31,689 research outputs found

    Simulation study of routing protocols in wireless sensor networks

    Get PDF
    Wireless sensor networks, a distributed network of sensor nodes perform critical tasks in many application areas such as target tracking in military applications, detection of catastrophic events, environment monitoring, health applications etc. The routing protocols developed for these distributed sensor networks need to be energy efficient and scalable. To create a better understanding of the performance of various routing protocols proposed it is very important to perform a detailed analysis of them. Network simulators enable us to study the performance and behavior of these protocols on various network topologies. Many Sensor Network frameworks were developed to explore both the networking issues and the distributed computing aspects of wireless sensor networks. The current work of simulation study of routing protocols is done on SensorSimulator, a discrete event simulation framework developed at Sensor Networks Research Laboratory, LSU and on a popular event driven network simulator ns2 developed at UC Berkeley. SensorSimulator is a discrete event simulation framework for sensor networks built over OMNeT++ (Objective Modular Network Test-bed in C++). This framework allows the user to debug and test software for distributed sensor networks. SensorSimulator allows developers and researchers in the area of Sensor Networks to investigate topological, phenomenological, networking, robustness and scaling issues, to explore arbitrary algorithms for distributed sensors, and to defeat those algorithms through simulated failure. The framework has modules for all the layers of a Sensor Network Protocol stack. This thesis is focused on the simulation and performance evaluation of various routing protocols on SensorSimulator and ns2. The performance of the simulator is validated with a comparative study of Directed Diffusion Routing Protocol on both ns2 and SensorSimulator. Then the simulations are done to evaluate the performance of Optimized Broadcast Protocols for Sensor Networks, Efficient Coordination Protocol for Wireless Sensor Networks on SensorSimulator. Also a performance study of Random Asynchronous Wakeup protocol for Sensor Networks is done on ns2

    A survey on network simulators in three-dimensional wireless ad hoc and sensor networks

    Get PDF
    Ā© 2016 The Author(s). As steady research in wireless ad hoc and sensor networks is going on, performance evaluation through relevant network simulator becomes indispensable procedure to demonstrate superiority to comparative schemes and suitability in most literatures. Thus, it is very important to establish credibility of simulation results by investigating merits and limitations of each simulator prior to selection. Based on this motivation, in this article, we present a comprehensive survey on current network simulators for new emerging research area, three-dimensional wireless ad hoc and sensor networks which is represented by airborne ad hoc networks and underwater sensor networks by reviewing major existing simulators as well as presenting their main features in several aspects. In addition, we address the outstanding mobility models which are main components in simulation study for self-organizing ad hoc networks. Finally, open research issues and research challenges are discussed and presented

    Study of MAC Protocols for Mobile Wireless Body Sensor Networks

    Get PDF
    Wireless Body Area Networks (WBAN) also referred to as a body sensor network (BSN), is a wireless network of wearable computing devices. It has emerged as a key technology to provide real-time health monitoring of a patient and diagnose many life threatening diseases. WBAN operates in close vicinity to, on, or inside a human body and supports a variety of medical and non-medical applications. The design of a medium access control is a challenge due to the characteristics of wireless channel and the need to fulfill both requirements of mobility support and energy efficiency.Ā  This paper presents a comparative study of IEEE 802.15.6, IEEE 804.15.4 and T-MAC in order to analyze the performance of each standard in terms of delay, throughput and energy consumption. Keywords: Biomedical, IEEE 802.15.6; T-MAC, IEEE 802.15.4, mobility, low-power communication, wireless body sensor networks, implantable sensors, healthcare applications, biosensors

    Improving Performance of WSN Based On Hybrid Range Based Approach

    Get PDF
    Improving the performance of WSN supported hybrid range based approach. WSN is self-possessed minimization error of nodes prepared with limited resources, limited memory and computational abilities. WSNs reliably work in unidentified hubs and numerous situations, it's difficult to trade sensor hubs after deployment, and therefore a fundamental objective is to optimize the sensor nodes' lifetime. A WSN may be a set of a large number of resource-constrained sensor nodes which have abilities for information detection, processing, and short-range radio communication, Analysis localization error minimization based several applications of wireless sensor networks (WSN) need data regarding the geographical location of each detector node. Self-organization and localization capabilities are one in every of the foremost necessary needs in detector networks. It provides a summary of centralized distance-based algorithms for estimating the positions of nodes during very sensing nodes. Secure localization of unknown nodes during a very wireless detector network (WSN) may be a vital analysis subject wireless sensor networks (WSN), a component of enveloping computing, are presently getting used on a large scale to look at period environmental standing, Be that as it may, these sensors work underneath extraordinary vitality imperatives and are planned by remembering an application. Proposed approaches are sensing node location and challenging task, involve assessing sort of various parameters needed by the target application. In study realize drawback not sense positioning of nodes .but proposed approach formula recognizes the optimal location of nodes supported minimize error and best answer in WSN. Localization algorithms mentioned with their benefits and disadvantages. Lastly, a comparative study of localization algorithms supported the performance in WSN. This was often done primarily to offer a summary of the proposed approach known today for reliable data and minimizing the energy consumption in wireless sensor networks

    A SOLUTION TO SELECTIVE FORWARD ATTACK IN WIRELESS SENSOR NETWORK

    Get PDF
    Purpose of Study: Wireless mesh network represents a solution to provide wireless connectivity. There are some attacks on wireless sensor networks like black hole attack, sinkhole attack, Sybil attack, selective forwarding, etc. In this paper, we will concentrate on a selective forwarding attack. Selective Forwarding Attack is one of the many security threats in wireless sensor networks that can degrade network performance. An adversary on the transmission path selectively drops the packet. The adversary same time transfers the packet, while on a few occasions it drops the packet. It is diļ¬ƒcult to detect this type of attack since the packet loss may be due to unreliable wireless communication. The proposed scheme is based on the trust value of each node. During data transmission, a node selects a downstream node that has the highest trust value, which is updated dynamically based on the number of packets a node has forwarded and dropped. Methodology: A comparative methodology is used in all existing schemes. We compared our scheme with the existing scheme and found that the packet loss in the proposed scheme is much less than the existing scheme. Result: We showed that our scheme essentially detects malicious nodes for each possible scenario. Regarding communication overhead, our scheme is more efficient than typical multipath schemes. Also, by utilizing an existing routing protocol which is secure against sinkhole attacks, our scheme also provides security against sinkhole attacks

    Not All Wireless Sensor Networks Are Created Equal: A Comparative Study On Tunnels

    Get PDF
    Wireless sensor networks (WSNs) are envisioned for a number of application scenarios. Nevertheless, the few in-the-field experiences typically focus on the features of a specific system, and rarely report about the characteristics of the target environment, especially w.r.t. the behavior and performance of low-power wireless communication. The TRITon project, funded by our local administration, aims to improve safety and reduce maintenance costs of road tunnels, using a WSN-based control infrastructure. The access to real tunnels within TRITon gives us the opportunity to experimentally assess the peculiarities of this environment, hitherto not investigated in the WSN field. We report about three deployments: i) an operational road tunnel, enabling us to assess the impact of vehicular traffic; ii) a non-operational tunnel, providing insights into analogous scenarios (e.g., underground mines) without vehicles; iii) a vineyard, serving as a baseline representative of the existing literature. Our setup, replicated in each deployment, uses mainstream WSN hardware, and popular MAC and routing protocols. We analyze and compare the deployments w.r.t. reliability, stability, and asymmetry of links, the accuracy of link quality estimators, and the impact of these aspects on MAC and routing layers. Our analysis shows that a number of criteria commonly used in the design of WSN protocols do not hold in tunnels. Therefore, our results are useful for designing networking solutions operating efficiently in similar environments
    • ā€¦
    corecore