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List of Abbreviations and Symbols 

 
 
 
With respect to notations and abbreviations, we have the following rules: 
 
1 Britpus denotes the daily exchange rates series for British Pound. 

2 LBritpus denotes the log daily exchange rates series. 

3 DLBritpus denotes the daily exchange rates returns series 

1 WeBritpus denotes the weekly exchange rates series 

2 LWeBritpus denotes the log weekly exchange rates series 

3 DLWeBritpus denotes the weekly exchange rates returns series 

4 QBritpus denotes the quarterly exchange rates series. 

5 LQBritpus denotes log the quarterly exchange rates series 

6 Lconsumption denotes the log quarterly consumption series. 

7 Bold capital letter stands for matrix and small letter for vector. 

8 Without bold means that the letter represents scalar variable. 

9 Small letter t stands for one particular period, capital N stands for total number of 

periods or observations. 

10 Lcons stands for Lconsumption. 

11 Cy or C stands for cycle. 

12 RMSE denotes root mean square error 

13 MAPE denotes mean absolute prediction error 

14 AR denotes autoregression 

15 AR_1 denotes autoregressive model of order 1 

16 MA denotes moving average 

17 MA_1 denotes moving average model of order 1 
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18 ARMA denotes autoregressive moving average 

19 ARIMA denotes autoregressive integrated moving average 

20 ARFIMA denotes autoregressive fractionally integrated moving average 

21 D denotes the first difference and DD denotes the second difference 

22 Dm denotes Denmark 

23 Sn denotes Sweden 

24 Sz denotes Switzerland 

25 Sin denotes Singapore 

26 HK denotes Hong Kong 

27 Frnfrus denotes French Francs 

28 Dtchgus denotes Dutch Guider 

29 Austrus denotes Australian Dollar 

30 Euro denotes European Dollar 

31 Jappynus denotes Japanese Yen 

32 Germdus denotes German Deutschmark 

33 Swisfus denotes Switzerland Francs 

34 Sgd denotes Singapore Dollar 

35 Twd denotes Taiwan Dollar 

36 Php denotes Philippine Pesos 

37 Sdr denotes Currency based on the country’s reserve.  
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PEMODELAN STRUKTUR DAN ANALISIS 
TINGKAHLAKU DINAMIK BAGI KADAR 

PERTUKARAN WANG ASING 
 
 

ABSTRAK 
 

 

Tesis ini berkaitan dengan Kadar Wang Pertukaran Asing (KWPA) yang dihasilkan oleh 

satu regime urusniaga bebas. Pada amnya, kita mengkaji Pemodelan Struktur dan Analisis 

Tingkahlaku Dinamik Kadar Pertukaran Wang Asing. Kita bermula dengan menganggap 

KWPA sebagai satu siri kewangan. Kita memodelkan KWPA dengan menggunakan dua 

jenis metadologi: kaedah ARFIMA dan kaedah Penapis Kalman (KFBM) dengan harapan 

ia boleh menghasilkan satu model KWPA yang terbaik. Objektif kita ialah untuk 

menggunakan model yang terbaik  ini sebagai satu alat bagi menunjukkan keadaan stabil 

bagi kadar pertukaran wang asing dalam jangka masa yang panjang. Dalam proses 

membuat analisis, kita juga hendak mengkaji tingkahlaku dinamik KWPA.   

 
Kita telah membina satu model YQ- ARFIMA yang dinamik and sesuai untuk pemodelan 

siri ingatan yang panjang dan pendek.  Dinamik bermaksud bahawa parameters YQ-

AFRIMA boleh diubahkan dengan mengikut ciri-ciri siri masa yang berkenaan. Perubahan 

yang mudah ini boleh dilakukan dengan menggunakan ujian t secara berturut-turut.  Model 

YQ-ARFIMA ini didapati adalah lebih baik daripada model KFBM. Kita juga dapati YQ-

ARFIMA menunjukkan prestasi 12 kali lebih baik daripada KFBM dalam pemodelan 

struktur siri masa dalam jangkamasa panjang. Dalam jangkamasa pendek, YQ-AFRIMA 

menunjukkan prestasi yang lebih baik lagi dengan suatu nilai RMSE, lebih kurang 40 kali 

dan nilai MAPE, lebih kurang 36 kali lebih tepat daripada kaeah KFBM. Sungguh pun 

begitu, model KFBM didapati lebih baik dalam analisis perubahan (breaks) struktur. Satu 
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sebab ialah ia lebih sesuai untuk memodelkan siri yang mempunyai komponen berkitaran 

(cyclical components). Saiz sampel yang paling baik untuk pemodelan jangka masa pendek 

ialah  di antara 200 dan 1300 pemerhatian sementara bagi jangka masa panjang saiz sampel 

yang paling sesuai ialah antara 1500 and 2000 pemerhatian. 

  
Kita juga dapati model kita adalah stabil merentasi 22 siri  KWPA antara bangsa dan juga 

stabil merentasi  perubahan  saiz sampel. Kita dapati YQ-ARFIMA adalah lebih baik 

daripada random walk dalam ramalan yang diukur dari segi fungsi hilang RMSE dan 

MAPE. Dengan ketepatan ini, kita boleh menggunakan YQ-ARFIMA untuk menunjukkan 

tingkahlaku reversi min (mean reversion) bagi KWPA.  

 
Kita menyiasat pengaruh perubahan  pada model kita. Kita dapati keputusan adalah lebih 

teruk jika kita mengabaikan perubahan  dalam analisis ramalan. Tambahan pula, kita telah 

membina satu kaedah pembahagian (dissection) untuk mengkaji cerapan luar biasa 

(outliers) apabila bilangannya adalah kurang. Kita dapati dalam pemodelan, cerapn luar 

biasa (outliers) yang teruk, lebih baik  di buang untuk menambah kejituan ramalan.  

 
Kita dapati komponen berkitaran (cyclical components) KWPA berubah dengan secara 

positif mengikut turun-naik komponen berkitaran bagi nilai keupayaan para pengguna. Ini 

menunjukkan terdapat satu hubungan dalam jangka masa panjang di antara KWPA dan 

nilai keupayaan para pengguna. Dalam lain perkataan, kedua-dua siri bergerak bersama. 

Dengan keputusan ini, kita sekurang-kurangnya boleh mengetahui tanda perubahan KWPA 

dengan meneliti nilai kupayaan para pengguna.  

 
Dalam pemodenan satu persamaan tunggul, kita dapati dengan menambah satu komponen 

berkitaran sahaja daripada keupayaan para pengguna boleh memburukkan keupayaan 

ramalan YQ-ARFIMA. Walaupun begitu, kita dapati juga dengan menambah komponen 
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berkitaran daripada LQBritpus bersama-sama dengan komponen yang sama daripada 

Lconsumption kepada model yang bukan  terbaik, boleh menambahkan keupayaan 

ramalan. Tetapi bagi model yang terbaik, tambahan komponen berkitaran tidak langsung 

mengaruh keupayaan ramalannya.  
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STRUCTURAL MODELLING AND ANALYSIS OF 
THE BEHAVIOURAL DYNAMICS OF FOREIGN 

EXCHANGE RATE 
 
 

ABSTRACT 
 

 
This thesis deals specifically with the foreign exchange rates that resulted from free float 

regimes. In general, we study the structural modelling and analysis of the behavioural 

dynamics of foreign exchange rates. We start with the recognition that foreign exchange 

rate is a financial time series. We model the foreign exchange rate by using two popular 

methodologies: ARFIMA and a Kalman filter based method (KFBM) with the hope that it 

can produce the best exchange rate model.  Our objective is to use this best model to show 

the mean reverting behaviour of the exchange rates. In the course of carrying out the 

experiments and analysis, we would like to study the behavioural dynamics of the 

exchange rate.  

 

We have developed a dynamic YQ-specified ARFIMA model for the long and short term 

memory modelling. Here ‘dynamic’ simply means that the model parameters can be 

altered according to the characteristics of the particular time series. This seemingly easy 

alteration is made possible by using sequential t tests. This YQ-specified ARFIMA model 

performs very well and much better than the Kalman filter based method. We have shown 

without any doubts that YQ-ARFIMA is about 12 times better in term of the RMSE values 

and 10.6 times better in term of the MAPE values, than the Kalman filter based method in 

long-term memory modelling. Moreover, for short-term memory, the YQ-ARFIMA 

performs even better, giving a RMSE value of 40 times and a MAPE value of 36 times 
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better than the Kalman filter based method. However, KFBM seems to do better in 

analysing structural breaks. The possible reason is that KFBM is more suitable for series 

with cyclical components. In addition, output results show that for short-term memory 

modelling, the ideal sample size is about 200 to 1300 observations while for long-memory 

modelling the ideal sample size is between 1500 and 2000 observations. 

 

The output of experimental results shows that this YQ-specified ARFIMA model is robust 

across 22 foreign exchange markets and across sample sizes. We have found that this YQ-

ARFIMA beats the random walk model soundly in out of sample forecasting in terms of 

the loss functions RMSE and MAPE. With this positive result, we use this YQ-ARFIMA 

model as a tool to show the mean reverting behaviour of the exchange rates.  

 

We investigated the influence of the breaks on our predictive models. We found that it is 

costly to ignore structural breaks in forecasting. We have devised a practical method, 

which we refer to as the dissection method for the correction of outliers when there are not 

many of them in the series. However, we have found that discarding the section of the data 

that contains extreme outliers can improve the predictive power of the model 

tremendously.  

 

We have shown that the cyclical components (stationary) of the exchange rate series are 

positively related with the corresponding cyclical components of the consumption series. 

This implies exchange rate series have a long run relationship with consumption. To put it 

differently, they move together. With this result, we can at least keep track of the sign of 

the exchange rate by examining the consumption rate.  
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In the single equation dynamic specification modelling, we have shown that adding only 

one cyclical component of consumption into the model can deteriorate the predictive 

ability of the YQ-ARFIMA model. However, we have found that adding the appropriate 

cyclical component of the LQBritpus series together with that of Lconsumption to models 

other than the best-fitted model can improve its predictive ability substantially.  For the 

best fitted-model, no combination of the cyclical components can improve its predictive 

ability at all.  
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CHAPTER 1 

 
INTRODUCTION 

 
 
1.1 Outline 

 
The currency crisis in Asia in 1997 has created havoc and disorder in the financial and 

economic systems of countries like Malaysia, South Korea, Indonesia and Thailand. To 

prevent such currency crises from recurring, it is imperative for us to study the foreign 

exchange rate (forex) time series. However, we have inherited an “international 

monetary system” that has no international standardized measurement of exchange rate. 

This happened since the collapse of The Gold Standard (1880-1914) system, The Gold 

Exchange Standard (1925 – 1936) system and The Bretton Woods System (1947 – 

1970) collapsed. Over the thirty years, since the breakdown of the Bretton Woods 

system, countries have adopted a wide variety of regimes, ranging from dollarization 

and currency boards to simple pegs, basket pegs, crawling pegs, and target zones to 

clean and dirty floats. Figure 1.1 shows clearly that, the forex for United Kingdom 

during the period before the breakdown of the Bretton Woods System, 1972, is either 

constant or decrease sharply due to devaluation of the currency.  

 
As a whole, all these regimes can be classified into two main types: pegged or float. In 

this thesis, we make mainly empirical research on floating regimes and in our case, free 

floats.  Unlike stocks and derivatives, forex time series are not pure series generated by 

economic agents. Moreover, the forex trading volume is rather small compared to the 

volume of the stock traded in the stock exchange. 
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Figure 1.1 – Graph of British pound per US dollar exchange rate 
(Note: This exchange rate Britpus is obtained from the Federal Reserve Board US) 

 
 

On top of this, the time span of the exchange rate series is rather short if we consider 

only the period after the breakdown of the Bretton Woods System for empirical 

research. Perhaps, it is because of this small trading volume, that the central bank is able 

to intervene in its trading activity in times of needs.   

 
Relatively speaking, there are not many research papers available on this subject. The 

reason could be that this intervention of the central bank makes the forex time series 

artificial, and artificial time series is very difficult to model or analyse. Another reason 

is that the time span for the exchange rate series after the recent floats is rather short for 

statistical inference and tests. The next question is “What are the uses of studying 

exchange rate?”  

 
Exchange rate behaviour used to be described by a simple proposition, viz., the long run 

purchasing power parity (PPP), which states that the national price levels should be the 

same when expressed in a common currency. The long run PPP hypothesis has created 

two types of exchange rates: the nominal exchange rate, which is defined as the price of 

one currency in terms of another, and the real exchange rate, which is defined as the 

nominal exchange rate adjusted for the differences in the relative national price level. 

Whether the long run PPP holds or the real exchange rate is stationary have important 
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economic implications on a number of fronts. Among these fronts, the easier to 

understand is that it is used to determine the degree of misalignment of the nominal 

exchange rate and the appropriate policy response, the setting of exchange rate parities, 

and the international comparison of national income levels. Our primary interest in the 

long run PPP is to verify this mean reversion behaviour by using some existing tools, 

proposing a new tool, and constructing an effective exchange rate model for accurate 

forecasting.   

 
It is by now an accepted fact that financial time series exhibit three important properties.  

These three important properties form the basic ingredients for further research and 

analysis.   

 
1  Large absolute returns occur more frequently than one would expect if the data 

follows a normal distribution. 

2 These large absolute returns tend to occur in clusters. 

3 Large negative returns tend to appear more often than large positive ones in 

stock markets, while it may be true the other way around for foreign exchange 

rates (see Franses, 1998; Cochrane, 1999). 

 
 

81 97
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0.000 
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Figure 1.2 – Exchange rate returns occur in clusters  

(Note: DLBritpus denotes the returns of British pound exchange rate per US dollar) 
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Figure 1.3 – Fat tails and shape peak of the density graph of Britpus 
(Note: Britpus denotes British pound exchange rate per US dollar) 

 

 Large absolute returns occur in clusters as in Figure 1.2, and Figure 1.3 shows the fat 

tails and shape peak of Britpus, which are the general characteristics of financial time 

series. 

 
Forex is an example of a financial time series, and thus, is expected to exhibit the above 

characteristics as widely documented for the past decade. In statistical terms, fact 

number one is equivalent to saying that the actual kurtosis is very much larger than 3 for 

the actual distribution. In graphical terms, it implies that the actual density graph has a 

sharp peak and fat tails. Figure 1.3 shows clearly these two characteristics of Britpus. 

We are going to work on these fat tails.  In volatility research, the contributing factor for 

these fat tails is that there exist additive outliers (AO), innovation outliers (IO), level 

change outliers (LC) and variance change outlier (VC). The existence of these outliers 

(aberrant observations), it can be said as the main cause for nonstationarity in the 

financial time series. It is accepted that these outliers cannot be modelled by the 

standard GARCH (see Baillie and Bollerslev (1989)) model. One possible cause for this 

outcome is that the GARCH model (generalized autoregressive conditional 

heteroskedastic) model is not able to capture these so-called outliers on the returns. We 
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assume that in a structural time series model for foreign exchange rate, the model 

cannot capture such outliers. Thus, we have to devise methods to deal with these 

outliers, which cause not only structural changes but also affect the forecasting 

performance of the relevant models. Generally, there are two methodologies to analyse 

a structural time series.  

 

1 The Box and Jenkins methodology popularised by Box and Jenkins in 1970, and 

improved and refined to advanced forms such as the Autoregressive Integrated 

Moving Average (ARIMA) and the Autoregressive Fractional Moving Average 

(ARFIMA). 

2 The Kalman filter and state space representation system used to extract 

unobservable variables from the observed series (hereafter referred to as 

KFBM). 

 

This thesis basically tries to find an effective exchange rate structural model, which can 

outperform the random walk model in out of sample forecasting. If this structural model 

has this property, we can use it as a tool to ascertain the mean reversion behaviour of the 

exchange rate for any sample size. To obtain this structural model, first we have to 

address the question on which methodology should be preferred in structural modelling: 

the ARFIMA method or the Kalman filter based method (KFBM). In the course of 

answering this question, we will come up with the best structural model for use as a tool 

to determine whether an exchange rate series exhibits mean reverting behaviour. In 

studying exchange rate behaviour, we also propose a procedure for modelling the 

additive outliers in a structural time series model, analyse the structural breaks and their 

influence on forecasting, investigate the relationship between consumption rate and 
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exchange rate, and, lastly, determine whether the cyclical components of the 

consumption rate or the exchange rate can in any way improve the predictive ability of 

our best structural model, the Yip-Quah specified ARFIMA model (hereafter referred to 

as YQ-ARFIMA).  

 
The layout for the rest of this chapter is as follows: In Section 1.2, we discuss the 

objectives of this dissertation. In Section 1.3, we present the constraints of the research 

and then, we discuss the methodologies used in the research in Section 1.4. In Section 

1.5, we discuss our data set and the software used in the research. Then, we discuss the 

three common forms of a financial time series in Section 1.6. In section 1.7, we give an 

outline for each subsequent chapter.  

 

1.2 Objectives of this Research 

 
Our main objective in this thesis is to find an effective exchange rate structural model, 

which can outperform the simple random walk model in out of sample forecasting.  We 

can use this structural model as a new tool to verify the parity reversion and thereafter, 

make accurate prediction of exchange rate. We proceed as follows: first, we are going to 

look for a variant of the ARFIMA model that is able to produce good forecasting 

results. We can achieve this by making a comparative study between this variant of the 

ARFIMA model and the Kalman filter based method for structural modelling.  We 

would then determine whether this variant of the ARFIMA model can be used as a tool 

to ascertain the mean reverting behaviour of the exchange rate, by checking whether this 

model can beat the random walk model or not. In addition, we will use the fractional 

integration technique and the impulse response function to verify the existence of parity 

reversion for any sample size. Only then, we will study the behaviour of exchange rate 
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with respect to the influence of outliers, structural breaks, consumption rate and whether 

the stationary components of consumption rate can in any way help to improve the 

predictive ability of our structural model. 

 

1.3 Constraints of the Research 

 
There are constraints in any research. Very often, these constraints are unavoidable and 

cannot be got rid of completely. For research on exchange rates, our first constraint is 

that if the condition prevailing in the exchange rate market is not favourable to the 

country concerned, the central bank will, very often than not, intervene in the trading. 

This creates an artificial element in the market, making its series extremely difficult to 

model.  

 
Secondly since there are no standardized regimes, not many free float exchange rate 

data sets are available for research. Many of these free float exchange rate data series 

have very short time span because quite a number of them switched to currency pegging 

regimes about a decade ago. Thirdly, we have great difficulty in obtaining the real time 

data especially, the most up-to-date data. This creates a difficulty when we perform out 

of sample forecasting. Thus, very often, we can only perform pseudo out of sample 

forecasting. Here “pseudo” means: pick a date near the end of the sample, estimate our 

forecasting model using data up to that date, and then use the estimated model to make a 

forecast of the data left out of the sample. 

 
 
1.4 Methodology 

 
There are two main methodologies used in the research. One of them is the state space 

representation system of a Kalman filter. We use the state space model to generate the 
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residuals and the state variables for the observable foreign exchange rate data when the 

data is fitted with a structural dynamic time series model. Residuals and state variables 

in this case are unobservable and we use a Kalman filter to extract it. We use a state 

space representation system with a Kalman filter basically because of two reasons. 

 

1  Many researchers have shown the applicability of the Kalman filter. For 

example, Fama and Gibbons (1982) modelled real interest rate by using a 

Kalman filter. The result obtained was exceptionally good. There is also the 

research by Halsey (2000) on stationary components of earnings and stock 

prices by using a Kalman filter. 

2 A Kalman filter can extract the unobservable with excellent accuracy and 

moreover, it can give very good maximum likelihood estimates. With this 

property, it can be used to do the job of smoothing the series and to do point 

wise forecasting. It is a popular technique now in macroeconomic and financial 

research.  

 

Besides the state space representation system using a Kalman filter, we also use the Box 

and Jenkins methodology (ARFIMA) for long-term memory modelling. We construct 

the most suitable dynamic specification for the ARFIMA modelling of the foreign 

exchange rates. We test the stability of the model by using 22 foreign exchange rates 

series, which are specially chosen from different parts of the world: Canada, Australia, 

Mexico, South America, Europe, Africa and Asia. This geographical variation will 

definitely enhance the robustness of the model after stability testing. To compare and 

contrast the effectiveness of each of the methodologies used in structural modelling, we 

perform the actual modelling on long-term memory and short-term memory series.  
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Next, we use a different setting and a different population, that is, Ringgit per foreign 

currency to repeat the experiment. This will verify the external validity of our empirical 

study. We also compare the robustness of  

each of the methodologies with regard to sample size. For comparing, we use the root 

mean square error (RMSE) and the mean absolute prediction error (MAPE) values. 

 
To confirm the output, we use a sign test, which is usually called the S statistics to test 

whether there is any difference between the two models. Next, we use a new forecast 

criterion to determine whether the forecasts are consistent or not. If the forecast is 

consistent, the forecasted values and the actual values should be cointegrated.  We use a 

8-step ahead forecasting for our comparison study. Many research papers such as the 

one by Diebold and Mariano (1997) show that short horizon forecasting is more reliable 

than long horizon forecasting. Moreover a short duration forecasting is also in line with 

the concept of Martingale theory, used widely in financial research. However, since we 

are dealing with exchange rate, which most probably has the mean reverting behaviour, 

we also consider long horizon, 100 steps ahead forecasts.  

 
 
1.5 The Data and Software 

 
There are two types of daily exchange rate data sets used in the analysis. First, we have 

twenty-two daily exchange rate series for our analysis. These twenty-two daily 

exchange rate data sets were obtained from the Federal Reserve Board of the United 

States of America (US). All of them are shown in Table 1.1. Among these exchange 

rate series, there are three series, which had been terminated in 1998 because of the 

adoption of Euro as a common currency. These three exchange rate series are the 

French Franc, the German Deutschmark and the Dutch Guilder. Many of these data sets 
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have quite a number of missing observations. We use the cubic spline technique to 

select the best values to fill in these missing observations. Bandwidths are chosen after 

repeated testing on whether the cubic spline fit the curves or not. Most of these data sets 

started from 1st January 1981 to 31st December 2004. However, quite a number of them 

started from 1st January 1990 to 31st December 2004, and some started from 1st January 

2000 to 31st December 2004.  

 
The second set of exchange rates is obtained from Bank Negara Malaysia. All the 

values of this second data set are in the number of ringgit per unit foreign currency. As 

we use this second set for the purpose of external validity test, only 6 series from this 

second set of data are used for the analysis. However, a main weakness in this second 

set of exchange rate series is that they all cover the period from 1st  January 2000 to 31st  

December 2004. Thus, the time span is short even though the frequency of the 

observations is within reasonable limits.  Table 1.2 shows these six series, which are 

divided into two main zones, viz., Europe and Asia.  

 
We include Dutch guilder, German Deutschmark and French franc in experiment for the 

sake of obtaining the best structural exchange rate model. These exchange rates were 

used because they are considered as some of the best free float data sets.  

 
In Chapters 11 through to Chapter 13, we mainly use the British pound per US dollar 

exchange rate data, Britpus, for our experiment. Britpus is transformed into two forms: 

weekly data, WeBritpus and quarterly data, QBritpus. This is because we find that 

weekly data is more suitable for structural breaks analysis and quarterly data is more 

meaningful for co-movement (move in parallel) analysis. Beside the exchange rates, we 

also use the UK real consumption, taken from Harvey and Scott (1994). These twenty-
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two forex data series and the consumption data can be found in the CD enclosed in this 

thesis 

 
 

Table 1.1 – Names of the 22 exchange rates used in the experiment. 
 
 
America Europe   Africa Asia   
  
 
Canada Dollar  European Dollar    South Africa Rand Singapore Dollar 
   (Can)  (Eur)  (Ran)   (Sid) 
 
Mexico Pesos British Pound  Thailand Baht  
   (Pes) (Britpus)  (Bah) 
 
Brazil Real Denmark Kroner  Malaysia Ringgit 
   (Rea) (Kne)  (Rin) 
 
Venezuela Bolivar Sweden Kronor  South Korea Won 
   (Bol) (Kno)   (Won) 
 
Australian Dollar Switzerland Francs  Chinese Yuan 
   (Austrus) (Swisfus)  (Yua) 
 
 French Francs  Indian rupees 
 (Frnfrus)  (Rup) 
 
 German Deutschmark  Japanese Yen 
 (Germdus)  (Japynus) 
 
 Dutch Guilder  Hong Kong Dollar 
 (Dtchgus)  (Hkd) 
 
 
 
 
 
        

Table 1.2 – Names of the 6 exchange rates (Ringgit per foreign currency) 
used for the external validity experiment 

 
 

Europe       Asia 

 

 British Pound (Britpus) Singapore Dollar (Sid) 

 European Dollar (Eur) Thailand Baht (Bah) 

  Hong Kong Dollar (Hkd) 

   Japanese Yen (Japynus) 
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In Chapters 11 through to Chapter 13, we mainly use the British pound per US dollar 

exchange rate data, Britpus, for our experiment. Britpus is transformed into two forms: 

weekly data, WeBritpus and quarterly data, QBritpus. This is because we find that 

weekly data is more suitable for structural breaks analysis and quarterly data is more 

meaningful for co-movement (move in parallel) analysis. Beside the exchange rates, we 

also use the UK real consumption, taken from Harvey and Scott (1994). These twenty-

two forex data series and the consumption data can be found in the CD enclosed in this 

thesis. 

 
With respect to software, we mainly use Eviews 4.1, PcGive10.3, Stamp 6.20 and, 

occasionally, we use Gauss 5.0 for certain situations only.  

 
 
1.6 Three Different Forms of the Data 

 
There are three different forms of a data series, which can be used in any research. 

Which form is more suitable depends to a large extent on the intended outcome of the 

research. In this section, we discuss all the three forms of a data series: the original data 

series, the log data series and the returns series. We use all these three forms of data in 

our research. 

 

1.6.1 The original data 

 
The raw data series can provide a better intrinsic measure of the central tendency of the 

series. However for cases where the distribution of the raw data series is highly skewed, 

the conditional mean )( tty xE where  denotes the dependent variable and denotes 

the explanatory variable, may not be a useful measure of the central tendency, and 

estimates will be undesirably influenced by extreme observations, which we refer to as 

ty tx
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outliers. In Chapter 1 through to Chapter 8, we use the raw data series for the 

experiments. This is largely because our objective is to compare and contrast the two 

structural modelling methodologies.  

 

1.6.2 The log data 

 
This form of the data series is widely used in the research. Basically there are four 

reasons for its widespread use.  

1 Many nonlinear functions can be transformed into linear functions by using the 

logarithm. Thus, we have ])[log( tty xE  is roughly linear in over the range of  

, while 

tx

tx ][ txyE t  is nonlinear.  and  as before denote the dependent and 

explanatory variables respectively. This is an advantage because linear models 

are easier to report and interpret. For example, we interpret the regression 

coefficients as percentage changes when the log series is used. 

ty tx

2 The errors in ])[log)log( tx(yEyε ttt −= may be less heteroskedastic than 

the errors from the linear specification when raw data is used. We can show this 

by using Taylor’s theorem, and then apply the delta method. Let )( txEt =μ  and 

. Then the variance of the log is approximately constant as shown 

below. We use Taylor’s theorem which is given by: 

2)( tkVar μ=tx

 
....xffxf +μ−μ′+μ≈ ))(()()(  

          
)()]([))((

)))((())(())((
2 xVarμfxfVar

....xfVarfVarxfVar
′≈

+−′+≈ μμμ
 

 
By setting , we have:   tt xxf  log)( =
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However this is not consistent and the reverse may be true also.  

3 If the distribution of  is highly skewed, the conditional mean ty ][ txyE t  may 

not be a useful measure of central tendency, and outliers will influence the 

estimates. In this case, the conditional mean ])[log( txytE  may be a better 

measure of central tendency. 

4 A good approximation of a returns series can be easily computed by taking the 

difference between two consecutive observations in the log form.  

 

1.6.3 The returns series 

 
The returns is defined as the quotient obtained by dividing the difference between the 

two consecutive observations by the first observation of the two consecutive 

observations. This form of the returns series is widely used in finance for the simple 

reason that we are interested in the returns for our investment. The second reason is that 

by using the returns series, we may not need to difference the original series again to 

obtain a stationary time series if the raw series is nonstationary. 

 
1.7  Outlines of Subsequent Chapters 

 
In Chapter 2, we give an overview of the theoretical background involved. This is to 

prepare the readers on the sort of probability and statistical theory used in the research. 
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In presenting the time series concepts, we stress on its difference from cross-sectional 

regression and how the difference is reconciled. We also present the F tests, t tests and, 

most important of all the so-called Hall preferential t test. We are of the opinion that, 

with this, we can easily guide the readers as to what contributions we have made.  

 
We present and discuss two methodologies, ARFIMA and KFBM, which we are going 

to compare and contrast so as to obtain the best structural time series model for 

exchange rate in Chapter 3.  

 
In Chapter 4, we present a concise literature review. From the literature review, we state 

categorically, the objective of each experiment, which we are going to conduct after 

critical analyse of the results of the relevant research papers. 

 
In Chapter 5, we discuss the mean reverting and random walk behaviour of the 

exchange rate. First, we present the latest development in the study of these two 

behaviours with respect to the controversies or rather puzzle encountered. With that, we 

present our experiment. We use fractional dynamics, and impulse response function in 

addition to unit root tests, to ascertain mean reverting behaviour.  

 
Subsequently, in Chapter 6, we first make an exploratory investigation of eight foreign 

exchange rate series by using graphical analysis and hypothesis testing. We develop the 

most suitable dynamic specification for the ARFIMA modelling of long-term memory. 

We test the stability of the specification by fitting model to the 8 foreign exchange rates 

series. We also test its robustness with regard to variations in sample size. To test the 

external validity of the model, we fit the model to 6 more exchange rates specially 

chosen from different parts of the globe.  
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In Chapter 7, we use the series Britpus for the experiment. We generate the component 

series for Britpus. Next, we regress Britpus on all its three components in a single 

equation dynamic modelling. We perform pseudo out of sample forecasting by 

assuming the case of uncertain variances. We assume that its effectiveness in 

forecasting depends only on the values of RMSE and MAPE.  We test its robustness by 

fitting it to the eight-forex series, and then across different sample sizes.  

 
We state the conclusions obtained from the results obtained from Chapter 6 and Chapter 

7 in Chapter 8 . Next, we use each of the two structural models for modelling short-term 

memory series. We vary the sample size and for each variation, we perform the 

modelling. We compare and contrast each of the output of the experiments. In this way, 

we can make decision on which model or, rather, methodology is the best, and under 

what conditions, it is the best.  

 
In Chapter 9, we repeat the experiment in Chapter 6 in a new setting, that is, foreign 

exchange rate in Ringgit per unit of foreign currency. We perform this additional 

experiment in order to verify whether our best structural model can still be workable in 

a new setting and population.  

 

We perform empirical analysis in Chapter 10, where we devise and execute experiments 

to compare and contrast the forecasting ability of three models, the standard ARFIMA, 

the YQ-ARFIMA and the random walk model in the context of exchange rate. We use 

two loss functions, RMSE and MAPE, for the comparison. To further confirm the 

results, we perform a forecast consistent procedure for the experiment.  

 
In Chapter 11, we present a theoretical framework for a structural break model based on 

the partial sum concept. We use recursive least squares and recursive residual sums of 
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squares to investigate the structural breaks and outliers in the DLWeBritpus series. 

Next, we investigate the influence of the structural breaks on the predictive performance 

of our KFBM model. With respect to outliers, we use the simple ARFIMA model to 

model the mild outliers, and for shape outliers, we use two approaches: we scale them 

down to normal size, and then, we exclude them altogether. We then perform structural 

modelling again on DLWeBritpus, but this time with the corrections of the outliers. The 

output from this last experiment is intended to serve as a check on the validity of the 

forecasting ability of the two models developed earlier, and also to determine the 

usefulness of outlier correction in general.  

 
In Chapter 12, we construct a structural model for Lconsumption. We use the Kalman 

filter to extract the cyclic components of the consumption (Lconsumption) and 

LQBritpus series. We regress LQBritpus on Lconsumption, and, after this, we regress 

Lconsumption on its three important components. Next, we regress the trend cyclic 

components of LQBritpus on the trend cyclic components of Lconsumption in order to 

obtain their relationship.   

 
In Chapter 13, we perform a bivariate structural time series modelling of LQBritpus and 

Lconsumption with the intention of obtaining more robust and precise estimates of their 

cyclic components. Next, we perform a single equation dynamic modelling of the cyclic 

components of LQBritpus on Lconsumption. We want to determine and confirm 

whether the exchange rate and the consumption move in parallel. We also want to 

investigate whether the inclusion of the cyclic components as regressors can improve 

significantly the predictive power of our YQ-specified ARFIMA model. Finally in 

Chapter 14, we conclude the thesis. We present the empirical results and make 
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inferences based on the experiments and discuss their implications. We list our 

contributions in the research. Last, but not least, we suggest future areas of research.  
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CHAPTER 2 

 

THEORETICAL BACKGROUND 
 

 
2.1 Introduction 
 

The objective of this chapter is to give a brief overview of all the basic financial 

econometric theory as well as statistical theory involved in the analysis. As for the 

methodologies used, we will introduce them briefly in this chapter and discuss them in 

more details in Chapter 3. The financial econometric theory and statistical theory used 

in the research are: independent and serially correlated data, long memory, short 

memory, white noise, linear and nonlinear regression, autocorrelation function, partial 

autocorrelation function, Akaike, Schwarz and Hannan-Quinn information criteria, 

theory of ARMA model, t-tests, Wald tests, F tests,  tests, unit roots and its use in 

testing, Granger causality tests, structural modelling, stochastic trends, forecasting and 

selection criterion for the best forecasting model, structural breaks, and real time data 

versus transformed data.  

2R

 

2.2 Independent and Serially Correlated Data 

 
In our research, we deal mainly with time series data. In general, there are two types of 

data available for research; time series data and cross-sectional data. Regression 

techniques and OLS estimators are developed specifically for cross-sectional data. Can 

we apply these techniques without alterations to time series data? This section deals 

mainly with the answer to this question. In the course of answering this question, we 

will point out the important role played by the characteristics “independent and serially 
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correlated” of the data. We will provide a formal definition for independent and serially 

correlated data after the explanation.  

 
There is a basic difference between time series data and cross-sectional data. The former 

can only have a single realization generated by the data generating process (DGP), and 

the latter can be generated by multiple realizations of the DGP. This major difference 

eliminates altogether the possibility of using random sampling distributional techniques 

and sampling statistical inferences for time series analysis. However, if we impose the 

restriction of ergodic stationarity on the time series, the time average over the elements 

of the time series will be consistent for the ensemble mean of the cross-sectional data 

series. Normally, in practice, any time series we encounter would have more than 100 

data. With this length of data, we would be able to use large sample theory (asymptotic 

theory) for making statistical inferences (see Stock and Watson, 2003). Thus, we can 

use asymptotic properties of the time series data to construct confidence levels for 

hypothesis testing and make statistical inferences.  

 

The major tool used to derive statistics and construct confidence levels for studying 

cross-sectional data is the Central Limit Theorem (CLT) initiated by Lindeberg-Levy. 

However, this CLT is valid only for independent and identical distributional 

observations (i.i.d) as is usually assumed in regression analysis. As most of the time 

series data are serially correlated, we cannot apply the CLT wholesale without 

generalization and alteration. This generalization and alteration of the CLT were done 

by Gordin (1969) and subsequently restated by White (1984). We call this final version 

of the CLT as Gordin’s CLT for zero-mean ergodic stationary process (see Hayashi, 

2000). Thus, we have to use Gordin’s version of CLT to derive statistics and construct 
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confidence intervals for time series analysis. We shall now explain the term 

independent, serially correlated, stationarity and ergodicity. 

 

The observations in most financial time series are serially correlated and seldom are 

independent. Serially correlated observations and how to test its existence play an 

important role in structural analysis because the output results will be very different if 

we take serially correlated observations as independent observations. It is an accepted 

fact, that independent will imply no serial correlation but the reverse is not true in 

general. However, for normal random variables, no serial correlation can imply 

independent.  In time series analysis, one important assumption is that the time interval 

between two consecutive observations is uniformly the same, and we refer to such 

property of the time series as stationarity. Stationarity is a restriction imposed on the 

time series so that the number of parameters needs to be estimated is minimum. To 

estimate the parameters of a time series, the time series must exhibit stationarity 

behaviour and ergodicity as well. Stationarity simply means that the joint probability 

distribution of any set of k observations in the sequence of observations is the same 

regardless of the origin, t, in the time scale.  Ergodicity means that events separated far 

enough in time are “asymptotically independent”. Put differently, the observations are 

not too persistent, and every observation contains some information, which are not 

available in other observations.  However, recent research found and confirmed that 

most time series are nonstationary and very often cointegrated. We shall discuss this 

new development in Section 2.8.  

 
Definition:   If represents a time series of data for the sample period from t = 

1 to t = N, then the time interval between any two conservative time must be the same. 

If the observations are independent, we have the following relations: 

Nt
tty =
=1}{
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0][ =− tkt yyCov  and 0][ =− tkt yyE                                            (2.1) 
 
 

for any t and k with k < t      
 
                  
However, if the observations were serially correlated instead, we would have the  
 
following relations: 

 
 

0][ ≠− tkt yyCov  and  0][ ≠− tkt yyE                                    (2.2) 

 

for any t and k with k < t                       

 
Definition: A first order serial correlated linear regression model is defined as: 

  
      ubxay ttt ++= where 1   and   ,1 ≤+= − ρρ tεuu tt                         (2.3) 

 
with the  x’s  being non random:    

 

  (  , 0 == )uVar)u(E tt C, and 0(  , ≠∀ )uuCovt kt                                 (2.4) 

 

where C denotes a constant. 

 

The above model can be represented in a more compact way as shown below: 
 
 
 

tt Ly ερμ 1)1( −−+=                                                                    (2.5) 

 

where tt bxayE +== )(μ . 
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Notice that Equation (2.5) is in the moving average form. A moving average process 

will generate serially correlated data. When Ordinary Least Squares (OLS) or 

Generalized Least Squares (GLS) is used to estimate the parameters in the above-

reduced equation, we would find that the OLS or GLS is no longer unbiased or 

consistent. We refer to such problem as simultaneous equation bias and we use 

instrumental variable regression to overcome the problem. Thus, very often, we avoid 

any lagged values in the dependent variables when doing OLS regression. However, we 

can also overcome this problem by testing the validity of each parameter of the output 

equation after doing the regression by using the t tests, which is robust, consistent and 

pivotal. This can be done easily by using econometric software package, for examples, 

Eviews and PcGive. 

 
As for the analysis, we can use a graphical method or hypothesis testing to determine 

the correlation of a set of data. Figure 2.1 shows graphically what serially correlated 

data set means. Notice how the variation within one period can be used to indicate the 

likely variation in the next period. The data set of GDP in US is obtained from “ 

Econometric Analysis” by William H. Greene (2003). 
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Figure 2.1 – Variation pattern of serially correlated data- GDP in US 
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 As for additional graphical analysis, we shall discuss it under the heading of the 

autocorrelation function ACF and the partial autocorrelation function PACF in Section 

2.5. In this aspect, scatter plots can also be used to detect the correlation of the data. In 

practice, we divide the scatter plot into four quadrants. Equal number of points in each 

quadrant simply means lack of correlation. Excess points in any quadrant indicate 

correlation. There are two common tests for the null hypothesis testing of no serial 

correlation. They are the Durbin Watson Test and the Ljung-Box Test.  

 

The Durbin-Watson Test 
 
 
Durbin Watson test is a test for the existence of serially correlated random disturbances 

of the dependent variable. It is a classical test. The model has to have an intercept and 

the regressor has to be non-random. The test statistic is given by: 

 

                    
∑

∑ −
=

=

=
−

1
2

2

2
1

)ˆ(

)ˆˆ(

t t

N

t
tt

u

uu
d                                                                    (2.6) 

 

For testing the null hypothesis of no serial correlation against serial correlation, we have 

the following decision rule: 

 

                    Reject if:       lowerdd <    

                   Accept if:       upperdd >

            No conclusion if  ),( upperlower ddd ∈  
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