation
lemma. It is also very much possible that the reduction makes queries to L2 also. Recall
that L2 is a P-selective set and it is known that if an NP-language A reduces to a P-selective
set, then A must be “easy” [25, 23]. We use this in combination with the above mentioned
approach. A technically involved part is to define the correct notion of “small” and “large”
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queries. There is a fine interplay among the choice of pad function, notion of small query,
and the runtime of probabilistic machine that computes the accepting computations of N .
We now provide a formal proof.

I Lemma 7. L is not ≤P
tt-complete for NP.

Proof. For the sake of contradiction, assume that L is truth-table complete for NP. Consider
the following set S.

S = {〈0n, k, r1, r2, . . . , rk, i〉 | n ∈ LT , 1 ≤ k ≤ |an|, ri ∈ Σ|an|, there is a u such that
u is an accepting computation of N(0n), ith bit of u = 1, and

u · r1 = u · r2 = · · · = u · rk = 0},

where u · ri denotes the inner product of u and ri, for all i, over GF[2].
It is easy to see that S is in NP. Since L is ≤P

tt-complete for NP, S is ≤P
tt reducible to L

via polynomial time computable functions 〈g, h〉, where g is the query generator and h is the
truth-table evaluator. Since g is polynomial-time computable, there exists a constant b > 0
such that every query generated by it is of length at most nb.

At this point, our goal is to compute an accepting computation of N . We start with
the following algorithm A that classifies all the queries of the query generator into two sets,
“Large Query” and “Small Query”.

1. Input 0n, where n = τ ε(logc i) for some i ∈ N. Clearly, n ∈ LT .
2. For 1 ≤ j ≤ n2 repeat the following:

Pick kj uniformly at random from {1, · · · , |an|}.
Pick each of rj1, r

j
2, . . . , r

j
kj

uniformly at random from Σ|an|.
3. Let Qj be the set of queries generated by g on inputs 〈0n, kj , rj1, · · · , r

j
kj
, i〉, 1 ≤ i ≤ |an|.

Compute Qj for 1 ≤ j ≤ n2 and set Q =
⋃
j Q

j . Note that the length of each query is
bounded by nb.

4. Partition Q into two sets Q1 and Q2 such that Q1 is the set of all queries to L1 and Q2
is the set of all queries to L2.

5. If Q1 contains a query 〈φ, ut〉 for some t, where ut is an accepting computation of N(0t)
and

t > τ ε(((log lognb/ε)1/c − 1)c),

then print ut, output “Large Query”, and halt.
6. Otherwise, output “Small Query” and halt.

It is clear that the algorithm A runs in time polynomial in n.
Before we give our probabilistic algorithm to compute the accepting computations of N ,

we bound the probabilities of certain events of interest. T is partitioned into sets T1, T2, · · ·
each of cardinality 2`, where

T` =
{

0τ
ε(logc rx) | x ∈ Σ`

}
.

Fix ` > 0. For a fixed 0n ∈ T` and j, 1 ≤ j ≤ n2, let En,j denote the following event:

There exists exactly one u such that
u is an accepting computation on N(0n),
u · rj1 = u · rj2 = · · · = u · rjkj = 0.
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By Valiant-Vazirani, we have that Pr[En,j ] ≥ 1
n2 . Let En denote the event that for some j,

1 ≤ j ≤ n2, En,j occurs. The probability of En is at least 1− 1
2n2 . Finally, let E` denote the

event that for every 0n ∈ T`, the event En occurs. Again, we have that Pr[E`] ≥ 1− 1
2` .

Thus for every `, the probability that the event E` occurs is very high. Fix an `. From
now on, we assume that the event E` has occurred.

Now our goal is to arrive at the machine that computes an accepting computation of
atleast one string from T`. For this we will analyze the behavior of the above algorithm on a
specific string 0V` ∈ T`, where

V` = τ ε/b(logc(2`+1 − 2)).

We stress that this unique string 0V` depends only on the length `. When we run algorithm
A on 0V` , either it outputs “Large Query” on it, or it outputs “Small Query”.

I Lemma 8 (Key Lemma). One of the following holds.
1. If A outputs “Small Query” on 0V` , then there is an algorithm B1 that on input 0V`

runs in time polynomial in τ(ε2((log logV`b/ε)1/c−1)c), and correctly outputs an accepting
computation of N(0V`).

2. If A outputs “Large Query” on 0V` , there exist an algorithm B2 such that for every string
in T` it runs in time polynomial in V`, and there exists a 0t ∈ T` for which B2(0t) outputs
an accepting computation of N(0t).

Due to the lack of space, we defer the proof of this lemma to the full version of the paper.
Now we complete the proof of main theorem by describing a probabilistic machine that
computes accepting computation of the NEEXP machine N2.

Computing accepting computations of N2

Remember that we defined our NEEXP machine N2 in Lemma 5. Now consider the
probabilistic machine Z2 that does the following on input x ∈ Σ`:

1. Compute V`. Run A on 0V` .
2. If A(0V`) outputs “Small Query”,

Verify if x = pad−1(V`). If it is, then run B1 on 0V` and if it outputs an accepting
computation of N(0V`), then output that accepting computation. This is also the
accepting computation of N2(x).

3. If A(0V`) outputs “Large Query”, do the following:
For every string 0i in T`, run the algorithm B2 on it. If it outputs the accepting
computation of N(0t) for some 0t, then verify if x = pad−1(0t). If it is, then output
that accepting computation. This is also the accepting computation of N2(x).

We analyze the behavior of Z2 under the assumption that the event E` happens. Recall
that this happens with very high probability. If A(0V`) outputs “Small Query”, then by part
(1) of Lemma 8, B1 outputs an accepting computation of N(0V`). Note that every accepting
computation of N(0V`) is an accepting computation of N2(pad−1(V`)). Since pad−1(V`) is
of length `, there exists a string x ∈ Σ`, on which Z2 outputs an accepting computation of
N2(x). Now consider the case where A(0V`) outputs “Large Query”, then by part (2) of
Lemma 8, there exists a 0t ∈ T` such that B2(0t) outputs an accepting computation of N(0t).
Thus Z2 will find that 0t through iteration. Similarly, pad−1(0t) ∈ T` is of length `, thus
there exists a x in Σ` on which Z2 outputs an accepting computation of N2(x). Thus Z2
always outputs an accepting computation of atleast one string x from Σ`.
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We will now bound the runtime of Z2. This is bounded by runtime of A(0V`), plus the
runtime of B1(0V`), and the time taken in step 3 of the above algorithm. By part (1) of
Lemma 8, the runtime of B1(0V`) is τd(ε2((log logV`b/ε)1/c−1)c) for some constant d > 0, which
is bounded by

τd(ε2((log logV`b/ε)1/c−1)c) = τd(ε2((logc(2`+1−2)1/c−1)c) = τd(ε2((log(2`−1))c) < τd(ε2`
c

).

Let p be a constant such that A(0V`) runs in time V p` and B2(0i), 0i ∈ T`, runs in time V p` .
Step 3 runs B2 on every string from T`, and there are 2` strings in T`. Thus the combined
runtime of A(0V`) in step 1 and step 3 is bounded by

2`+1V p` = 2`+1τpε/b(logc(2`+1 − 2)) ≤ 2`+1τpε/b((`+ 1)c) ≤ τ q((`+ 2)c)

for some constant q > p. Thus the total running time of Z2 is bounded by τ(β2`c), as β > ε.
Thus for all but finitely many `, the machine Z2 computes an accepting computation

of N2(x) for atleast one string x from Σ` with non-trivial probability. This contradicts the
hardness of NEEXP machine N2 in Lemma 5. This completes the proof of Lemma 7. J

This also completes the proof the main theorem.

4 Power of the hypothesis

In this section, we show some results that explain the power of Hypothesis W and also compare
it to some of the previously studied hypotheses that are used to separate NP-completeness
notions. All proofs in this section appear in the full version of the paper.

Even though Hypothesis W talks about the difficulty of computing accepting computations
of NEEXP machines, our first result states that it can be related to the hardness of the
complexity class NEEXP ∩ co-NEEXP.

Hypothesis 2. There exist constants c > 1 and 0 < δ < 1 such that NTIME(t(n)) ∩
co-NTIME(t(n)) * ZPTIME(2t(n)δ), for t(n) = 22n

c

.
Now we show that our hypothesis follows from this worst-case separation hypothesis.

I Proposition 1. Hypothesis 2 implies Hypothesis W.

Pavan and Selman [21] showed that the NP-completeness notions differ under the following
hypothesis.

Hypothesis 3 (NP-machine Hypothesis). There exist an NP machine N accepting 0∗ and
β > 0 for every 2nβ -time bounded deterministic algorithm M , M(0n) does not output an
accepting computation of N(0n) for all but finitely many n.

Note that the hypothesis requires that every machine that attempts to compute accepting
computations of N must fail on all but finitely many inputs. This type of hardness hypothesis
is called “almost everywhere hardness hypothesis”. In contrast, Hypothesis W requires that
every machine that attempts to compute accepting computations of the NEEXP machine
must fail on only infinitely many strings.

Ideally, we would like to show that NP-machine hypothesis implies Hypothesis W.
However, NP-machine hypothesis concerns with hardness against deterministic algorithms,
whereas Hypothesis W concerns with hardness against probabilistic algorithms. If we assume
well-accepted derandomization hypotheses, we can show Hypothesis W is weaker than the
NP-machine hypothesis.
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I Proposition 2. Suppose that ZPP = P. If NP-machine hypothesis holds, then Hypothesis W
holds.

Lutz and Mayordomo [20] achieved the separation of NP-completeness notions under the
Measure Hypothesis. Hitchcock and Pavan [12] showed that Measure hypothesis implies the
above NP-machine hypothesis. Thus we have the following.

I Proposition 3. Suppose that ZPP = P. Measure hypothesis implies Hypothesis W.

Pavan and Selman [22] showed that if NP-contains 2nε -bi-immune sets, then completeness
in NP differ. Informally, the hypothesis means the following: There is a language L in NP
such that every 2nε-time bounded algorithm that attempts to decide L must fail on all
but finitely many strings. Thus this hypothesis concerns with almost-everywhere hardness,
whereas Hypothesis W concerns with worst-case hardness. We are not able to show that
the bi-immunity hypothesis implies Hypothesis W (even under the assumption ZPP = P).
However, we note that if NP ∩ co-NP has bi-immune sets, then Hypothesis W follows.
Pavan and Selman [21] showed that if NP ∩ co-NP has a DTIME(2nε)-bi-immune set, then
NP-machine hypothesis follows.

I Proposition 4. Suppose that ZPP = P. If NP ∩ co-NP has a DTIME(2nε)-bi-immune set,
then Hypothesis W holds.

5 Conclusions

This paper, for the first time, shows that Turing completeness for NP can be separated from
many-one completeness under a worst-case hardness hypothesis. Our hypothesis concerns
with hardness of nondeterministic, double exponential time. An obvious question is to further
weaken the hypothesis. Can we achieve the separation under the assumption that there
exists a language in NE that can not be solved in deterministic/probabilistic time O(2δ2n)?
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