1,574 research outputs found

    3D Face Recognition using Significant Point based SULD Descriptor

    Full text link
    In this work, we present a new 3D face recognition method based on Speeded-Up Local Descriptor (SULD) of significant points extracted from the range images of faces. The proposed model consists of a method for extracting distinctive invariant features from range images of faces that can be used to perform reliable matching between different poses of range images of faces. For a given 3D face scan, range images are computed and the potential interest points are identified by searching at all scales. Based on the stability of the interest point, significant points are extracted. For each significant point we compute the SULD descriptor which consists of vector made of values from the convolved Haar wavelet responses located on concentric circles centred on the significant point, and where the amount of Gaussian smoothing is proportional to the radii of the circles. Experimental results show that the newly proposed method provides higher recognition rate compared to other existing contemporary models developed for 3D face recognition

    Human Face Recognition

    Get PDF
    Face recognition, as the main biometric used by human beings, has become more popular for the last twenty years. Automatic recognition of human faces has many commercial and security applications in identity validation and recognition and has become one of the hottest topics in the area of image processing and pattern recognition since 1990. Availability of feasible technologies as well as the increasing request for reliable security systems in today’s world has been a motivation for many researchers to develop new methods for face recognition. In automatic face recognition we desire to either identify or verify one or more persons in still or video images of a scene by means of a stored database of faces. One of the important features of face recognition is its non-intrusive and non-contact property that distinguishes it from other biometrics like iris or finger print recognition that require subjects’ participation. During the last two decades several face recognition algorithms and systems have been proposed and some major advances have been achieved. As a result, the performance of face recognition systems under controlled conditions has now reached a satisfactory level. These systems, however, face some challenges in environments with variations in illumination, pose, expression, etc. The objective of this research is designing a reliable automated face recognition system which is robust under varying conditions of noise level, illumination and occlusion. A new method for illumination invariant feature extraction based on the illumination-reflectance model is proposed which is computationally efficient and does not require any prior information about the face model or illumination. A weighted voting scheme is also proposed to enhance the performance under illumination variations and also cancel occlusions. The proposed method uses mutual information and entropy of the images to generate different weights for a group of ensemble classifiers based on the input image quality. The method yields outstanding results by reducing the effect of both illumination and occlusion variations in the input face images

    Learning Local Features Using Boosted Trees for Face Recognition

    Get PDF
    Face recognition is fundamental to a number of significant applications that include but not limited to video surveillance and content based image retrieval. Some of the challenges which make this task difficult are variations in faces due to changes in pose, illumination and deformation. This dissertation proposes a face recognition system to overcome these difficulties. We propose methods for different stages of face recognition which will make the system more robust to these variations. We propose a novel method to perform skin segmentation which is fast and able to perform well under different illumination conditions. We also propose a method to transform face images from any given lighting condition to a reference lighting condition using color constancy. Finally we propose methods to extract local features and train classifiers using these features. We developed two algorithms using these local features, modular PCA (Principal Component Analysis) and boosted tree. We present experimental results which show local features improve recognition accuracy when compared to accuracy of methods which use global features. The boosted tree algorithm recursively learns a tree of strong classifiers by splitting the training data in to smaller sets. We apply this method to learn features on the intrapersonal and extra-personal feature space. Once trained each node of the boosted tree will be a strong classifier. We used this method with Gabor features to perform experiments on benchmark face databases. Results clearly show that the proposed method has better face recognition and verification accuracy than the traditional AdaBoost strong classifier

    Wavelet–Based Face Recognition Schemes

    Get PDF

    Readability Enhancement and Palimpsest Decipherment of Historical Manuscripts

    Get PDF
    This paper presents image acquisition and readability enhancement techniques for historical manuscripts developed in the interdisciplinary project “The Enigma of the Sinaitic Glagolitic Tradition” (Sinai II Project).1 We are mainly dealing with parchment documents originating from the 10th to the 12th centuries from St. Cather- ine’s Monastery on Mount Sinai. Their contents are being analyzed, fully or partly transcribed and edited in the course of the project. For comparison also other mss. are taken into consideration. The main challenge derives from the fact that some of the manuscripts are in a bad condition due to various damages, e.g. mold, washed out or faded text, etc. or contain palimpsest (=overwritten) parts. Therefore, the manuscripts investigated are imaged with a portable multispectral imaging system. This non-invasive conservation technique has proven extremely useful for the exami- nation and reconstruction of vanished text areas and erased or washed o palimpsest texts. Compared to regular white light, the illumination with speci c wavelengths highlights particular details of the documents, i.e. the writing and writing material, ruling, and underwritten text. In order to further enhance the contrast of the de- graded writings, several Blind Source Separation techniques are applied onto the multispectral images, including Principal Component Analysis (PCA), Independent Component Analysis (ICA) and others. Furthermore, this paper reports on other latest developments in the Sinai II Project, i.e. Document Image Dewarping, Automatic Layout Analysis, the recent result of another project related to our work: the image processing tool Paleo Toolbar, and the launch of the series Glagolitica Sinaitica

    Gradient-orientation-based PCA subspace for novel face recognition

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Face recognition is an interesting and a challenging problem that has been widely studied in the field of pattern recognition and computer vision. It has many applications such as biometric authentication, video surveillance, and others. In the past decade, several methods for face recognition were proposed. However, these methods suffer from pose and illumination variations. In order to address these problems, this paper proposes a novel methodology to recognize the face images. Since image gradients are invariant to illumination and pose variations, the proposed approach uses gradient orientation to handle these effects. The Schur decomposition is used for matrix decomposition and then Schurvalues and Schurvectors are extracted for subspace projection. We call this subspace projection of face features as Schurfaces, which is numerically stable and have the ability of handling defective matrices. The Hausdorff distance is used with the nearest neighbor classifier to measure the similarity between different faces. Experiments are conducted with Yale face database and ORL face database. The results show that the proposed approach is highly discriminant and achieves a promising accuracy for face recognition than the state-of-the-art approaches

    Learning Robust and Discriminative Manifold Representations for Pattern Recognition

    Get PDF
    Face and object recognition find applications in domains such as biometrics, surveillance and human computer interaction. An important component in any recognition pipeline is to learn pertinent image representations that will help the system to discriminate one image class from another. These representations enable the system to learn a discriminative function that can classify a wide range of images. In practical situations, the images acquired are often corrupted with occlusions and noise. Thus, a robust and discriminative learning is necessary for good classification performance. This thesis explores two scenarios where robust and discriminative manifold representations help recognize face and object images. On one hand learning robust manifold projections enables the system to adapt to images across different domains including cases with noise and occlusions. And on the other hand learning discriminative manifold representations aid in image set comparison. The first contribution of this thesis is a robust approach to visual domain adaptation by learning a subspace with L1 principal component analysis (PCA) and L1 Grassmannian with applications to object and face recognition. Mapping data from different domains on a low dimensional subspace through PCA is a common step in subspace based unsupervised domain adaptation. Subspaces extracted by PCA are prone to be affected by outliers that lead to noisy projections. A robust subspace learning through L1-PCA helps in improving performance. The proposed approach was tested on the office, Caltech - 256, Yale-A and AT&T datasets. Results indicate the improvement of classification accuracy for face and object recognition task. The second contribution of this thesis is a biologically motivated manifold learning framework for image set classification by independent component analysis (ICA) for Grassmann manifolds. It has been discovered that the simple cells in the visual cortex learn spatially localized image representations. Similar representations can be learnt using ICA. Motivated by the manifold hypothesis, a Grassmann manifold is learnt using the independent components which enables compact representation through linear subspaces. The efficacy of the proposed approach is demonstrated for image set classification on face and object recognition datasets such as AT&T, extended Yale, labelled faces in the wild and ETH - 80

    Hyperspectral Data Acquisition and Its Application for Face Recognition

    Get PDF
    Current face recognition systems are rife with serious challenges in uncontrolled conditions: e.g., unrestrained lighting, pose variations, accessories, etc. Hyperspectral imaging (HI) is typically employed to counter many of those challenges, by incorporating the spectral information within different bands. Although numerous methods based on hyperspectral imaging have been developed for face recognition with promising results, three fundamental challenges remain: 1) low signal to noise ratios and low intensity values in the bands of the hyperspectral image specifically near blue bands; 2) high dimensionality of hyperspectral data; and 3) inter-band misalignment (IBM) correlated with subject motion during data acquisition. This dissertation concentrates mainly on addressing the aforementioned challenges in HI. First, to address low quality of the bands of the hyperspectral image, we utilize a custom light source that has more radiant power at shorter wavelengths and properly adjust camera exposure times corresponding to lower transmittance of the filter and lower radiant power of our light source. Second, the high dimensionality of spectral data imposes limitations on numerical analysis. As such, there is an emerging demand for robust data compression techniques with lows of less relevant information to manage real spectral data. To cope with these challenging problems, we describe a reduced-order data modeling technique based on local proper orthogonal decomposition in order to compute low-dimensional models by projecting high-dimensional clusters onto subspaces spanned by local reduced-order bases. Third, we investigate 11 leading alignment approaches to address IBM correlated with subject motion during data acquisition. To overcome the limitations of the considered alignment approaches, we propose an accurate alignment approach ( A3) by incorporating the strengths of point correspondence and a low-rank model. In addition, we develop two qualitative prediction models to assess the alignment quality of hyperspectral images in determining improved alignment among the conducted alignment approaches. Finally, we show that the proposed alignment approach leads to promising improvement on face recognition performance of a probabilistic linear discriminant analysis approach
    • …
    corecore