894 research outputs found

    A Comparative Study of Coq and HOL

    Get PDF
    This paper illustrates the differences between the style of theory mechanisation of Coq and of HOL. This comparative study is based on the mechanisation of fragments of the theory of computation in these systems. Examples from these implementations are given to support some of the arguments discussed in this paper. The mechanisms for specifying definitions and for theorem proving are discussed separately, building in parallel two pictures of the different approaches of mechanisation given by these systems

    A Proof of the S-m-n theorem in Coq

    Get PDF
    This report describes the implementation of a mechanisation of the theory of computation in the Coq proof assistant which leads to a proof of the Smn theorem. This mechanisation is based on a model of computation similar to the partial recursive function model and includes the definition of a computable function, proofs of the computability of a number of functions and the definition of an effective coding from the set of partial recursive functions to natural numbers. This work forms part of a comparative study of the HOL and Coq proof assistants

    A Vernacular for Coherent Logic

    Full text link
    We propose a simple, yet expressive proof representation from which proofs for different proof assistants can easily be generated. The representation uses only a few inference rules and is based on a frag- ment of first-order logic called coherent logic. Coherent logic has been recognized by a number of researchers as a suitable logic for many ev- eryday mathematical developments. The proposed proof representation is accompanied by a corresponding XML format and by a suite of XSL transformations for generating formal proofs for Isabelle/Isar and Coq, as well as proofs expressed in a natural language form (formatted in LATEX or in HTML). Also, our automated theorem prover for coherent logic exports proofs in the proposed XML format. All tools are publicly available, along with a set of sample theorems.Comment: CICM 2014 - Conferences on Intelligent Computer Mathematics (2014

    Proving soundness of combinatorial Vickrey auctions and generating verified executable code

    Full text link
    Using mechanised reasoning we prove that combinatorial Vickrey auctions are soundly specified in that they associate a unique outcome (allocation and transfers) to any valid input (bids). Having done so, we auto-generate verified executable code from the formally defined auction. This removes a source of error in implementing the auction design. We intend to use formal methods to verify new auction designs. Here, our contribution is to introduce and demonstrate the use of formal methods for auction verification in the familiar setting of a well-known auction

    Set Theory or Higher Order Logic to Represent Auction Concepts in Isabelle?

    Full text link
    When faced with the question of how to represent properties in a formal proof system any user has to make design decisions. We have proved three of the theorems from Maskin's 2004 survey article on Auction Theory using the Isabelle/HOL system, and we have produced verified code for combinatorial Vickrey auctions. A fundamental question in this was how to represent some basic concepts: since set theory is available inside Isabelle/HOL, when introducing new definitions there is often the issue of balancing the amount of set-theoretical objects and of objects expressed using entities which are more typical of higher order logic such as functions or lists. Likewise, a user has often to answer the question whether to use a constructive or a non-constructive definition. Such decisions have consequences for the proof development and the usability of the formalization. For instance, sets are usually closer to the representation that economists would use and recognize, while the other objects are closer to the extraction of computational content. In this paper we give examples of the advantages and disadvantages for these approaches and their relationships. In addition, we present the corresponding Isabelle library of definitions and theorems, most prominently those dealing with relations and quotients.Comment: Preprint of a paper accepted for the forthcoming CICM 2014 conference (cicm-conference.org/2014): S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, Springer International Publishing Switzerland 2014. 16 pages, 1 figur

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Tableaux Modulo Theories Using Superdeduction

    Full text link
    We propose a method that allows us to develop tableaux modulo theories using the principles of superdeduction, among which the theory is used to enrich the deduction system with new deduction rules. This method is presented in the framework of the Zenon automated theorem prover, and is applied to the set theory of the B method. This allows us to provide another prover to Atelier B, which can be used to verify B proof rules in particular. We also propose some benchmarks, in which this prover is able to automatically verify a part of the rules coming from the database maintained by Siemens IC-MOL. Finally, we describe another extension of Zenon with superdeduction, which is able to deal with any first order theory, and provide a benchmark coming from the TPTP library, which contains a large set of first order problems.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0117

    ProofBuddy: A Proof Assistant for Learning and Monitoring

    Full text link
    Proof competence, i.e. the ability to write and check (mathematical) proofs, is an important skill in Computer Science, but for many students it represents a difficult challenge. The main issues are the correct use of formal language and the ascertainment of whether proofs, especially the students' own, are complete and correct. Many authors have suggested using proof assistants to assist in teaching proof competence, but the efficacy of the approach is unclear. To improve the state of affairs, we introduce ProofBuddy: a web-based tool using the Isabelle proof assistant which enables researchers to conduct studies of the efficacy of approaches to using proof assistants in education by collecting fine-grained data about the way students interact with proof assistants. We have performed a preliminary usability study of ProofBuddy at the Technical University of Denmark.Comment: In Proceedings TFPIE 2023, arXiv:2308.0611
    • …
    corecore