141 research outputs found

    Band-pass filtering of the time sequences of spectral parameters for robust wireless speech recognition

    Get PDF
    In this paper we address the problem of automatic speech recognition when wireless speech communication systems are involved. In this context, three main sources of distortion should be considered: acoustic environment, speech coding and transmission errors. Whilst the first one has already received a lot of attention, the last two deserve further investigation in our opinion. We have found out that band-pass filtering of the recognition features improves ASR performance when distortions due to these particular communication systems are present. Furthermore, we have evaluated two alternative configurations at different bit error rates (BER) typical of these channels: band-pass filtering the LP-MFCC parameters or a modification of the RASTA-PLP using a sharper low-pass section perform consistently better than LP-MFCC and RASTA-PLP, respectively.Publicad

    Using a low-bit rate speech enhancement variable post-filter as a speech recognition system pre-filter to improve robustness to GSM speech

    Get PDF
    Includes bibliographical references.Performance of speech recognition systems degrades when they are used to recognize speech that has been transmitted through GS1 (Global System for Mobile Communications) voice communication channels (GSM speech). This degradation is mainly due to GSM speech coding and GSM channel noise on speech signals transmitted through the network. This poor recognition of GSM channel speech limits the use of speech recognition applications over GSM networks. If speech recognition technology is to be used unlimitedly over GSM networks recognition accuracy of GSM channel speech has to be improved. Different channel normalization techniques have been developed in an attempt to improve recognition accuracy of voice channel modified speech in general (not specifically for GSM channel speech). These techniques can be classified into three broad categories, namely, model modification, signal pre-processing and feature processing techniques. In this work, as a contribution toward improving the robustness of speech recognition systems to GSM speech, the use of a low-bit speech enhancement post-filter as a speech recognition system pre-filter is proposed. This filter is to be used in recognition systems in combination with channel normalization techniques

    Temporal contextual descriptors and applications to emotion analysis.

    Get PDF
    The current trends in technology suggest that the next generation of services and devices allows smarter customization and automatic context recognition. Computers learn the behavior of the users and can offer them customized services depending on the context, location, and preferences. One of the most important challenges in human-machine interaction is the proper understanding of human emotions by machines and automated systems. In the recent years, the progress made in machine learning and pattern recognition led to the development of algorithms that are able to learn the detection and identification of human emotions from experience. These algorithms use different modalities such as image, speech, and physiological signals to analyze and learn human emotions. In many settings, the vocal information might be more available than other modalities due to widespread of voice sensors in phones, cars, and computer systems in general. In emotion analysis from speech, an audio utterance is represented by an ordered (in time) sequence of features or a multivariate time series. Typically, the sequence is further mapped into a global descriptor representative of the entire utterance/sequence. This descriptor is used for classification and analysis. In classic approaches, statistics are computed over the entire sequence and used as a global descriptor. This often results in the loss of temporal ordering from the original sequence. Emotion is a succession of acoustic events. By discarding the temporal ordering of these events in the mapping, the classic approaches cannot detect acoustic patterns that lead to a certain emotion. In this dissertation, we propose a novel feature mapping framework. The proposed framework maps temporally ordered sequence of acoustic features into data-driven global descriptors that integrate the temporal information from the original sequence. The framework contains three mapping algorithms. These algorithms integrate the temporal information implicitly and explicitly in the descriptor\u27s representation. In the rst algorithm, the Temporal Averaging Algorithm, we average the data temporally using leaky integrators to produce a global descriptor that implicitly integrates the temporal information from the original sequence. In order to integrate the discrimination between classes in the mapping, we propose the Temporal Response Averaging Algorithm which combines the temporal averaging step of the previous algorithm and unsupervised learning to produce data driven temporal contextual descriptors. In the third algorithm, we use the topology preserving property of the Self-Organizing Maps and the continuous nature of speech to map a temporal sequence into an ordered trajectory representing the behavior over time of the input utterance on a 2-D map of emotions. The temporal information is integrated explicitly in the descriptor which makes it easier to monitor emotions in long speeches. The proposed mapping framework maps speech data of different length to the same equivalent representation which alleviates the problem of dealing with variable length temporal sequences. This is advantageous in real time setting where the size of the analysis window can be variable. Using the proposed feature mapping framework, we build a novel data-driven speech emotion detection and recognition system that indexes speech databases to facilitate the classification and retrieval of emotions. We test the proposed system using two datasets. The first corpus is acted. We showed that the proposed mapping framework outperforms the classic approaches while providing descriptors that are suitable for the analysis and visualization of humans’ emotions in speech data. The second corpus is an authentic dataset. In this dissertation, we evaluate the performances of our system using a collection of debates. For that purpose, we propose a novel debate collection that is one of the first initiatives in the literature. We show that the proposed system is able to learn human emotions from debates

    Performance Analysis of Advanced Front Ends on the Aurora Large Vocabulary Evaluation

    Get PDF
    Over the past few years, speech recognition technology performance on tasks ranging from isolated digit recognition to conversational speech has dramatically improved. Performance on limited recognition tasks in noiseree environments is comparable to that achieved by human transcribers. This advancement in automatic speech recognition technology along with an increase in the compute power of mobile devices, standardization of communication protocols, and the explosion in the popularity of the mobile devices, has created an interest in flexible voice interfaces for mobile devices. However, speech recognition performance degrades dramatically in mobile environments which are inherently noisy. In the recent past, a great amount of effort has been spent on the development of front ends based on advanced noise robust approaches. The primary objective of this thesis was to analyze the performance of two advanced front ends, referred to as the QIO and MFA front ends, on a speech recognition task based on the Wall Street Journal database. Though the advanced front ends are shown to achieve a significant improvement over an industry-standard baseline front end, this improvement is not operationally significant. Further, we show that the results of this evaluation were not significantly impacted by suboptimal recognition system parameter settings. Without any front end-specific tuning, the MFA front end outperforms the QIO front end by 9.6% relative. With tuning, the relative performance gap increases to 15.8%. Finally, we also show that mismatched microphone and additive noise evaluation conditions resulted in a significant degradation in performance for both front ends

    Development of the Arabic Voice Pathology Database and Its Evaluation by Using Speech Features and Machine Learning Algorithms

    Get PDF
    A voice disorder database is an essential element in doing research on automatic voice disorder detection and classification. Ethnicity affects the voice characteristics of a person, and so it is necessary to develop a database by collecting the voice samples of the targeted ethnic group. This will enhance the chances of arriving at a global solution for the accurate and reliable diagnosis of voice disorders by understanding the characteristics of a local group. Motivated by such idea, an Arabic voice pathology database (AVPD) is designed and developed in this study by recording three vowels, running speech, and isolated words. For each recorded samples, the perceptual severity is also provided which is a unique aspect of the AVPD. During the development of the AVPD, the shortcomings of different voice disorder databases were identified so that they could be avoided in the AVPD. In addition, the AVPD is evaluated by using six different types of speech features and four types of machine learning algorithms. The results of detection and classification of voice disorders obtained with the sustained vowel and the running speech are also compared with the results of an English-language disorder database, the Massachusetts Eye and Ear Infirmary (MEEI) database

    Enhancement of a Text-Independent Speaker Verification System by using Feature Combination and Parallel-Structure Classifiers

    Full text link
    Speaker Verification (SV) systems involve mainly two individual stages: feature extraction and classification. In this paper, we explore these two modules with the aim of improving the performance of a speaker verification system under noisy conditions. On the one hand, the choice of the most appropriate acoustic features is a crucial factor for performing robust speaker verification. The acoustic parameters used in the proposed system are: Mel Frequency Cepstral Coefficients (MFCC), their first and second derivatives (Deltas and Delta- Deltas), Bark Frequency Cepstral Coefficients (BFCC), Perceptual Linear Predictive (PLP), and Relative Spectral Transform - Perceptual Linear Predictive (RASTA-PLP). In this paper, a complete comparison of different combinations of the previous features is discussed. On the other hand, the major weakness of a conventional Support Vector Machine (SVM) classifier is the use of generic traditional kernel functions to compute the distances among data points. However, the kernel function of an SVM has great influence on its performance. In this work, we propose the combination of two SVM-based classifiers with different kernel functions: Linear kernel and Gaussian Radial Basis Function (RBF) kernel with a Logistic Regression (LR) classifier. The combination is carried out by means of a parallel structure approach, in which different voting rules to take the final decision are considered. Results show that significant improvement in the performance of the SV system is achieved by using the combined features with the combined classifiers either with clean speech or in the presence of noise. Finally, to enhance the system more in noisy environments, the inclusion of the multiband noise removal technique as a preprocessing stage is proposed
    • …
    corecore