3,331 research outputs found

    25 Years of IIF Time Series Forecasting: A Selective Review

    Get PDF
    We review the past 25 years of time series research that has been published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985; International Journal of Forecasting 1985-2005). During this period, over one third of all papers published in these journals concerned time series forecasting. We also review highly influential works on time series forecasting that have been published elsewhere during this period. Enormous progress has been made in many areas, but we find that there are a large number of topics in need of further development. We conclude with comments on possible future research directions in this field.Accuracy measures; ARCH model; ARIMA model; Combining; Count data; Densities; Exponential smoothing; Kalman Filter; Long memory; Multivariate; Neural nets; Nonlinearity; Prediction intervals; Regime switching models; Robustness; Seasonality; State space; Structural models; Transfer function; Univariate; VAR.

    Multivariate Regression and ANOVA Models with Outliers: A Comparative Approach

    Get PDF
    Assuming a normal-Wishart modelling framework we compare two methods for finding outliers in a multivariate regression (MR) system. One method is the add-1-dummy approach which needs fewer parameters and a model choice criterion while the other method estimates the outlier probability for each observation by a Bernoulli mixing outlier location shift model. For the simple add-1-dummy model the Bayes factors and the posterior probabilities can be calculated explicitly. In the probabilistic mixing model we show how the posterior distribution can be obtained by a Gibbs sampling algorithm. The number of outliers is determined using the marginal likelihood criterion. The methods are compared for test scores of language examination data of Fuller (1987): The results are similar but differ in their strength of their empirical evidence.Multivariate regression, Multivariate one-way ANOVA, Outliers, Gibbs sampling, Marginal likelihoods, Sensitivity analysis

    Structural Modelling And Analysis Of The Behavioural Dynamics Of Foreign Exchange Rate [HG3851. Y51 2006 f rb].

    Get PDF
    Tesis ini berkaitan dengan Kadar Wang Pertukaran Asing (KWPA) yang dihasilkan oleh satu regime urusniaga bebas. Pada amnya, kita mengkaji Pemodelan Struktur dan Analisis Tingkahlaku Dinamik Kadar Pertukaran Wang Asing. This thesis deals specifically with the foreign exchange rates that resulted from free float regimes. In general, we study the structural modelling and analysis of the behavioural dynamics of foreign exchange rates

    Forecasting volatility and volume in the Tokyo stock market: The advantage of long memory models

    Get PDF
    We investigate the predictability of both volatility and volume for a large sample of Japanese stocks. The particular emphasis of this paper is on assessing the performance of long memory time series models in comparison to their short-memory counterparts. Since long memory models should have a particular advantage over long forecasting horizons, we consider predictions of up to 100 days ahead. In most respects, the long memory models (ARFIMA, FIGARCH and the recently introduced multifractal models) dominate over GARCH and ARMA models. However, while FIGARCH and ARFIMA also have a number of cases with dramatic failures of their forecasts, the multifractal model does not suffer from this shortcoming and its performance practically always improves upon the na?ve forecast provided by historical volatility. As a somewhat surprising result, we also find that, for FIGARCH and ARFIMA models, pooled estimates (i.e. averages of parameter estimates from a sample of time series) give much better results than individually estimated models. --Forecasting,Long memory models,Volume,Volatility

    Regularization approaches to hyperspectral unmixing

    Get PDF
    We consider a few different approaches to hyperspectral unmixing of remotely sensed imagery which exploit and extend recent advances in sparse statistical regularization, handling of constraints and dictionary reduction. Hyperspectral unmixing methods often use a conventional least-squares based lasso which assumes that the data follows the Gaussian distribution, we use this as a starting point. In addition, we consider a robust approach to sparse spectral unmixing of remotely sensed imagery which reduces the sensitivity of the estimator to outliers. Due to water absorption and atmospheric effects that affect data collection, hyperspectral images are prone to have large outliers. The framework comprises of several well-principled penalties. A non-convex, hyper-Laplacian prior is incorporated to induce sparsity in the number of active pure spectral components, and total variation regularizer is included to exploit the spatial-contextual information of hyperspectral images. Enforcing the sum-to-one and non-negativity constraint on the models parameters is essential for obtaining realistic estimates. We consider two approaches to account for this: an iterative heuristic renormalization and projection onto the positive orthant, and a reparametrization of the coefficients which gives rise to a theoretically founded method. Since the large size of modern spectral libraries cannot only present computational challenges but also introduce collinearities between regressors, we introduce a library reduction step. This uses the multiple signal classi fication (MUSIC) array processing algorithm, which both speeds up unmixing and yields superior results in scenarios where the library size is extensive. We show that although these problems are non-convex, they can be solved by a properly de fined algorithm based on either trust region optimization or iteratively reweighted least squares. The performance of the different approaches is validated in several simulated and real hyperspectral data experiments

    Subjective measurements of persistence of time series

    Get PDF
    In this paper we suggest the use of subjective judgements to measure persistence in time series by comparing pairs of graphs with different Hurst exponents. The group of respondents consisted of 40 volunteers who were asked to identify the more jagged out of two graphs presented to them (that is, less persistent). The respondents were approached as a group and requested to work independently in the completion of ques- tionnaires administered to them. The respondents were supervised by the researchers. The graphs were simulated using time series package of Mathematica R [26]. The re- sponses were processed using an algorithm based on the Thurstone-Mosteller model for paired comparisons [29]. The results of the analysis show that the human eye is capable of distinguishing graphs of time series with Hurst exponent difference as small as only 0.02

    VI Workshop on Computational Data Analysis and Numerical Methods: Book of Abstracts

    Get PDF
    The VI Workshop on Computational Data Analysis and Numerical Methods (WCDANM) is going to be held on June 27-29, 2019, in the Department of Mathematics of the University of Beira Interior (UBI), CovilhĆ£, Portugal and it is a unique opportunity to disseminate scientific research related to the areas of Mathematics in general, with particular relevance to the areas of Computational Data Analysis and Numerical Methods in theoretical and/or practical field, using new techniques, giving especial emphasis to applications in Medicine, Biology, Biotechnology, Engineering, Industry, Environmental Sciences, Finance, Insurance, Management and Administration. The meeting will provide a forum for discussion and debate of ideas with interest to the scientific community in general. With this meeting new scientific collaborations among colleagues, namely new collaborations in Masters and PhD projects are expected. The event is open to the entire scientific community (with or without communication/poster)

    Development of Surface Acoustic Wave Electronic Nose

    Get PDF
    The paper proposes an effective method to design and develop surface acoustic wave (SAW) sensor array-based electronic nose systems for specific target applications. The paper suggests that before undertaking full hardware development empirically through hit and trial for sensor selection, it is prudent to develop accurate sensor array simulator for generating synthetic data and optimising sensor array design and pattern recognition system. The latter aspects are most time-consuming and cost-intensive parts in the development of an electronic nose system. This is because most of the electronic sensor platforms, circuit components, and electromechanical parts are available commercially-off-the-shelve (COTS), whereas knowledge about specific polymers and data analysis software are often guarded due to commercial or strategic interests. In this study, an 11-element SAW sensor array is modelled to detect and identify trinitrotoluene (TNT) and dinitrotoluene (DNT) explosive vapours in the presence of toluene, benzene, di-methyl methyl phosphonate (DMMP) and humidity as interferents. Additive noise sources and outliers were included in the model for data generation. The pattern recognition system consists of: (i) a preprocessor based on logarithmic data scaling, dimensional autoscaling, and singular value decomposition-based denoising, (ii) principal component analysis (PCA)-based feature extractor, and (iii) an artificial neural network (ANN) classifier. The efficacy of this approach is illustrated by presenting detailed PCA analysis and classification results under varied conditions of noise and outlier, and by analysing comparative performance of four classifiers (neural network, k-nearest neighbour, naĆÆve Bayes, and support vector machine).Defence Science Journal, 2010,Ā 60(4), pp.364-376,Ā DOI:http://dx.doi.org/10.14429/dsj.60.49
    • ā€¦
    corecore