5 research outputs found

    Prediction based scaling in a distributed stream processing cluster

    Get PDF
    2020 Spring.Includes bibliographical references.Proliferation of IoT sensors and applications have enabled us to monitor and analyze scientific and social phenomena with continuously arriving voluminous data. To provide real-time processing capabilities over streaming data, distributed stream processing engines (DSPEs) such as Apache STORM and Apache FLINK have been widely deployed. These frameworks support computations over large-scale, high frequency streaming data. However, current on-demand auto-scaling features in these systems may result in an inefficient resource utilization which is closely related to cost effectiveness in popular cloud-based computing environments. We propose ARSTREAM, an auto-scaling computing environment that manages fluctuating throughputs for data from sensor networks, while ensuring efficient resource utilization. We have built an Artificial Neural Network model for predicting data processing queues and this model captures non-linear relationships between data arrival rates, resource utilization, and the size of data processing queue. If a bottleneck is predicted, ARSTREAM scales-out the current cluster automatically for current jobs without halting them at the user level. In addition, ARSTREAM incorporates threshold-based re-balancing to minimize data loss during extreme peak traffic that could not be predicted by our model. Our empirical benchmarks show that ARSTREAM forecasts data processing queue sizes with RMSE of 0.0429 when tested on real-time data

    Process-Oriented Stream Classification Pipeline:A Literature Review

    Get PDF
    Featured Application: Nowadays, many applications and disciplines work on the basis of stream data. Common examples are the IoT sector (e.g., sensor data analysis), or video, image, and text analysis applications (e.g., in social media analytics or astronomy). With our work, we gather different approaches and terminology, and give a broad overview over the topic. Our main target groups are practitioners and newcomers to the field of data stream classification. Due to the rise of continuous data-generating applications, analyzing data streams has gained increasing attention over the past decades. A core research area in stream data is stream classification, which categorizes or detects data points within an evolving stream of observations. Areas of stream classification are diverse—ranging, e.g., from monitoring sensor data to analyzing a wide range of (social) media applications. Research in stream classification is related to developing methods that adapt to the changing and potentially volatile data stream. It focuses on individual aspects of the stream classification pipeline, e.g., designing suitable algorithm architectures, an efficient train and test procedure, or detecting so-called concept drifts. As a result of the many different research questions and strands, the field is challenging to grasp, especially for beginners. This survey explores, summarizes, and categorizes work within the domain of stream classification and identifies core research threads over the past few years. It is structured based on the stream classification process to facilitate coordination within this complex topic, including common application scenarios and benchmarking data sets. Thus, both newcomers to the field and experts who want to widen their scope can gain (additional) insight into this research area and find starting points and pointers to more in-depth literature on specific issues and research directions in the field.</p

    Computational Methods for Medical and Cyber Security

    Get PDF
    Over the past decade, computational methods, including machine learning (ML) and deep learning (DL), have been exponentially growing in their development of solutions in various domains, especially medicine, cybersecurity, finance, and education. While these applications of machine learning algorithms have been proven beneficial in various fields, many shortcomings have also been highlighted, such as the lack of benchmark datasets, the inability to learn from small datasets, the cost of architecture, adversarial attacks, and imbalanced datasets. On the other hand, new and emerging algorithms, such as deep learning, one-shot learning, continuous learning, and generative adversarial networks, have successfully solved various tasks in these fields. Therefore, applying these new methods to life-critical missions is crucial, as is measuring these less-traditional algorithms' success when used in these fields

    A Comparative Study on Streaming Frameworks for Big Data

    Get PDF
    International audienceRecently, increasingly large amounts of data are generated from a variety of sources. Existing data processing technologies are not suitable to cope with the huge amounts of generated data. Yet, many research works focus on streaming in Big Data, a task referring to the processing of massive volumes of structured/unstructured streaming data. Recently proposed streaming frameworks for Big Data applications help to store, analyze and process the continuously captured data. In this paper, we discuss the challenges of Big Data and we survey existing streaming frameworks for Big Data. We also present an experimental evaluation and a comparative study of the most popular streaming platforms
    corecore