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ABSTRACT

PREDICTION BASED SCALING IN A DISTRIBUTED STREAM PROCESSING CLUSTER

Proliferation of IoT sensors and applications have enabled us to monitor and analyze scientific

and social phenomena with continuously arriving voluminous data. To provide real-time pro-

cessing capabilities over streaming data, distributed stream processing engines (DSPEs) such as

Apache STORM and Apache FLINK have been widely deployed. These frameworks support

computations over large-scale, high frequency streaming data. However, current on-demand auto-

scaling features in these systems may result in an inefficient resource utilization which is closely

related to cost effectiveness in popular cloud-based computing environments. We propose AR-

STREAM, an auto-scaling computing environment that manages fluctuating throughputs for data

from sensor networks, while ensuring efficient resource utilization. We have built an Artificial

Neural Network model for predicting data processing queues and this model captures non-linear

relationships between data arrival rates, resource utilization, and the size of data processing queue.

If a bottleneck is predicted, ARSTREAM scales-out the current cluster automatically for current

jobs without halting them at the user level. In addition, ARSTREAM incorporates threshold-based

re-balancing to minimize data loss during extreme peak traffic that could not be predicted by our

model. Our empirical benchmarks show that ARSTREAM forecasts data processing queue sizes

with RMSE of 0.0429 when tested on real-time data.
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Chapter 1

Introduction

Given the amount of data that is being generated every day and the need to accumulate, oper-

ate, and interpret the data to provide useful insights and predictions resulted in the development

of distributed batch processing frameworks. But the data generated at such a large scale usually

take hours and days to interpret even with the popular batch processing frameworks like Apache

SPARK [1–3] and most of the times, what we need is only the real-time insights from the data.

Therefore, the need is of the system that can ingest data stream and produces useful insights in-

stantaneously. Many stream processing engines were developed, which helped to parallelize the

computations giving us the swifter results by providing more resources to the application and

running the operators in the parallel. But still, the streaming platforms that are available in the

industry lack the potential to perform machine learning on the streaming data in a distributed way.

However, distributed machine learning is available in batch processing engines like SPARK’s ML-

lib [1–3], but is limited in terms of algorithms it offers. Therefore, researchers developed their

distributed versions of the machine learning algorithms, and they created a library to be used as a

pluggable adapter on the available streaming engines to make available the online machine learning

on DSPEs, the project called Apache SAMOA [4, 5].

With the advancement in artificial intelligence and machine learning, people are now interested

in deep learning on the streaming data. As we know, deep learning is a resource-intensive appli-

cation, and for the same reason, GPU comes handy. In our work, we show that current stream

processing engines can also be used for deep learning as effectively as it is done on GPUs by par-

allelizing the tasks to run on the multiple workers and using the streaming data. The distributed

stream processing engine we use is Apache STORM [6], which is a widely deployed stream com-

puting engine.

When we run any resource-intensive application on the distributed platform, whether streaming

or batch, one thing about which we can never be accurately sure is the resource requirements of
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that application throughout its execution due to continuously changing workloads. Therefore,

we thought of building ARSTREAM, which enables auto-scaling in STORM and thus helps an

application by automatically providing resources during the times of need maintaining efficient

resource utilization. Auto-Scaling is a feature that has been missing from most of the engine’s

official releases, whether batch or streaming, but most of them have provided a module to re-scale

an application manually, which can be used only after a user sees an overloaded operator. This way

of scaling has many downsides- first, it is not auto-scalable and the user will have to surveil the

operator performance manually requiring a lot of human efforts and second, it is on-demand which

will take action only after the bottleneck is seen by the user. People have over time researched

best auto-scaling techniques and categorized them into reactive and proactive techniques. We will

explore the use of both the techniques and implement them in ARSTREAM for our applications,

which need auto-scaling.

When we configure an application in distributed stream processing engines, we configure the

tasks which will eventually run in parallel in the system, and these tasks are fixed during the entire

execution of the topology. In this work, we modify the approach used in Apache STORM, which

limits the number of tasks to change at run-time and show that whenever we re-scale, the number

of tasks also changes without any side effects.

1.1 Research Questions

Research questions that we explore in this study include the following:

• [RQ1] How can we detect excessive traffic in advance for proactive up-scaling within a

stream computing cluster?

To provide auto-scaling, critical system capabilities that must be supported include monitor-

ing network traffic and detecting early signs of potential overload. (Chapter 3.1).

• [RQ2] How can we provide auto-scaling while minimizing data loss?
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Real-world applications often encounter frequent network traffic fluctuations. The system

should be able to scale even with abrupt peaks that might occur within the monitoring win-

dow. (Chapter 3.1).

• [RQ3] How does the system account for memory-intensive computing requirements at the

streaming computing node?

Given the computational complexity and memory intensity of streaming computations (e.g.,

machine learning models), computational workloads at each node must be factored into the

auto-scaling process. (Chapter 3.2).

1.2 Overview of Approach

ARSTREAM is a distributed stream processing framework, just like other stream processing

engines available. It provides an auto-scalable mechanism for applications and the option to se-

lect from different types of scaling techniques implemented. ARSTREAM is built on top of the

latest version of STORM enabling users to write streaming applications and run on the top of it,

effectively making use of cluster resources. STORM starts the user topology with the user-defined

resources and, in no way, can react to the changing resource needs of an application over time

owing to the different rates of data arrival. ARSTREAM fixes this problem by providing an auto-

scaling mechanism that monitors the metrics sent to nimbus by various workers. There can be

many workers in the topology where each worker hosts only a single executor. Since a task in-

stance runs on an individual thread for maximum parallelism, each executor generates its own set

of metrics to be sent to nimbus. Nimbus aggregates all the metrics sent to it by different workers

and then decides to either scale-in or scale-out. There are two techniques by which we can scale an

application in ARSTREAM - reactively and proactively, and the users can specify which technique

they want to use in the configuration file. Whenever a scale-out decision is made, a new task is

added in parallel, and therefore, a new executor is provided for each newly added task to run in

parallel.
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1.3 Research Contributions

This research presents our approach for providing an auto-scaling mechanism that is tightly in-

tegrated with the original STORM engine in the form of ARSTREAM to perform real-time analytics

on the data coming at fast and varying speeds.

1. We have designed a module that gathers the metrics from the application and the system and

then sends these metrics to nimbus for making scaling decisions.

2. There is another module in nimbus which runs every "x" seconds to analyze these metrics.

Depending on the scaling strategy chosen by the user, it calls that scaling module and then

issues the STORM’s re-balance command if the scaling criteria are met.

3. We have also designed a Jupyter Notebook for training the model for proactive scaling mode.

This model is application-specific and therefore requires new training for new applications.

It also has the code to run tests on real-time data and give us the loss measures.

4. We used a deep learning application to test and evaluate ARSTREAM and also to compare

it with STORM to show the limitations of the latter system for such applications. With

our experiments, we will prove that our auto-scaling in ARSTREAM works perfectly with

resource-intensive applications like deep learning.

1.4 Organizations

The rest of the document is organized as follows. Chapter 2 describes related work in the

context. Chapter 3 describes our methodology i.e., what techniques we used to achieve auto-

scalability and to provide task-level parallelism updates. Chapter 4 goes over the ARSTREAM’s

system architecture, which gives us a high-level view of the system and the internal workings. In

Chapter 5, we go over experiments and evaluation of ARSTREAM for both reactive and proactive

mode, and we also compare ARSTREAM with STORM. Finally, we talk about future scope and the

conclusion in Chapter 6.
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Chapter 2

Related Work

The world we live in now is maturing in every aspect, with software turning much more efficient

and hardware performing a lot better. The proliferation of IoT devices at households, streets, and on

the machines is continuously generating voluminous data at unprecedented rates. With the advent

of IoT and the emerging need to gain useful insights from the data, people developed engines to

run analytics on the data stream. It is also possible to store voluminous data over a period of time

and then use it later to gain insights, but the downside with that is the missed real-time benefits.

The need is of the systems which can provide immediate benefits without waiting and as it is being

generated. There are numerous distributed processing engines available, which are categorized into

batch processing and stream processing, and it depends on the data characteristics which system

will fit for the use-case. Our research is based on the streaming data, and the system we propose

is auto-scalable, having the ability to run machine learning algorithms efficiently. The systems

which are popular and are currently in use have the potential to run ML algorithms, but they are

inefficient due to the lack of auto-scaling feature in their core package. The genuine need is of the

systems which are auto-scalable and do not require re-deploying of the application and any manual

intervention to scale-in or scale-out for achieving efficient resource utilization.

There are many different big data stream processing frameworks available, and in the next

section, we will talk about them and about how they are different from the system we propose.

2.1 Stream Computing Frameworks

There are many different data streaming engines available in the industry and to name some –

Apache STORM, SAMZA, FLINK, and SPARK Streaming. They have differences in how they do

state management, fault tolerance, and scalability.

• Apache STORM
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Figure 2.1: A High level view of the architecture of STORM engine

Apache STORM is one of the first distributed stream processing engines and is also an open-

source framework for processing large structured, and unstructured data [7]. It can handle

an unbounded stream of data with performing instantaneous processing on it. The APIs

are simple to use, making it easier to write applications in STORM along with a relatively

simple design that does not hide the complexity of the underlying system, unlike other stream

processing engines like FLINK [8].

While writing applications, which essentially is a directed acyclic graph consisting of spouts

and bolts, a user can configure as many executors, workers, and tasks as they want, but once

the topology is started, it cannot be altered. By altering the topology, what we mean is that

we cannot change the number of tasks defined initially; however, we can change the count of

executors and workers by calling the re-balance command in STORM from CLI or by using

WebUI [9]. We can set the number of tasks to a maximum at the start, but still, we will never

be sure of how many tasks we need since the speed of the stream may change.
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Data enters the topology using the spout, which can read data through any of external sys-

tems like Kafka etc. and the user’s processing logic goes inside the bolt performing oper-

ations on the data. The spouts and the bolts are connected, which enables data movement

between them. STORM did not support any state management by default in the previous

versions; however, STORM offered the feature of Trident topologies, which is a high-level

abstraction layer to accomplish state persistence. In the recent releases, they have included

state management in STORM core. Since it is a true streaming engine, it can process a mil-

lion messages per second per node in a fault-tolerant manner, which means that if a node or

worker dies, STORM will automatically restart them. Another essential feature of STORM

is its reliability – STORM guarantees at-least-once or exactly-once guarantee of message

processing [10].

A developer who is writing a STORM application is aware of the fact that there is no perfect

topology configuration (number of tasks, executors, and workers) that one can set while

creating an application. The throughput/load is unpredictable, and hence, it is impossible

to find the perfect configuration for the topology. If a user wants to change the topology

configuration for increasing the parallelism, he can do so by calling the re-balance command,

but if the number of executors is already set to a maximum value, the parallelism cannot be

increased further. The only option available with the user is to restart the topology after

increasing the number of tasks.

Some applications require machine learning for supervised or unsupervised learning, and it

is easier when we have a batch data-set as compared to when data is available as stream-

ing. This is because currently, there is relatively little support for machine learning on the

streaming data. STORM does not support any machine learning algorithms in its use case.

Therefore, if a user is interested in machine learning, it will require him to either write

his version of a machine learning algorithm for streaming, or he would have to integrate

STORM with any other library or project like Apache SAMOA [5]. As we all know that

machine learning is a resource-intensive application, it will also have higher chances of cre-
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ating a bottleneck in the cluster. STORM does not provide any mechanism by which it can

manage and re-adjust the load automatically, and so, it will require human intervention. We

can manually monitor the application load, monitor its resource needs, and then call the re-

balance command, but it causes loss of data, and the level of parallelism that we can achieve

by calling the re-balance command is limited by the number of tasks we configured at the

beginning.

Hence, the lack of auto-scaling feature and the missing task-level parallelism updates makes

STORM unsuited for many use cases.

• Apache SAMZA Apache SAMZA is also a distributed stream processing framework just

like STORM and FLINK developed at LinkedIn, which allows you to process and ana-

lyze data in real-time [11]. It is highly scalable, fault-tolerant achieved using incremental

checkpointing, and provides a unified API to write application irrespective of whether data

is available as batch or streaming [12]. Although SAMZA is good at maintaining large

states of information using RocksDb and Kafka logs, it lacks advanced streaming features

like watermarks, sessions, and triggers. One of the most significant advantages of using

SAMZA is that it manages the state correctly. It takes the snapshots of the stream processor

states when required and restores the state from the snapshots taken when the processor is

restarted [7, 13, 14].

SAMZA is based on the concept of a publish/subscribe model where tasks listen to a data

stream, processes it, and then outputs the result to another stream. To achieve scalability, a

stream can be broken into multiple partitions, and a copy of the task will be spawned for each

partition. In this way, multiple tasks can be executed in parallel to consume all the partitions

in a stream simultaneously [14,15]. The number of task instances is fixed determined by the

number of input partitions at the time before starting the execution. During the execution, if

a user decides to change the number of tasks to scale-in or scale-out, the only way possible

is by stopping the job and restarting from scratch after making the desired change to the

number of tasks. However, we can add or remove containers (1 container is equal to 1 CPU
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core) while the job is running. As we scale-out or scale-in, the same state remains attached

to each task instance. Tasks instances may be moved from one container to the other, and

along with it, the state also moves; this allows the job to work correctly. We can only have

as many containers as there are tasks; this is because we cannot keep a container without any

process. Similarly, we need at least one container which will host the tasks, but to achieve

maximum parallelism, we need a maximum of 1 task assigned to 1 container [16].

SAMZA is still young not only because it is one of the latest streaming engines but also

because it lacks many important features and libraries – one of them is machine learning.

Machine Learning is a must-have library, and because it is not inbuilt with SAMZA, an ex-

ternal library or framework is needed for machine learning capabilities. Users can also write

their machine learning algorithms, but having these algorithms provided with the framework

is always great.

Overall, SAMZA is a framework that we can use for stream processing, but since it is rela-

tively new, it lacks many essential features such as dynamic scalability, updating the number

of partitions for scaling, and the missing Machine Learning library.

• Apache FLINK Apache FLINK is another stream processing engine that is popular in the

industry. It considers everything as a stream, including the batches, and is therefore consid-

ered as a true streaming platform for distributed stream processing. FLINK is better than

many other stream processing engines as it provides exactly-once message processing guar-

antee, is fault-tolerant, offers a high throughput and provides high-level APIs (DataStream

API and Dataset API) which makes it easy for the user to write applications [17]. It also pro-

vides a save-point mechanism that we can use to make changes to the running application.

FLINK has simple data structures to define the processing pipelines, which hides most of the

complexities of the underlying system and writing applications. Hiding these complexities

under the API is useful for writing an application but also makes it difficult to use the system

for research. Since it masks most of the complexities, it makes it difficult to understand the

underlying scalability mechanism. Therefore, there are fewer papers and studies in which
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Apache FLINK is used for the experiments. Even though users are provided with Dataset

and DataStream APIs to write applications, these are the dataflow graphs that are executed

by the FLINK’s runtime engine, a layer that sits at the bottom and runs the graph. These

dataflow graphs are made up of two components- operators and streams, where operators

perform processing on the streams and generate new streams. To achieve parallelism, we

can create multiple instances of the operator called subtasks, whereas streams can also be

partitioned into one or more stream partitions. The number of parallel instances is what

defines operator parallelism. A user is also required to set the max parallelism before an

application is started, which cannot be changed in later stages. There is currently no way

to change the max parallelism while an application is running, but we can use REST API

and CLI to modify the parallelism of running application if it is within the limits of max

parallelism and which is achieved by using save-point mechanism [18–21].

FLINK provides inbuilt support for machine learning through its machine learning library

called FlinkML, which is a growing library of algorithms and whose main aim is to provide

scalable machine learning algorithms along with making it easy to write an ML application

in FLINK. However, there is no support for machine learning with streaming data, and if a

user wants to create an ML application for streaming, he will have to use external frame-

works like SAMOA for that purpose [22]. Though we can use REST API and CLI to change

the parallelism of a running application in FLINK, the need to scale an application automat-

ically is essential. If we are running a machine learning algorithm on the top of FLINK, it

would have varying resource requirements during its execution, which means one will have

to manually re-balance the configuration to provide it with enough resources. Secondly, if

we want to change the max parallelism, we will have to restart the application from scratch

with the brand-new state. Restarting an application from the previous save-point after chang-

ing the max parallelism is currently unavailable. Still, we can change the number of workers

if we save point the current state and restart it after redistributing the states to the new con-
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figuration. This max parallelism limits the parallelism we can achieve in the system for each

operator.

Hence, the lack of auto-scaling feature and inability to change the max parallelism renders

it unsuited for machine learning on FLINK, which works only for the batch-ed data-set.

More importantly, the presence of high-level APIs available to users makes it difficult to

understand the scalability mechanism by hiding the underlying complexities.

• Apache SPARK We may get Apache SPARK streaming in our minds too when talking

about different streaming engines, but it is not a true streaming engine. Apache SPARK

uses micro batching where it groups the incoming tuples into batches for processing at a

specific time duration. Since the batches are processed at a particular time, it renders higher

latency than true streaming engines, which are instance-based and handles each tuple as soon

as they arrive in the system. The engines which are not truly streaming have a completely

different mechanism of how they deal with processing, failures, and guarantees; therefore,

they cannot be used for our research. Although Apache SPARK streaming comes inbuilt

with the auto-scaling feature, it’s high latency and low throughput as compared to other true

streaming engines, and the on-demand scaling decisions rule it out from the game [2].

2.2 Auto-Scaling in Related Systems

There are numerous different stream processing engines available in the market today, and the

choice of selecting one is always difficult. Researchers favor one, which is easier to tune and has

minimum abstractions. The abstraction of the underlying system using high-level APIs makes it

easier to use for the users but difficult for researchers. Many other factors drive the decision to

choose a specific engine like performance measures (i.e., throughput and execute latency). We

need a system that offers a high throughput and low latency, and STORM-2.0 is the first streaming

engine to break the microsecond latency barrier as per the STORM’s official page [23]. We decided

to use Apache STORM for our research because of its modular design, which makes it easier to

read and understand the code along with providing performance benefits and minimal abstraction,

11



making it easier to play with also. Many researchers have used STORM for their research and

experiments for similar reasons. Ahmed et al. used Apache STORM for their experiment too [8].

STORM-2.0 is recently released but is still missing the crucial auto-scaling feature. There is

only one DSPE available in the market today, which has an auto-scaling feature already imple-

mented (i.e., Apache SPARK), but it has the latency in seconds because of its mini-batch process-

ing. People have shown to use dynamic scaling in Apache SPARK streaming, but there is no official

mention by the community members and on SPARK’s official website [24]. The auto-scaling is

present in the STORM’s JIRA issue for ages, but no action has been taken on it to date. Veen et al.

also studied and experimented with auto-scaling in Apache STORM, and their work also relates

to our work, but the approaches are different [25]. Cloud infrastructure is growing at a rapid pace,

and people have been attracted to its "pay as you go" model in which any organization can rent the

resources provided by cloud providers on-demand, and they pay as they go. The primary benefit

for organizations using the cloud infrastructure is auto-scaling operations. Lorido-Botran et al.

talked about elasticity in the cloud environment as the Monitoring, Analysis, Planning, and Exe-

cution process [26]. After following this process, the auto-scaler decides to scale-in or scale-out

the application for efficient resource utilization. The Cloud environment is convenient but does not

suit the needs of organizations that have their own data centers. Therefore, we need auto-scaling

features in DSPEs itself rather than leveraging it from cloud environments.

A lot of efforts have been made in this field to achieve auto-scaling for both streaming and non-

stream processing engines, but no one has ever shown auto-scaling for applications that run deep

learning algorithms. A great deal of research has also been done in the field of machine learning for

streaming data as we know of Apache SAMOA, which is a pluggable library compatible with most

of the available DSPEs and providing a variety of ML algorithms for streaming data [5]. Today

also, it is a hot topic for many machine learning enthusiasts’ who want to do machine learning on

the streaming data.

Auto-scaling is not a new topic in the area of real-time stream processing; many researchers

have selected this topic for their research because of the benefits it offers. It saves us a lot of com-
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putational resources, maintains high throughput for the application, and saves us a lot of manual

hours. Two auto-scaling techniques – reactive and proactive, both have their advantages and disad-

vantages and are suited for different applications differently. These two broad categories are also

discussed by Nikravesh et al. [27].

People have always argued about which technique is better. We propose using hybrid scaling

in ARSTREAM for applications that use the proactive technique because there is always a risk

that proactive scaling may suffer from wrong decisions and, as a result, causing missed re-scaling

operation and the loss of data. But all these problems are application-specific and will depend

on the application use case which technique will suit them best. There are various reactive and

proactive auto-scaling techniques proposed in several kinds of research; one of them is using the

Hidden Markov Model (HMM) discussed in a study by Nikravesh et al. [27].

Cooper et al. used time series analysis for workload modeling to predict SLA breaches for

streaming data in cloud environments [28]. Ahmed et al. proposed a proactive framework to predict

the future workloads of an application using the data regression algorithm provided in SAMOA and

the adaptive model rules regressor algorithm using Apache STORM as the underlying system [8].

Amazon introduced predictive scaling to EC2 instances using recurrent neural network (RNN)

that can forecast CPU utilization of the EC2 machines and expected traffic. They use tons of data

from thousands of EC2 machines and at least one day of historical data based on customer’s usage.

One drawback of using RNN we believe is that it fails if the traffic becomes unpredictable, showing

no signs of pattern in it. It may only be successful for the applications where there are patterns and

hence, can forecast for the next 48 hours. The application we use for ARSTREAM assumes that

there is no pattern in the data, and the arrival rate varies unpredictably [29]. Roy et al. used the

ARMA method for workload modeling, but again this applies only to the applications where there

is a strong correlation with the historical data [30].

Many things need to be taken care of while making a scaling decision such that throughput is

always maintained. The decisions can be made on various metrics like – data processing queue

load, latency, memory utilization, CPU utilization, pending tasks, etc. Researchers have used many
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of these different types of metrics to make scaling decisions. There are many ways to gather metrics

from the system, but we decided to write our code to fetch the system metrics in ARSTREAM.

JCatascopia is a monitoring system that collects several kinds of parameters from system and

application [31]. Our primary concern and the need was to maximize the system throughput,

which is primarily affected by the current queue load making the queue population a critical metric

to make the scaling decision.

Now, we will discuss some other systems which implemented auto-scaling and will see how

those are different from what we are doing. Xu et al. presented a stream processing system called

STELA, which supports scale-out and scale-in operations in an on-demand manner. They aim

to optimize the post scaling throughput and minimize the interruption to the running applications

while re-balancing is being carried out. STELA uses a metric called effective throughput per-

centage, which it uses to carefully select the nodes to prune for scale-in and operators to provide

with more resources for scale-out with minimum interruption. STELA also doesn’t change the

topology at run-time, which means we cannot add more tasks to running topology resulting in

limited scaling, and this technique is invoked on-demand, an external event triggers the scaling

operation [32].

Dhalion was developed on the top of Twitter HERON [33] to overcome the limitation of

HERON of not being able to self-regulate. It uses a rule-based policy for making scaling deci-

sions and uses metrics like queue sizes, backpressure of the operators to learn about the system’s

health. It has symptom detectors, diagnosers, and resolvers, which does all the work to make the

system auto-scalable. Symptom detectors collect the metrics from the engine and look for symp-

toms that may be proof of an issue. Detected symptoms are then passed to diagnosers, which try

to find explanations for the symptoms using the hand-coded rules. Finally, the resolver reads the

diagnoser report and explores the possible measures to rectify the situation and takes that action.

It falls under the category of reactive scaling where the action is taken after the problem has oc-

curred and is different from our work, where we also explore the predictive scaling technique. One

thing they follow like us in their technique is the use of the cool-down period after every action
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is taken; the system waits for a reasonable period before considering any further action. It does

auto-scaling through a stepwise iteration, incrementally reacting to bottlenecks by adjusting the

parallelism until the topology is stable [34].

Like Dhalion, IBM Streams also uses backpressure and the congestion in the operators to find

bottlenecks but uses threshold-based policies to make the scaling decisions [35].

DS2 is another framework, low latency, and a robust controller for dynamic scaling of stream-

ing applications, which can vary resources available to an application to handle varying workloads.

This is an advancement over Dhalion for HERON [33], and they have shown improvements in auto-

scaling when applied to HERON. Their focus is on accurately determining the parallelism for all

operators within a single scaling decision, unlike systems that look at only one operator in one

scaling action, just like ARSTREAM does. It works in the online and reactive setting, and based on

real-time performance it identifies the optimal level of parallelism required for each operator. It

considers each operator’s true processing capabilities and studies the effect of scaling each operator

on downstream operators [36].

Apache SPARK has its internal auto-scaling mechanism, which operates only with a fixed

resource pool. After an application is started, it cannot allocate new resources to the cluster. It

requires setting up a shuffle service on each worker node and independent of executors allowing

executors to be removed without deleting the shuffle files that they write. So, the worker is kept

alive while the executors are scaled-in or scaled-out, making it impossible to re-scale the cluster to

take advantage of the elasticity [37]. For adding or removing the executors, it uses the number of

pending tasks as the metric. It implies that the existing set of executors is insufficient to saturate

simultaneously all the tasks that have been submitted but not yet finished. If that is true for a

duration greater than the threshold, it adds more executors [38].

There are other private projects aimed towards finding a better auto-scaling mechanism for

SPARK. One such example is Elastic spark streaming, which uses processing percentage (pro-

cessing time and micro-batch interval ratio) as the scaling logic. People have argued that it is

available only at the executors’ level and that there is no information available for node or worker
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scaling [39]. But in conclusion, it still uses a reactive technique that is threshold-based; it may be

useful in the SPARK environment but also may not be the best.

These were significant researches in the field of streaming auto-scaling systems and are also

related to what we are trying to achieve. With the flexibility we have, we can keep it easy with

some basic metrics to make the scaling decisions. However, none of them worked on task-level

parallelism updates in STORM, which makes it scalable to whatever degree we want, and also for

most of them, the scaling criteria were reactive.

There were many other kinds of research in the field of streaming systems that tried to solve

problems, overcome the limitations, and added useful features to the systems. The Granules

DSPE [40, 41] incorporates support for stateful streaming computations with support for MapRe-

duce. The Neptune suite of extensions to the Granules runtime incorporates support for high-

velocity data streams generated in IoT and sensing environments [42]. This includes support for

flow control, frugal creation of objects, and minimizing context switches during processing. Op-

timal stream scheduling is NP-Hard, the prediction rings algorithm leverages time-series analysis

and accounts for interference between stream processing computations to alleviate throughput and

latency constraints [43]. More importantly, the algorithm supports dynamic scaling maneuvers

while accounting for resource utilization imbalances. DSPEs typically are backed by stream dis-

semination systems that may be deployed in contexts [44,45] other than stream processing. Stream

processing in the context of resource-constrained settings such as edge devices attempts to mini-

mize the amount of data in transit [46, 47].

Streams occur naturally in settings involving observation devices. Data management chal-

lenges in these settings have addresses issues such storage [48, 49], subsetting [50, 51], sketching

to reduce data volumes [52, 53], alleviating I/O costs [54], anomaly detection [55]. A key objec-

tive in these systems is support streams of queries that must be evaluated at low latencies. Such

streaming queries may be ad hoc [56], analytic [57], geometry constrained [58], or relate to visu-

alization [59, 60].
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2.3 Machine Learning on Stream Processing Engines

Since streaming in its essence means continuous flow of data, traditional machine learning

algorithms that runs on batch data-sets cannot be applied. Researchers have been working for long

to create machine learning algorithms that can run on the streaming data given the fact of how

important it is now to study the data characteristics in real-time and make predictions. Apache

STORM did not have any machine learning library at all when it was developed, Apache SPARK

did have a library of machine learning classifiers, but it was meant only for batch data-sets [61].

Apache FLINK came late in the picture, and it also did not have any machine learning capabilities

for streaming data [22].

Apache SAMOA, which is a distributed streaming machine learning framework, was devel-

oped, enabling the development of new ML algorithms without directly dealing with the complex-

ities of the underlying streaming engines. It can be used as a pluggable library with most of the

available DSPEs. Some of the algorithms available for use are Vertical Hoeffding Tree Classifier,

Bagging and Boosting, and Distributed Stream Clustering [4]. Because of its ability to be used as

an adapter with most of the available DSPEs, it is popular in the field.

Few of the other projects like Jubatus and StormMOA also belong to the same category of

distributed streaming machine learning [62]. Jubatus is a framework that runs multiple models at

the same time processing different sets of data, and in this way, it achieves horizontal parallelism.

There is a tight coupling between the underlying SPE and ML library, which is the reason it cannot

be used with other DSPEs [63]. Similarly, StormMOA also works specifically with STORM and

cannot be used with other DSPEs. It also lacks some widely used algorithms making it the least

preferable choice among the options we have [64]. Though SAMOA provides us with useful

machine learning algorithms, what is missing from it is the deep learning capability in a distributed

manner. In ARSTREAM, we chose to experiment using a federated learning approach to machine

learning, which uses parameter server to prove that we can efficiently run deep learning models by

providing enough resources it needs when the need arises and on the fly.
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Chapter 3

Methodology

ARSTREAM is built on the top of Apache STORM. It uses STORM’s re-balance API to scale

an application, but the way re-balance is called by ARSTREAM is internal to nimbus and considers

many feedbacks from supervisors. There is a master node called nimbus and the slave workers

that reside on supervisor daemons. The coordination between master and supervisors is achieved

by using Zookeeper, a cluster management framework. Supervisors that host one or more workers

sends the queue loads and the predictions to nimbus for making the scaling decisions using a

thrift interface for communication. Nimbus then decides whether to scale-in or scale-out. A more

detailed discussion about ARSTREAM ’s system architecture is available in Chapter 4.

3.1 Auto Scaling

3.1.1 What is Auto-Scaling?

Auto-Scaling is a process of automatically adding or removing the number of resources being

used by an application based on its need at any point in time [65]. Given the fact that it is chal-

lenging to accurately predict the future load of an application even before we begin its execution, it

makes it challenging to allocate the correct number of resources to an application from the cluster

when it is started. The load on the application is reliant on many factors like – data ingestion rate,

the complexity of the code, CPU utilization, etc. and therefore, we can only speculate the resource

requirements before the start.

In general, it is difficult to scale an application on the fly, and not many systems provide this

feature. There are situations where the user of an application would not want to stop the application

to increase the resources, and the only way possible at that point to increase the resources is by

stopping the application and restarting it after adding the additional resources in the configuration.

It would result in loss of performance and the user data, both during the time application was
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congested and when the application was halted for re-scaling, which the user would not want.

When an application requires more resources, the system must be ready to provide additional

resources without much delay, as one would encounter if monitoring manually to maintain the

throughput of the application. STORM provides us the re-balancing API to increase/decrease the

number of workers and executors on the fly, and other systems should also offer the same [9].

Although streaming engines provides flexibility to re-adjust the load of an application using REST

APIs or CLI commands, these require human intervention wherein user of the application must

monitor and raise the request for re-balance to the streaming engine. But in conditions where an

application is running continuously for days, weeks, or months, it is difficult, and therefore, having

an auto-scaling feature is a must, especially if an application runs continuously and with varying

arrival rates. If there is any bottleneck or any idle task in the system, then auto-scaling does all

provisioning and de-provisioning of resources for the computing job.

There had been several types of research in the field of auto-scaling of resources [8, 28, 30, 32,

34,39], but still many popular and original SPEs lacks the ability of automatically adding resources

when in need to process the streaming data. However, there had been many advancements in

batch processing engines, and now they support auto-scaling (e.g., Apache SPARK). There are two

different types of auto-scaling techniques – Reactive and Proactive [66] in the field of streaming

data.

In the reactive technique, the system collects the metrics of resource usages by the application

as well as the run-time stream properties. It then uses these metrics to make scaling decisions,

whereas, in the proactive technique, the system is dynamic and predicts future bottlenecks. When

it detects any future bottleneck, it makes scaling decisions before the bottleneck occurs, making

room for more data to arrive and process in the system. Our efforts focus on both the reactive and

the proactive techniques of auto-scaling and their feasibility of application in Apache STORM. In

the reactive mode, the system reacts to an event; the event here is the chosen metric going over

the set threshold, and the reaction is scaling decision. We collect the system metrics indicating

the resource usages like – CPU utilization, memory utilization, network latency, data processing
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queue loads, arrival rate, etc. If any of these, whichever chosen by the user exceeds a defined

threshold, the system takes action and provides more resources to the running topology. People

have the choice of using any system metric they want, or they can even make their metric just like

STELA created, called ETP (Effective throughput percentage) [32].

Since we are building a system that is scalable and tries to maximize throughput during the

execution, the queue load plays an important role, and that is what we chose as the metric for

re-scaling. In the stream processing engines, every executor maintains the sender and the receive

queues where they store the outgoing and incoming messages, respectively, and they have their

ways to identify the bottlenecks in the downstream operators. In STORM, if spout sees any down-

stream bolt as being overloaded with data, it will stop sending the messages to the bolt by activating

its throttling mechanism [67]. It periodically checks for the operator load and propagates only lim-

ited data to downstream bolts if the bottleneck is found. This is a situation where an operator is

performing as fast as it can to process the messages in the queue and decrease its size, but the

speed at which data arrives is even more than the processing speed of the bolt, and hence, queue

size never decreases. Since messages stay in the queue while the operator is performing its oper-

ation, it results in throughput loss as throughput would have increased if there was an extra task

working in parallel to ingest the pending message from the queue. We aim to create a system that

tries to maximize the throughput and which keeps up with the arrival rate of the stream.

The proactive technique is an advanced method that makes use of machine learning to make the

scaling decision. An artificial neural network model is created as the first step, which learns about

different system performance characteristics and stream properties to detect any early signs of the

bottleneck [RQ1]. We do not want the bottleneck to occur as it would result in the loss of data,

so we try to predict future bottlenecks and then provide extra resources to the application before it

happens, resulting in increased throughput. There are many ways to make predictions like using

the historical data in machine learning, but not all of them are applicable in our case. Some of

the conventional machine learning techniques are Linear Regression, Random Forests, and using

Artificial Neural Networks for identifying the linear/ non-linear patterns in the data. Researchers

20



have used many of these techniques to predict future workloads and bottlenecks in popular SPEs,

and we will do the same. Cooper et al. applied time series analysis to forecast SLA breaches

for streaming data in cloud environments [28]. In contrast, Ahmed et al. proposed a proactive

framework to predict future workloads using the streaming data regression algorithm provided in

Apache SAMOA [8].

We use a deep learning application to execute on our system, which is computing-intensive,

unlike the applications which were used in the previous decade and characterized relatively low

complexity and whose data stream rate had a direct correlation with the bottleneck. For such

resource-intensive applications, simple workload modeling to predict future bottlenecks cannot be

used. Instead, we need to incorporate computational workload and the network traffic by means

of predicting queue sizes for each running task. Queue size prediction will accurately take into

account the computational complexity and the workload characteristics to predict the bottleneck

and protecting us from its consequences [RQ3].

Since the stream of data is boundless, dynamic, and unforeseeable, traditional auto-scaling

techniques are preferred, but they result in loss of data. The data loss here occurs when tuples

residing in data processing queues are dropped during auto-scaling operation. We can use proactive

mode and reduce data loss, but that comes with its drawbacks too, like wrong predictions (i.e.,

high error rate). In this work, we aim to generate a predictive model that will provide reasonable

accuracy to be trustworthy while minimizing the data loss and including a call to an on-demand

reactive mode for dealing with missed re-scaling operations (i.e., false-negatives).

3.1.2 Approach used to provide Auto-Scalability

STORM does not provide any auto-scaling feature in its core package where the user can

automatically add nodes or more threads while the topology is running. It requires manually mon-

itoring the resource usages in the system and administer the "re-balance topology" command with

the revised configuration of resources. When the re-balance command is executed, STORM inter-
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nally kills the running topology, modifies the resource configuration, finds the best assignments of

components, and starts it again.

As discussed previously, the process of manually monitoring the system and issuing the re-

balance command takes a lot of effort. We need a monitoring capability or an administration that

monitors the system while an application is running and issues the command for us. The re-balance

command STORM provides uses two different flags and also to note, there is no flag to change the

number of tasks–

1) -n for the number of revised workers

2) -e for number of revised executors for a specific component

Figure 3.1: Rebalance command executed from CLI in STORM

This command is executed from CLI and modifies the topology resource configuration for

us [9]. We can also use REST API to instruct STORM to re-balance the current topology. It, either

way, invokes the same operation and re-balances the topology for us.

ARSTREAM has an automatically re-scaling module, which is called by both of the scaling

techniques when the bottleneck is detected. Just like STORM which gives users the option to

select the number of workers, tasks, and executors to be any number in the topology configuration,

ARSTREAM also allows that but for our experiments, we start with one worker, executor and task

to show the scalability in best possible way. When ARSTREAM calls the re-scaling module, it adds

a new bolt task to the topology and deploys it on a newly spawned executor who is deployed on the

freshly spawned worker. In this way, we make sure that we achieve true parallelism and provide

extra room for increasing the throughput using a new worker. Currently, we have restricted the

scaling to just one operator, which the user specifies, and all other components are skipped for

monitoring.

The two types of auto-scaling techniques are available to the user using a configurable param-

eter. Based on the needs of the application and how important the task is, a user can use any of the
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techniques. We use both of these techniques in our experiments to show the results. The configu-

ration file contains a field for the type of technique and the field for the thresholds for each of the

techniques, which is set by the user to specify what scaling technique they want to use and on what

queue load threshold the system should re-scale. One important thing to note is that ARSTREAM

performs both scale-in and scale-out operation depending on the queue utilization of each bolt ex-

ecutor; therefore, we need to keep a cool-down period before taking in a new re-scaling request

to prevent aggressive re-scaling. It is necessary because it takes time for the system to get stable

when the re-scaling has just occurred.

Figure 3.2: Configurable parameter to specify the type of strategy to use

Reactive Scaling Mode

Reactive scaling is a scaling technique in which master nimbus takes action only after seeing

the bottleneck in the system. The bottleneck here is decided by looking at the current queue

utilization of the bolt’s tasks, which is calculated as the count of messages in queue divided by the

maximum queue capacity. Similar to the "re-balance strategy" configuration parameter, there is a

parameter for specifying the thresholds-

Figure 3.3: Scale-in and Scale-out thresholds for Reactive Scaling Mode

When the nimbus master gets queue loads from the workers, it checks all the loads, and if any

of these loads is greater than the set threshold, it initiates the scale-out operation by calling the

re-scaling module. This process of checking the loads is repeated after every configurable number
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Figure 3.4: Steps during reactive re-scaling mode in ARSTREAM

of seconds. Similarly to scaling-out, it also performs the scaling-in operation by checking the loads

lesser than the set minimum threshold.

When ARSTREAM receives queue utilization of each task for one iteration, it finds the max-

imum load among them. If the maximum load exceeds the threshold, it stores it in a rotating

window of size 3 to keep a check against the unnecessary re-scaling needs. Since nimbus checks

for bottleneck every 2 (configurable) seconds, it takes 6 seconds to fill up the window, and only

after that, re-scaling is done. The rotating window respects some properties like- it should only

contain values in increasing order for scale-out and decreasing order for scale-in. If it receives a

value that is out of order, then the window is cleared, and the rest of the tasks are skipped. When

we have three values in the rotating window, and all of them violate the threshold, the re-scaling

module is called. ARSTREAM checks the last re-scaling time to make sure that it has served the

cool-down period, and if it has, only then re-scaling is allowed. If it is still cooling down, the

window is rotated, and a new value is inserted into the window.
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Figure 3.5: An example of rotating window

When the re-scaling module is called, it will either scale-in or scale-out depending on the

decision made by the reactive scaling module. We will discuss more what happens in the re-scaling

module in Chapter 4.

Proactive Scaling Mode

Proactive scaling enables scaling wherein we predict the future load of an operator and then

take the appropriate action (i.e., scale-in, scale-out, or do-nothing). It is better than reactive mode

in terms of minimizing the loss of data because we take action before bottleneck happens and

hence, saving some good number of the tuples from getting dropped during the queue flushing-out

step at the start of re-balancing given the fact that actual queue size will be much lesser when re-

balance command is initiated. We use a trained model in the background of each bolt task which

predicts the future queue load and then these loads are sent to nimbus for taking the scaling action.

This technique also has the user-configurable thresholds for scaling-in and scaling-out.

Figure 3.6: Scale-in and Scale-out thresholds for Proactive Scaling Mode

When nimbus gets the future loads of all bolt tasks, it finds the maximum load and stores it

in a rotating window if the load is greater than the threshold defined by the user. It also follows

all the properties defined for the rotating window, similar to what is done in the reactive module.

The predictive scaling is also combined with the reactive mode to deal with missed scaling oper-

ations (i.e., false-negatives). Even if the previous model execution could not predict future load

correctly, ARSTREAM will detect the excessive workload by applying reactive methodology and

taking suitable scaling action [RQ2].
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Figure 3.7: Steps during proactive re-scaling mode in ARSTREAM

In this effort, we chose to predict the queue loads that are 1 minute ahead in the future, given

the fact that it takes on average 1 minute for the re-balance command to execute and restart the

workers. More the seconds in future we predict, smaller the current queue utilization will be and

hence, lesser the data loss. There is another form of data loss that occurs when the topology is

halted during the re-balance stage and is not ingesting any data into the system. Therefore we want

to minimize the re-balance time also which is possible by not aggressively re-scaling.

We use an artificial neural network to create the model which runs in the background of bolt

we want to monitor. Each bolt task will produce its prediction and will send it to nimbus since each

task run on its executor and has its queue. For training the model, we use Keras Deep Learning

framework with TensorFlow as the back-end [68], and we also use many other techniques in feature

engineering and PCA to create a model which gives us reliable predictions of the queue load. From

the metrics we get from supervisors, we initially identified six different features based on workload

characteristics and system resource utilization. After applying PCA, we settled with only four

important features which give us maximum explained variance and they are:

• Arrival Rate of the Stream
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• CPU Utilization

• Emit Rate of tuples from the bolt

• Current queue utilization

We created a network of six total layers with the ReLu activation function in the hidden layers

and sigmoid in the output layer. We lag the output data column to include the value of the queue

load, which is 1 minute ahead in the future. Once the model is trained, we store the model in

the H5 file format and write it to ARSTREAM directory from where it is read inside the bolt task

when the task is initialized. For reading the model and making predictions in real-time, we use the

DeepLearning4J framework [69]. The tasks related to creating the ANN model are done externally

of ARSTREAM and require the developer to generate the data before training the model, which is

discussed further in Chapter 4. The data is generated for different arrival rates separately and is

then programmatically combined for using it in model training.

Figure 3.8: Artificial Neural Network model in Prediction Module
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3.2 Task-Level Parallelism

3.2.1 What is Task-Level Parallelism?

Apache STORM consists of nodes that represent the physical machines in the cluster on which

everything runs, workers that are JVM processes and spawns on the nodes, executors are the Java

threads and runs inside worker processes and lastly the tasks that are instances of spouts and bolts

where the user code runs. Why do we want to increase parallelism? Because we want to expand

or at least maintain the throughput of the topology on the task it is executing. This motivates us to

change the parallelism of an operator in the running topology for smooth execution.

STORM allows the user to change the level of parallelism at the worker level, executor level,

task level, and even at the machine level. Each machine runs one or more worker processes to exe-

cute the topology, and each machine can have only as many worker processes as there is the num-

ber of slots specified in the configuration. Each worker process is assigned one or more threads,

and each thread is assigned one or more tasks. The parallelism for a bolt/operator that we can

achieve with any configuration is defined by the number of executors that are running and is used

as "parallelism-hint". The number of tasks of a component in the topology is the task-level paral-

lelism, and this number of tasks limits the executors that will be spawned for an operator.

We can only create as many executors as there are tasks to execute since a thread cannot be spawned

for no task. STORM requires the user to specify the number of tasks for a component in the topol-

ogy before even starting the topology. Therefore, the number of tasks is the limit to the number of

executors that we can spawn dynamically. When STORM runs out of tasks to increase the paral-

lelism further, parallelism can only be increased by restarting the topology with a greater number

of tasks.

ARSTREAM implements a way to increase the number of tasks at run-time during re-scaling

without stopping the topology. Hence, making it possible to increase the number of executors to as

many as we want, assuming that we have available the sufficient amount of machines in our cluster

to spawn that many executors.
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3.2.2 Approach used to provide Task-Level Parallelism Updates

Creating hundreds or thousands of tasks while creating the topology to make them available

for dynamically spawned executors during re-scaling is not a good idea because these tasks are

executed serially if there are more tasks than the executors configured. What we want is to create

these tasks on the fly only when we need them. STORM does not allow to change the topology

once it is started. The reason being if the tasks maintain some local state and the inputs to the tasks

are keyed on a field, then when we change the number of tasks in the topology on the fly, there is

no guarantee that same key will be mapped to the same task which is what field grouping is and

hence, corrupting the local state. ARSTREAM is not designed to work with field grouping, and so

we can safely increase the number of tasks at run-time [70].

When ARSTREAM decides to scale-out, before calling the re-balance command, it modifies the

Figure 3.9: Steps followed for providing task-level parallelism updates in ARSTREAM
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topology to increase or decrease the count of the tasks. After doing that, it needs to update multiple

internal storage where the topology is stored (e.g., Blobstore, TopoCache, Configs, etc.). When the

topology is updated and reflected to contain the updated task count for a component, ARSTREAM

calls another module where the resource configuration is updated. It configures an additional

worker and an additional executor to host that newly created task. As a result, when the topology

is started again, the stream will be split equally among all the available tasks residing on their

executors.
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Chapter 4

System Architecture

Figure 4.1: A High level view of the architecture of ARSTREAM engine built on the top of Apache STORM

The overview of ARSTREAM architecture is depicted in the Figure 4.1. ARSTREAM is built

on the top of Apache STORM engine and it includes a Metric Fetch Module (MFM), Prediction

Module (PM), Reactive Auto-Scaling Module (RASM), Proactive Auto-Scaling Module (PASM)

and a Re-Scaling Module (RM) which helps in Monitoring, Sending, Analyzing, Planning and Ex-

ecuting the re-balance command either to scale-in or scale-out. All the components of ARSTREAM

are tightly integrated with the STORM engine to not allow for any leakage, which could hamper its

proper functioning except for one module (i.e., Machine Learning Module (MLM)), which works

outside the ARSTREAM cluster.
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4.1 System Components

4.1.1 Metrics Fetch Module (MFM)

There is a Metrics Fetch Module that runs in the background of every bolt task in the execu-

tor inside worker, which sends the system’s real-time performance metrics data and the stream

properties to nimbus for analyzing. These metrics are either fetched from the underlying system

or created in the beginning and computed on the fly. This module works towards the monitoring

phase of the five-step process described in the beginning for properly re-scaling the topology. PM

also uses these metrics for generating the real-time predictions of the queue load, which are then

sent to nimbus to be used by PASM [RQ1]. The metrics generated by MFM are also used by MLM

for creating the machine learning model, which is deployed in PM in the background of each task.

4.1.2 Reactive Auto-Scaling Module (RASM)

The reactive module works reactively for dealing with the bottlenecks and calls the re-scaling

module only after the bottleneck is spotted. This module analyzes the current queue load of each

bolt task fetched by the MFM during the monitoring phase and which are sent to nimbus at regular

intervals during the sending period. The analyzing phase consists of comparing the current queue

load metric with the set threshold configured by the user in the configuration file, after which the

planning phase starts. In the planning stage, ARSTREAM’s RASM decides either to scale-in or to

scale-out, which then calls the re-scaling module (RM) on the decision made during the planning

phase.

4.1.3 Proactive Auto-Scaling Module (PASM)

The second technique for auto-scaling (i.e., Proactive scaling) predicts the future load of an

operator and takes action before the bottleneck occurs. This module analyzes the future predicted

queue load of each bolt task, which is sent to nimbus by the MFM at regular intervals. After the

analysis phase, PASM decides to either scale-in or scale-out the resources to prepare for the future

bottleneck, which then calls the re-scaling module (RM) for scaling the application. This module
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also calls RASM to deal with the false negatives that may occur during the execution of the process

due to frequent network traffic fluctuations [RQ2].

4.1.4 Prediction Module (PM)

This module is responsible for generating the predictions, which are 1 minute ahead in the

future, of the queue load of each bolt task to detect any signs of potential overload [RQ1]. There

is a trained artificial neural network model that runs in the background of each task as they are

spawned, and it takes in a set of features generated for that task by MFM to output the prediction

result. These are the predictions that are sent to nimbus by MFM for use in PASM. The model

training is done by MLM before setting up ARSTREAM and is placed in the ARSTREAM directory

to be read by the task.

4.1.5 Re-Scaling Module (RM)

The re-scaling module is the module where the actual scaling action is performed. First, both

the RASM and PASM decides which scaling operation they want to execute, and then they request

this module to execute that operation (i.e., either scaling-in or scaling-out). Both the scaling op-

erations are written as separate modules, and only one of them is called at a time. Scaling-out

module (SOM) calls "IncreaseExecutorsAndWorkers (IEAW)" whereas scaling-in module (SIM)

calls "DecreaseExecutorAndWorkers (DEAW)" which are the modules inside RM. The re-balance

command that is called inside RM, is called in IEAW and DEAW. Both SOM and SIM updates

the topology to increase or decrease the number of tasks and then update the storage and cache to

reflect updated topology, which is how we achieve task-level parallelism updates. Once this task

is performed, it calls IEAW or DEAW. IEAW is responsible for checking if there are free slots to

spawn a new worker. It issues a re-balance command with an increased executor and an increased

worker only if there are free slots. DEAW is also responsible for checking if there are used slots,

and if there are any, it checks the current count of executors. It issues a re-balance command with

the decreased count of worker and executor only if the count of executor is more than one.
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4.1.6 Machine Learning Module (MLM)

This module is also a part of ARSTREAM but lies outside the bounds of tight coupling with

STORM. This module is responsible for creating and writing an artificial neural network model in

an H5 format file, which is then read by the PM for making real-time predictions inside the running

task at regular intervals. This module is written in Jupyter Notebook and comprises of reading the

data, feature engineering for preparing the data, scaling and normalizing the data, creating and

training an artificial neural network model, and then writing the trained model to a file. The data

that is read in the first step is first written into a CSV file by nimbus; Nimbus receives the features

from MFM, which are periodically stored in a data structure and, in the end, writes that to a CSV

file. Out of all the features we receive from MFM, we keep only the selected ones, and that decision

is made using Principal Component Analysis (PCA). PCA has been consistent in giving four total

features that proved to be useful in making predictions.

4.2 Internal working Of ARSTREAM and System Design Con-

straints

When the re-balance command is issued, there is a sequence of steps that are performed for

accurately re-balancing the topology. The user submits the request either through CLI or WebUI

in STORM. In contrast, in ARSTREAM, we call the re-scaling module, which internally calls the

re-balance command with the updated configuration of workers and executors. As soon as the oper-

ation is called, the topology is stopped for a while, all the components are deactivated, spout stops

ingesting new data, and the status is set to REBALANCING. While the topology is in REBALANCE

state, all the pending messages inside the queues of executors are flushed out, all the assignments

of workers and executors are cleaned up in the cluster state, and finally, the worker and executors

are killed to make them ready for updated assignments with new tasks, workers and executors. The

new configuration is updated in the storm-base, which is a thrift object that maintains the informa-

tion of running topologies to be used by the client. This storm-base is updated in the state storage,
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which maintains the state across all nodes. The topology is also updated in blob-store, which is a

cache for topologies and topology configs. Once these steps are completed, nimbus computes new

assignments for workers, executors, and tasks and starts all of them. These are the steps that are

performed when the re-balance command is issued inside the re-scaling module.

In ARSTREAM, there is a module that nimbus calls after every configurable number of seconds to

check the system bottleneck. Each running executor maintains a queue for incoming data and a

transfer queue to send messages to other workers. When we talk about queue load, it is the current

incoming queue size divided by the total capacity; it tells us what percentage of the queue is filled,

and this is the queue that drops all the tuples during re-balancing. Each executor has its queue, and

there can be multiple tasks for one executor in STORM, but we limited it to one task per executor

in ARSTREAM to achieve maximum parallelism. Since there is only one task per executor, each

executor sends its current queue utilization to ARSTREAM’s scaling module inside nimbus using

a thrift service, and all of this happens inside the MFM module. Similarly, executors also send

queue predictions to the ARSTREAM’s scaling module.

Workers those are JVM processes run the executor inside them, and they can be configured in the

topology in the same way as executors. But there is a constraint to it; there can only be as many

workers on one supervisor as there are slots configured, and there can only be one supervisor on

a machine. Since ARSTREAM has been designed to run resource-intensive applications like deep

learning, each worker is configured to use maximum memory from the supervisor. We try to limit

the number of workers on one supervisor so that we can provide maximum resources to one worker

from one machine, which hosts a component. The other important thing to note is about the limit

to the number of executors on one worker; we limit the number of executors to only one per worker

and spawn a new worker for each new executor. Having more workers will give room for more

data to enter the system since each worker has its TCP Socket, which is essential for maximizing

throughput.
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Chapter 5

Experiments And Empirical Evaluation

The experiments to compare STORM with auto-scalable ARSTREAM were conducted on a

cluster consisting of 20 nodes with an 8 core HP-Z420-XeonE5-2650v2 CPU @ 2.6GHz processor,

32GM RAM and 1TB disk. Each machine in the cluster is connected to a Gigabit Ethernet switch

and runs Fedora 28 operating system. STORM version 2.0 is installed in the file system, which is

shared and is configured to use 28,672MB worker heap memory, 32,768MB supervisor memory,

and 7,168MB topology component resources on-heap memory from the cluster. ARSTREAM uses

the same cluster with the exact same configuration for the experiments.

The application we use to test auto-scalability in ARSTREAM and to compare with STORM is

the federated learning approach for machine learning with streaming data, and it uses parameter

server as an external system to store the weights and parameters. The MNIST data-set was used for

our experiments, which is an easy and straightforward data-set of handwritten digits. Still, it can

easily overload the system and, therefore, becomes the right candidate for our experiments [71].

This federated learning application can be used as a topology for STORM and ARSTREAM in

which we can also configure the number of workers, executors, and tasks before submitting the

topology. We configured the topology to start with minimal resources at the beginning assuming

that we do not know the best configuration of different components in the topology. When the

topology is executed, the STORM will not automatically re-scale the topology to adjust for chang-

ing workload conditions. However, ARSTREAM automatically adapts to the changing needs of the

topology by adding/removing additional parallel tasks to consume the extra tuples that the system

is ingesting and which the bolt was not able to consume initially.

Inside the spout, we read a directory path where images are stored, which is sent to downstream

bolt as a tuple. We also modified the code in spout to simulate for different arrival speeds by putting

a delay after sending every tuple to the downstream bolt tasks. The value for the sleep/delay is

generated randomly from a gaussian distribution. We also persisted the value of sleep for some
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time, and the value is changed only after that set period has passed. We chose two different periods

(sleep persist duration) for our experiments to see how the system performs in each case. Changing

the value of sleep after every tuple is sent to downstream bolt tasks is a random case where there is

no pattern in the data arrival and is also a limitation for proactive mode. However, reactive mode

reacts promptly to the changing stream speed and, therefore, works well for all the cases but with

data loss. It depends on the application use case if the stream it uses has any pattern or seasonality

in it or not, but for our experiments, we assume that the arrival rate of the stream does not follow

any pattern and will be persisted for some time before getting changed again.

The two ways of scaling an application automatically reactively and proactively work dif-

ferently, and therefore, we plot the results for both the techniques separately. The ARSTREAM

configuration that is common to both of the techniques is shown below-

Figure 5.1: ARSTREAM’s common system configuration for scaling

We compare the reactive and proactive auto-scaling mode of ARSTREAM with not auto-scalable

STORM using following comparisons-

• The first set of experiments compares ARSTREAM and STORM with a constant arrival

rate of the stream throughout the execution of topology. To contrast these systems, we

observe the effect of changes in executor count on the arrival rate and the throughput.

• Our second experiment is designed to evaluate the effect of varying arrival rates (5

minutes persist duration) of the data stream on the executor count and throughput

while topology is executed.

• Finally, we contrast ARSTREAM with STORM with a frequently fluctuating (1 minute

persist duration) data arrival rate.
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5.1 Experimenting with Reactive Scaling Mode

In our experiments with reactive mode, we kept the threshold for re-scaling to be 20 percent

of the queue size for scaling-out, 5 percent of the queue size for scaling-in, and we kept two

different durations for persisting sleep (i.e., 5 minutes and 1 minute). We plot the throughput

graphs and compare ARSTREAM ’s performance with that of STORM. The throughput in all of the

experiments is calculated as the total number of tuples emitted in a 30-second window divided by

30, which gives us throughput per second, and this is how STORM also calculates throughput of

their system.

Figure 5.2a and Figure 5.2b compares ARSTREAM and STORM by observing the effect of

increase in executors on the arrival rate when the topology is started with constant stream speed.

We see that when the number of scale-out operations is performed in ARSTREAM, the arrival

rate decreases at each addition of a new executor. The reason for the decrease in arrival rate is

that the stream gets split among all the executors of a component resulting in the decrease in

arrival rate. This arrival rate is for a single task, and this scale-out operation is performed until the

arrival rate becomes equal to the emit rate by continuous splitting at each step. Figure 5.2c and

Figure 5.2d compares the throughput of reactive scalable ARSTREAM engine with that of STORM

for same arrival rate i.e. with same delay between each tuple. As compared to STORM, when

more executors are added in case of ARSTREAM for the same arrival rate, throughput increases at

each step and when arrival rate for each task becomes equal to the emit rate, no more executors

are added, and the topology becomes stable. The reason for this increase in throughput is that the

additional tasks emit more tuples. In STORM, we observe that with one executor task configured

for a bolt, throughput never goes above 198 tuples/second when the arrival rate is around 1000

tuples/second. In contrast, in ARSTREAM, we achieved a throughput of 1000 tuples/second, which

is the maximum we could get at this arrival rate.

If an operator cannot emit tuples with the speed at which it is getting data, it causes a bot-

tleneck in the topology and resulting in spout throttling. ARSTREAM alleviates bottlenecks by
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(a) Graph showing the relation between Arrival Rate, Emit Rate, Executor Count and Time for

constant arrival rate in ARSTREAM

(b) Graph showing the relation between Arrival Rate, Emit Rate, Executor Count and Time for

constant arrival rate in STORM

Figure 5.2: A comparison between ARSTREAM and STORM executed with constant arrival rate, compared

by observing the relation between arrival rate, emit rate and executor count, using Reactive Scaling Mode.

continuously spawning new tasks to run in parallel until the arrival rate becomes equal to the pro-

cessing speed of each bolt task (i.e., emit rate of the bolt task), by splitting the stream.
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(c) Graph showing the relation between Throughput, Executor Count and Time for constant

arrival rate in ARSTREAM

(d) Graph showing the relation between Throughput, Executor Count and Time for constant

arrival rate in STORM

Figure 5.2: A comparison between ARSTREAM and STORM executed with constant arrival rate, compared

by observing the relation between executor count and throughput, using Reactive Scaling Mode.
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The next set of graphs depicts the results of the evaluation with variable arrival rates to simulate

the real world condition. We chose two different periods to persist the arrival rate (i.e., 5 minutes

and 1 minute), with 1 minute being closest to the utterly random case having no pattern at all.

(a) Graph showing the relation between Arrival Rate, Emit Rate, Executor Count and Time for

varying arrival rate in ARSTREAM

(b) Graph showing the relation between Arrival Rate, Emit Rate, Executor Count and Time for

varying arrival rate in STORM

Figure 5.3: A comparison between ARSTREAM and STORM executed with varying arrival rate and sleep

persist duration of 5 minutes, compared by observing the relation between arrival rate, emit rate and executor

count, using Reactive Scaling Mode.
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Figure 5.3a is a graph of varying arrival rates in which a new arrival rate is generated every

300 seconds. We plot the variables on three different axes to show the effect of varying arrival

rates on the emit rate and the executor count. The execution starts with the stream speed of 980

tuples/second, which the topology tries to process using just one executor resulting in the queue

getting filled up very quickly. As soon as the queue load reaches the threshold, topology is re-

scaled, and a new executor is added to split the load equally between two executors. The process of

re-scaling and splitting the stream is done until the arrival rate becomes equal to the emit rate of the

task. After 300 seconds, a new arrival speed is generated, and scale-in operations are performed to

adapt to the workload. Hence, ARSTREAM successfully adapts to the changing speed of the stream

reactively as it happens, but STORM in Figure 5.3b is not able to adapt to the stream speed resulting

in spout throttling getting activated whenever a task gets the stream which has arrival rate more

than its processing speed. Figure 5.3c and Figure 5.3d compares the throughput of ARSTREAM

and STORM in case of varying speed of the stream. ARSTREAM shows an increase in throughput

as new executors are added, but STORM never emits more than 200 tuples/second since there is

only one executor to process the data. Although we can keep the number of tasks to the maximum,

which will process all the data that we expect to come inside the STORM system, it will waste the

resources when the speed is much lesser than the total processing capacity of the bolt.

Figure 5.4a, Figure 5.4b, Figure 5.4c and Figure 5.4d are for experiment with varying stream

speed but with 1 minute of stream speed persist duration before a new speed is generated. We

observe that ARSTREAM re-scales whenever it sees an increase in the arrival speed which is greater

than the emit rate of the bolt task i.e. 200 tuples/second. At all the points in the graph of Figure 5.4a

where blue point lies above the orange point, system is scaled-out whereas in case of STORM in

Figure 5.4b, arrival rate varies but the peaks that comes down is not because of splitting up of the

stream; it is because of spout throttling. Figure 5.4c shows an increase in throughput as expected

and hence, ARSTREAM works fine for 1 minute persist also.

Overall, Reactive Scaling Mode effectively manages the arrival rate regardless of the sleep per-

sist duration. The advantages of the reactive scaling mode include the following aspects. First, it
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(c) Graph showing the relation between Throughput, Executor Count and Time for varying

arrival rate in ARSTREAM

(d) Graph showing the relation between Throughput, Executor Count and Time for varying

arrival rate in STORM

Figure 5.3: A comparison between ARSTREAM and STORM executed with varying arrival rate and sleep

persist duration of 5 minutes, compared by observing the relation between executor count and throughput,

using Reactive Scaling Mode.
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(a) Graph showing the relation between Arrival Rate, Emit Rate, Executor Count and Time for

varying arrival rate in ARSTREAM

(b) Graph showing the relation between Arrival Rate, Emit Rate, Executor Count and Time for

varying arrival rate in STORM

Figure 5.4: A comparison between ARSTREAM and STORM executed with varying arrival rate and sleep

persist duration of 1 minute, compared by observing the relation between arrival rate, emit rate and executor

count, using Reactive Scaling Mode.

is easy to apply if the users are familiar with their computations and the cluster capacity. Second,

overhead from the required computation is negligible. However, we anticipate a set of disadvan-
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(c) Graph showing the relation between Throughput, Executor Count and Time for varying

arrival rate in ARSTREAM

(d) Graph showing the relation between Throughput, Executor Count and Time for varying

arrival rate in STORM

Figure 5.4: A comparison between ARSTREAM and STORM executed with varying arrival rate and sleep

persist duration of 1 minute, compared by observing the relation between executor count and throughput,

using Reactive Scaling Mode.
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tages, such as the potential data loss from the queues during scaling operation, which the proactive

mode tries to minimize.

5.2 Experimenting with Proactive Scaling Mode

The other technique for re-scaling is proactive or predictive. For any application that we run

on ARSTREAM, we first train and create an artificial neural network on the application’s metric

data, which is then deployed in the bolt to run in the background. We measure the MSE values

of the model for training, testing, and real-time data in the next section. In this technique, we

kept the scale-out threshold to be 40 percent of the queue size, the scale-in threshold to be 5

percent of the queue size, and we kept two different durations for persisting sleep value (i.e., 5

minutes and 1 minute), just like in reactive scaling mode. Once we have a model up and running

in each bolt’s task, we run the application and observe the results, which are then plotted in the

form of throughput and the comparison of emit rate and arrival rate plotted on two different axes.

Throughput is calculated as the average of total emitted tuples in a 30-second window. The graphs

will also contain the number of tasks/executors on one axis to observe the effect of changes in the

parallelism of the operator on the throughput.

Figure 5.5a and Figure 5.5b compares ARSTREAM with STORM for constant arrival rate by

looking at how arrival rate changes when a new task is added in parallel. In Figure 5.5a, the arrival

rate starts from 980 tuples/second (1 executor) and then decreases at each step until it comes

closer to the emit rate by adding new tasks in parallel whereas in Figure 5.5b, the arrival rate here

also starts from 980 tuples/second but spout throttling decreases the arrival rate. The executor

count in this case always stays equal to 1. We discussed about what happens when a new task

is added in parallel (i.e., arrival rate splits equally among the tasks), but to measure the overall

performance, Figure 5.5c and Figure 5.5d gives us the better view. In Figure 5.5c, we can see that

as new executor gets added at each step, throughput also increases whereas in STORM shown in

Figure 5.5d, throughput is always constant. Also as an experiment, we ran the application for two

different times in ARSTREAM for constant arrival rate to see how different the execution is with
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(a) Graph showing the relation between Arrival Rate, Emit Rate, Executor Count and Time for

constant arrival rate in ARSTREAM

(b) Graph showing the relation between Arrival Rate, Emit Rate, Executor Count and Time for

constant arrival rate in STORM

Figure 5.5: A comparison between ARSTREAM and STORM executed with constant arrival rate, compared

by observing the relation between arrival rate, emit rate and executor count, using Proactive Scaling Mode.

respect to re-scaling. Overall shape of the graph looks same except for the dips at executor count

8 and 9 in Figure 5.5c.

The next set of graphs tries to explain what happens when we have different arrival rate persist

durations with varying arrival rate and what effect does quickly changing arrival rate has on the
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(c) Graph showing the relation between Throughput, Executor Count and Time for constant

arrival rate in ARSTREAM

(d) Graph showing the relation between Throughput, Executor Count and Time for constant

arrival rate in STORM

Figure 5.5: A comparison between ARSTREAM and STORM executed with constant arrival rate, compared

by observing the relation between executor count and throughput, using Proactive Scaling Mode.
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predictions and hence, re-scaling. We start with 5 minutes of sleep persist duration, and then later,

we will plot for 1 minute. Sleep persist duration of 1 minute will not give enough time to the model

to make correct predictions given the fact that it is predicting 1 minute in the future, which is equal

to the sleep persist duration.

Figure 5.6a shows that ARSTREAM has been prompt in re-scaling on seeing the arrival rate

going up and with speed changing every 5 minutes. There has been a scale-out operation executed

by ARSTREAM for every peak, which has a value greater than the emit rate. STORM, which is not

auto-scalable, will not do anything to increase the throughput if it gets the data arrived at the speed,

which is more than the emit rate, as shown in Figure 5.6b. Figure 5.6c proves that as new executors

are added in ARSTREAM, throughput also increases while in STORM, throughput stays the same

which is equal to the emit rate multiplied by the number of tasks as shown in Figure 5.6d. When

STORM does not have enough tasks in parallel to process all the data which arrives at a relatively

high speed, queues will get filled up quickly resulting in spout activating its throttling mechanism,

after which it stops sending messages to the bolt task or decreases it to a speed which is equal to

the emit rate.

In Figure 5.7a, Figure 5.7b, Figure 5.7c, Figure 5.7d, we compare STORM and ARSTREAM

using 1 minute sleep persist duration (i.e., arrival rate changing after every 60 seconds). Figure 5.7a

shows that ARSTREAM scales-out whenever it sees an arrival rate higher than the capacity of the

task but then arrival rate changes again to which the scale-in operation’s request will have to wait

for cool-down period. Mostly, ARSTREAM has been able to take actions whenever the arrival rate

was higher. Throughput is also observed to increase with executor count in Figure 5.7c whereas

STORM worked at its capacity and with low throughput.

Overall, the proactive mode also effectively manages the arrival rate. But as we moved closer

to the entirely random case (i.e., 1 minute persist duration), the performance must have been de-

graded, which we will measure in the next section. But proactive mode by predicting in advance

minimizes the data loss in contrast to reactive mode, which does not minimize.
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(a) Graph showing the relation between Arrival Rate, Emit Rate, Executor Count and Time for

varying arrival rate with 5 minutes sleep persist duration in ARSTREAM

(b) Graph showing the relation between Arrival Rate, Emit Rate, Executor Count and Time for

varying arrival rate with 5 minutes sleep persist duration in STORM

Figure 5.6: A comparison between ARSTREAM and STORM executed with varying arrival rate and sleep

persist duration of 5 minutes, compared by observing the relation between arrival rate, emit rate and executor

count, using Proactive Scaling Mode.

5.3 Proactive Model Accuracy

We trained the proactive model on the metrics data generated by MFM, which was sent to

nimbus and written to a file at the end of the process. We generated input data for different arrival
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(c) Graph showing the relation between Throughput, Executor Count and Time for varying

arrival rate with 5 minutes sleep persist duration in ARSTREAM

(d) Graph showing the relation between Throughput, Executor Count and Time for varying

arrival rate with 5 minutes sleep persist duration in STORM

Figure 5.6: A comparison between ARSTREAM and STORM executed with varying arrival rate and sleep

persist duration of 5 minutes, compared by observing the relation between executor count and throughput,

using Proactive Scaling Mode.
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(a) Graph showing the relation between Arrival Rate, Emit Rate, Executor Count and Time for varying

arrival rate with 1 minutes sleep persist duration in ARSTREAM

(b) Graph showing the relation between Arrival Rate, Emit Rate, Executor Count and Time for varying

arrival rate with 1 minutes sleep persist duration in STORM

Figure 5.7: A comparison between ARSTREAM and STORM executed with varying arrival rate and sleep

persist duration of 1 minute, compared by observing the relation between arrival rate, emit rate and executor

count, using Proactive Scaling Mode.

rates, and then using that, we trained an artificial neural network. The model, which consisted of 6
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(c) Graph showing the relation between Throughput, Executor Count and Time for varying arrival

rate with 1 minutes sleep persist duration in ARSTREAM

(d) Graph showing the relation between Throughput, Executor Count and Time for varying arrival

rate with 1 minutes sleep persist duration in STORM

Figure 5.7: A comparison between ARSTREAM and STORM executed with varying arrival rate and sleep

persist duration of 1 minute, compared by observing the relation between executor count and throughput,

using Proactive Scaling Mode.
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Figure 5.8: Throughput comparison for original STORM (0 re-scaling operations) versus auto-scalable

ARSTREAM (average after 7 re-scaling operations) with constant arrival rate.

total layers, performed exceptionally well on the training and testing set; we plotted MSE and R2

for the training and testing results.

Figure 5.9: Graph showing the result of training the neural network in the form of R2 and MSE graphs
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The model performed well on the training and testing data, but the real test would be on the

data generated from the real run. We generated the results for all the above cases of proactive mode

for variable speed, and we see that, as we reduce the sleep persist duration (i.e., moving closer to

the completely random arrival rates which change quickly), the model error increases.

We compare the errors for 5 minutes, and 1-minute sleep persists runs with MAE, MSE, and

RMSE values plotted with the graphs between predicted and actual values for each data point and

talk about the results.

In Figure 5.10a, the points lie more closer to the line than in Figure 5.10b. The error for

5 minutes sleep persisted run is also lesser than the 1-minute sleep persisted run, which proves

our hypotheses that as we move closer to the more random case wherein the arrival rate changes

quickly, the proactive model performs poorly. Therefore, for this technique to function correctly,

the same arrival rate should persist for some duration, which is also our assumption.
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(a) Graph showing the points plotted for 5 minute sleep persisted run

(b) Graph showing the points plotted for 1 minute sleep persisted run

Figure 5.10: Comparison of the accuracy measures between 5 minutes sleep persisted run, and 1-minute

sleep persisted run by plotting the actual versus predicted points and showing the errors related to each run
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Chapter 6

Conclusions and Future Work

This study describes ARSTREAM, which alleviates the bottlenecks from the running application

by adapting to the changing workloads. The bottlenecks are predicted in advance using a proactive

model that runs in the background of each operator’s task to prepare for the future bottleneck by

scaling the application [RQ1]. ARSTREAM incrementally provides more resources to an operator

in which bottleneck is detected and, therefore, may take time to reach a balanced state. Since

ARSTREAM uses STORM’s re-balance API under the hood to scale an application, we understand

that it introduces data loss in the system, which is also a limitation. But we try to minimize the data

loss as much as possible by predicting the data processing queue utilization in advance and even

by including a call to an on-demand scaling to deal with any unobserved event and abrupt traffic

fluctuations [RQ2]. Moreover, our system is short-sighted in terms of its application. ARSTREAM

is designed to work with a federated learning approach to deep learning in which workers migrate

the learned weights to the parameter server and, therefore, prevents the loss of states that occurs

when all the task instances are killed during a re-scaling operation. These types of applications are

computationally expensive and resource-intensive, and thus, we account for both the computational

workload and the traffic for making accurate predictions [RQ3]. We have evaluated ARSTREAM

and compared its performance with the original STORM engine using the deep learning application

mentioned in the text. The results showed that ARSTREAM is effective in increasing throughput

by adapting to the arrival rate of the stream in contrast to the STORM, in which throughput stays

the same because of spout’s throttling. But this increase in throughput is achieved at the cost of

introducing data loss in the system.

6.1 Future Works

The approach we used for building ARSTREAM uses STORM’s re-balance API internally to

scale an application. However, one thing we tend to ignore while using the re-balance API of
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STORM is that it induces faults in the system in the form of data loss and loss of the operator

states. When we re-scale an application using re-balance API in ARSTREAM, we lose all the data

that is present in the queues because all the workers, executors, and tasks are killed and queues

are dropped along with the data in it which creates unnecessary faults in the system. Since all

the components are killed, we also lose the state that gets attached to the task instance during

the execution, which may affect the correctness of some application use-cases. In the future, we

would like to update the STORM’s re-balance API, which we use in ARSTREAM to make it fault-

tolerant such that we don’t lose the data that is present in the data processing queues at the time

of re-scaling and also to preserve the states. An essential requirement for any DSPE is to be able

to orchestrate multiples jobs simultaneously without affecting each other’s execution. Since we

use STORM as the underlying system, ARSTREAM faces issues while running multiple topologies

at the same time, and for the same reason, HERON was developed at Twitter as the replacement

of STORM. Since this research focused on just one application use-case and without sensing the

need for running multiple applications simultaneously, STORM suited best. But this is a serious

issue and must be dealt with to enable the execution of various jobs in parallel and isolation. We

can implement or port ARSTREAM’s auto-scaling mechanism to a system like HERON, which

will allow us to run multiple applications simultaneously without any side effects and enabling

proactive scaling to prevent future bottlenecks. We can also think of enabling shared cluster mode

in STORM to allow for the reliable and correct execution of multiple jobs simultaneously.

The current version of ARSTREAM is restricted in terms of features and the use-case. The

monitoring and scaling are enabled only on one bolt in the topology. But if there are other bolts

in the topology which tend to become a bottleneck, we need to allow scaling on them too. In

the future, ARSTREAM should be able to scale multiple bolts at the same time in one scaling

operation if it observes bottleneck in multiple bolts. We also need to be unrestrictive to allow

for any topology structure, which is limited only to the linear topology in the current version. The

application of the cool-down period between two re-scaling operations is essential to give topology

enough time to get stable and to provide time to the system for spawning all the workers before
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a re-scaling operation is called again. We assume that the time which re-scaling action takes is

always constant, but it is not correct; therefore, the cool-down period must take into account the

time each re-scaling action takes. Currently, there is no way to find out the time we actually need

for cooling down. In the future, we can make this process adaptive, which will learn from the

behavior and use appropriate wait time between two re-scaling operations in ARSTREAM.

The last and an essential thing in which we can improve is in the proactive scaling technique.

The proactive mode uses an artificial neural network model for making predictions, and it requires

prior training, which is done by the developer and requires changing model-specific parameters in

the ARSTREAM’s code for each new training. Due to the above reasons, the system is application-

specific dependent on the developer to train the model and modify the source code. We can use an

online machine learning technique that will train and predict in real-time, eliminating the need for

prior training and developer dependency giving control to the users.
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