13,561 research outputs found

    Determining the relative position of vehicles considering bidirectional traffic scenarios in VANETS

    Get PDF
    Researchers pertaining to both academia and industry have shown strong interest in developing and improving the existing critical ITS solutions. In some of the existing solutions, specially the ones that aim at providing context aware services, the knowledge of relative positioning of one node by other nodes becomes crucial. In this paper we explore, apart from the conventional use of GPS data, the applicability of image processing to aid in determining the relative positions of nodes in a vehicular network. Experiments conducted show that both the use of location information and image processing works well and can be deployed depending on the requirement of the application. Our experiments show that the results that used location information were affected by GPS errors, while the use of image processing, although producing more accurate results, require significantly more processing power

    Improved Preprocessing Strategy under Different Obscure Weather Conditions for Augmenting Automatic License Plate Recognition

    Get PDF
    Automatic license plate recognition (ALPR) systems are widely used for various applications, including traffic control, law enforcement, and toll collection. However, the performance of ALPR systems is often compromised in challenging weather and lighting conditions. This research aims to improve the effectiveness of ALPR systems in foggy, low-light, and rainy weather conditions using a hybrid preprocessing methodology. The research proposes the combination of dark channel prior (DCP), non-local means denoising (NMD) technique, and adaptive histogram equalization (AHE) algorithms in CIELAB color space. And used the Python programming language comparisons for SSIM and PSNR performance. The results showed that this hybrid approach is not merely robust to a variety of challenging conditions, including challenging weather and lighting conditions but significantly more accurate for existing ALPR systems

    Automated License Plate Recognition using Existing University Infrastructure and Different Camera Angles

    Get PDF
    Number or license plate recognition has become an essential technology for traffic and security applications. Providing access control at any organization or academic institution improves the level of security. However, providing security personnel to manually control the access of vehicles at an academic institution is costly, time-consuming, and to a limited extent, error prone. This study investigated the use of an automated vehicle tracking system, incorporating experimental computer vision techniques for license plate recognition that runs in real-time to provide access control for vehicles and provide increased security for an academic institution. A vehicle monitoring framework was designed by using various technologies and experimenting with different camera angles. In addition, the effect of environmental changes on the accuracy of the optical character recognition application was assessed. The Design Science Research methodology was followed to develop the vehicle monitoring framework artifact. Image enhancement algorithms were tested, and the most viable options were evaluated and implemented. Optimal operating criteria that were established for the vehicle monitoring framework achieved a 96% success rate. The results indicate that a cost-effective solution could be provided by using an existing camera infrastructure at an academic institution and suitable license plate recognition software technologies, algorithms, and different camera angles

    Distorted Fingerprint Verification System

    Get PDF
    Fingerprint verification is one of the most reliable personal identification methods. Fingerprint matching is affected by non-linear distortion introduced in fingerprint impression during the image acquisition process. This non-linear deformation changes both the position and orientation of minutiae. The proposed system operates in three stages: alignment based fingerprint matching, fuzzy clustering and classifier framework. First, an enhanced input fingerprint image has been aligned with the template fingerprint image and matching score is computed. To improve the performance of the system, a fuzzy clustering based on distance and density has been used to cluster the feature set obtained from the fingerprint matcher. Finally a classifier framework has been developed and found that cost sensitive classifier produces better results. The system has been evaluated on fingerprint database and the experimental result shows that system produces a verification rate of 96%. This system plays an important role in forensic and civilian applications.Biometric, Fingerprints, Distortion, Fuzzy Clustering, Cost Sensitive Classifier

    Multistage morphology-based license-plate location algorithm

    Get PDF
    This paper describes a new license-plate location algorithm using a sequential multistage approach, where each stage consists of a different sub-algorithm. All the proposed subalgorithms make use of morphological operations performed over both gray-scale and binary images. In order to ascertain the performance of the proposed algorithm, and to fairly compare it with license-plate location algorithms developed by other authors, a well-defined evaluation method is used. Results have shown that the proposed algorithm produces at least one accurate license-plate location hypothesis for 97.18% of 673 images acquired at a highway toll fence.ISCTE, Living Data, Brisa, S.A

    Evaluation of license-plate location algorithms

    Get PDF
    We propose a new evaluation method for license-plate location algorithms. As a first step towards a comparison of the algorithms described in the literature over the years, we have implemented some relevant algorithms with different approaches and compared them using the proposed evaluation method. The software used for evaluation and a set of annotated evaluation images are both readily available, making the reproduction of the presented results possible. The availability of both software and an evaluation set allows the results presented in this paper to be used as benchmarks when developing plate location algorithms.ISCTE, Living Data, Brisa, S.A

    An improved fast scanning algorithm based on distance measure and threshold function in region image segmentation

    Get PDF
    Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical image segmentation. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold and the use of Euclidean Distance as distance measure. Such an approach leads to a weak reliability and shape matching of the produced segments. Hence, this study proposes an Improved Fast Scanning algorithm that is based on Sorensen distance measure and adaptive threshold function. The proposed adaptive threshold function is based on the grey value in an image’s pixels and variance. The proposed Improved Fast Scanning algorithm is realized on two datasets which contains images of cars and nature. Evaluation is made by calculating the Peak Signal to Noise Ratio (PSNR) for the Improved Fast Scanning and standard Fast Scanning algorithm. Experimental results showed that proposed algorithm produced higher PSNR compared to the standard Fast Scanning. Such a result indicate that the proposed Improved Fast Scanning algorithm is useful in image segmentation and later contribute in identifying region of interesting in pattern recognition

    Vision-based Detection of Mobile Device Use While Driving

    Get PDF
    The aim of this study was to explore the feasibility of an automatic vision-based solution to detect drivers using mobile devices while operating their vehicles. The proposed system comprises of modules for vehicle license plate localisation, driver’s face detection and mobile phone interaction. The system were then implemented and systematically evaluated using suitable image datasets. The strengths and weaknesses of individual modules were analysed and further recommendations made to improve the overall system’s performance
    corecore