176 research outputs found

    Business Process Orchestration and eBusiness

    Get PDF

    Semantic business process management: a vision towards using semantic web services for business process management

    Get PDF
    Business process management (BPM) is the approach to manage the execution of IT-supported business operations from a business expert's view rather than from a technical perspective. However, the degree of mechanization in BPM is still very limited, creating inertia in the necessary evolution and dynamics of business processes, and BPM does not provide a truly unified view on the process space of an organization. We trace back the problem of mechanization of BPM to an ontological one, i.e. the lack of machine-accessible semantics, and argue that the modeling constructs of semantic Web services frameworks, especially WSMO, are a natural fit to creating such a representation. As a consequence, we propose to combine SWS and BPM and create one consolidated technology, which we call semantic business process management (SBPM

    Do Process Modelling Techniques Get Better? A Comparative Ontological Analysis of BPMN

    Get PDF
    Current initiatives in the field of Business Process Management (BPM) strive for the development of a BPM standard notation by pushing the Business Process Modeling Notation (BPMN). However, such a proposed standard notation needs to be carefully examined. Ontological analysis is an established theoretical approach to evaluating modelling techniques. This paper reports on the outcomes of an ontological analysis of BPMN and explores identified issues by reporting on interviews conducted with BPMN users in Australia. Complementing this analysis we consolidate our findings with previous ontological analyses of process modelling notations to deliver a comprehensive assessment of BPMN

    An approach to relate business and application services using ISDL

    Get PDF
    This paper presents a service-oriented design approach that allows one to relate services modelled at different levels of granularity during a design process, such as business and application services. To relate these service models we claim that a 'concept gap' and an 'abstraction gap' need to be bridged. The concept gap represents the difference between the conceptual models used to construct service models by different stakeholders involved in the design process. The abstraction gap represents the difference in abstraction level at which service models are defined. Two techniques are presented that bridge these gaps. Both techniques are based on the Interaction System Design Language (ISDL). The paper illustrates the use of both techniques through an example

    Using ontology for the representational analysis of process modelling techniques

    Get PDF
    Selecting an appropriate business process modelling technique forms an important task within the methodological challenges of a business process management project. While a plethora of available techniques has been developed over the last decades, there is an obvious shortage of well-accepted reference frameworks that can be used to evaluate and compare the capabilities of the different techniques. Academic progress has been made at least in the area of representational analyses that use ontology as a benchmark for such evaluations. This paper reflects on the comprehensive experiences with the application of a model based on the Bunge ontology in this context. A brief overview of the underlying research model characterizes the different steps in such a research project. A comparative summary of previous representational analyses of process modelling techniques over time gives insights into the relative maturity of selected process modelling techniques. Based on these experiences suggestions are made as to where ontology-based representational analyses could be further developed and what limitations are inherent to such analyses

    Distributed Web Service Coordination for Collaboration Applications and Biological Workflows

    Get PDF
    In this dissertation work, we have investigated the main research thrust of decentralized coordination of workflows over web services. To address distributed workflow coordination, first we have developed “Web Coordination Bonds” as a capable set of dependency modeling primitives that enable each web service to manage its own dependencies. Web bond primitives are as powerful as extended Petri nets and have sufficient modeling and expressive capabilities to model workflow dependencies. We have designed and prototyped our “Web Service Coordination Management Middleware” (WSCMM) system that enhances current web services infrastructure to accommodate web bond enabled web services. Finally, based on core concepts of web coordination bonds and WSCMM, we have developed the “BondFlow” system that allows easy configuration distributed coordination of workflows. The footprint of the BonFlow runtime is 24KB and the additional third party software packages, SOAP client and XML parser, account for 115KB
    corecore