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Abstract

We consider a few different approaches to hyperspectral unmixing of remotely sensed im-

agery which exploit and extend recent advances in sparse statistical regularization, han-

dling of constraints and dictionary reduction. Hyperspectral unmixing methods often use

a conventional least-squares based lasso which assumes that the data follows the Gaussian

distribution, we use this as a starting point. In addition, we consider a robust approach to

sparse spectral unmixing of remotely sensed imagery which reduces the sensitivity of the

estimator to outliers. Due to water absorption and atmospheric effects that affect data

collection, hyperspectral images are prone to have large outliers.

The framework comprises of several well-principled penalties. A non-convex, hyper-

Laplacian prior is incorporated to induce sparsity in the number of active pure spectral

components, and total variation regularizer is included to exploit the spatial-contextual

information of hyperspectral images. Enforcing the sum-to-one and non-negativity con-

straint on the models parameters is essential for obtaining realistic estimates. We consider

two approaches to account for this: an iterative heuristic renormalization and projection

onto the positive orthant, and a reparametrization of the coefficients which gives rise to a

theoretically founded method. Since the large size of modern spectral libraries cannot only

present computational challenges but also introduce collinearities between regressors, we

introduce a library reduction step. This uses the multiple signal classification (MUSIC)

array processing algorithm, which both speeds up unmixing and yields superior results in

scenarios where the library size is extensive.

We show that although these problems are non-convex, they can be solved by a properly

defined algorithm based on either trust region optimization or iteratively reweighted least

squares. The performance of the different approaches is validated in several simulated and

real hyperspectral data experiments.
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Impact statement

Satellite imagery is gaining popularity for monitoring of the Earth as more satellites are

launched into the orbit every year. Thanks to recent international collaboration, remote

sensing data is becoming ever more accessible and abundant. Timely automated analysis

of the image data is of vital importance to future resource and climate risk management.

Statistical image processing methodology must now catch up with rapid hardware advances

and initiatives in remote sensing to deliver automatic, accurate, and robust data analysis.

The work presented in this thesis has applications for use both inside and outside

academia. We motivate the use of statistical methods such as regularization, repara-

metrization and robust methods in image processing applications. We have produced

well-functioning algorithms for the hyperspectral unmixing problem that can be used in

a wide range of scenarios. This has implications for many industries, and can be adopted

for example by military, government institutions, international organizations and multi-

national corporations. Satellite imagery has potential for monitoring land use, melting ice

caps, oil spills etc.

The hyperspectral unmixing task is a statistical image processing problem that is

relevant in the academic literature. The statistical regularization tools adopted for hyper-

spectral unmixing in this thesis can be adapted to various applied data sciences in which

this kind of analysis is meaningful. Image processing methods can be developed further

using the ideas and insights presented.
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Publications

Chapters 2-5 in this thesis form four separate papers that have been submitted to journals

for publishing. Their titles are as follows:

• Sparse hyperspectral unmixing with spatial total variation regularization and library

pruning

• Sparse hyperspectral unmixing with spatial total variation regularization and con-

straint’s reparametrization

• Robust sparse spatial total variation regularized hyperspectral unmixing

• Robust regularized hyperspectral unmixing with constraint’s reparametrization

A shorter and less extensive version of Chapter 4, was published as a conference paper:

[1] Toomik, Maria, Shijian Lu, and James D. B. Nelson. ”M-estimation for robust

sparse unmixing of hyperspectral images.” Image and Signal Processing for Remote Sens-

ing XXII. Vol. 10004. p. 100040V. International Society for Optics and Photonics, 2016.
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Notation

L number of spectral bands

N number of materials/endmembers

P number of pixels in the image

yn spectral reflectance of the nth pixel, size L× 1

M0 spectral library/mixing matrix, size L×N

xn fractional abundance vector for the nth pixel, size N × 1

en observational errors for the nth pixel, size L× 1

λ regularization parameter for the sparsity term

λTV regularization parameter for the spatial term

p quasi-norm with values in the range 0 < p < 1

∇ operator that takes horizontal and vertical differences of the fractional abun-

dances between neighboring pixels

y spectral reflectance for the whole image s.t.
[
y>1 ,y

>
2 , . . . ,y

>
P

]>
, size LP × 1

M block-diagonal mixing matrix with P entries of M0 on the main diagonal s.t.

Ip ⊗M0, where ⊗ is the Kronecker product, size LP ×NP

x fractional abundance estimates for the whole image s.t.
[
x>1 ,x

>
2 , . . . ,x

>
P

]>
, size

NP × 1

e observational errors for the whole image s.t.
[
e>1 , e

>
2 , . . . , e

>
P

]>
, size LP × 1

d weights for the sparsity term, size NP × 1

D positive diagonal weight matrix containing the weights d, size NP ×NP

εn measure of error in the solution for the nth pixel, size N × 1
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ε measure of error in the solution for the whole image s.t.
[
ε>1 , ε

>
2 , . . . , ε

>
P

]>
, size

NP × 1

α iteration number

T total number of differences taken between neighboring pixels in the image

Th number of horizontal differences taken for the image

Tv number of vertical differences taken for the image

c number of pixels in each row of the image

φ weights for the spatial term, size T × 1

Φ positive diagonal matrix containing the weights φ for the spatial term, size T ×T

η small positive integer of size 10−6

η column vector filled with η values, size NP × 1

ti unconstrained reparametrized parameter for endmember i

xi sum-to-one and non-negatively constrained parameter for endmember i

ρ robust function

ψ first derivative of ρ

ω second derivative of ρ

ξa, ξb, ξc threshold parameters for the robust function ρ

w weights for the robust function, size LP × 1

W positive diagonal matrix containing the weights w, size LP × LP



1

Introduction

Understanding, protecting, and optimizing land-use and natural resources is a fundamen-

tal interest to the environmental sciences and society as a whole. It informs, if not drives,

environmental policy both at the government and international level. Set against the

backdrop of the current global climate crisis, its importance and timeliness cannot be

underestimated. To this end, hyperspectral imaging offers a uniquely effective and poten-

tially automated means of monitoring, often subtle, changes in the environment such as

CO2 emissions [2,3]; oil/gas leakage [4,5]; snow/ice melting/grain-size [6,7]; biomass [8,9];

dissolved organic materials [10, 11]; atmosphere composition [12]; etc [13–17]. Members

of the Committee on Earth Observation Satellites (CEOS) have planned to conduct 268

satellite Earth observation missions between the years 2012 and 2027 [18]. Many leading

space agencies have current space programs, or have scheduled launches over the next

few years to place cutting edge hyperspectral remote sensors into low-Earth orbit. For

example, the Italian Space Agency launched the PRISMA1 (Hyperspectral Precursor and

Application Mission), satellite system that carries a hyperspectral sensor, into space in

March 2019 aboard the VEGA launcher (currently still in trial phase); and the Germans

are planning to launch the hyperspectral satellite mission EnMAP2 (Environmental Map-

ping and Analysis Program), that is currently in the development and production phase,

in 2020 (the launch was previously planned for 2015 [19]). The spatial resolution of the

planned sensors will stay the same as the previous and current ones, having around 20-30-

meter resolution3. Hence spectral unmixing of hyperspectral images will be a important

challenge to solve for years to come.

Timely automated analysis of the image data is of vital importance to future resource

and climate risk management. Thanks to recent international collaboration, remote sens-

ing data is becoming ever more accessible and abundant. Statistical image processing

1Further details about PRISMA at: http://www.asi.it/en/activity/observation-earth/prisma
2Further details about EnMAP at: http://www.enmap.org/?q=mission
3Further details about Hyperion at: https://archive.usgs.gov/archive/sites/eo1.usgs.gov/hyperion.html
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methodology must now catch up with rapid hardware advances and initiatives in remote

sensing to deliver automatic, accurate, and robust data analysis.

The standard red/green/blue and multispectral images only have a few spectral chan-

nels, but hyperspectral imagery often has information for over two hundred spectral bands

in the visible light and near infrared spectrum that is collected in narrow wavebands. This

extra data allows for the analysis of materials in the image scenes. Hyperspectral sensors

record the spectral signature of the materials for each pixel separately. Hence if there is

only one material in the area of the pixel, a pure pixel is observed. Concurrently, hyper-

spectral imaging sensors provide reflectance information from many different wavelengths

simultaneously. With appropriate image modeling and estimation methodology, a rich

description can be revealed. The high spectral resolution of the hyperspectral images is

lessened by the low spatial resolution of the data, where each pixel in the image often

covers a large area on the ground, e.g. 30m by 30m. The low spatial resolution of current

sensors, together with the complexity presented by many environments, provides consid-

erable challenges because each pixel often contains the spectrum of more than one distinct

pure material, or endmember. This leads to the existence of mixed spectra in hyperspec-

tral imagery. Mixed pixels tend to have greater spectral variance and are comparatively

more difficult to interpret. This embodies the primary impediment to hyperspectral image

analysis and creates the need for hyperspectral unmixing.

The unmixing task is a statistical image processing problem that has gained popularity.

There has been a wave of interest in translating recent ideas from statistical regulariza-

tion to advance hyperspectral unmixing capabilities. This has happened as tools from

statistical regularization begin to mature and are adapted to applied data sciences. The

main methodological thrust is to exploit any prior information, encode it into a penalty, or

log-prior term, and use modern optimization machinery to perform maximum a posteriori

estimation.

Unmixing can be thought of as classification at the sub-pixel level. It is used to decom-

pose the spectral mixture in each pixel into endmembers and their respective proportions,

so-called fractional abundances. Hence, considering the spectrum in each pixel is a mix-

ture, unmixing then consists of two tasks: identifying the endmembers in the image, and

estimating the abundances of endmembers in each pixel. We will concentrate on the abun-

dance estimation problem in hyperspectral imagery. The endmember identification task is

a well-established domain with numerous proposed methods, it is also rather straightfor-

ward due to geometry. The methods either assume that there are some pure pixels in the

image scene, e.g. the N-FINDR [20], pixel purity index [21], independent component anal-

ysis (ICA) [22] and the vertex component analysis (VCA) [23], or they are are minimum

volume based, e.g. minimum volume constrained non-negative matrix factorization [24],

minimum-volume enclosing simplex [25], robust alternating volume maximization [26] and

minimum simplex analysis [27]. Assuming that the observed spectral signatures can be

expressed as a linear combination of pure spectral signatures known in advance, i.e. us-
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ing spectral libraries that contain spectra collected in laboratory settings, unmixing then

consists of finding the best subset of signatures in the spectral library [28]. This is an al-

ternative to using the endmember identification algorithms for extracting the endmember

signatures from the image.

1.1 Classical unmixing methods

The linear mixing model (LMM) is widely used for signal processing and spectral unmixing

tasks. It assumes that the spectrum of each pixel is a linear combination of the endmem-

bers. The task then involves finding the best subset of signatures to describe the spectra.

The LMM has proven to be a good approximation of the physical process generating the

spectra and has produced good results for certain applications. It models the spectral

mixture in the nth pixel in the image yn ∈ RL×1, for n = 1, . . . , P , where P is the number

of pixels, such that

yn = M0xn + en . (1.1)

Here, M0 ∈ RL×N is the spectral library containing the signatures of the N endmem-

bers over the L spectral bands, xn is the N × 1 fractional abundance vector, and en =

[en[1], . . . , en[L]]> is the vector of observational errors over the L spectral bands. The

errors are assumed to follow a Gaussian distribution. As the fractional abundances define

proportions, we then need to enforce some constraints in order to get realistic results. We

want the fractional abundance vector to be restrained by the following abundance non-

negativity (ANC) and abundance sum-to-one (ASC) constraints: xn ≥ 0 ,axn = 1, where

a = [1, . . . , 1] of size N . Early examples of this approach encoded the sum-to-one and/or

non-negativity constraints of the abundances as penalties to form constrained least-squares

solutions [29].

Although most pixels in a hyperspectral image contain a mixture spectrum of different

materials, the number of endmembers in each pixel is generally very low [30]. This has mo-

tivated the use of sparse regression methods like the least absolute shrinkage and selection

operator (LASSO) [31] to enforce sparsity on the fractional abundance vector [28, 32, 33].

For example, Guo et al [32] reported significantly superior results when enforcing sparsity

on the fractional abundance vector. The ridge regression with an `2 norm was quickly

replaced with the `1 norm to enforce sparsity on the fractional abundance vector xn as it

enforces greater sparsity. The LASSO is defined as

arg min
xn

‖yn −M0xn‖22 + λ ‖xn‖1 , (1.2)

where λ ≥ 0 is the regularization parameter. For a greater value for λ, the constraint

‖xn‖1 is given more weight which increases the sparsity of the result. The `1 norm is a
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combinatorial problem with a finite set of possibilities, but determining the best possible

solution can be difficult as it is computer-intensive and time-consuming. The `2 norm

with ‖xn‖22 is frequently used to reduce the size of the set of possible solutions and to

make the computation faster. However, it is not as efficient at enforcing sparsity on

the solution [34, 35]. The sparsity of the unmixing result can be increased further by

imposing the `p norm, with 0 < p < 1, on the fractional abundances instead of the `1

norm used in the Lasso [34]. This would improve the unmixing performance further [35].

The illustration of the different norms can be seen in Fig. 1.1. Shown are the contours

of the three constraint functions. It can be easily seen that if one was to draw an error

function onto the `2 norm plot, it would most likely hit a point in the constraint region

where the value is not equal to zero. In fact, for `2 it is very difficult to get an exact

zero. The probability of getting zeros increases with the `1 norm and even more so with

`p norm for p < 1, as the constraint’s contours are concave. The more zeros in the result,

the sparser the solution.
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Figure 1.1: Illustration of different norms for regularization (a) `2 norm. (b) `1 norm. (c)
`p norm with p = 0.5.

In many unmixing scenarios it is reasonable to assume that a high proportion of neigh-

boring pixels will contain similar fractional abundances. We can expect further improve-

ment in the unmixing results if we incorporate the spatial information available in the

hyperspectral images, although many methods have ignored such information [36]. We

need to add another regularization term to the optimization problem with a constraint

that ensures that the neighboring pixels in the image differ very little. A total variation

regularizer is optimal for this task [37–39]. The optimization problem in Eq. (1.2) can be

extended without difficulty to include a total variation term:

arg min
xn

‖yn −M0xn‖22 + λ ‖xn‖1 + λTV ‖∇xn‖1 , (1.3)

where ∇ is an operator which takes both horizontal and vertical differences between neigh-

boring pixels [40]. This statistical problem is more generally known as the fused lasso [41]

or sparse 2d fused lasso [42], which is a type of sparse, total variation denoising.
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1.2 Related Work

Alternating direction method of multipliers (ADMM) and gradient decent are commonly

used in literature for solving sparse regression optimization problems. They have slow

convergence, but due to the low complexity of each calculation the total computation

time required is fairly low. They perform well when the optimization problem is convex.

However, these algorithms are not guaranteed to converge or they may find a subopti-

mal solution when the optimization problem is non-convex [43, 44]. We are interested

in using the `p norm in the sparse regression problem, which makes the problem non-

convex. Iteratively reweighted least squares (IRLS) is a fast solver, that offers a great

alternative [45]. Instead of directly minimizing the non-convex `p norm that may result

in a local minimum, IRLS solves a sequence of smoothed sub-problems [46]. It has been

successfully used in compressive sensing and signal reconstruction [47], and is also used

for sparse spectral unmixing and other optimization problems [35, 48, 49] in the recent

years [50]. In this thesis, we employ the `p norm in the sparse regression problem, which

makes the problem non-convex. We also use the trust region optimization that is based

on first and second order analytical derivatives. It is generally more stable than its line

search counterparts, particularly for problems that are, for example, non-concave and/or

exhibit regions that are close to flat [51]. This approach has been used in a number of

different applications [52–54], however, to the best of our knowledge, it has not been used

for spectral unmixing so far.

When unmixing is phrased as an optimization problem, a priori knowledge of the abun-

dances’ features such as non-negativity and additivity can be accounted for by constraints

or penalties such as the sum-to-one or abundance non-negativity constraint. Similarly, a

relatively small numbers of endmembers active in each pixel can be found by adopting a

sparsity penalty term. None of these terms, however, reflect the observation that abun-

dance vectors of neighboring pixels are often very similar. Such spatial association in the

abundance vectors is due to the fact that materials in nature such as minerals, grass, trees,

etc, often form in contiguous clumps. Most hyperspectral unmixing algorithms ignore the

spatial-contextual information that is inherent in the hyperspectral data [36]. Taking such

information into account during the unmixing process would benefit the performance of

the algorithms significantly.

In the recent years, more methods have been published that take into account the spa-

tial information within the hyperspectral data in the form of correlations between spatial

and spectral neighbors, which improves the results. These are mostly performing image

classification [55–59]. However, classification ignores the fact that, due to the low reso-

lution of hyperspectral images, several endmembers often jointly occupy a pixel. Spatial

characteristics can be taken into account by using several existing techniques and models

such as Markov random fields [60], loopy belief propagation [57], edge-preserving filter-

ing [56], and morphological profiles [58]. The authors of [61] develop a spatial-spectral pre-
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processing step prior to unmixing. In [62], a Laplacian constraint on the nearest neighbors

of a pixel is used to incorporate contextual information. A weighted quadratic function

on the differences between neighbors and a regularizer that uses the weighted proportion

values of neighboring pixels are integrated into the optimization problem in [63] and [64],

respectively. Similar ways of using spatial information can be found in [65–67].

Spatial features can be captured in a probabilistically well-principled way using the

total variation (TV) regularizer [68]. It can be used to incorporate spatial information

as it accounts well for spatial homogeneity [38, 39]. In [32], TV is used to unmix and

improve the resolution of hyperspectral images. The TV regularizer is incorporated into

the alternating projected sub-gradient descent for hyperspectral unmixing in [69]. The TV

penalty fits rather naturally into a statistical regularization framework used to encourage

sparsity and other constraints on the abundances, and has been recently combined with

sparse hyperspectral unmixing [37,70,71].

Although sparse unmixing has overcome many problems, the high mutual coherence

(often close to one [72]) of the always expanding spectral libraries limits the success of

sparse unmixing methods. The mutual coherence between the columns of the design

matrix and the sparseness of the original signals affect the sparseness of the solutions

for an under-determined system of equations [28, 73]. Sparse unmixing can be thought

of as a multiple measurement vector (MMV) problem. Using a linear mixing model, the

MMV problem can be described as a sparse regression with the objective of estimating

the fractional abundance of vectors with the same sparse support. The best performing

method for MMV problems is the multiple signal classification (MUSIC) algorithm [74,75].

The MUSIC algorithm was recently used in [76] to introduce a library reduction step prior

to spectral unmixing. This method simplifies the computation and attempts to overcome

the high mutual coherence problem. However, it does not take spatial information into

account. This was further developed in [77] and [49] to incorporate the spectral signature

mismatches in the MUSIC formulation to create a robust version of MUSIC. The library

reduction step by MUSIC is useful in situations when the initial library size is large.

The unmixing problem comes with certain physical limitations that we must follow to

obtain realistic estimates. As our goal is to estimate the fractional abundances of materials

in an image scene, we need to impose the abundance sum-to-one (ASC) and abundance

non-negativity (ANC) constraints on each pixel. Both these constraints were enforced

using a traditional least squares spectral mixture analysis (FCLS) in [78]. The same opti-

mization problem is tackled using the alternating direction method of multipliers (ADMM)

with an algorithm called sparse unmixing by variable splitting and augmented Lagrangian

(SUnSAL) [28]. A renormalization heuristic and projection onto the positive orthant was

used to enforce the constraints in [62]. These are examples of constrained optimization.

However, if one wishes to perform unconstrained optimization, then reparametrisation

with respect to the constraints is necessary. Although reparametrization of coefficients is a

prevalent method in statistics, it has not been used in spectral unmixing until recently [79].
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The reparametrisation of [80] is equivalent to the reparametrisation for independent Pois-

son mixture models in [81]. A general form of reparametrization with the logarithmic

function as one option for the function for reparametrization was proposed in [82]. Multi-

variate logistic transformation was used for reparametrization in [83], whereas [84] used a

Dirichlet distribution as a prior to enforce the constraints. In [85] the Dirichlet distribution

was used in combination with reparametrization.

The traditional least squares based LMM is very sensitive to impulsive noise and out-

liers [86], whereas robust methods provide protection from noise [87, 88]. Outliers can

affect data-based methods used to determine the tuning or penalty constants involved

in the smoothing steps [89], hence robust extensions to generalized additive models were

presented in [90, 91], and a robust mixing model was introduced to describe the hyper-

spectral data in [92]. Bilinear methods with mismodeling effects can consider the effect of

outliers and cope with some types of non-linearities [93]. The non-Gaussian heavy-tailed

relaxation motivated in hyperspectral image segmentation [94] and modeling papers [95]

can be accommodated by the recently proposed regularization models and approaches for

unmixing with a few modifications to the objective function and algorithmic framework.

To reduce the effect of outliers, [96] replaced the maximum likelihood based weights in

their iteratively weighted least squares (IRLS) algorithm with others derived from quasi

likelihood equations. More recently robust methods have also been applied to spectral

unmixing [97–99]. We also consider a robust approach to sparse spectral unmixing of

remotely sensed imagery data which reduces the sensitivity of the estimator to outliers.

1.3 Overview

In Chapter 2, we extend the standard linear mixing model with sparsity and spatial total

variation regularization using the `p norm with 0 < p < 1. We use a simple heuristic

method to handle the abundance sum-to-one and non-negativity constraints in an itera-

tive manner. We introduce a library reduction step that allows us to handle situations

when the initial library size is huge and mutual coherence very high. Hence we create a

fast new algorithm based on iteratively reweighted least squares to perform hyperspectral

unmixing. In Chapter 3, we develop and derive an analytical way of taking account of the

ANC and ASC constraints for hyperspectral unmixing using reparametrization of coeffi-

cients. In addition, we introduce an original algorithm based on trust region estimation

that can handle the non-convex optimization problem by solving a sequence of smoothed

sub-problems instead of directly minimizing the non-convex one. Chapter 4 begins with

reasons for the extension of the least-squares model, and highlights the necessity for robust

methods. It then continues to introduce a new algorithm based on a robust loss function

that can adaptively assign reduced or even zero weights to outliers. In Chapter 5, we cre-

ate a novel algorithm using the robust loss function and reparametrization of coefficients.

The performance of the algorithms in Chapters 2-5 is tested on both synthetic and real



1.3. OVERVIEW 23

hyperspectral images and compared with other state-of-the-art hyperspectral unmixing

methods. Chapter 6 summarizes the thesis and offers some concluding remarks.



2

Sparse total variation regularization

This chapter focuses on regularization extensions to the spectral unmixing problem. Two

different regularization terms are proposed: sparsity regularization and spatial regular-

ization. These extra terms are shown to be beneficial in the unmixing process. The

regularization terms are combined into a new unmixing algorithm for hyperspectral im-

agery. The performance of the algorithm is tested on simulated and real hyperspectral

images and compared with other state-of-the-art algorithms.

2.1 Introduction

In this chapter we propose a new constrained sparse unmixing technique with spatial

total variation regularization that induces sparsity in the number of active pure spectral

components via a hyper-Laplacian prior, the `p norm with 0 < p < 1. Here, we use

the non-convex `p norm because it produces sparser results than the `1 norm [34]. As

such, since it can shrink the fractional abundances of inactive endmembers closer to zero,

it offers greater selectivity than the more traditional `1 norm. In turn this enables the

method to be used on large, semi-supervised spectral libraries or in unsupervised scenarios

where the number of pure signatures present in a typical pixel is much smaller than the

number present in the image scene. We propose to estimate the fractional abundances x

as a solution to the non-convex optimization problem

arg min
x

‖y −Mx‖22 + λ ‖x‖pp + λTV ‖∇x‖pp , (2.1)

subject to x ≥ 0,axn = 1, where a = [1, . . . , 1] ∈ RN , and y,x,M with the respective

dimensions LP × 1, NP × 1, LP × NP describe the unmixing problem over all pixels

24
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jointly. They are defined as

y =
[
y>1 ,y

>
2 , . . . ,y

>
P

]>
,

x =
[
x>1 ,x

>
2 , . . . ,x

>
P

]>
,

M = Ip ⊗M0 . (2.2)

Here ⊗ denotes the Kronecker product; yn ∈ RL×1 is the hyperspectral reflectance of the

nth pixel; xn of size N × 1 is the estimated fractional abundance of the N endmembers

at pixel n; and M0 ∈ RL×N is the spectral library that forms a block-diagonal matrix M

with P blocks of M0 on the main diagonal and where the rest of the matrix M consists

of zeros.

We propose a two-step algorithm to solve the minimization problem (2.1). The first

step performs library reduction using hyperspectral subspace identification by minimum

error [100], and a binary test similar to MUSIC to identify the endmembers. In an en-

vironment with no noise the MUSIC step is able to identify the active endmembers cor-

rectly [76]. The second step solves the optimization problem (2.1) via iteratively reweighted

least squares (IRLS). IRLS with `p norm has local super-linear convergence, and although

the problem (2.1) is non-convex, it is not necessarily intractable for IRLS [34]. We call

the algorithm MUSIC-IRLSTV. Additionally, we include another version of the proposed

algorithm that uses robust dictionary reduction. The method is called RMUSIC-IRLSTV

and it accounts for extra noise in the library reduction step.

Table 2.1: Overview of methods

Method
Library
pruning

Sparsity
‖.‖p

Spatial
‖∇.‖p

Sum-to-
one

Non-
negativity

NCLS No No No No Yes
IRLS [35] No Yes No Normalize Yes
SUnSAL [28] No p=1 No No Yes
SUnSAL-TV [37] No p=1 p=1 No Yes
SUnSAL-CSR [101] No p=1 No No Yes
MUSIC-CSR [76] Yes p=1 No No Yes
RMUSIC-DANCER [49] Robust Yes No No Yes
MUSIC-IRLSTV Yes Yes Yes Normalize Yes
MUSIC-IRLSTV2 Yes Yes Yes Lagrangian Yes
RMUSIC-IRLSTV Robust Yes Yes Normalize Yes

Through the |∇x| term, we introduce a total variation regularizer. However, unlike [37]

that uses the ADMM method and the `1 norm, we achieve greater sparsity in both the

estimated abundances and the spatial differences of the abundances by setting up a con-

strained `p − `2 optimization problem and solving it with an IRLS algorithm. The pro-

posed algorithm MUSIC-IRLSTV performs constrained `p − `2 optimization with spatial
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total variation regularization and library reduction. Experiments on both synthetic and

real data show that the proposed method obtains better hyperspectral unmixing perfor-

mance compared to other recent state-of-the-art statistical regularization methods such as:

IRLS [35], SUnSAL [102], SUnSAL-TV [37], MUSIC-CSR [76], RMUSIC-DANCER [49].

A simulation study on the convergence of the MUSIC-IRLSTV algorithm shows that

the algorithm converges in less than 50 iterations with p < 1. Unlike the renormaliza-

tion heuristics used in [35, 78, 103], we derive and incorporate a well-principled analytical

sum-to-one constraint for the optimization problem (2.1), and find that it offers further

performance enhancement in our experiments. The difference between other methods and

our approach is summarised in Table 2.1.

2.2 Iteratively Reweighted Least Squares with `p Norm

The constrained, sparse lp − l2 hyperspectral unmixing task, with 0 < p < 1, is defined as

the optimization problem

min
x
‖y −Mx‖22 + λ ‖x‖pp , s.t. x ≥ 0, axn = 1 , (2.3)

where y,x,M are defined as in (2.2), λ is the Lagrange multiplier that regulates the

sparsity of the solution. It is possible to use the IRLS method to rewrite the Lasso

objective as a weighted ridge regression one (e.g. [104]). Then (2.3) becomes

min
x
‖y −Mx‖22 + λ ‖Dx‖22 , (2.4)

where D = diag
(
d

1
2

)
, d =

((
x(α−1)

)2
+ ε2

) p
2
−1

.

where the weights d are calculated using the x(α−1) results from the previous iteration

α− 1. Hence the weighted `2 norm in (2.4) is a first-order approximation to the `p norm

in (2.3). Here, D is a positive diagonal matrix; ε measures the error in the solution for

the pixels in the whole image, and goes to zero as the IRLS algorithm converges. εn for

the nth pixel is a vector of size N × 1, ε covers the whole image s.t.
[
ε>1 , ε

>
2 , . . . , ε

>
P

]>
,

size NP × 1. When the algorithm converges then ε → 0 and x(α−1) ∼= x(α). It follows

that ‖Dx‖22 =
∑
n

((
x2n
) p−2

2

) 1
2
·2
· x2n =

∑
n
xpn = ‖x‖pp if the two conditions hold.

The IRLS algorithm proceeds by initializing the weights with ones and then iterating

between: (i) solving the quadratic problem in (2.4) and (ii) updating the weight matrix

D. This is a fixed-point iteration for solving the optimization problem (2.3). The iterative

update leads to an IRLS algorithm that guarantees convergence [45]. The IRLS enjoys

two very attractive properties. It is simple but it is also very flexible [105]. As will be

seen in the next section, it can very easily accommodate additional p-norm penalty terms,

such as a total-variation regularizer, in the objective function.
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Although the `p minimization problem is non-convex, the minimization can still be car-

ried out by an IRLS algorithm. Daubechies showed that IRLS can solve such a non-convex

problem and successfully recover sparse solutions [34]. In addition, she also showed that

the local convergence of the algorithm is super-linear when certain null space properties

on the matrix M hold. Indeed, the convergence is very fast compared to other algorithms

like ADMM and gradient decent. The traditional IRLS algorithms contain a large scale in-

version operation at every iteration, which makes the method computationally expensive.

The complexity of the least squares problem at each iteration is O(LN2) [106]. However,

due to the extremely fast convergence of the algorithm, IRLS needs to do only a small

number of iterations, and hence often requires less computational time than alternative

methods.

2.3 Total Variation for Sparse Unmixing

The least squares objective function implies that the dependencies between pixels and

between spectral bands were ignored. Therefore, adding total variation regularization to

the objective function can explain these spatial dependencies and improve the performance

of unmixing. However, the assumption of homogenous background noise levels remains.

We propose the constrained, sparse, total variation regularization problem

arg min
x

‖y −Mx‖22 + λ ‖x‖pp + λTV ‖∇x‖pp , (2.5)

with the constraints x ≥ 0 and axn = 1 for n = 1, . . . , P , where a = [1, . . . , 1] ∈ RN is a

vector of N ones , and where y,x,M are defined as in (2.2).

The TV term is equivalent to placing a hyper-Laplacian prior on the horizontal and

vertical increments of the abundances. The parameter λTV balances the influence of

this prior against the sparsity and likelihood terms; larger values will result in smoother

solutions. The differencing operator ∇ computes the spatial increments of the fractional

abundances, i.e. differences of abundances over neighboring pixels. It can be decomposed

into horizontal ∇h and vertical ∇v differences so that ∇ = [∇>h ,∇>v ]>. The differences

between horizontal neighbors are ∇hx = [a1,a2, ...,aTh
]>, where an = xn − xnh

, with n

and nh indicating a pixel and its horizontal neighbor, and Th is the number of horizontal

differences taken for the image. ∇v performs similarly for vertical neighbors taking Tv

differences. The difference operator ∇ is mostly composed of zeros, with only one 1 and

−1 in each row for the respective vertical or horizontal endmembers the differences are

taken in between. The distance between the 1 and −1 in the rows of ∇h is N , hence the

difference is taken in between xn[i] and xn+1[i] for endmember i and pixels n and n + 1.

For ∇v the distance is cN , where c indicates the number of pixels in each row of the image.

In order to solve the optimization problem in (2.5) with the IRLS algorithm, the p-norm
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is rewritten in terms of a weighted 2-norm, to get:

arg min
x

‖y −Mx‖22 + λ ‖Dx‖22 + λTV
∥∥Φ∇x∥∥2

2
, (2.6)

with D = diag(d
1
2 ), d =

((
x(α−1)

)2
+ ε2

) p
2
−1

,

Φ = diag(φ
1
2 ), φ =

((
∇x(α−1)

)2
+ η2

) p
2
−1

,

where the weights d and φ are calculated using the x(α−1) results from the previous

iteration α − 1. Here, Φ is a positive diagonal matrix containing the weights, the vector

η is a column vector of size NP × 1 filled with the constant η = 10−6. It is included in

order to avoid division by zeros. When the algorithm converges, then ε → 0, η → 0 and

x(α−1) ≈ x(α), consequently we have that the weighted `2 norm is equivalent to `p norm:∥∥Φ∇x∥∥2
2

= ‖∇x‖pp.

2.4 IRLSTV unmixing algorithm

2.4.1 Numerical algorithm

The spatial regularization extension is incorporated into the IRLS algorithm via a total

variation regularizer. The resulting IRLSTV pseudocode is presented in Algorithm 1. The

IRLSTV uses a weighted `2 norm to estimate the `p norm with 0 < p < 1. The weights

are defined as positive diagonal matrices with the values
((
x(α−1))2 + ε2

)(p/2−1)/2
and((

∇x(α−1))2 + η2
)(p/2−1)/2

respectively on the diagonal. This is fixed-point iteration

using the iterate x(α−1) to update the weights for iteration α. When ε = η = 0 and

x(α−1) = x(α)then we have that ‖x‖pp + ‖∇x‖pp = ‖Dx‖22 +
∥∥Φ∇x∥∥2

2
.

The function sort(xn)q+1 in step 11 of the algorithm rearranges the absolute values of

each pixel xn into a decreasing sequence of numbers and selects the q+ 1th value for some

fixed integer q. Hence sort(xi)q+1 outputs the q + 1th largest value in xi, i = 1, . . . , P .

By definition, a vector x is q-sparse if and only if r(x)q = 0 [34]. Thus the function

sort(xi)q+1 conveys information about how sparse each estimated solution vector xn is

into the value of εn and to the updated weights dn at each iteration.

The vector of residuals ε, together with the estimated solution, are used to update the

weights for the sparsity inducing term ‖Dx‖22. In addition, the estimated solution is used

to calculate the differences between the fractional abundances of neighboring pixels and

give weights to the spatial regularization term in steps 8 and 9. Both of these new weights

are used in the following iteration for the estimation of the solution (step 10). This process

is repeated until all εn for n = 1, . . . , P become smaller than the set threshold εthr. In

that case, the algorithm has found an optimal solution of the optimization problem (2.5).
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Algorithm 1 Pseudocode of the IRLS `p − `2 optimization algorithm with spatial total
variation regularization (IRLSTV).

Task: Solve ‖y −Mx‖22 + λ ‖x‖pp + λTV ‖∇x‖pp, s.t. x ≥ 0,axn = 1. Find x.
Parameters: εthr : convergence threshold, jmax : maximum number of iterations.
Input: M0 : L×N spectral library, Y : L× P hyperspectral data, λ : sparsity regular-
ization parameter, λTV : spatial regularization parameter, p : quasi-norm.
Output: X : N × P fractional abundance matrix w.r.t. M0.

Initialization:
1: ε← [1, ..., 1], εthr ← [εthr, ..., εthr].

2: d← [1, ..., 1], D = diag(d
1
2 ).

3: x← arg min
x

‖y −Mx‖22 + λ ‖Dx‖22
s.t. x ≥ 0, axn = 1 for n = 1, ..., P .

4: j = 1.
Main iteration for iteration α:

5: while sum(ε >εthr) > 0 do

6: d =
((
x(α−1))2 + ε2

) p
2
−1
.

7: D = diag(d
1
2 ).

8: φ =
((
∇x(α−1))2 + η2

) p
2
−1

.

9: Φ = diag(φ
1
2 ) .

10: x(α)←arg min
x
‖y −Mx‖22 + λ ‖Dx‖22 + λTV

∥∥Φ∇x∥∥2
2

s.t. x ≥ 0, axn = 1 for n = 1, ..., P .

11: εn = min
(
εn,

sort(xn)q+1

N

)
.

12: if j > jmax then
13: break;
14: end if
15: j = j + 1.
16: end while

Please note that in the first iteration of the IRLSTV algorithm, the solution is estimated

without the spatial information (step 3) as we cannot calculate the differences between

neighboring pixels without an initial estimate of the abundances.

Step 10 in Algorithm 1 is an optimization problem with a quadratic objective and

linear constraints. We can adapt standard quadratic programming techniques, such as

those described in [51], to solve it. We rewrite ‖y −Mx‖22 + λ ‖Dx‖22 + λTV
∥∥Φ∇x∥∥2

2
as

f(x) = (y −Mx)> (y −Mx) + λ (Dx)> (Dx) + λTV (Φ∇x)> (Φ∇x)

= y>y + x>
(
M>M

)
x− 2y>Mx+ λx>D>Dx

+λTV x
>∇>Φ>Φ∇x , (2.7)

where Φ is a diagonal matrix containing the weights of the TV term. Here the weight

matrices D and Φ are kept fixed since they are computed using the previous iteration
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value x(α−1). Thus the partial derivatives of f(x) with respect to x are

∂f(x)

∂x
=

(
M>M +

(
M>M

)>)
x− 2

(
y>M

)>
+ λ

(
D>D +

(
D>D

)>)
x

+λTV

(
∇>Φ>Φ∇+

(
∇>Φ>Φ∇

)>)
x

= 2M>Mx− 2M>y + 2λD>Dx+ 2λTV∇>Φ>Φ∇x . (2.8)

After equating (2.8) to zero and expressing x we get that:

x̂ =
(
M>M + λD>D + λTV∇>Φ>Φ∇

)+
M>y, (2.9)

where A+ denotes a pseudo-inverse of matrix A and x̂ is the estimated solution to step

10 in the IRLSTV algorithm. The non-negativity constraint is enforced on the solution

by a projection onto the non-negative orthant by keeping only the positive values, and

the sum-to-one constraint is enforced by renormalization of the estimated solution for all

pixels at each iteration. Although the constraints are applied in a heuristic manner, they

integrate well into our iterative framework and give the correct feedback to the algorithm

producing great results. Following the derivation to reach Eq. (2.9) for the full model, we

can express x with only the sparsity regularization in order to do the initialization in step

3. We get that

x̂ =
(
M>M + λD>D

)+
M>y. (2.10)

Here, the constraints are enforced in the same manner as for the full model.

The parameters p, λ and λTV are chosen using five-fold cross-validation over a range

of possible parameter values. Note that the solutions for M>M and M>y do not change

within the algorithm, hence these calculations are precomputed at the start of the algo-

rithm, outside the while loop. There is an analytical way of including the sum-to-one

constraint in the optimization (see Section 2.5); however, it makes the optimization prob-

lem more complex.

2.4.2 MUSIC library reduction

Sparse unmixing has become very popular recently as it overcomes the problem of needing

pure spectral pixels in a given scene [28,36]. Nevertheless, the high mutual coherence (often

close to one [72]) of the always expanding spectral libraries limits the success of the sparse

unmixing methods considerably [76]. In general, the higher the mutual coherence is, the

lower the level of sparseness, which affects the performance of unmixing. This method will

attempt to overcome the high mutual coherence problem and complexity of computation

by introducing a library reduction step before performing sparse unmixing via IRLS with

TV regularization. We will use the characteristic quality of hyperspectral data that the
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amount of endmembers in a scene is much smaller than the number of signatures in a

spectral library. This allows us to reduce the spectral library size, decrease the size of

the estimated fractional abundances vector x, lessen the mutual coherence of the spectral

library, lower the computational complexity and shorten the computational time at the

same time.

We propose a sparse hyperspectral unmixing method using library pruning via MUSIC-

Hysime, where the HySime algorithm estimates the number of endmembers in the image

and MUSIC determines the endmembers from a spectral library, and unmixing via IRL-

STV, see Alg. 2.

Algorithm 2 Pseudocode of the MUSIC-HySime library reduction algorithm.

Parameters: εthr : convergence threshold, jmax : maximum number of iterations.
Input: Y : L× P hyperspectral data,M0 : L×N spectral library, λ : sparsity regular-
ization parameter, λTV : spatial regularization parameter, p : quasi-norm.
Output: X : N × P fractional abundance with respect to M0.

1: ξ̂ = Noise estimation(Y )
2: Û = HySime(Y , ξ̂)

Main iteration:
3: P⊥MS

= I − ÛÛ>

4: for j = 1 to N do

5: εj =

∥∥∥P⊥MS
mj

∥∥∥
2

‖mj‖2
6: end for
7: π = permutation

{
1, ..., n : επ(i) ≤ επ(j), i ≤ j

}
8: R = {π(i), i = 1, ..., r} .
9: Solve ‖y −MRxR‖22 + λ ‖xR‖pp + λTV ‖∇xR‖pp,

subject to xR ≥ 0, axn = 1 for n = 1, ..., P
using the IRLSTV algorithm in Alg. 1.

Steps 1-8 of Alg. 2 are the pruning part of MUSIC-CSR [76]. Step 1 and 2 estimate

an orthonormal basis for range(MS) using HySime algorithm [100]. Step 3 computes the

projection matrix on range(MS). Step 5 calculates the distance from each member of the

library to the estimated subspace using the normalized Euclidean distance. Steps 7 and

8 sort the normalized projection errors in an increasing order and retain the indexes of

the first r in the set R. The reduced library size r is chosen manually using experience

in unmixing hyperspectral images. It should be as small as possible while making sure

that all endmembers in the image are retained. Step 9 performs the sparse unmixing

process via IRLS with spatial total variation regularization introduced in Section 2.3. The

sum-to-one constraint is enforced by renormalization and the non-negativity constraint by

hard-thresholding. The IRLSTV algorithm takes the reduced spectral library MR ∈ RL×r

as input instead of the full spectral library M0 of size L×N .
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2.5 Full additivity

There is an alternative way of enforcing the sum-to-one constraint on the regression prob-

lem with the spatial TV regularization displayed in (2.5). Similarly to the way it is done

for only the likelihood function [78,107–109], we can use standard Lagrangian analysis to

minimize (2.5) with the generalized linear constraint g(x) = 0, where g(x) = Ax − b,
s.t. b ∈ RP×1 consists of ones. For the purpose of calculating the sum-to-one constraint

in a vectorized form, we need to define A as a block-diagonal matrix of ones, where

A ∈ RP×NP has P blocks of the vector a = [1, 1, ...1] ∈ RN on the diagonal. The sum-to-

one constraint will be enforced on each pixel xn with n = 1, ..., P . We define the function

F (x, δ) = f(x) + δg(x), where δ is the Lagrange multiplier. We get the equations:

f(x) = (y −Mx)> (y −Mx) + λ (Dx)> (Dx) + λTV (Φ∇x)> (Φ∇x) ,

g(x) = Ax− b = 0 ,

F (x, δ) = y>y + x>M>Mx− 2y>Mx+ λx>D>Dx

+λTV x
>∇>Φ>Φ∇x+ δAx− δb . (2.11)

First, we find the partial derivatives with respect to x using ∂f(x)
∂x from (2.8),

∂F (x, δ)

∂x
= 2M>Mx− 2M>y + 2λD>Dx+ 2λTV∇>Φ>Φ∇x+A>δ . (2.12)

Then we equate the result seen in (2.12) to zero in order to locate the stationary points

of F(x). The equation 2M>Mx+ 2λD>Dx+ 2λTV∇>Φ>Φ∇x = 2M>y −A>δ gives:

x =
(
M>M + λD>D + λTV∇>Φ>Φ∇

)+
M>y

−
(
M>M + λD>D + λTV∇>Φ>Φ∇

)+
A>

δ

2

= ZM>y −ZA> δ
2
. (2.13)

where Z =
(
M>M + λD>D + λTV∇>Φ>Φ∇

)+
and B+ indicates a pseudo-inverse of

the matrix B. We do the same for δ, and substitute (2.13) into the equation for x:

∂F (x, δ)

∂δ
= −g(x) = −Ax+ b = 0 ,

δ

2
=

[
AZA>

]+ (
AZM>y − b

)
. (2.14)

We can find the sum-to-one constrained estimate for x by substituting (2.14) into (2.13):
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x̂ = ZM>y −ZA>
[
AZA>

]+ (
AZM>y − b

)
, (2.15)

where Z =
(
M>M + λD>D + λTV∇>Φ>Φ∇

)+
.

This result adds sparsity and spatial total variation extension to the solutions of sum-

to-one constrained least squares seen in [78, 107–109]. We propose an algorithm with the

above analytic sum-to-one constraint. We call it MUSIC-IRLSTV2 and use Alg. 2 to

calculate it. The difference is that in Step 10 of Alg. 1 we use (2.15) to estimate x̂ instead

of (2.9). The non-negativity constraint will be enforced on x̂ by projecting the result onto

the non-negative orthant.

The proposed algorithms MUSIC-IRLSTV and MUSIC-IRLSTV2 differ from other

sparse unmixing algorithms used in the literature. The comparison of the use of sparsity

and spatial regularizer, library pruning and constraints can be seen in Table 2.1.

2.6 Experiments

In this section, we use the method of sparse unmixing via IRLS with library pruning and

total variation spatial regularization on both simulated and real world data to evaluate the

performance of the approach. The simulated data enables us to measure the performance

quantitatively, and the real world data shows qualitative performance results.

2.6.1 Performance Discriminators

The classical performance discriminator often used in the literature is the root mean square

error (RMSE) [110]. The RMSE is defined as RMSE=

√
1
NP

P∑
n=1
‖xn − x̂n‖2, where x

denotes the true endmember fractional abundance values and x̂ the estimated endmember

fractional abundance values. Here, a lower value indicates a better reconstruction of the

image. A better way to assess the quality of reconstruction in the image is to use the signal

to reconstruction error (SRE). SRE is measured in decibels: SRE(dB) ≡ 10 log10(SRE),

where SRE is defined as SRE = E
[
‖x‖22

]
/E
[
‖x− x̂‖22

]
. Higher values of the SRE(dB)

indicate a superior unmixing performance. Note that in the rest of this paper we will

use the term SRE for SRE(dB). We report both SRE and RMSE for comparison here.

However, Iordache showed that the SRE error measure gives more information regarding

the power of the error in relation with the power of the signal [28].



34 CHAPTER 2. SPARSE TOTAL VARIATION REGULARIZATION

2.6.2 Experimental results

Simulated data

To test how well the proposed algorithm works for material identification in hyperspectral

images, we used the USGS digital spectral library released in September 2007. It can

be retrieved from the Spectroscopy Lab web page under the name splib06.1 It consists

of the spectral reflectance of hundreds of materials measured in the lab. These spectral

reflectance values have 224 bands that lie uniformly in the interval 0.4-2.5 µm. Many spec-

tral signatures in the library represent the same material with minor differences between

them. We therefore followed the common preprocessing steps of e.g. [28] and pruned the

library such that the minimum angle between any two signatures would not be smaller

than 4.44◦. The pruned library M ∈ R224×240 includes 240 different signatures.
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Figure 2.1: Five spectral endmember signatures chosen for the simulated hyperspectral
image.

As in [28, 37] we created a 75×75 simulated image with 224 spectral bands for each

pixel with five randomly selected spectral signatures from the library M , Fig. 2.1. The

data was generated using a linear mixing model, and the abundance to sum constraint

was enforced on each pixel. The true abundances of the five endmembers in the simulated

image can be seen in Fig. 2.2. The image has distinct square areas where there is only

one endmember present (pure pixels) and areas that contain mixtures of two (fractional

abundance of 1/2 each), three (1/3 each), four, and five endmembers. The background

pixels surrounding the distinct square areas have abundance values of 0.1149, 0.0741,

0.2003, 0.2055 and 0.4051 respectively for the five endmembers. The simulated data were

contaminated with white noise as well as spectrally correlated noise. The signal-to-noise

ratio (SNR) was set to 40 dB [28](SNR ≡ E ‖M0x‖2 /E ‖n‖22) . To ensure that ‖Dx‖22 is

a good approximation of ‖x‖pp we want ε to approach zero. Therefore, our stopping rule

εthr should be very small. We set the convergence threshold to εthr = 10−8, the maximum

number of iterations to jmax = 50, and the number of endmembers after library pruning

1Available online at: http://speclab.cr.usgs.gov/spectral.lib06/.
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to be 20 for these experiments.
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Figure 2.2: True fractional abundances of the five endmembers in the simulated image.

Parameter Study

The performance of the unmixing algorithm is affected by the choice of the parameter

values. We have several adjustable regularization parameters in our model: λ, λTV and

p. Parameters λ and p control the sparsity of the solution whereas λTV regulates the

dependence of the abundance values in neighboring pixels. We have used the simulated

data to assess the performance of the proposed unmixing algorithm MUSIC-IRLSTV for

different parameter settings.

Fig. 2.3 shows the performance curve for a variety of λ values. Only a subset of

p values are shown in the image for clearer understanding of the results. The MUSIC-

IRLSTV algorithm did not produce good results for large λ (log10(λ) = −1,−2), when

sparsity is strongly enforced. The sub-figures in Fig. 2.3 for λ smaller or equal to 10−3

show that there is a clear peak for λTV around 10−3 (for all p values), hence this may

be the optimal λTV setting. Performance worsened for very large or small λTV values.

Another valuable observation from Fig. 2.3 is that the proposed method acquired better

performance and higher SRE values for p less than one. Hence using the `p norm instead

of the traditional `1 norm is beneficial.

The Fig. 2.4a and 2.4b show the mean sparsity and SRE results calculated for log10(λ)

and log10(λTV ) from −2 to −7 with an interval of −1. The mean SRE and mean sparsity

are calculated over all pixels and over all different λ and λTV values jointly. Average

sparsity in the results decreased as the p value got smaller and the highest SRE values

were achieved with p close to 0.5. This extends similar convergence behavior and sparsity
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Figure 2.3: Performance of the MUSIC-IRLSTV algorithm with various λ and λTV values.

results of [35] to the spatially regularized case .

Convergence Analysis

The convergence of the proposed algorithm is of great interest to us. However the mathe-

matical convergence of the algorithm is not straightforward. Hence we created a simulation

to show empirical convergence of the algorithm. We performed the unmixing on the sim-

ulated image using the proposed algorithm for p values ranging from 0.1 to 1 with an

interval of 0.1. We observed that the algorithm often converges before it reaches the max-

imum number of iterations jmax = 50. The average number of iterations it takes for the

algorithm to converge is shown in Fig. 2.5b. The smaller the p value is the fewer iter-

ations the algorithm takes on average to converge. The algorithm converged the slowest

for p = 1. Fig. 2.5a depicts a convergence curve for the proposed unmixing method, i.e.

the change of log10(ε) from one iteration to the next, where ε is defined as in step 11 of

Alg. 1. Epsilon conveys information about the sparsity of the result. We can see that the

value of log10(ε) decreased faster for smaller p.
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Figure 2.4: Average results of the performance of MUSIC-IRLSTV algorithm on the
simulated image for a subset of λ & λTV values, 10−2 to 10−7. (a) Mean sparsity. (b)
Mean SRE.
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Figure 2.5: Convergence behavior of MUSIC-IRLSTV algorithm. (a) Convergence curve
over the number of iterations. (b) Average number of iterations for 0 < p ≤ 1.

Comparison with other algorithms

IRLS algorithm with constrained `p − `2 optimization has been shown to perform better

than the Sparse Unmixing via variable Splitting and Augmented Lagrangian (SUnSAL)

algorithm [35]. They both significantly outperform the traditional unmixing algorithms

like fully constrained least squares [78], because they are based on sparse regression. The

SUnSAL algorithm was later improved by adding a TV regularizer to the algorithm [37].

The performance of SUnSAL-TV was shown to perform better than SUnSAL and non-

negatively constrained least squares (NCLS) algorithm with TV [37].

The simulated hyperspectral image in Fig. 2.2 was used to assess the performance

of different sparse unmixing algorithms. Fig. 2.6 shows the abundance maps calculated

using the optimal parameter values for λ, λTV and p by IRLS, SUnSAL-TV, MUSIC-

CSR, RMUSIC-DANCER,MUSIC-IRLSTV, and RMUSIC-IRLSTV algorithms. We used

five-fold cross-validation to find the optimal parameter values for all algorithms that are

compared. Parameter values from -10 to 1 (with an interval of 1) were used for log10(λ)

and log10(λTV ). Values from 0.1 to 1 (with an interval of 0.1) were used for p. The optimal

parameter values can be seen in Table 2.3. Note that the names of the algorithms are

shortened due to space constraints.

From Fig. 2.6 it can be seen that the use of TV norm improves the results. SUnSAL-

TV, MUSIC-IRLSTV and RMUSIC-IRLSTV were visibly more accurate in finding the

correct fractional abundances of the endmembers. The areas with high fractional abun-

dance values were found more easily by the unmixing algorithms, whereas the regions with

lower and very similar abundance fractions were more difficult to determine correctly. For

endmember four, the difference of the true concentration of the background and the square

boxes on the fifth line is only 0.0055. MUSIC-IRLSTV and RMUSIC-IRLSTV managed

to find the correct fractional abundances in that region better than other methods.

The difference in the performance of algorithms with the increase in noise can be

seen in Fig. 2.7 and Fig. 2.8. The signal to noise ratio (SNR) was lowered to 30dB
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Table 2.2: Comparison of unmixing performance of MUSIC-IRLSTV at different noise
levels

Method
SNR=40 SNR=30 SNR=20

SRE RMSE SRE RMSE SRE RMSE

NCLS 5.50 16.79 0.91 24.74 -6.61 73.39
IRLS 8.59 11.48 5.60 15.68 1.53 24.60
SUnSAL 11.05 10.17 6.03 18.07 2.19 23.86
SUnSAL-TV 19.02 3.92 12.35 8.97 4.19 20.56
SUnSAL-CSR 12.85 8.57 6.45 16.96 2.68 23.32
MUSIC-CSR 22.11 2.48 12.35 7.27 4.74 16.85
RMUSIC-CSR 21.97 2.56 12.39 8.06 4.70 16.92
RMUSIC-DANSER 21.99 2.56 11.23 8.06 5.09 20.16
MUSIC-IRLSTV 40.48 0.34 28.93 1.25 19.25 3.20
MUSIC-IRLSTV2 40.08 0.34 25.80 1.87 18.33 4.92
RMUSIC-IRLSTV 39.22 0.38 27.66 1.54 19.76 3.07

Table 2.3: Parameter values

Method
SNR=40 SNR=30 SNR=20

λ λTV p λ λTV p λ λTV p

M-IRLSTV 10−4 10−3 0.6 10−3 10−2 0.8 10−5 10−2 0.5
M-IRLSTV2 10−7 10−3 0.6 10−6 10−3 0.6 10−6 10−2 0.5
RM-IRLSTV 10−3 10−3 0.6 10−3 10−2 0.7 10−6 10−2 0.5

and 20dB in these images respectively. As the noise increases the performance of all

algorithms worsened as expected. However, the largest change was in IRLS and SUnSAL-

TV. The result of MUSIC-CSR and RMUSIC-DANCER became very noisy. Whereas

MUSIC-IRLSTV and RMUSIC-IRLSTV still performed the best. This can also be seen

in quantitative measures of SRE and RMSE in Table 2.2.

Note that the signal-to-reconstruction error (SRE) that was calculated for each method

of unmixing is truly an average. We used a 75×75 image for testing, which means that

we estimated fractional abundance of the endmembers for 5625 pixels. In general, we

calculated the SRE for the whole image, which is an average SRE of the 5625 pixels.

However, to see the variance of the performance from pixel to pixel we calculated the SRE

for individual pixels and hence acquired the sample standard deviation for each method.

These can be seen in Fig. 2.9 together with the best SRE results for each method.

The traditional non-negatively constrained least squares (NCLS) method offered a poor

solution compared to other algorithms. The results for the NCLS method were calculated

using the SUnSAL algorithm with λ = 0. SUnSAL, SUnSAL-CSR and IRLS performed

similarly, with IRLS giving a slightly higher mean SRE score but having a wider spread.

SUnSAL-TV, MUSIC-CSR, RMUSIC-CSR, and RMUSIC-DANCER outperformed them.

The proposed MUSIC-IRLSTV algorithm increased the mean individual SRE by another

35 and the MUSIC-IRLSTV2 by 40 points compared to SUnSAL-TV. RMUSIC-IRLSTV
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Figure 2.6: Fractional abundance maps obtained by IRLS, SUnSAL-TV, MUSIC-CSR,
RMUSIC-DANCER, MUSIC-IRLSTV, MUSIC-IRLSTV2, and RMUSIC-IRLSTV for
endmember (EM) 1 in (a), EM 2 in (b), EM 3 in (c), and EM 4 in (d). SNR=40dB.
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Figure 2.7: Fractional abundance maps obtained by IRLS, SUnSAL-TV, MUSIC-CSR,
RMUSIC-DANCER, MUSIC-IRLSTV, MUSIC-IRLSTV2, and RMUSIC-IRLSTV for
endmember (EM) 1 in (a), EM 2 in (b), EM 3 in (c), and EM 4 in (d). SNR=30dB.
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Figure 2.8: Fractional abundance maps obtained by IRLS, SUnSAL-TV, MUSIC-CSR,
RMUSIC-DANCER, MUSIC-IRLSTV, MUSIC-IRLSTV2,and RMUSIC-IRLSTV for end-
member (EM) 1 in (a), EM 2 in (b), EM 3 in (c), and EM 4 in (d). SNR=20dB.
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showed slightly worse results than MUSIC-IRLSTV in this case, but it was not far behind.

Although the IRLS based methods had larger variance of SRE values over the image than

the SUnSAL based methods (Fig. 2.9), the MUSIC-IRLSTV algorithm still provided a

better performance in sparse spectral unmixing. The difference in the performance of

MUSIC-IRLSTV and MUSIC-IRLSTV2 algorithm was not significant. MUSIC-IRLSTV

had a higher mean SRE, but larger variance in the unmixing results from pixel to pixel.
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Figure 2.9: Individual SRE boxplots for (a) NCLS, (b) SUnSAL, (c) SUnSAL-TV, (d)
SUnSAL-CSR, (e) MUSIC-CSR, (f) RMUSIC-CSR, (g) RMUSIC-DANCER, (h) IRLS,
(i) MUSIC-IRLSTV, (j) MUSIC-IRLSTV2, (k) RMUSIC-IRLSTV.

Monte Carlo simulation

Since the signal to noise ratio (SNR) in the images generally affects the unmixing results,

we performed the experiments using four different noise levels SNR ∈ {10, 20, 30, 40}. The

number of endmembers present in the spectrum of a pixel can also influence the outcome.

Hence, we considered three different levels of endmember quantities mixed in the pixel

such that N ∈ {3, 6, 9}. We ran 10 Monte Carlo simulations for all these experiments to

account for the randomness in the noise.

For the simulated data experiments, we used the endmember signatures from the USGS

digital spectral library. It consists of the spectral reflectance of hundreds of materials

measured in the lab. These spectral reflectance values have 224 bands that lie uniformly

in the interval 0.4 − 2.5µm. The chosen signatures can be seen in Fig. 2.10. We created

a 50 × 50 image using the LMM in Eq.(1.1). Then we added Gaussian noise such that

the noise level varied across the spectral bands because this kind of noise pattern is the

most prevalent in real hyperspectral images [111]. The Dirichlet distribution was used

for the uniform generation of the fractional abundance vectors x as in [97, 98]. For this

experiment we did not use the MUSIC library reduction step for the IRSLTV algorithm

as the number of endmembers was already low. Hence we will call the algorithm IRLSTV

from now on.

The unmixing results for various SNR levels and different numbers of endmembers

can be found in Tables 2.4−2.6. Both the SRE and RMSE values are reported together

with their respective standard deviations for the simulation. The displayed performance
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Figure 2.10: The USGS endmember signatures used in simulated data experiments.

measures are averages over 10 Monte-Carlo realizations for the simulated image. We can

observe from the results that as the number of endmembers in a pixel went up and the

amount of noise in the image increased, the performance of all algorithms deteriorated.

SUnSAL and SUnSAL-TV gave consistently good unmixing results for different noise

levels and endmember numbers. The performance of the IRLS and RMUSIC-DANSER

algorithms was in general the lowest. However, RMUSIC-DANSER produced good results

for high SNR and high number of endmembers. The proposed IRLSTV algorithm gener-

ated mostly the best reconstruction of the simulated hyperspectral image as measured by

SRE and RMSE. The performance was very good in all noise environments and material

densities. The average running times over 10 Monte-Carlo realizations of the simulated

image can be seen in Table 2.7. It can be seen that the speed of IRLSTV is comparable

to SUnSAL-TV, another method with spatial regularization.

German Alpine foothills image

A sub-image of the EnMAP data of German Alpine foothills image scene (Fig. 2.11) was

used to test the performance of the proposed algorithm in a semi-supervised setting.2 The

image has 244 spectral bands and it covers the 420nm-2460nm spectral range [112]. We

used the N-FINDR algorithm [20] to identify the spectral signatures of the endmembers

in the image. It assumes the endmembers to be present in the image in the form of un-

mixed pixels [20]. The spectral channels of this image did not match with the available

spectral libraries, hence we used an endmember extraction algorithm to identify mate-

rial signatures from the data. The HySime algorithm (part of MUSIC library reduction

algorithm) estimated the signal subspace in the sub-image to be 3. Therefore, we used

the N-FINDR algorithm to find the 3 endmember signatures from the Alpine scene. The

estimated fractional abundance maps of the Alpine scene can be seen in Fig. 2.12. The

optimal parameter values were calculated using five-fold cross-validation, thus we have for

2Available online at: http://www.enmap.org/?q=node/21.
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Table 2.4: Comparison of unmixing performance of IRLSTV with various SNR, N=3

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

NCLS 32.62 0.28 0.52 0.02 25.97 0.65 1.29 0.13
IRLS 14.74 0.12 6.32 0.08 13.68 0.18 7.15 0.15
SUnSAL 36.09 0.34 0.48 0.02 28.85 0.78 1.17 0.12
SUnSAL-TV 35.65 0.33 0.50 0.02 28.80 0.75 1.17 0.11
MUSIC-CSR 28.21 0.12 1.25 0.02 26.29 0.33 1.54 0.06
RM-DANSER 13.74 0.07 5.87 0.12 13.71 0.08 5.90 0.12
IRLSTV 37.85 0.47 0.42 0.02 29.47 0.72 1.13 0.10
IRLSTV2 29.54 0.16 1.15 0.02 26.85 0.39 1.46 0.07

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

NCLS 17.56 0.46 3.92 0.24 9.84 0.52 10.36 0.78
IRLS 9.34 0.36 11.90 0.53 8.95 0.45 11.98 0.71
SUnSAL 20.14 0.69 3.23 0.27 10.77 0.76 9.45 0.89
SUnSAL-TV 20.16 0.69 3.23 0.27 10.75 0.77 9.46 0.91
MUSIC-CSR 20.17 0.85 3.25 0.37 11.16 0.72 9.31 0.84
RM-DANSER 11.85 2.57 8.46 3.69 4.54 1.40 20.53 3.15
IRLSTV 20.35 0.81 3.23 0.30 10.86 0.68 9.41 0.76
IRLSTV2 20.11 0.37 3.30 0.15 10.37 0.96 10.29 1.14

Table 2.5: Comparison with various SNR, N=6

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

NCLS 24.64 0.45 0.98 0.07 16.52 0.66 2.79 0.26
IRLS 7.93 0.11 7.39 0.16 6.04 0.30 9.77 0.39
SUnSAL 27.21 0.48 0.89 0.06 18.35 0.73 2.51 0.24
SUnSAL-TV 25.90 0.34 1.11 0.04 18.43 0.71 2.48 0.23
MUSIC-CSR 19.26 0.07 2.60 0.01 17.29 0.37 3.06 0.14
RM-DANSER 3.64 0.09 15.82 0.19 4.19 1.34 14.73 2.55
IRLSTV 28.20 0.46 0.88 0.05 18.67 0.48 2.47 0.19
IRLSTV2 26.66 0.47 0.98 0.06 18.62 0.54 2.49 0.14

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

NCLS 8.59 0.44 7.24 0.47 2.83 0.25 13.10 0.56
IRLS 3.09 0.10 13.79 0.39 3.16 0.20 12.07 0.49
SUnSAL 9.56 0.49 6.51 0.42 3.16 0.28 11.78 0.51
SUnSAL-TV 9.69 0.50 6.37 0.42 3.12 0.29 11.77 0.54
MUSIC-CSR 10.08 0.36 6.04 0.33 3.96 0.32 11.51 0.62
RM-DANSER 5.05 0.76 11.12 1.43 0.76 0.57 15.60 1.55
IRLSTV 10.27 0.54 5.98 0.44 4.10 0.08 8.39 0.13
IRLSTV2 10.31 0.51 6.20 0.39 3.47 0.33 11.64 0.49

IRLSTV that λ = 10−2, λTV = 10−1 and p = 0.4. For the Alpine image we could not get
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Table 2.6: Comparison with various SNR, N=9

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

NCLS 17.46 0.51 1.56 0.22 10.93 0.59 4.01 0.47
IRLS 2.81 0.07 8.76 0.05 1.72 0.12 9.58 0.19
SUnSAL 21.67 0.51 1.28 0.13 13.50 0.70 3.19 0.37
SUnSAL-TV 20.30 0.26 1.70 0.07 13.43 0.64 3.24 0.33
MUSIC-CSR 13.85 0.07 3.61 0.05 12.67 0.21 3.78 0.08
RM-DANSER 22.09 0.36 1.36 0.07 8.11 2.08 7.17 1.68
IRLSTV 22.19 0.52 1.27 0.10 13.62 0.41 3.17 0.20
IRLSTV2 22.63 0.74 1.26 0.13 13.19 0.55 3.70 0.28

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

NCLS 4.91 0.15 7.88 0.35 0.43 0.26 12.30 0.78
IRLS 0.03 0.07 12.60 0.25 -0.31 0.13 10.76 0.37
SUnSAL 6.13 0.18 6.27 0.26 0.55 0.31 10.29 0.65
SUnSAL-TV 6.31 0.19 6.09 0.27 0.50 0.33 10.42 0.69
MUSIC-CSR 6.73 0.16 5.59 0.15 2.08 0.33 8.83 0.48
RM-DANSER 2.13 0.60 11.42 1.59 -2.41 0.64 18.10 2.48
IRLSTV 6.80 0.33 5.48 0.21 4.05 0.04 5.91 0.07
IRLSTV2 4.28 0.66 9.52 1.04 -1.00 2.71 15.30 6.93

Table 2.7: IRLSTV average running times in 100s of seconds

Method N=3 N=6 N=9

NCLS 0.0003 0.0004 0.0015
IRLS 0.0175 0.0051 0.0090
SUnSAL 0.0002 0.0004 0.0011
SUnSAL-TV 0.0254 0.0310 0.0919
SUnSAL-CSR 0.0021 0.0025 0.0049
RMUSIC-DANSER 0.0092 0.0318 0.0443
IRLSTV 0.0246 0.0356 0.1614
IRLSTV2 30.0374 15.0031 50.0530

an unmixing result for IRLSTV2. Due to the larger image and increased computational

complexity of IRLSTV2, MATLAB ran out of memory as it could not create large enough

matrices.

Figures 2.11b and 2.11c show the sub-image of the Alpine scene used for the experi-

ments. The band 40 and 100 are shown respectively in the images. Although the ground

truth maps of the material abundances in this image are not available, these can be quali-

tatively assessed by looking at the image as there are not many features. From Fig. 2.11c

we can clearly see the zones of the lake in the image, these are shown in dark blue color

here. The lake covers most of the left side of the image ending at the bottom in a W shape.

There can be seen an additional small lake or pond towards the middle right side of the

image. The grassland and forest can be better determined looking at the Fig. 2.11b, with
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(a) (b) (c)

Figure 2.11: German Alpine foothills image scene (1000 × 1000), band 40 in (a) and the
selected sub-image (150 × 150), band 40 in (b), and band 100 in (c).

the light areas indicating the forest and darker areas the grass.

In Fig 2.12 it can be seen that SUnSAL-TV and RMUSIC-DANCER could not recover

the water boundary. Furthermore, MUSIC-CSR and RMUSIC-DANCER were not able

to clearly segment the grass from the forest. Where IRLSTV showed patches of grass, the

fraction of forest was typically less; this was not apparent in NCLS. IRLSTV and MUSIC-

CSR obtained the best results for fractional abundances of water, although MUSIC-CSR

had a higher proportion of water estimates on the grasslands. The NCLS and SUnSAL-TV

did not perform well in estimating the fractional abundances for the lake area, whereas

IRLSTV showed good results. The forest and grass areas were also qualitatively better es-

timated by the IRLSTV. The NCLS and SUnSAL-TV also produced unrealistic fractional

abundance values that are negative and/or larger than one.

Jasper Ridge image

Experiments were performed on the Jasper Ridge real hyperspectral image,3 see Fig. 2.13.

The image has 224 spectral bands in the [380nm, 2500nm] range with a spectral resolution

up to 9.46nm. Due to dense water and atmospheric effects the low SNR bands 1-3, 108-

112, 154-166, and 220-224 were removed, hence 198 channels remained. The spectral

channels of this image did not match with the available spectral libraries, hence we used

an endmember extraction algorithm to identify material signatures from the data. The

HySime algorithm estimated the signal subspace in the image to be 4. Hence we used the

N-FINDR algorithm to find 4 endmember signatures from the hyperspectral image scene.

Five-fold cross-validation was used to determine the optimal parameter values. These

were λ = λTV = 10−3, p = 0.5 for IRLSTV and λ = 10−4, λTV = 10−3 and p = 0.5 for

IRLSTV2. The fractional abundance maps for tree, water, soil, and road are shown in

Fig. 2.14.

The true fractional abundance maps for the Jasper Ridge hyperspectral image are

unfortunately not available. However, as the image contains only 4 endmembers, they are

3Available online: http://facegis.nuarsa.info/?id=278.
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Figure 2.12: Fractional abundance maps of the German Alpine foothills data set esti-
mated by NCLS, IRLS, SUnSAL-TV, MUSIC-CSR, RMUSIC-DANCER and IRLSTV.
The abundance map of forest is shown in (a), water in (b), and grass in (c).

fairly easy to assess qualitatively. The image features can be seen in Fig. 2.13, with band

10 and 70 displayed for clearness. The road areas, starting from the top of the image and

going towards the south-east side, can be seen in Fig. 2.13a in yellow, and the soil regions

surrounding the roads and on the coast of the river in turquoise. Fig. 2.13b displays the

large river flowing from the top of the image to the bottom in dark blue. The tree areas

in the image can be seen in deep yellow in Fig. 2.13b.

Fig. 2.14, displays that RMUSIC-DANSER and SUnSAL-TV have fractional abun-

dance values larger than 1 and SUnSAL-TV has negative fractional abundance values. This
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(a) (b)

Figure 2.13: Jasper Ridge image (100 × 100), band 10 in (a), and band 70 in (b).

violates the sum-to-one and non-negativity constraints set on the fractional abundances

and does not give realistic interpretable results. MUSIC-CSR, IRLSTV and IRLSTV2

were the only methods that can distinctly determine the water areas in the image and

allocate high fractional abundances to these pixels. However, IRLSTV managed best in

allocating zero fractional abundance values for areas outside of the water. Furthermore,

IRLSTV seemed to offer more detail in the tree, soil and road maps in Fig. 2.14. While

most methods struggled to identify the road areas in the image, IRLSTV was the only

one that assigned high fractional abundances to these regions. IRLS and IRLSTV2 falsely

determined the riverbank zone as road. From here we can see that although IRLSTV2

used an analytic sum-to-one constraint, it did not give as good of a performance as the

IRLSTV with heuristic constraints. Also, due to increased computational complexity of

IRLSTV2, the computation took significantly longer than IRLSTV.

The sparsity of the estimated x̂ matrix can be evaluated when looking at the density

of the matrix (the proportion of non-zero abundance values in the matrix). There was a

discernible difference in the sparsity of results even for the Jasper Ridge image, where the

number of endmembers was very low. The density of x̂ for IRLSTV was 0.56, IRLSTV2

was 0.55, SUnSAL was 0.60 and SUnSAL-TV was 1. IRLS, MUSIC-CSR and RMUSIC-

DANSER had the density 0.69, 0.64 and 0.61 respectively. IRLSTV did well in enforcing

sparsity in the result, whereas SUnSAL-TV pushed some values towards zero, but did not

equate them to zero exactly. Hence the fractional abundance values for the image were

not easily interpretable for SUnSAL-TV.

2.7 Discussion

Sparse regression techniques have recently become popular for solving the statistical prob-

lem of spectral unmixing. Despite the success sparse unmixing has had in some applica-

tions, there are some limitations that need to be considered: using the classical `1 norm

regularization on sparsity is often not sufficient; sparse unmixing methods do not take into

account the spatial correlation in the images; the magnitude of the spectral libraries and

the high mutual coherence limit the success of sparse unmixing algorithms.
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Figure 2.14: Fractional abundance maps for the Jasper Ridge data obtained by NCLS,
IRLS, SUnSAL-TV, MUSIC-CSR, RMUSIC-DANSER, IRLSTV and IRLSTV2, for tree
in (a), water in (b), soil in (c), and road in (d).

In this chapter we introduced a new algorithm called IRLSTV to overcome these

limitations. We incorporated a library reduction step similar to MUSIC array processing

algorithm, included a spatial total variation regularization term, and enforced sparsity on

the estimates via `p norm. Our experimental results indicated that changing the `1 norm
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on sparsity to `p norm with 0 < p < 1 improved the unmixing performance. The benefits

of including spatial context via the TV term was demonstrated. The library reduction step

made the computation faster and improved the unmixing result significantly. The proposed

algorithm was significantly better than other similar unmixing algorithms. The IRLSTV2

algorithm with analytical sum-to-one constraint showed similar or worse performance in

the experiments compared to IRLSTV that has heuristic weights. This is possibly because

the ASC and ANC constraint were not enforced jointly in IRLSTV2, which might create

some instability in the algorithm. The heuristic weights kept the algorithm simple and

fast that gave multiple benefits. Also, IRLSTV2 algorithm was significantly slower due to

increased computational complexity.



3

Reparametrization for handling constraints

This chapter begins with an overview of the necessity of constraints for the hyperspec-

tral unmixing problem and explains the reasons for reparametrization. It gives a review

of the other methods that have used it beforehand. The chapter continues to develop a

reparametrization method for the hyperspectral unmixing problem. The resulting algo-

rithm is tested on both simulated and real hyperspectral data and compared with other

state-of-the-art methods.

3.1 Overview

The unmixing problem comes with certain physical limitations that we need to adhere

to in order to obtain valid estimates. As we aim at estimating the fractional abundances

of materials in an image, we need to use the sum-to-one and non-negativity constraints.

However, if one wishes to perform unconstrained optimization, then reparametrization

with respect to the constraints allows that to be done.

Although reparametrization of coefficients is not uncommon in statistics, it has not

been used in spectral unmixing until recently [79, 80]. [82] proposed a general form of

reparametrization that fits under the above model, with the logarithmic function as one

option for reparametrization. Logit functions were used for reparametrization in [113],

whereas [84] used a Dirichlet distribution as a prior to enforce the constraints. In [85] the

Dirichlet distribution was used in combination with reparametrization.

In this chapter, we propose to reparametrize the model’s coefficients to account for

sum-to-one and non-negativity constraints for a sparse unmixing technique with spatial

total variation regularization that induces sparsity in the number of active pure spectral

components via a hyper-Laplacian prior, the `p norm. We use the non-convex `p norm

because it produces sparser results than the `1 norm [34]. Since this approach can shrink

the fractional abundances of inactive endmembers to values very close to zero, greater

51
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selectivity is offered as compared to the use of a more traditional `1 norm. In turn, this

enables the method to be used on large, semi-supervised spectral libraries or in unsuper-

vised scenarios where the number of pure signatures present in a typical pixel is much

smaller than the number present in the image scene. Through the |∇x| term, we intro-

duce a total variation regularizer into a sparse spectral unmixing framework. However,

unlike [37] that uses the ADMM method and the `1 norm, we achieve greater sparsity

by setting up a constrained `p − `2 optimization problem. We propose to estimate the

fractional abundances x as a solution to the non-convex optimization problem

arg min
x

‖y −Mx‖22 + λ ‖x‖pp + λTV ‖∇x‖pp , (3.1)

where y,x,M with the respective dimensions LP × 1, NP × 1, and LP × NP describe

the unmixing problem over all pixels jointly. They are defined as

y =
[
y>1 ,y

>
2 , . . . ,y

>
P

]>
,

x =
[
x>1 ,x

>
2 , . . . ,x

>
P

]>
,

M = IP ⊗M0 . (3.2)

Here ⊗ denotes the Kronecker product, yn ∈ RL×1 is the hyperspectral reflectance

of the nth pixel, xn of dimension N × 1 is the fractional abundance vector of the N

endmembers in pixel n, and M0 ∈ RL×N is the spectral library that forms a block-

diagonal matrix M with P blocks of M0 on the main diagonal and the rest of the matrix

M consists of zeros.

As the fractional abundances in x refer to proportions, the optimization problem

(3.1) should be subject to the non-negativity and sum-to-one constraints defined by

x ≥ 0,axn = 1 for n = 1, . . . , P pixels, where a = [1, . . . , 1] has dimension N . Unlike the

renormalization heuristics used in [35, 103] and [78], we derive and hence incorporate a

well-principled reparametrization for optimization problem (3.1), which was found to offer

further performance enhancements in our experiments. In order to take the constraints

into account, whilst performing unconstrained optimization, we reparametrize x in such

a way that for each pixel we estimate the N − 1 unconstrained parameters defined as [81]

ti = log

(
xi

1−
∑N

j=2 xj

)
∈ R , (3.3)

where i = 2, . . . , N .

We propose a three-step algorithm to solve minimization problem (3.1). The first step

performs library reduction using hyperspectral subspace identification by minimum error

[100], and a binary test similar to MUSIC to identify the endmembers. In an environment

with no noise the MUSIC step is able to identify the active endmembers correctly [76].
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Additionally, we propose to use a robust version of the MUSIC library reduction as a

comparison, as there can be some noise in the data. The next two steps solve optimization

problem (3.1) using the reparametrization in (3.3) via a trust region algorithm based on

first and second order analytical derivatives, that is stable and has strong convergence

properties [52,114–116].

The proposed algorithm (here called ROCSSUM) performs unconstrained `p − `2 op-

timization with spatial total variation regularization and MUSIC library reduction using

the reparametrization of constraints. The method with the robust library reduction is

called ROCSSURM accordingly. Experiments on both synthetic and real data show that

the proposed method obtains better hyperspectral unmixing performance in noisy set-

tings compared to other recent state-of-the-art statistical regularization methods such

as IRLS [35], SUnSAL [102], SUnSAL-TV [37],SUnSAL-CSR [101], MUSIC-CSR [76],

RMUSIC-DANSER [49]. The differences between our method and the competitors are

summarized in Table 3.1.

Table 3.1: Method comparison

Method
Library
pruning

Sparsity
‖.‖p

Spatial
‖∇.‖p

Sum-to-
one

Non-
negativity

NCLS No No No No Yes
IRLS [35] No Yes No Normalize Yes
SUnSAL [28] No p=1 No No Yes
SUnSAL-TV [37] No p=1 p=1 No Yes
SUnSAL-CSR [101] No p=1 No No Yes
MUSIC-CSR [76] Yes p=1 No No Yes
RMUSIC-CSR Robust p=1 No No Yes
RMUSIC-DANSER [49] Robust Yes No No Yes
ROCSSUM Yes Yes Yes Yes Yes
ROCSSURM Robust Yes Yes Yes Yes

3.2 Regularization

3.2.1 Reweighted `p Norm

The constrained, sparse `p− `2 hyperspectral unmixing task, with 0 < p < 1, is defined as

the optimization problem

min
x
‖y −Mx‖22 + λ ‖x‖pp , (3.4)

where λ is the Lagrange multiplier that regulates the sparsity of the solution and y,x,M

are defined as in (3.2). It is possible to rewrite the Lasso objective as a weighted ridge
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regression (e.g., [104]). Then (3.4) becomes

min
x
‖y −Mx‖22 + λ ‖Dx‖22 , (3.5)

with D = diag
(
d

1
2

)
, d =

((
x(α−1)

)2
+ ε2

) p
2
−1

,

where the weights d for iteration α are calculated using the x(α−1) results from the previous

iteration α− 1. Hence the weighted `2 norm in (3.5) is a first-order approximation to the

`p norm in optimization problem (3.4). Here, D is a positive diagonal matrix, ε measures

the error in the solution for the pixels in the whole image, and goes to zero as the IRLS

algorithm converges. εn for the nth pixel is a vector of size N × 1, ε covers the whole

image s.t.
[
ε>1 , ε

>
2 , . . . , ε

>
P

]>
, size NP × 1. When the algorithm converges then ε→ 0 and

x(α−1) ∼= x(α). It follows that ‖Dx‖22 = ‖x‖pp.
The algorithm proceeds by initializing the weights with ones and then iterating be-

tween: (i) solving the quadratic problem in (3.5) and (ii) updating the weight matrix D.

This is a fixed-point iteration for solving the optimization problem (3.4). The iterative

update leads to an algorithm that guarantees convergence [45]. The algorithm enjoys

two very attractive properties: simplicity and flexibility [105]. The next section shows

that it is easy to accommodate additional p-norm penalty terms, such as a total-variation

regularizer in the objective function.

3.2.2 Total Variation for Sparse Unmixing

We propose to solve the constrained, sparse, total variation (TV) regularization problem

arg min
x

‖y −Mx‖22 + λ ‖x‖pp + λTV ‖∇x‖pp , (3.6)

where y,x,M are defined as in (3.2). The TV term is equivalent to placing a hyper-

Laplacian prior on the horizontal and vertical increments of the abundances. The reg-

ularization parameter λTV balances the influence of this prior against the sparsity and

likelihood terms; larger values will result in smoother solutions. The differencing oper-

ator ∇ computes the spatial increments of the fractional abundances, i.e. differences of

abundances over neighboring pixels. It can be decomposed into horizontal ∇h and vertical

∇v differences so that ∇ ≡ [∇>h ,∇>v ]>. The differences between horizontal neighbors are

∇hx = [a1,a2, ...,aTh
]>, where an = xn − xnh

, with n and nh indicating a pixel and its

horizontal neighbor, and Th is the number of horizontal differences taken for the image. ∇v
performs similarly for vertical neighbors. The difference operator ∇ has one 1 and −1 in

each row for the respective vertical or horizontal endmembers. The rest of the entries are

zeros. The distance between the 1 and −1 in the rows of ∇h is the number of endmembers

N . The difference is taken in between xn[i] and xn+1[i] for endmember i and pixels n and

n + 1. For ∇v the distance is cN , where c indicates the number of pixels in each row of
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the image. In order to solve the optimization problem (3.6), the p-norm is rewritten in

terms of a weighted 2-norm, to obtain

arg min
x

‖y −Mx‖22 + λ ‖Dx‖22 + λTV
∥∥Φ∇x∥∥2

2
, (3.7)

with D = diag(d
1
2 ), d =

((
x(α−1)

)2
+ ε2

) p
2
−1

,

Φ = diag(φ
1
2 ), φ =

((
∇x(α−1)

)2
+ η2

) p
2
−1

.

Here, Φ is a positive diagonal matrix containing the weights, the constant η is a column

vector containing the small integer value of 10−6 which is included in order to avoid division

by zeros, and the weights d and φ are calculated using the x(α−1) results from the previous

iteration α − 1. Note that the weighted `2 norm is equivalent to the `p norm for small

enough η and when x(α−1) = x(α), that is
∥∥Φ∇x∥∥2

2
= ‖∇x‖pp.

3.3 Reparametrization of Constraints

The regularization problem in Eq. (3.6) requires the constraints x ≥ 0 and axn = 1 for

n = 1, . . . , P . An effective and theoretically founded way to address this is to reparametrize

the model’s coefficients such that we can use an unconstrained optimizer like the trust

region algorithm. We propose to use the unconstrained parameters

ti = log

(
xi

1−
∑N

j=2 xj

)
∈ R (i = 2, . . . , N). (3.8)

The original (constrained) parameters can be derived as [81]

eti =
xi

1−
∑N

j=2 xi

eti = eti
N∑
j=2

xj + xi

eti = xi

 N∑
j=2

etj + 1


xi =

eti

1 +
∑N

j=2 e
tj
, (3.9)

where i = 2, . . . , N , and x1 = 1−
∑N

i=2 xi = 1−
∑N

i=2
eti

1+
∑N
j=2 e

tj
.

The next sections derive the quantities needed for the trust region optimization.
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3.3.1 Gradient

The linear mixing model in Equation (3.6) can be expressed as

f(x) = (y −Mx)> (y −Mx) + λ (Dx)> (Dx) + λTV (Φ∇x)> (Φ∇x)

= y>y + x>
(
M>M

)
x− 2y>Mx+ λx>D>Dx

+λTV x
>∇>Φ>Φ∇x , (3.10)

which has to be maximized with respect to the N − 1 unconstrained parameters t =

[t2, · · · , tN ]>. The gradient is obtained as follows.

∂f(x)

∂t
=
∂f(x(t))

∂x

∂x

∂t
=

(
∂x

∂t

)> ∂f(x)

∂x
(3.11)

First, we find the partial derivative with respect to x. Here the weight matrices D and Φ

are kept fixed since they are computed using the previous iteration value x(α−1).

∂f(x)

∂x
=

(
M>M +

(
M>M

)>)
x− 2

(
y>M

)>
+ λ

(
D>D +

(
D>D

)>)
x

+λTV

(
∇>Φ>Φ∇+

(
∇>Φ>Φ∇

)>)
x

= 2M>Mx− 2M>y + 2λD>Dx+ 2λTV∇>Φ>Φ∇x . (3.12)

The partial derivatives with respect to ti for i = 2, . . . , N , k = 2, . . . , N , where i and k

indicate the i’th and k’th endmember and k 6= i, are obtained using

∂xk
∂ti

=
∂

∂ti

(
etk

1 +
∑N

j=2 e
tj

)
=

etk ·
(
−eti

)(
1 +

∑N
j=2 e

tj
)2 = − etk+ti(

1 +
∑N

j=2 e
tj
)2 . (3.13)

When k = i the partial derivatives with respect to ti become

∂xk
∂ti

= =
∂

∂ti

(
etk

1 +
∑N

j=2 e
tj

)
=

etk

1 +
∑N

j=2 e
tj

+
etk ·

(
−eti

)(
1 +

∑N
j=2 e

tj
)2

=
etk

1 +
∑N

j=2 e
tj
− etk+ti(

1 +
∑N

j=2 e
tj
)2 . (3.14)
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For k = 1 the partial derivatives are

∂x1
∂ti

=
∂

∂ti

(
1− et2

1 +
∑N

j=2 e
tj
− et3

1 +
∑N

j=2 e
tj
− et4

1 +
∑N

j=2 e
tj
− · · · − etN

1 +
∑N

j=2 e
tj

)

=
et2+ti(

1 +
∑N

j=2 e
tj
)2 +

et3+ti(
1 +

∑N
j=2 e

tj
)2 +

et4+ti(
1 +

∑N
j=2 e

tj
)2 + · · ·

+
etN+ti(

1 +
∑N

j=2 e
tj
)2 − eti

1 +
∑N

j=2 e
tj

= − eti

1 +
∑N

j=2 e
tj

+
eti ·

∑N
j=2 e

tj(
1 +

∑N
j=2 e

tj
)2 =

−eti − eti ·
∑N

j=2 e
tj + eti ·

∑N
j=2 e

tj(
1 +

∑N
j=2 e

tj
)2

= − eti(
1 +

∑N
j=2 e

tj
)2 . (3.15)

Thus the gradient is

∂f(x)

∂t
=

(
∂xk
∂ti

)> (
2M>Mx− 2M>y + 2λD>Dx+ 2λTV∇>Φ>Φ∇x

)
,(3.16)

where

∂xk
∂ti

=


− eti

(1+
∑N
j=2 e

tj )
2 , for k = 1

− eti+tk

(1+
∑N
j=2 e

tj )
2 , for k = 2, . . . , N & k 6= i

− eti+tk

(1+
∑N
j=2 e

tj )
2 + eti

1+
∑N
j=2 e

tj
, for k = 2, . . . , N & k = i .

(3.17)

This can be also expressed as:

∂f(x)

∂t
=

 − eti

(1+
∑N
j=2 e

tj )
2

− eti+tk

(1+
∑N
j=2 e

tj )
2 + diag

(
eti

1+
∑N
j=2 e

tj

)

> (

2M>Mx− 2M>y

+2λD>Dx+ 2λTV∇>Φ>Φ∇x
)

(3.18)

The partial derivatives ∂x/∂t are of dimension N×(N−1), ∂f(x)/∂x of dimension N×1,

and ∂f(x)/∂t of dimension (N − 1)× 1; they require the estimation of N − 1 gradients.

3.3.2 Preliminary steps for the Hessian

The Hessian for f(x) is obtained using the gradient in Equations (3.16)-(3.17) and the

chain rule to find the second partial derivatives of f(x) with respect to ti, where i =
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2, . . . , N . Then the Chain rule for becomes:

∂2f(x)

∂t2i
=

(
∂x

∂ti

)> ∂2f(x)

∂x2

∂x

∂ti
+

(
∂2x

∂t2i

)>
∂f(x)

∂x
. (3.19)

∂2f(x)

∂ts∂ti
=

(
∂x

∂ts

)> ∂2f(x)

∂x2

∂x

∂ti
+

(
∂2x

∂ts∂ti

)>
∂f(x)

∂x
. (3.20)

Using Eq. (3.12) we get the second partial derivatives with respect to x with fixed weights

D and Φ.

∂2f(x)

∂x2
= 2M>M + λD>D + λTV∇>Φ>Φ∇ . (3.21)

Next, we find the second order derivatives with respect to ti for i = 2, . . . , N . For k = 1,

∂2x1
∂t2i

=
∂

∂ti

− eti(
1 +

∑N
j=2 e

tj
)2
 = − eti(

1 +
∑N

j=2 e
tj
)2 − eti ·

(
−2eti

)(
1 +

∑N
j=2 e

tj
)3

= − eti(
1 +

∑N
j=2 e

tj
)2 +

2e2ti(
1 +

∑N
j=2 e

tj
)3 . (3.22)

For k = 2, . . . , N and k 6= i, we obtain

∂2xk
∂t2i

=
∂

∂ti

− etk+ti(
1 +

∑N
j=2 e

tj
)2
 = − etk+ti(

1 +
∑N

j=2 e
tj
)2 − etk+ti ·

(
−2eti

)(
1 +

∑N
j=2 e

tj
)3

= − etk+ti(
1 +

∑N
j=2 e

tj
)2 +

2etk+2ti(
1 +

∑N
j=2 e

tj
)3 . (3.23)

When k = i,

∂2xk
∂t2i

=
∂

∂ti

− etk+ti(
1 +

∑N
j=2 e

tj
)2 +

eti

1 +
∑N

j=2 e
tj


= − etk+ti · (1 + 1)(

1 +
∑N

j=2 e
tj
)2 − etk+ti ·

(
−2eti

)(
1 +

∑N
j=2 e

tj
)3 +

eti

1 +
∑N

j=2 e
tj

+
eti ·

(
−eti

)(
1 +

∑N
j=2 e

tj
)2

=
2etk+2ti(

1 +
∑N

j=2 e
tj
)3 − 2etk+ti + 2eti(

1 +
∑N

j=2 e
tj
)2 +

eti

1 +
∑N

j=2 e
tj
. (3.24)
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Hence the second order partial derivatives are

∂2xk
∂t2i

=


2e2ti

(1+
∑N
j=2 e

tj )
3 − eti

(1+
∑N
j=2 e

tj )
2 , for k = 1

2e2ti+tk

(1+
∑N
j=2 e

tj )
3 − eti+tk

(1+
∑N
j=2 e

tj )
2 , for k = 2, . . . , N & k 6= i

2e2ti+tk

(1+
∑N
j=2 e

tj )
3 − eti+tk+2eti

(1+
∑N
j=2 e

tj )
2 + eti

1+
∑N
j=2 e

tj
, for k = 2, . . . , N & k = i .

(3.25)

For s 6= i, s = 2, . . . , N , the mixed second order derivatives for k = 1 are

∂2x1
∂ti∂ts

=
∂

∂ts

− eti(
1 +

∑N
j=2 e

tj
)2
 = −

eti ·
(
−2ets

)(
1 +

∑N
j=2 e

tj
)3 =

2eti+ts(
1 +

∑N
j=2 e

tj
)3 . (3.26)

For k = 2, . . . , N , such that k 6= i & k 6= s,

∂2xk
∂ti∂ts

=
∂

∂ts

− etk+ti(
1 +

∑N
j=2 e

tj
)2
 = −

etk+ti ·
(
−2ets

)(
1 +

∑N
j=2 e

tj
)3 =

2etk+ti+ts(
1 +

∑N
j=2 e

tj
)3 . (3.27)

For k = s, k 6= i and k = 2, . . . , N ,

∂2xk
∂ti∂ts

=
∂

∂ts

− etk+ti(
1 +

∑N
j=2 e

tj
)2
 = − etk+ti(

1 +
∑N

j=2 e
tj
)2 +

2etk+ti+ts(
1 +

∑N
j=2 e

tj
)3 . (3.28)

For k = i, k 6= s, and k = 2, . . . , N ,

∂2xk
∂ti∂ts

=
∂

∂ts

− etk+ti(
1 +

∑N
j=2 e

tj
)2 +

eti

1 +
∑N

j=2 e
tj

 =

=
2etk+ti+ts(

1 +
∑N

j=2 e
tj
)3 − eti+ts(

1 +
∑N

j=2 e
tj
)2 . (3.29)

In summary, we can write the equations for the mixed second derivative, where i 6= s,

as

∂2xk
∂ti∂ts

=


2eti+ts

(1+
∑N
j=2 e

tj )
3 , for k = 1

2etk+ti+ts

(1+
∑N
j=2 e

tj )
3 , for k = 2, . . . , N & k 6= i, k 6= s

2etk+ti+ts

(1+
∑N
j=2 e

tj )
3 − eti+ts

(1+
∑N
j=2 e

tj )
2 , for k = 2, . . . , N & k = i .

(3.30)
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3.3.3 Hessian

The derivatives that make up the Hessian matrix are described below.

∂2f(x)

∂t2i
=

(
∂x

∂ti

)> (
2M>M + λD>D + λTV∇>Φ>Φ∇

) ∂x
∂ti

+

(
∂2x

∂t2i

)> (
2M>Mx− 2M>y + 2λD>Dx

+λTV∇>Φ>Φ∇x
)
, (3.31)

∂2f(x)

∂ti∂ts
=

(
∂x

∂ti

)> (
2M>M + λD>D + λTV∇>Φ>Φ∇

) ∂x
∂ts

+

(
∂2x

∂ti∂ts

)> (
2M>Mx− 2M>y + 2λD>Dx

+2λTV∇>Φ>Φ∇x
)
, (3.32)

where s 6= i and

∂xk
∂ti

=


− eti

(1+
∑N
j=2 e

tj )
2 , for k = 1

− eti+tk

(1+
∑N
j=2 e

tj )
2 , for k = 2, . . . , N & k 6= i

− eti+tk

(1+
∑N
j=2 e

tj )
2 + eti

1+
∑N
j=2 e

tj
, for k = 2, . . . , N & k = i

(3.33)

∂2xk
∂t2i

=


2e2ti

(1+
∑N
j=2 e

tj )
3 − eti

(1+
∑N
j=2 e

tj )
2 , for k = 1

2e2ti+tk

(1+
∑N
j=2 e

tj )
3 − eti+tk

(1+
∑N
j=2 e

tj )
2 , for k = 2, . . . , N & k 6= i

2e2ti+tk

(1+
∑N
j=2 e

tj )
3 − eti+tk+2e2ti

(1+
∑N
j=2 e

tj )
2 + eti

1+
∑N
j=2 e

tj
, for k = 2, . . . , N & k = i

(3.34)

∂2xk
∂ti∂ts

=


2eti+ts

(1+
∑N
j=2 e

tj )
3 , for k = 1

2etk+ti+ts

(1+
∑N
j=2 e

tj )
3 , for k = 2, . . . , N & k 6= i, k 6= s

2etk+ti+ts

(1+
∑N
j=2 e

tj )
3 − eti+ts

(1+
∑N
j=2 e

tj )
2 , for k = 2, . . . , N & k = i or k = s ,

(3.35)

where the partial derivatives ∂x/∂t are of dimension N × (N −1), ∂f(x)/∂x of dimension

N×1; ∂f(x)/∂t of dimension (N−1)×1, ∂2x/∂t2i of dimension N×1, and ∂2x/∂ti∂ts of

dimension N×1. The second order partial derivatives are ∂2f(x)/∂t2 and ∂2f(x)/∂ti∂ts.

These components form the Hessian matrix of size (N − 1)× (N − 1).
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3.4 ROCSSUM unmixing algorithm

3.4.1 Trust region algorithm

The trust region algorithm works by approximating the function f(x) one seeks to optimize

by a simpler and more easily tractable function m, which reasonably reflects the behavior

of f in a certain region ∆ around a point x. This region is called the trust region and ∆

is the radius. The step size b in each iteration is obtained by minimizing the approximate

function in the trust region [52], that is

min
b
m(b) s.t. b ∈ ∆. (3.36)

If the trial step b results in a lower function value, then the current point will be updated

to x + b. Otherwise the trust region radius ∆ will be for example shortened, and the

process repeated.

In terms of approximating f , it is common practice to employ first and second order

Taylor terms [114, 117]. The method can be made more sophisticated by extending the

trial step search to the span of g and B−1g [51]. In summary, we have that

min
b
m(b) = f + g>b+

1

2
b>Bb (3.37)

s.t. ‖b ‖ ≤ ∆, b ∈ span[g,B−1g].

This approach is accurate and efficient [51]. Trust region algorithm has many advantages,

that includes being reliable, robust and having very strong convergence properties [52].

The iterations are described in Algorithm 3.

Algorithm 3 Pseudocode of trust region optimization algorithm.

Input: f : function value w.r.t. x, g : gradient of size (N − 1) × 1, B : Hessian of size
(N − 1)× (N − 1).
Output: x : estimated fractional abundance of size (N − 1)× 1.

Initialization:
1: ∆ > 0.
2: b > 0.

Main iteration:
3: Obtain b by approximately solving:

min
b
m(b) = f + g>b+ 1

2b
>Bb

s.t. ‖b ‖ ≤ ∆, b ∈ span[g,B−1g].
4: if f(x+ b) < f(x) then
5: x = x+ b.
6: end if
7: Update ∆
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3.4.2 Numerical algorithm of ROCSSU

The sparsity and spatial regularization extensions for the unconstrained trust region algo-

rithm with reparametrization of constraints are incorporated into the algorithm via a total

variation regularizer, and a sparsity regularizer. The resulting ROCSSU pseudocode is pre-

sented in Algorithm 4. The algorithm starts with initialization in step 1. The constrained

parameters are assigned equal proportional values according to the sum-to-one constraint,

and then reparametrized to the unconstrained parameters. Within the algorithm’s loop

in step 3 the unconstrained parameters are converted to the constrained ones in order to

find the weights for the regularization terms. The algorithm uses a weighted `2 norm to

estimate the `p norm with 0 < p < 1. The weights D and Φ are defined as positive diag-

onal matrices with the values
((
x(α−1))2 + ε2

)(p/2−1)/2
and

((
∇x(α−1))2 + η2

)(p/2−1)/2
,

respectively, on the diagonal. This is fixed-point iteration using the iterate x(α−1) to up-

date the weights for iteration α. When ε = η = 0 and x(α−1) = x(α) then we have that

‖x‖pp + ‖∇x‖pp = ‖Dx‖22 +
∥∥Φ∇x∥∥2

2
.

Algorithm 4 Pseudocode of the ROCSSU optimization algorithm with sparse spatial
total variation regularization and reparametrization of constraints.

Task: Solve ‖y −Mx‖22 + λ ‖x‖pp + λTV ‖∇x‖pp, using reparametrization of constraints

t = log(x/(1−
∑N

j=2 xj)). Find x.
Input: M0 : L × N spectral library, y : hyperspectral data of size L × P , λ : sparsity
regularization parameter, λTV : spatial regularization parameter, p : quasi-norm.
Output: x : N × P fractional abundance matrix w.r.t. M0.

Initialization:

1: x← [1, ..., 1]/N , t = log

(
x

1−
∑N
j=2 xj

)
.

2: ε← [1, ..., 1].
Iteration α:

3: x = et

1+
∑N
j=2 e

tj
.

4: d =
((
x(α−1))2 + ε2

) p
2
−1
.

5: D = diag(d
1
2 ).

6: φ =
((
∇x(α−1))2 + η2

) p
2
−1

.

7: Φ = diag(φ
1
2 ) .

8: x(α)←arg min
x
‖y −Mx‖22 + λ ‖Dx‖22 + λTV

∥∥Φ∇x∥∥2
2

s.t. t = log

(
x

1−
∑N
j=2 xj

)
.

9: εn = min
(
εn,

sort(xn)q+1

N

)
.

Post processing:
10: x = et

1+
∑N
j=2 e

tj
.

The function sort(xn)q+1 in step 9 of the algorithm rearranges the absolute values of
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each pixel xn into a decreasing sequence of numbers and selects the (q+1)th value for some

fixed integer q. By definition, a vector x is q-sparse if and only if r(x)q = 0 [34]. Thus

the function sort(xn)q+1 conveys information about how sparse each estimated solution

vector xn is into the value of εn and to the updated weights wn at each iteration.

The vector of residuals ε, together with the estimated solution, are used to update

the weights for the sparsity inducing term ‖Dx‖22. In addition, the estimated solution is

used to calculate the differences between the fractional abundances of neighboring pixels

and to give weights to the spatial regularization term in steps 6 and 7. Both of these new

weights are used in the following iteration for the estimation of the solution (step 8).

Step 8 in Algorithm 4 is an optimization problem with a quadratic objective. We

can adopt standard quadratic programming techniques, such as those described in [51],

to solve it. We use ‖y −Mx‖22 + λ ‖Dx‖22 + λTV
∥∥Φ∇x∥∥2

2
together with the definition

of reparametrization to express the function value, the gradient and the Hessian of the

optimization problem. The derived gradient is given by Equations (3.16)-(3.17) and the

Hessian by Equations (3.31)-(3.35). These are used in the trust region optimization of

the objective function to update x. The iterative process continues until the algorithm

converges. As a final step (10), we convert the unconstrained working parameters t to the

constrained fractional abundance parameters x.

The purpose of the reparametrization is to take the constraints into account and to

be able to carry out the estimation on real numbers. The sparsity constraint forces the

abundances x to zero. If xi = 0, then the reparametrized parameter ti = −∞ in Eq. (3.8),

that can create instability in the optimization. This issue is avoided by the setup of the

trust region algorithm that is bounded by definition [52], which is one of the advantages

of the algorithm. As the optimization is only solved within the trust region, then ti is

bounded and would never reach −∞. It follows that the trust region algorithm is pushing

the xi towards zero, but never exactly equating them to zero. However, the estimated

coefficients that are very close to zero can be effectively treated as zero, thus we still

achieve sparse results.

Concerning the computational complexity of the ROCSSU algorithm, the most costly

step is the computation of the Hessian, which has the complexity ofO(PN2). Hence we can

generalize that this is the computational complexity at each iteration. The complexity of

the algorithm is comparable to other similar methods like SUnSAL-TV. Due to the number

of endmembers having a big effect on the computational complexity of the algorithm, we

included a library reduction step that is further detailed in the next section.

MUSIC library reduction

We include a library reduction step to the a sparse hyperspectral unmixing algorithm. We

perform library pruning via MUSIC-Hysime algorithm seen in Alg. 2, where the HySime

algorithm estimates the number of endmembers in the image and MUSIC determines the
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endmembers from a spectral library. Here, we use the ROCSSU algorithm in Alg. 4 for

solving the optimization problem in step 9 of the MUSIC in Alg. 2.

3.5 Experimental results

In this section, we employ the method of sparse total variation spatial regularization

with library pruning and reparametrization of constraints using trust region optimization.

We use both simulated and real world data to evaluate the performance of the proposed

approach when compared to its competitors.

Performance Discriminators

The classical performance discriminator often used in the literature is the root mean

square error (RMSE) [110]. The RMSE is defined as RMSE=

√
1
NP

P∑
n=1
‖xn − x̂n‖2. Here,

x denotes the true vector of endmember fractional abundance values and x̂ the estimated

one. A lower value indicates better performance for RMSE. We use the signal to recon-

struction error (SRE) to assess the quality of reconstruction as it gives more information.

SRE is measured in decibels: SRE(dB) ≡ 10 log10(SRE), where SRE is defined as SRE

= E
[
‖x‖22

]
/E
[
‖x− x̂‖22

]
. Higher values of the SRE(dB) indicate a superior unmixing

performance. Note that in the rest of this paper we will use SRE as the short hand

notation for SRE(dB). RMSE does not give as much information about the relationship

between the power of the error and the power of the signal as SRE [28], but we report

them both for comparison.

Simulated Data

To test how well the proposed algorithm works for material identification in hyperspectral

images, we used the USGS digital spectral library released in September 2007. It can

be retrieved from the Spectroscopy Lab web page under the name splib06.1 It consists

of the spectral reflectance of hundreds of materials measured in the lab. These spectral

reflectance values have 224 bands that lie uniformly in the interval 0.4-2.5 µm. Many spec-

tral signatures in the library represent the same material with minor differences between

them. We therefore followed the common preprocessing steps of, e.g., [28], and pruned the

library such that the minimum angle between any two signatures would not be smaller

than 4.44◦. The pruned library M ∈ R224×240 included 240 different signatures.

We created a 75×75 simulated image with 224 spectral bands for each pixel with five

randomly selected spectral signatures from the libraryM [28,37]. The data were generated

using a linear mixing model, and the abundance’s sum constraint was enforced on each

pixel. The true abundances of the five endmembers in the simulated image are displayed in

1Available online: http://speclab.cr.usgs.gov/spectral.lib06/.
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Fig. 2.2. The image has distinct square areas where there is only one endmember present

(pure pixels) and areas that contain mixtures of two (fractional abundance of 1/2 each),

three (1/3 each), four, and five endmembers. The background pixels surrounding the

distinct square areas have abundance values of 0.1149, 0.0741, 0.2003, 0.2055 and 0.4052,

respectively for the five endmembers. The simulated data were contaminated with white

noise as well as spectrally correlated noise. The signal-to-noise ratio (SNR) was set to 40

dB (SNR ≡ E ‖M0x‖2 /E ‖n‖22) [28] . We set the maximum number of iterations to 400,

and the number of endmembers after library pruning to 20 for these experiments.

Comparison with other algorithms

Table 3.2: Comparison of ROCSSUM at different noise levels

Method
SNR=40 SNR=30 SNR=20

SRE RMSE SRE RMSE SRE RMSE

NCLS 5.50 16.79 0.91 24.74 -6.61 73.39
IRLS 8.59 11.48 5.60 15.68 1.53 24.60
SUnSAL 11.05 10.17 6.03 18.07 2.19 23.86
SUnSAL-TV 19.02 3.92 12.35 8.97 4.19 20.56
SUnSAL-CSR 12.85 8.57 6.45 16.96 2.68 23.32
MUSIC-CSR 22.11 2.48 12.35 7.27 4.74 16.85
RMUSIC-CSR 21.97 2.56 12.39 8.06 4.70 16.92
RMUSIC-DANSER 21.99 2.56 11.23 8.06 5.09 20.16
ROCSSUM 18.12 3.91 15.23 5.16 5.47 15.33
ROCSSURM 20.53 3.12 12.86 7.48 5.02 15.32

The simulated hyperspectral image in Fig. 2.2 was used to assess the performance

of different sparse unmixing algorithms. Fig. 3.1 shows the abundance maps calculated

using the optimal parameter values for λ, λTV and p by IRLS, SUnSAL-TV, MUSIC-

CSR, RMUSIC-DANSER, ROCSSUM and ROCSSURM, for SNR= 40. We used five-fold

cross-validation to find the optimal tuning values for all algorithms that were compared.

Parameter values from -6 to 1 (with an interval of 1) were used for log10(λ) and log10(λTV ).

Values from 0.1 to 1 (with an interval of 0.1) were used for p. The optimal parameter

values for the proposed algorithms were found using five-fold cross-validation. These were

p = 0.5 for all SNR, λ = λTV = 10−4 for SNR= 40 and 10−3 for SNR= 30, 20.

From Fig. 3.1 we observe that the use of the TV norm improved the results. SUnSAL-

TV, ROCSSUM and ROCSSURM were visibly more accurate in finding the correct frac-

tional abundances of the endmembers. The areas with high fractional abundance values

were found more easily by the unmixing algorithms, whereas the regions with lower and

very similar abundance fractions were more difficult to determine correctly. For endmem-

ber four, the difference of the true concentration of the background and the square boxes

on the fifth line was only 0.0055 (they are 0.2 and 0.2055, respectively). Other unmix-

ing algorithms struggled to deliver correct estimates in that region, but ROCSSUM and
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Figure 3.1: Fractional abundance maps obtained by IRLS, SUnSAL-TV, MUSIC-CSR,
RMUSIC-DANSER, ROCSSUM, and ROCSSURM for endmember (EM) 1 in (a), EM 2
in (b), EM 3 in (c), and EM 4 in (d). SNR=40dB.

ROCSSURM managed it best.

The difference in the performance of algorithms with an increased noise can be seen in

Fig. 3.2 and Fig. 3.3. The signal to noise ratio (SNR) was lowered to 30dB and 20dB in

these images respectively. As the noise increased the performance of all algorithms deteri-

orated as expected. However, the largest change was seen in IRLS and SUnSAL-TV. The
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Figure 3.2: Fractional abundance maps obtained by IRLS, SUnSAL-TV, MUSIC-CSR,
RMUSIC-DANSER, ROCSSUM, and ROCSSURM for endmember (EM) 1 in (a), EM 2
in (b), EM 3 in (c), and EM 4 in (d). SNR=30dB.

result of MUSIC-CSR and RMUSIC-DANSER became very noisy. However, ROCSSUM

and ROCSSURM performed the best. This was also supported by the quantitative SRE

values in Table 3.2.

Note that the SRE was calculated for each method of unmixing as an average. We

used a 75×75 image for testing, which means that we estimated the fractional abundance

of the endmembers for 5625 pixels. However, to see the variance of the performance from
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Figure 3.3: Fractional abundance maps obtained by IRLS, SUnSAL-TV, MUSIC-CSR,
RMUSIC-DANSER, ROCSSUM, and ROCSSURM for endmember (EM) 1 in (a), EM 2
in (b), EM 3 in (c), and EM 4 in (d). SNR=20dB.

pixel to pixel we calculated the SRE for individual pixels and hence acquired the standard

deviation for each method. These can be seen in Fig. 3.4 together with the best SRE

results for each method for three different noise levels.

The traditional non-negatively constrained least squares (NCLS) method gave a poor

solution compared to other algorithms. The results for the NCLS method were calculated

using the SUnSAL algorithm with λ = 0. SUnSAL, SUnSAL-CSR and IRLS performed
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Figure 3.4: Individual SRE box-plots for three different noise levels for (a) NCLS, (b)
IRLS, (c) SUnSAL, (d) SUnSAL-TV, (e) SUnSAL-CSR, (f) MUSIC-CSR, (g) RMUSIC-
CSR, (h) RMUSIC-DANSER, (i) ROCSSUM, (j) ROCSSURM.

similarly with IRLS yielding a wider spread. SUnSAL-TV, MUSIC-CSR, RMUSIC-CSR,

RMUSIC-DANSER, ROCSSUM and ROCSSURM had similar performance for SNR = 40,

but ROCSSUM and ROCSSURM showed superior unmixing results at higher noise levels.

Monte Carlo simulation

Since the signal to noise ratio (SNR) in the images generally affects the unmixing results,

we performed the experiments using four different noise levels SNR ∈ {10, 20, 30, 40}. The

number of endmembers present in the spectrum of a pixel can also influence the outcome.

Hence, we considered three different levels of endmember quantities mixed in the pixel

such that N ∈ {3, 6, 9}. Here we performed 10 Monte Carlo simulations to account for the

randomness in the noise.

For the simulated data experiments we used the endmember signatures from the USGS

digital spectral library. It consists of the spectral reflectance of hundreds of materials

measured in the lab. These spectral reflectance values have 224 bands that lie uniformly

in the interval 0.4 − 2.5µm. The chosen signatures can be seen in Fig. 2.10. We created

a 50 × 50 image using the LMM in Eq. (1.1). Then we added Gaussian noise such that

the noise level varies across the spectral bands. This kind of noise pattern is the most

prevalent in real hyperspectral images [111]. The Dirichlet distribution was used for the

uniform generation of the fractional abundance vectors x. For this experiment we did

not use the MUSIC library reduction step for the ROCSSU algorithm as the number of

endmembers was already low. Hence we will call the algorithm ROCSSU from now on.

The SRE and RMSE performance measures for the quality of the reconstruction in

the simulated image for different SNR levels and material densities are displayed in Table

3.3−3.5. Note that the RMUSIC-DANSER was shortened to RM-DANSER for these

tables due to lack of space. The displayed performance measures are averages over 10

Monte-Carlo realizations for the simulated image. As before, the results indicated that

as the number of endmembers in a pixel went up and the amount of noise in the image

increased, the quality of image reconstruction of all algorithms decreased. SUnSAL and
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SUnSAL-TV gave consistent results over all trialled noise and endmember levels. In

high noise and low endmember density environment, SUnSAL produced the best results.

IRLS and RMUSIC-DANSER produced mostly the lowest SRE and highest RMSE values.

However, the RMUSIC-DANSER algorithm had good results for SNR= 40 and N= 9. The

quality of the image reconstruction of the ROCSSU algorithm fell slightly behind the best

performing method for high SNR when N= 3. However, in other noise and material

density levels ROCSSU managed to produce the best results. The average running times

over 10 Monte-Carlo realizations of the simulated image are presented in Table 3.6. It can

be seen that including the reparametrization of constraints increased the computational

complexity and hence resulted in a slightly longer running time than other methods.

Table 3.3: Comparison of unmixing performance of ROCSSU with various SNR, N=3

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

NCLS 32.62 0.28 0.52 0.02 25.97 0.65 1.29 0.13
IRLS 14.74 0.12 6.32 0.08 13.68 0.18 7.15 0.15
SUnSAL 36.09 0.34 0.48 0.02 28.85 0.78 1.17 0.12
SUnSAL-TV 35.65 0.33 0.50 0.02 28.80 0.75 1.17 0.11
MUSIC-CSR 28.21 0.12 1.25 0.02 26.29 0.33 1.54 0.06
RM-DANSER 13.74 0.07 5.87 0.12 13.71 0.08 5.90 0.12
ROCSSU 30.82 0.46 1.08 0.03 28.53 0.42 1.30 0.05

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

NCLS 17.56 0.46 3.92 0.24 9.84 0.52 10.36 0.78
IRLS 9.34 0.36 11.90 0.53 8.95 0.45 11.98 0.71
SUnSAL 20.14 0.69 3.23 0.27 10.77 0.76 9.45 0.89
SUnSAL-TV 20.16 0.69 3.23 0.27 10.75 0.77 9.46 0.91
MUSIC-CSR 20.17 0.85 3.25 0.37 11.16 0.72 9.31 0.84
RM-DANSER 11.85 2.57 8.46 3.69 4.54 1.40 20.53 3.15
ROCSSU 20.40 0.90 3.21 0.38 11.63 0.74 8.92 0.80

German Alpine foothills

A sub-image of the EnMAP data of German Alpine foothills image scene (Fig. 2.11) was

used to test the performance of the proposed algorithm in a semi-supervised setting. The

image has 244 spectral bands and it covers the 420nm-2460nm spectral range [112]. We

used the N-FINDR algorithm to identify the spectral signatures of the endmembers in the

image. It assumes the endmembers to be present in the image in the form of unmixed

pixels [20]. The HySime algorithm estimated the signal subspace in the sub-image to be

3. Hence we used the N-FINDR algorithm to find the 3 endmember signatures from the

Alpine scene. The estimated fractional abundance maps of the Alpine scene can be seen

in Fig. 3.5. The optimal parameter values were calculated using cross-validation, hence

we have λ = λTV = 10 and p = 0.5 for ROCSSU algorithm.
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Table 3.4: Comparison with various SNR, N=6

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

NCLS 24.64 0.45 0.98 0.07 16.52 0.66 2.79 0.26
IRLS 7.93 0.11 7.39 0.16 6.04 0.30 9.77 0.39
SUnSAL 27.21 0.48 0.89 0.06 18.35 0.73 2.51 0.24
SUnSAL-TV 25.90 0.34 1.11 0.04 18.43 0.71 2.48 0.23
MUSIC-CSR 19.26 0.07 2.60 0.01 17.29 0.37 3.06 0.14
RM-DANSER 3.64 0.09 15.82 0.19 4.19 1.34 14.73 2.55
ROCSSU 27.25 0.38 1.01 0.04 18.99 0.76 2.40 0.26

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

NCLS 8.59 0.44 7.24 0.47 2.83 0.25 13.10 0.56
IRLS 3.09 0.10 13.79 0.39 3.16 0.20 12.07 0.49
SUnSAL 9.56 0.49 6.51 0.42 3.16 0.28 11.78 0.51
SUnSAL-TV 9.69 0.50 6.37 0.42 3.12 0.29 11.77 0.54
MUSIC-CSR 10.08 0.36 6.04 0.33 3.96 0.32 11.51 0.62
RM-DANSER 5.05 0.76 11.12 1.43 0.76 0.57 15.60 1.55
ROCSSU 10.49 0.44 6.00 0.38 4.10 0.36 11.01 0.61

Table 3.5: Comparison with various SNR, N=9

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

NCLS 17.46 0.51 1.56 0.22 10.93 0.59 4.01 0.47
IRLS 2.81 0.07 8.76 0.05 1.72 0.12 9.58 0.19
SUnSAL 21.67 0.51 1.28 0.13 13.50 0.70 3.19 0.37
SUnSAL-TV 20.30 0.26 1.70 0.07 13.43 0.64 3.24 0.33
MUSIC-CSR 13.85 0.07 3.61 0.05 12.67 0.21 3.78 0.08
RM-DANSER 22.09 0.36 1.36 0.07 8.11 2.08 7.17 1.68
ROCSSU 22.80 0.61 1.23 0.15 14.40 0.75 2.99 0.36

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

NCLS 4.91 0.15 7.88 0.35 0.43 0.26 12.30 0.78
IRLS 0.03 0.07 12.60 0.25 -0.31 0.13 10.76 0.37
SUnSAL 6.13 0.18 6.27 0.26 0.55 0.31 10.29 0.65
SUnSAL-TV 6.31 0.19 6.09 0.27 0.50 0.33 10.42 0.69
MUSIC-CSR 6.73 0.16 5.59 0.15 2.08 0.33 8.83 0.48
RM-DANSER 2.13 0.60 11.42 1.59 -2.41 0.64 18.10 2.48
ROCSSU 7.48 0.18 5.41 0.10 2.10 0.31 8.77 0.44

In Fig 3.5, we see that NCLS, SUnSAL-TV and RMUSIC-DANSER could not recover

the water boundary. Furthermore, MUSIC-CSR and RMUSIC-DANSER were not able

to clearly segment the grass from the forest (where ROCSSU showed patches of grass,

the fraction of forest was typically less; this was not apparent in NCLS). ROCSSU ob-

tained the best results for fractional abundances of water, and the lake boundary was



72 CHAPTER 3. REPARAMETRIZATION FOR HANDLING CONSTRAINTS

Table 3.6: ROCSSU average running times in 100s of seconds

Method N=3 N=6 N=9

NCLS 0.0003 0.0004 0.0015
IRLS 0.0175 0.0051 0.0090
SUnSAL 0.0002 0.0004 0.0011
SUnSAL-TV 0.0254 0.0310 0.0919
SUnSAL-CSR 0.0021 0.0025 0.0049
RMUSIC-DANSER 0.0092 0.0318 0.0443
ROCSSU 0.2286 1.0440 20.0059

very clear. MUSIC-CSR did a fairly good job at recovering the water boundary, but it

had a higher proportion of water estimates on the grasslands. The forest and grass areas

were qualitatively better estimated by the ROCSSU. Also, NCLS, RMUSIC-DANSER and

SUnSAL-TV produced unrealistic fractional abundance values that were negative and/or

larger than one.

Jasper Ridge

Experiments were performed on the Jasper Ridge real hyperspectral image, see Fig. 2.13.

The image has 224 spectral bands in the [380nm, 2500nm] range with a spectral resolution

up to 9.46nm. Due to dense water and atmospheric effects, the low SNR bands 1-3, 108-

112, 154-166, and 220-224 were removed, and 198 channels remained. We used a semi-

supervised approach using N-FINDR in this experiment. The HySime algorithm estimated

the signal subspace in the image to be 4. Hence we used the N-FINDR algorithm to find

4 endmember signatures from the hyperspectral image scene. The respective optimal

parameter values were computed using cross-validation, thus λ = 10−3, λTV = 10−2 and

p = 0.3 for ROCSSU algorithm. The fractional abundance maps for tree, water, soil, and

road are shown in Fig. 3.6.

In Fig. 3.6, we see that both RMUSIC-DANSER and SUnSAL-TV had fractional abun-

dance values larger than 1. Moreover, SUnSAL-TV had many negative fractional abun-

dance values: this is not realistic. Besides these quantitative disadvantages of SUnSAL-

TV, ROCSSU also seemed to offer more detail in, e.g., the water, tree and soil maps in

Fig. 3.6. ROCSSU and MUSIC-CSR were the only methods that clearly identified the

water areas. However MUSIC-CSR did not manage to suppress abundance values of water

in tree and soil areas as well as ROCSSU. IRLS seemed to identify the areas of trees best,

but failed in correctly determining the abundance of water and road. None of the methods

performed particularly well in finding the road area in the image, but the ROCCSU results

looked visually the clearest. SUnSAL-TV struggled to define the areas with these end-

members, whereas for ROCSSU, the water was well defined and the tree areas surrounding

the roads were well mapped. Furthermore, in Fig. 3.6, ROCSSU appeared to attribute

large abundance to water and tree pixels much more consistently.
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Figure 3.5: Fractional abundance maps of the German Alpine foothills data set esti-
mated by NCLS, IRLS, SUnSAL-TV, MUSIC-CSR, RMUSIC-DANSER and ROCSSU.
The abundance map of forest is shown in (a), water in (b), and grass in (c).

3.6 Discussion

The statistical problem of spectral unmixing of hyperspectral data has several limitations.

In this chapter, we focused on the constraints imposed on the fractional abundances that

are being estimated. Enforcing the sum-to-one and non-negativity constraints on the

model’s parameters is crucial for obtaining realistic results.

A new algorithm called ROCSSU was introduced to overcome these limitations. We

introduced a reparametrization of coefficients, to account for the sum-to-one and non-

negativity constraints. We included a library reduction step similar to the MUSIC array
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Figure 3.6: Fractional abundance maps for the Jasper Ridge data obtained by NCLS,
IRLS, SUnSAL-TV, MUSIC-CSR, RMUSIC-DANSER, ROCSSU, for tree in (a), water in
(b), soil in (c), and road in (d).

processing algorithm, employed a spatial total variation regularization term, and enforced

sparsity on the estimates via `p norm. Our experimental results supported the benefits of

the approach. Specifically, reparametrization of the model’s coefficients was an effective

and efficient way of taking the constraints into account. In addition to that, changing

the `1 norm on sparsity to `p norm with 0 < p < 1 improved the unmixing performance.

Including spatial information via the TV term produced better results. The library re-

duction step made the computation faster and improved the unmixing result significantly

where the initial library size was large. We have demonstrated that the proposed algorithm
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showed improved performance in noisy situations as compared to other similar unmixing

algorithms.

Comparison

The ROCSSU algorithm, that used reparametrization to account for the constraints on the

fractional abundances, was slower than the IRLSTV algorithm introduced in the previous

chapter. IRLSTV also enforced the constraints, but did so in a heuristic manner, using

renormalization and projection onto the non-negative orthant. The heuristic constraints

allowed for a few different benefits for the algorithm. It kept the computational com-

plexity low, which made the algorithm significantly faster, and allowed the method to be

used in an IRLS framework that has very strong convergence properties. The ROCSSU

algorithm gave better results in some scenarios and IRSLTV in others. For the Monte

Carlo simulation experiment, ROCSSU showed mostly superior unmixing performance to

IRLSTV, especially when the signal-to-noise-ratio in the image was lower. This can be

easily seen in the summary Tables 3.7-3.9. The largest difference in the performance of

the two methods is for high SNR and small number of endmembers. In that case, IRLSTV

obtains a much superior unmixing performance. Also, when we compare teh estimated

fractional abundance maps in Fig. 2.14 and Fig. 3.6 for the real hyperspectral image

Jasper Ridge, we can identify more desirable performance by IRLSTV. The algorithm is

consistently allocating high fractional abundance values to the regions of same materials

and it distinguishes between different endmembers in the image very well. Hence, although

the reparametrization of coefficients has benefits, it did not work ideally in every setting.

Table 3.7: Comparison of unmixing performance of IRLSTV and ROCSSU, N=3

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

IRLSTV 37.85 0.47 0.42 0.02 29.47 0.72 1.13 0.10
ROCSSU 30.82 0.46 1.08 0.03 28.53 0.42 1.30 0.05

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

IRLSTV 20.35 0.81 3.23 0.30 10.86 0.68 9.41 0.76
ROCSSU 20.40 0.90 3.21 0.38 11.63 0.74 8.92 0.80
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Table 3.8: Comparison with various SNR, N=6

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

IRLSTV 28.20 0.46 0.88 0.05 18.67 0.48 2.47 0.19
ROCSSU 27.25 0.38 1.01 0.04 18.99 0.76 2.40 0.26

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

IRLSTV 10.27 0.54 5.98 0.44 4.10 0.08 8.39 0.13
ROCSSU 10.49 0.44 6.00 0.38 4.10 0.36 11.01 0.61

Table 3.9: Comparison with various SNR, N=9

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

IRLSTV 22.19 0.52 1.27 0.10 13.62 0.41 3.17 0.20
ROCSSU 22.80 0.61 1.23 0.15 14.40 0.75 2.99 0.36

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

IRLSTV 6.80 0.33 5.48 0.21 4.05 0.04 5.91 0.07
ROCSSU 7.48 0.18 5.41 0.10 2.10 0.31 8.77 0.44
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Robust method

This chapter begins with reasons for the extension of the traditional least-squares model,

and highlights the necessity for robust methods. It gives a brief overview of the currently

available robust estimation methods for hyperspectral unmixing. The chapter then con-

tinues to introduce a new algorithm for robust unmixing of hyperspectral imagery. The

performance of the algorithm is tested on synthetic and real hyperspectral images and

compared with other state-of-the-art algorithms.

4.1 Introduction

The linear mixing model (LMM) that is traditionally used for spectral unmixing assumes

that mixed spectra is a linear combination of endmembers, and that the errors follow a

Gaussian distribution. Ergo the unmixing problem amounts to identifying the best subset

of endmember signatures to synthesize the spectra in each pixel. The LMM assigns the

randomness in the model to the observational errors, which are often used in a least-

squares strategy to optimize the model. However, the assumption about random errors

generally does not hold for real hyperspectral imagery data. Typically, some bands in

the hyperspectral images are very noisy, with almost no signal at all. This can be often

due to water absorption on some wavelengths or certain atmospheric effects. Hence, there

are often a small proportion of observations, called outliers, divergent from the rest of

the data. Even one large outlier can decidedly deform the results of the least-squares

method [86].

A robust approach to statistical modeling can give protection from the influence of

outliers [87] and produce reliable parameter estimates [88]. Hence the ability to diminish

the effect of such outliers in noisy environments can offer greater robustness. When the

data does not contain outliers, the robust methods produce similar results to classical

methods, but when there are outliers present, the robust methods generate results similar

77
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to that of the classical methods when applied to data without the outliers. Thus robust

methods are great for identifying outliers and for modeling the majority of the data [88].

Outliers can influence data-based methods used to ascertain the tuning or penalty

constants adopted in the smoothing steps [89], therefore [90,91] used robust extensions to

Generalized Additive Models. The non-Gaussian heavy-tailed relaxation, extending the

standard LMM to robust method, motivated in hyperspectral image segmentation [94]

and modeling papers [95] can be accommodated by the recently proposed regularization

models and approaches for unmixing with a few modifications to the likelihood term and

algorithmic framework. [96] replaced the least-squares based weights in their iteratively

weighted least squares (IRLS) algorithm with others derived from quasi likelihood equa-

tions to reduce the influence of outliers. Recently, robust extensions have been used for

the spectral unmixing problem [1,97,118].

In this chapter, we propose to extend the traditional least-squares method to the

robust heavy-tailed case and use M-estimation, which is a formal approach to robust

estimation. Hence we use a fixed M-estimate function ρ(e) for the unmixing problem to

restrain outliers. Hampel’s three-part re-descending function behaves approximately like

the least squares function when the errors are small. As the errors increase, the function

decreases their influence or even assigns them zero weight [119]. The threshold parameters

of Hampel’s function are determined according to the variance of the estimation error,

and applied to manage the size of the constraint on the outliers. This offers the proposed

method greater robustness to noise and outliers, and enhanced performance results.

Here, we propose to enforce sparsity on the fractional abundance estimation via an `p

norm with 0 < p < 1. This encourages more sparsity than the `2 or `1 norm and improves

the performance of the method. The problem is non-convex and non-differentiable, but we

can approximate it by a weighted `2 norm. We also use the spectral-spatial information

that is available in hyperspectral data using a spatial total variation regularization term

|∇x|. Rather than apply the `1 using the ADMM method [37], we propose to invoke more

sparsity in the results via the `p norm with 0 < p < 1. The resulting `p-`2 optimization

can be carried out without difficulty in the framework of our new iteratively reweighted

algorithm. Experiments on both synthetic data and real hyperspectral images demon-

strate the improved performance of the proposed method compared to its least squares

counterparts and other robust/bilinear methods.

4.2 Mixing Model

4.2.1 Robust M-Estimates

The objective function for M-estimation is denoted by ρ(e), where e = y −Mx and ρ is

the function that is used to minimize the residuals. M-estimate functions are flexible and

they can be generalized to multiparameter problems with no difficulty [120]. They are
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more robust to outliers and excessive noise, when the signal-to-noise ration is low, than

the standard least squares function ‖e‖2 [119]. However, it can be problematic to find a

good estimate to ρ(e). Generally an appropriate fixed function is chosen for M-estimation

to reduce the impact of noise. The robust M-estimate function is defined as

min
x

∑
ρ (y −Mx) . (4.1)

where y,x,M , of the size LP × 1, NP × 1 and LP × NP respectively, describe the

unmixing problem over all pixels jointly, and are defined as

y =
[
y>1 ,y

>
2 , . . . ,y

>
P

]>
,

x =
[
x>1 ,x

>
2 , . . . ,x

>
P

]>
,

M = IP ⊗M0 , (4.2)

Here, ⊗ is the Kronecker product, yn ∈ RL×1 denotes the spectral reflectance of the nth

pixel, the N × 1 fractional abundance vector xn holds the N endmember abundances of

pixel n, and M0 ∈ RL×N is the spectral library that generates the block-diagonal matrix

M with P entries of M0 on the main diagonal.

The robust function ρ(e) is commonly approximated by Huber’s function [88]. The

Huber function curtails the effect of noise with large amplitudes to a fixed level, but it

does not remove their influence. Hampel’s method has a similar performance to Huber’s

for small errors, but it also has the ability to greatly reduce the significance of very

noisy observations or even assign them zero weights. The difference between the outlier

suppression of the Huber’s and Hampel’s method can be seen and compared to the least

squares function in Fig.4.1.
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Figure 4.1: Illustration of the least squares objective function, robust Huber function and
robust Hampel’s function in terms of the residual error (left). Their respective gradients
are on the right.

We use Hampel’s function for increased outlier suppression. The Hampel’s three part
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re-descending function and its gradient are as follows:

ρ(e) =



e2

2 , 0 ≤ |e| < ξa
ξa|e|−ξ2a

2 , ξa ≤ |e| < ξb

ξa

[
ξb+ξc−ξa+ (|e|−ξc)2

ξb−ξc

]
2 , ξb ≤ |e| < ξc

ξa(ξb+ξc)
2 − ξ2a

2 , ξc ≤ |e|

(4.3)

ψ(e) =
∂ρ(e)

∂e
=


e , 0 ≤ |e| < ξa

sign (e) · ξa , ξa ≤ |e| < ξb
sign(e)·(|e|−ξc)ξa

ξb−ξc , ξb ≤ |e| < ξc

0 , ξc ≤ |e|

(4.4)

where ψ(e) is the derivative of ρ(e), and ξa, ξb, ξc are threshold parameters.

The threshold parameters control the magnitude of outlier suppression in M-estimation.

They are estimated based on the variance of impulse-free estimation error σ2. The

threshold parameters are defined as ξa = 1.96 · σ̂, ξb = 2.24 · σ̂, ξc = 2.58 · σ̂, where

σ̂ is the robust noise variance estimator σ̂ = median
(∣∣yn − yn−1∣∣) / (√2 · 0.6745

)
, and

n = 2, ..., P [119,121].

We adopt the chain rule to differentiate the robust Hampel’s function with respect to

x. It becomes

∂f

∂x
=

(
∂e

∂x

)> ∂f
∂e

. (4.5)

Thus

∂e

∂x
=

∂

∂x
(y −Mx) = −M ,

∂f

∂e
= ψ ,

∂f

∂x
= −M>ψ . (4.6)

Setting the above equation in (4.6) to zero yields that the M-estimator x has to satisfy

−M>ψ = 0. However, it generally does not have an analytical solution. Let W =

diag (w(e)) , and

w(e) =

{
ψ (e) /e , e 6= 0

ψ′ (e) , e = 0
(4.7)

where w(e) = 1 when e = 0 for Hampel’s function. After substituting ψ from Eq.(4.7)
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into (4.6) and setting it to zero, we get −M>W (y −Mx) = 0. Hence x becomes

x =
(
M>WM

)−1
M>Wy. (4.8)

The valuesW can be described as robustness weights and used for outlier identification.

If the weight in W for an observation is very small or even zero, then it is considered to be

an outlier by the M-estimator. The weights W depend on the errors e and consequently

on the fractional abundance estimate x. Hence an iterative procedure has to be used in

order to compute x. This fits neatly into the framework of our iterative algorithm.

4.2.2 Sparsity Regularization

We propose to solve the following sparse optimization problem

min
x

ρ (y −Mx) + λ ‖x‖pp , (4.9)

where 0 < p < 1, λ is the regularization parameter that controls the sparsity of the solution

and y,x,M are defined as in (4.2). The above optimization problem in (4.9) is non-convex

and non-differentiable, therefore challenging to estimate. It can be approximated by a

differentiable weighted `2 norm:

min
x

ρ (y −Mx) + λ ‖Dx‖22 , (4.10)

with D = diag
(
d

1
2

)
, d =

((
x(α−1)

)2
+ ε2

) p
2
−1

,

where D is a positive diagonal matrix containing the weights, ε is the estimation error

for the whole image, εn for the nth pixel is a vector of size N × 1, ε covers the whole

image s.t.
[
ε>1 , ε

>
2 , . . . , ε

>
P

]>
, size NP × 1, and the weights d are calculated using the

x(α−1) results from the previous iteration α− 1. Hence the weighted `2 norm in (4.10) is

a first-order approximation to the `p norm in (4.9). As the algorithm converges, ε goes

to zero and x(α−1) ∼= x(α). It can be shown that when ε = 0 and x(α−1) = x(α)then

‖Dx‖22 = ‖x‖pp. Hence the weighted `2 norm is a good approximation of the `p norm for

sparsity regularization.

The reformulation of the optimization problem (4.10), simplifies the method and allows

the estimation to be performed in an iterative manner. The algorithm would start by

initializing the weights and continue to iteratively update the estimate of x by solving the

quadratic problem (4.10), and update the weights D. This is a fixed-point iteration for

solving the optimization problem (4.9).
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4.2.3 Spatial Regularization

Here we extend the sparse optimization problem to include an additional term to exploit

the spatial-contextual information in hyperspectral data. The spatial total variation (TV)

regularization term is as follows:

min
x

ρ (y −Mx) + λ ‖x‖pp + λTV ‖∇x‖pp , (4.11)

where y,x,M are defined as in (4.2). The regularization parameter λTV controls the

impact of this term compared to the sparsity and robust terms. A greater value for λTV

will increase the smoothness in the result, i.e. the neighbouring pixels will have more

similar fractional abundance values for same endmembers.

The total variation term enforces piecewise constant shift in the fractional abundances

of the same endmember among neighbouring pixels. The ∇ operator computes the differ-

ence in the estimated fractional abundance values for neighboring pixels in the image. It is

composed of two parts ∇ = [∇>h ,∇>v ]>, where ∇h is for taking horizontal differences and

∇v for vertical differences. The horizontal differences are ∇hx = [a1,a2, ...,am]>, where

an = xn − xnh
, with n and nh denoting a pixel and its horizontal neighbor respectively.

The operation of ∇v is analogous for vertical neighbors. The difference operator ∇ is a

matrix consisting mostly of zeros, it only has one 1 and −1 on each row for the neighboring

horizontal or vertical pixels. As x is a column vector with the fractional abundances of

all endmembers and all pixels, then the distance between the 1 and −1 in the rows of ∇h
is the number of endmembers N . Thus we take the difference between xn[i] and xnh [i] for

endmember i, pixels n and its horizontal neighbor nh. For ∇v the distance is cN , where

c defines the number of pixels in each row.

We rewrite the `p optimization problem in (4.11) as a weighted `2 norm, to get

min
x

ρ (y −Mx) + λ ‖Dx‖22 + λTV
∥∥Φ∇x∥∥2

2
, (4.12)

with D = diag(d
1
2 ), d =

((
x(α−1)

)2
+ ε2

) p
2
−1
,

Φ = diag(φ
1
2 ), φ =

((
∇x(α−1)

)2
+ η2

) p
2
−1
,

where η is a column vector containing small integer values of 10−6 that allows to avoid

division by zero, Φ is a positive diagonal matrix containing the weights of the spatial

regularization term, and the weights d and φ are calculated using the x(α−1) results from

the previous iteration α − 1. For small enough η and for x(α−1) = x(α), we have that∥∥Φ∇x∥∥2
2

= ‖∇x‖pp.
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4.3 Unmixing algorithm

In this section, we introduce a new algorithm based on iterative reweighing to optimize

the robust function along with sparsity and total variation regularizers. The pseudo-code

of the iteratively reweighted robust algorithm (IRRF) can be seen in Alg.5. The algorithm

uses a weighted `2 norm to estimate the `p norm with 0 < p < 1.

Algorithm 5 Pseudocode of IRRF.

Task: Solve ρ (y −Mx) + λ ‖x‖pp + λTV ‖∇x‖pp,
s.t. x ≥ 0,axn = 1. Find x.
Parameters: εthr: convergence threshold, jmax: maximum number of iterations.
Input: M0 : L×N spectral library, Y : L× P hyperspectral data matrix, λ : sparsity
regularization parameter, λTV : spatial regularization parameter, p : quasi-norm.
Output: X : N × P fractional abundance matrix w.r.t. M0.

Initialization:
1: ε← [1, ..., 1], εthr ← [εthr, ..., εthr].

2: d← [1, ..., 1], D = diag
(
d

1
2

)
.

3: x← arg min
x

‖y −Mx‖22 + λ ‖Dx‖22
s.t. x ≥ 0, axn = 1 for n = 1, ..., P .

4: j ← 1.
Main iteration for iteration α:

5: while sum(ε >εthr) > 0 do

6: d←
((
x(α−1))2 + ε2

) p
2
−1

.

7: D = diag
(
d

1
2

)
.

8: φ =
((
∇x(α−1))2 + η2

) p
2
−1

.

9: Φ = diag
(
φ

1
2

)
.

10: x(α)←arg min
x

∑
ρ (y −Mx) + λ ‖Dx‖22 + λTV

∥∥Φ∇x∥∥2
2

s.t. x ≥ 0, axn = 1 for n = 1, ..., P .

11: εn ← min
(
εn,

sort(xn)q+1

N

)
.

12: if j > jmax then
13: break;
14: end if
15: j = j + 1.
16: end while

To begin with, the weights and the sparsity measure ε are initialized. The weights

for the sparsity and the spatial total variation term are positive diagonal matrices with

the entries
((
x(α−1))2 + ε2

)(p/2−1)/2
and

((
∇x(α−1))2 + η2

)(p/2−1)/2
respectively on the

diagonal. This is fixed-point iteration using the iterate x(α−1) to update the weights for

iteration α. It can be shown that when ε = η = 0 and x(α−1) = x(α) then ‖x‖pp+‖∇x‖pp =

‖Dx‖22 +
∥∥Φ∇x∥∥2

2
, hence as the algorithm converges the weighted `2 norm converges to
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the required `p norm. The ∇ function computes the horizontal and vertical differences in

the fractional abundances between neighbouring pixels in the image. η is a column vector

containing fixed small integers of size ≈ 10−6 that is included to avoid infinite values in

step 10. The function sort(xn)q+1 in step 11 orders the absolute values of xn in each

pixel in a decreasing sequence and outputs the (q + 1)th value for a fixed integer q. If

sort(x)q = 0, the vector x is q-sparse [34]. Accordingly, the information about the sparsity

of xn is transmitted through εn to the updated weights d and D at each iteration. The

iterative process continues until all εn for n = 1, . . . , P are below the threshold level εthr,

and the optimal solution of Eq. (4.11) has been found.

Step 10 in Algorithm 5 is an optimization problem with a quadratic objective and

linear constraints. We can adapt standard quadratic programming techniques, such as

those described in [51], to solve it. The function ρ (y −Mx) + λ ‖Dx‖22 + λTV
∥∥Φ∇x∥∥2

2

can be rewritten as

f(x) = ρ (y −Mx) + λ (Dx)> (Dx) + λTV (Φ∇x)> (Φ∇x)

= ρ (y −Mx) + λx>D>Dx+ λTV x
>∇>Φ>Φ∇x , (4.13)

where Φ is a diagonal matrix containing the weights of the TV term. Here the weight

matrices D and Φ are kept fixed since they are computed using the previous iteration

value x(α−1). Thus the partial derivatives of f(x) with respect to x are

∂f(x)

∂x
= −M>ψ + λ

(
D>D +

(
D>D

)>)
x+ λTV

(
∇>Φ>Φ∇+

(
∇>Φ>Φ∇

)>)
x

= −M>ψ + 2λD>Dx+ 2λTV∇>Φ>Φ∇x . (4.14)

After equating (4.14) to zero and following the steps to (4.8), we get
(
M>WM + λD>D

+λTV∇>Φ>Φ∇
)
x = M>Wy. Expressing x gives:

x =
(
M>WM + λD>D + λTV∇>Φ>Φ∇

)+
M>Wy (4.15)

where A+ defines the pseudo-inverse of the matrix A and x is the estimated solution to

step 10 in the IRRF algorithm. The constraints on the fractional abundance estimate

x are applied in an iterative manner. First the non-negativity constraint is enforced

using a projection onto the positive orthant, then the sum-to-one constraint is enforced

by renormalization of the estimated solution for each pixel. Although the constraints

are implemented in a heuristic manner, it integrates well into the iteratively reweighted

algorithm. It keeps the algorithm simple and fast, and produces good results.

The resulting IRRF algorithm is simple but also very flexible as the `p norm penalty

terms can be easily integrated. The convergence of the algorithm is very fast compared

to others, e.g. ADMM and gradient decent, it needs to do only a small number of itera-

tions. The algorithm involves a considerable inversion procedure at each iteration as seen
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in Eq.(4.15), which makes it computationally costly. The complexity of the problem is

O(LN2) because at each iteration the weighted `p-`2 minimization is required. Nonethe-

less, it generally takes less computational time than comparative methods due to the

remarkably fast convergence.

4.4 Experimental results

This section details the use of both synthetic and real hyperspectral images for analyz-

ing the unmixing performance of the iteratively reweighted robust function (IRRF). The

simulated data experiments measure the results quantitatively and the real data analysis

shows qualitative performance.

We use the signal to reconstruction error (SRE) and root mean square error (RMSE) to

validate the unmixing performance for simulated data. The SRE is measured in decibels

and is denoted as SRE(dB) SRE(dB) = 10 log10

(
E
[
‖x‖22

]
/E
[
‖x− x̂‖22

])
, where x is

the true fractional abundances of endmembers and x̂ the estimated ones. The greater the

SRE value, the more superior the reconstruction of the image. The RMSE is defined as

RMSE=

√
1
NP

P∑
n=1
‖xn − x̂n‖2. Here, a lower value indicates a better reconstruction of

the image.

Comparison with other algorithms

We chose two fully constrained least squares based algorithms for comparison: Fully Con-

strained Sparse Unmixing via variable Splitting and Augmented Lagrangian (SUnSAL-

FC) [28], Iteratively Reweighted Least Squares (IRLS) [35]. We further examined the

following recent robust/bilinear methods: Fully Constrained Correntropy-based Unmix-

ing by Variable Splitting and Augmented Lagrangian (CUSAL-FC) [97], Coordinate De-

cent Algorithm with Mismodeling Effects (CDA-ME) [93], Robust Linear Mixing Model

(rLMM) [92], Block Coordinate Descent Alternating Direction Method of Multipliers

(BCD/ADMM) [99], Unsupervised Generalized Normal Compositional Model (UsGNCM)

[98].

Simulated Data

We tested the performance of the method in material identification in hyperspectral images

and used the USGS digital spectral library. We created a 75×75 simulated image with

224 spectral bands for each pixel with five randomly selected spectral signatures from the

spectral library [28,37]. The data were generated using a linear mixing model, and the sum-

to-one constraint was enforced on each pixel. The true abundances of the five endmembers

in the simulated image are displayed in Fig. 2.2. The image has distinct square areas where

there is only one endmember present (pure pixels) and areas that contain mixtures of two ,
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three, four, and five endmembers. The background pixels surrounding the distinct square

areas have abundance values of 0.1149, 0.0741, 0.2003, 0.2055 and 0.4052, respectively for

the five endmembers. The simulated data were contaminated with white noise as well as

spectrally correlated noise. The signal-to-noise ratio was set to 40dB, 30dB and 20dB.

We set the maximum number of iterations to 50, and the number of endmembers after

MUSIC library pruning step to 20 for these experiments.

The simulated hyperspectral image in Fig. 2.2 was used to assess the performance of

different sparse unmixing algorithms. Table 4.1 displays the quantitative unmixing results,

and Fig. 4.2 shows the abundance maps for SNR= 40. We used five-fold cross-validation

to find the optimal tuning values for the unmixing. The optimal parameter values were

λ = λTV = 10−3, p = 0.5.. For this experiment we have not displayed the results of

CUSAL-FC and UsGNCM due to the methods taking excessively long to compute and

not getting presentable results respectively.

Table 4.1: Comparison of IRRF at different noise levels

Method
SNR=40 SNR=30 SNR=20

SRE RMSE SRE RMSE SRE RMSE

IRLS 8.59 11.48 5.60 15.68 1.53 24.60
SUnSAL-FC 11.13 9.98 6.02 16.92 2.23 24.03
CDA-ME -15.30 231.85 -13.44 185.72 -16.33 261.49
rLMM 0.05 37.53 0.05 37.53 0.04 37.53
BCD/ADMM 2.27 29.37 2.38 28.41 -3.13 37.26
IRRF 32.00 0.71 22.77 2.44 11.21 7.86

From Fig. 4.2 we see that the least-squares based methods, IRLS and SUnSAL-FC,

reconstructed the simulated image better than some of the robust methods. The abun-

dance maps of CDA-ME and rLMM were very noisy, and the algorithms failed to identify

many of the square areas, where the materials had same fractional abundance values. The

BCD/ADMM appeared to assign same proportions to neighbouring pixels more consis-

tently as the abundance maps are very smooth. However, this often lead to larger areas in

the image being misidentified. The IRRF method produced the best reconstruction of the

images, with the squares being distinctly displayed from the background. These results

were corroborated by the quantitative performance measures seen in Table 4.1.

The difference in the performance of algorithms with an increased noise can be seen in

Fig. 4.3 and Fig. 4.4. The signal to noise ratio (SNR) was lowered to 30dB and 20dB in

these images respectively. The increased noise in the image resulted in a lower unmixing

performance for all algorithms. This can be seen in the displayed abundance maps as the

noise in the images increases. For SNR = 20, noise with hardly any regularity can be

seen for the abundance maps of CDA-ME and rLMM. The IRRF algorithm still retained

the best unmixing performance with many of the regions in the image correctly identified.

The SRE image reconstruction measure calculated for each unmixing method is truly
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Figure 4.2: Fractional abundance maps obtained by IRLS, SUnSAL-FC, CDA-ME, rLMM,
BCD/ADMM, and IRRF for endmember (EM) 1 in (a), EM 2 in (b), EM 3 in (c), and
EM 4 in (d). SNR=40dB.

an average. In this experiment, we used a 75×75 pixel image for testing, hence we es-

timated the fractional abundance of the endmembers for 5625 pixels. Previously, we

calculated the SRE for the whole image, which is an average SRE of the 5625 pixels.

However, to see the variance of the performance from pixel to pixel, we calculated the

SRE for individual pixels and acquired the standard deviation for each method. These

can be seen in Fig. 4.5 together with the best SRE results for each method for three
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Figure 4.3: Fractional abundance maps obtained by IRLS, SUnSAL-FC, CDA-ME, rLMM,
BCD/ADMM, and IRRF for endmember (EM) 1 in (a), EM 2 in (b), EM 3 in (c), and
EM 4 in (d). SNR=30dB.

different noise levels.

For this experiment, the least-squares based methods IRLS and SUnSAL-FC outper-

formed CDA-ME, rLMM and BCD/ADMM. The spread of the individual SRE values

for IRLS and SUnSAL-FC was smaller for noisier environments. The introduced IRRF

method showed the best results overall, although it’s quality of reconstruction also lowered

with increased noise. The spread of the SRE values for IRRF increased for noisy images,



4.4. EXPERIMENTAL RESULTS 89

EM 1

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

1
EM 2

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

1
EM 3

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

1
EM 4

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

1
EM 5

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

1

IRLS

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

IRLS

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

IRLS

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

IRLS

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

IRLS

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

SUnSAL-FC

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

SUnSAL-FC

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

SUnSAL-FC

20 40 60

20

40

60

0

0.2

0.4

0.6

SUnSAL-FC

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

SUnSAL-FC

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

CDA-ME

20 40 60

20

40

60

0

0.2

0.4

0.6
CDA-ME

20 40 60

20

40

60

0

0.1

0.2

0.3

0.4

CDA-ME

20 40 60

20

40

60

0

0.2

0.4

0.6

CDA-ME

20 40 60

20

40

60

0

5

10

15

20

CDA-ME

20 40 60

20

40

60

0

0.1

0.2

0.3

0.4

0.5

rLMM

20 40 60

20

40

60

×10-3

2

4

6

8

10

12

14

16
rLMM

20 40 60

20

40

60

×10-3

0

2

4

6

8

10

12

14

rLMM

20 40 60

20

40

60

×10-3

0

2

4

6

8

10

12

14

rLMM

20 40 60

20

40

60

×10-3

2

4

6

8

10

12

14

rLMM

20 40 60

20

40

60

0.005

0.01

0.015

0.02

0.025

0.03

0.035

BCD/ADMM

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

BCD/ADMM

20 40 60

20

40

60

0

0.2

0.4

0.6

BCD/ADMM

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

BCD/ADMM

20 40 60

20

40

60

0

0.5

1

BCD/ADMM

20 40 60

20

40

60

0

0.5

1

IRRF

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

(a)

IRRF

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

(b)

IRRF

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

(c)

IRRF

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

(d)

IRRF

20 40 60

20

40

60

0

0.2

0.4

0.6

0.8

(e)

Figure 4.4: Fractional abundance maps obtained by IRLS, SUnSAL-FC, CDA-ME, rLMM,
BCD/ADMM, and IRRF for endmember (EM) 1 in (a), EM 2 in (b), EM 3 in (c), and
EM 4 in (d). SNR=20dB.

but still produced the highest SRE.

Monte Carlo simulation

Here we performed unmixing on synthetic hyperspectral data to evaluate the proposed

model in parallel with other state-of-the-art methods. The signal to noise ratio (SNR)

in the images and the number of endmembers present in each pixel can affect the un-



90 CHAPTER 4. ROBUST METHOD

(a) (b) (c) (d) (e) (f)

-15

0  

15 

30 

45 

S
R

E
SNR = 40

(a) (b) (c) (d) (e) (f)

-15

0  

15 

30 

45 

S
R

E

SNR = 30

(a) (b) (c) (d) (e) (f)

-15

0  

15 

30 

45 

S
R

E

SNR = 20

Figure 4.5: Individual SRE box-plots for three different noise levels for (a) IRLS, (b)
SUnSAL-FC, (c) CDA-ME, (d) rLMM, (e) BCD/ADMM, (f) IRRF.

mixing results. Hence we implemented the analysis on four different noise levels SNR

∈ {10, 20, 30, 40} and three endmember densities N ∈ {3, 6, 9}.
We used the endmembers from the USGS digital spectral library for the simulation.

The library contains laboratory measurements of hundreds of different substances, covering

the spectral interval of 0.4 − 2.5µm over 224 contiguous bands. Fig.2.10 displays the

materials used in the experiments.

The LMM in (1.1) was used to generate a hyperspectral image of size 50 × 50. To

replicate the noise patterns typically found in real hyperspectral images [111] Gaussian

noise was added such that the degree of noise fluctuates over the spectral range. Then

the Dirichlet distribution was used for the uniform generation of the abundance vectors

x [97, 98].

The parameters λ, λTV and p in the IRRF method needed to be fine-tuned to get the

best predictive performance. Cross-validation (CV) is a popular model validation tech-

nique that uses the mean squared error (MSE) to assess the fit of the model. Notwithstand-

ing, MSE uses squared errors and thus bestows inflated weight on large outliers. Therefore

it is not appropriate for evaluating robust models that lower or omit the influence of out-

liers. Here we used a robust loss function (RLF) determined by: RLF = 1 − e−|y−ŷ|.

Here y denotes the hyperspectral image data and ŷ the reconstruction of the image cal-

culated using the estimated fractional abundances x and the endmember library M . We

used five-fold RLF-CV, where log10(λ) and log10(λTV ) encompassed the values from −1

to −5. The parameter p covered the range 0.1 to 1 with an interval of 0.1. The optimal

parameters were λ = λTV = 10−3, p = 0.5.

The Tables 4.2−4.4 illustrate the SNR and RMSE performance measures of all the

methods for different SNR levels and endmember densities. The fully constrained least

squares based SUNSAL-FC generated mostly slightly worse results than the robust CUSAL-

FC. Their difference increased for low SNR. CUSAL-FC produced a few of the best

results in the table. The outcome of IRLS unmixing method was consistently worse

than SUNSAL-FC and CUSAL-FC. The rLMM, UsGNCM and BCD/ADMM displayed

a comparatively poor unmixing performance, especially when the SNR was low. The
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Table 4.2: Comparison of unmixing performance of IRRF with various SNR, N=3

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

IRLS 14.74 0.12 6.32 0.08 13.68 0.18 7.15 0.15
SUnSAL-FC 29.43 0.18 1.13 0.02 27.13 0.31 1.39 0.05
CUSAL-FC 29.44 0.18 1.13 0.02 27.26 0.29 1.38 0.04
CDA-ME 29.84 4.45 0.92 0.54 28.79 0.65 0.94 0.10
rLMM 4.80 1.24 19.31 2.66 4.85 1.19 19.13 2.57
BCD/ADMM 27.92 0.14 1.29 0.02 26.52 0.42 1.44 0.06
UsGNCM 12.83 0.14 7.73 0.13 13.11 0.15 7.48 0.14
IRRF 37.99 0.39 0.41 0.02 30.72 0.46 0.92 0.05

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

IRLS 9.34 0.36 11.90 0.53 8.95 0.45 11.98 0.71
SUnSAL-FC 19.94 0.69 3.39 0.30 11.62 0.73 8.94 0.77
CUSAL-FC 19.65 0.26 3.11 0.12 11.99 0.40 7.95 0.42
CDA-ME 20.93 0.49 2.53 0.18 12.95 0.97 7.29 1.00
rLMM 2.63 4.98 27.88 36.04 -14.99 16.73 1324.8 3232.8
BCD/ADMM 6.07 0.71 16.34 1.12 1.62 0.07 23.44 0.24
UsGNCM 9.17 0.24 11.99 0.37 4.90 1.35 18.62 2.20
IRRF 20.91 0.50 3.00 0.19 9.52 0.15 11.01 0.23

Table 4.3: Comparison with various SNR, N=6

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

IRLS 7.93 0.11 7.39 0.16 6.04 0.30 9.77 0.39
SUnSAL-FC 26.84 0.52 0.96 0.06 18.42 0.67 2.57 0.20
CUSAL-FC 27.07 0.54 0.91 0.06 18.59 0.64 2.52 0.19
CDA-ME 18.34 0.64 2.53 0.19 10.13 0.67 6.50 0.55
rLMM 2.89 0.22 11.80 0.35 2.75 0.19 11.91 0.36
BCD/ADMM 15.58 0.21 4.01 0.08 9.73 0.63 6.58 0.48
UsGNCM 11.63 0.95 4.48 0.60 8.71 1.00 7.08 0.76
IRRF 28.12 0.52 0.80 0.04 19.27 0.38 2.26 0.10

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

IRLS 3.09 0.10 13.79 0.39 3.16 0.20 12.07 0.49
SUnSAL-FC 10.41 0.51 6.13 0.24 3.91 0.28 11.20 0.47
CUSAL-FC 11.33 0.21 5.63 0.16 4.83 0.25 10.66 0.31
CDA-ME 4.53 0.21 11.67 0.44 6.07 0.51 9.45 0.70
rLMM -0.53 9.45 79.53 214.59 -23.79 18.80 4537.2 12418
BCD/ADMM -1.92 0.18 21.98 0.63 -3.68 0.09 22.56 0.50
UsGNCM 4.43 0.52 11.57 1.03 -2.29 0.98 26.40 4.19
IRRF 8.27 0.17 6.75 0.17 6.14 0.09 7.63 0.13

BCD/ADMM produced good results only when the SNR was high and the endmember
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Table 4.4: Comparison with various SNR, N=9

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

IRLS 2.81 0.07 8.76 0.05 1.72 0.12 9.58 0.19
SUnSAL-FC 22.95 0.43 1.22 0.07 14.01 0.41 3.15 0.20
CUSAL-FC 22.68 0.40 1.28 0.07 14.05 0.45 3.18 0.23
CDA-ME 13.99 0.41 3.09 0.16 7.10 0.29 6.25 0.29
rLMM 2.43 0.10 8.77 0.25 2.18 0.09 8.96 0.19
BCD/ADMM 10.86 0.20 4.78 0.09 6.59 0.32 6.63 0.45
UsGNCM 11.07 0.24 3.50 0.19 6.27 1.16 6.98 1.70
IRRF 23.08 0.34 1.19 0.11 13.59 0.68 3.33 0.28

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

IRLS 0.03 0.07 12.60 0.24 -0.31 0.13 10.76 0.37
SUnSAL-FC 7.04 0.28 5.95 0.32 1.75 0.27 8.85 0.17
CUSAL-FC 7.24 0.28 6.13 0.35 2.72 0.18 8.16 0.23
CDA-ME 2.69 0.16 9.41 0.31 2.76 0.38 8.63 0.56
rLMM 1.79 0.24 9.27 0.70 -24.01 17.14 1349.3 2625.9
BCD/ADMM -3.06 0.20 18.48 0.46 -5.91 0.06 20.79 0.99
UsGNCM 2.52 0.22 11.54 0.89 -1.84 2.93 22.33 8.76
IRRF 7.12 0.17 5.88 0.14 3.59 0.21 6.64 0.22

density low. The CDA-ME algorithm produced great unmixing results when the number of

endmembers in the pixel was small, particularly for low SNR. The execution deteriorated

when the endmember density increased. The IRRF algorithm had the most consistent

performance over the various SNR and endmember densities. It persistently produced the

best or close to the best unmixing results. The average running times of the algorithms

for different SNR are displayed in Table 4.5. It can be seen that the IRRF method was

the fastest out of the robust methods.

Table 4.5: IRRF average running times in 1000s of seconds

Method N=3 N=6 N=9

IRLS 0.0017 0.0005 0.0009
SUnSAL-FC 0.0007 0.0024 0.0019
CUSAL-FC 0.0913 0.1600 0.1912
CDA-ME 0.0363 0.0615 0.0652
rLMM 0.0999 0.1507 0.1560
BCD/ADMM 0.1263 0.2314 0.2156
UsGNCM 1.6689 2.9029 3.0337
IRRF 0.0140 0.0228 0.0314
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German Alpine foothills image

We used the Environmental Mapping and Analysis Program (EnMAP) German Alpine

foothills image scene for hyperspectral unmixing. The image has 244 bands over the

spectral range of 420nm−2460nm. We used a 150 × 150 sub-image for testing, this can

be seen in Fig. 2.11. The N-FINDR algorithm was used to find the spectral signatures

in the image scene. The RLF-CV was used to find the optimal parameter values; these

were λ = λTV = 10−1, p = 0.2 The resulting estimated fractional abundance maps of the

Alpine scene for the proposed method and other robust/bilinear algorithms can be seen

in Fig. 4.6.

Most methods failed to determine the regions of forest in the image. The proposed

IRRF algorithm was the only one that assigned high fractional abundance values to these

areas. The BCD/ADMM appeared to find the same zones as IRRF, but due to having

fractional abundance values higher than 6 and below zero, it made the result difficult to

interpret. The UsGNCM algorithm most precisely identified the regions of water. IRRF,

CDA-ME and CUSAL-FC also determined most of the pixels that have water, but showed

some inconsistency in the southern tip of the lake. The IRRF method managed to find

the areas of grass effectively, whilst assigning them abundance values close to one.

Jasper Ridge

The Jasper Ridge hyperspectral image was used to test the performance of the proposed

algorithm, see Fig. 2.13. The spectral range of the image is between 380nm−2500nm with

a resolution of up to 9.46nm. After removing water absorption bands, the image has 198

bands. The N-FINDR algorithm was used to extract the endmember signatures from the

image scene. The optimal parameter values from RLF-CV were λ = 10−2, λTV = 10−3,

p = 0.5. The fractional abundance maps for tree, water, soil, and road for the proposed

algorithm as well as other robust/bilinear methods are shown in Fig. 4.7.

Most methods, other than CDA-ME and BCD/ADMM, found the areas of water in the

Jasper Ridge image very well, and consistently assigned high fractional abundance values

close or equal to one. Although, the BCD/ADMM algorithm seemed to find the correct

areas for water and other endmembers, it also assigned fairly high abundance values for

the rest of the pixels which made the result difficult to interpret. BCD/ADMM also

assigned some fractional abundance values that are higher than 1 and below zero, which

are not realistic. The CDA-ME algorithm falsely identified the shoreline as road, but

appeared to find the pixels that have trees successfully. The UsGNCM method performed

well in finding the water and tree zones, however was not as adequate for determining the

road section. The proposed IRRF function demonstrated the best overall unmixing result

compared to other methods. While the other algorithms struggled with identifying the

regions of road in the image, IRRF assigned fractional abundances close to one to these

areas. It also exhibited good performance in locating tree and water patches in the image.
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Figure 4.6: Fractional abundance maps of the German Alpine foothills hyperspectral data
obtained for forest in (a), water in (b), and grass in (c).

We measured the sparsity of the estimate x by the the proportion of non-zero values,

i.e. density. The UsGNCM and rLMM had the density 1, which means that although

they pushed some values towards zero, they did not equate them to zero exactly. Hence

the fractional abundance values for the image were not easily interpretable. The density

of CDA-ME was 0.18, so it is somewhat better suited for enforcing sparsity, whereas the

density of IRRF was 0.08 and had the most sparse solution.
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Figure 4.7: Fractional abundance maps of the Jasper Ridge hyperspectral data obtained
for tree in (a), water in (b), soil in (c), and road in (d).

4.5 Discussion

In this chapter, we extended the traditional least squares model for spectral unmixing

to a robust method that can take the outliers and noise into account. We presented

a new robust hyperspectral unmixing method with sparsity and spatial total variation

regularization. We introduced a robust M-estimate function that can adaptively assign

lower or even zero weights to noisy bands. This reduced the effect of outliers and made the

model more insensitive to noise. In addition, we proposed to use the `p norm to enforce

further sparsity on the fractional abundance estimates. This non-differentiable problem
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was solved by an approximation of a weighted 2-norm that integrated easily into our

iterative algorithmic framework. Also, we employed a spatial total variation regularizer

to account for the spatial correlation in the images. Hence we presented a new improved

algorithm for spectral unmixing that was simple and fast. Comparative experiments on

both simulated and real-world data indicated that the proposed method gave an improved

performance compared to the least squares and robust/bilinear methods.



5

Robust reparametrization

In the hyperspectral setting for the traditional least squares method, an option is to

extend to the robust case and use a generalized M-lasso solution. M-estimation is a

formal approach to robust estimation. It uses a fixed function ρ(e) to restrain outliers;

hence the traditional quadratic loss function is replaced by the robust loss function ρ(e).

Our experimental results on real hyperspectral image data show that noise with large

amplitudes (outliers) often exists in the data, which supports the use of such methods.

In this chapter, we propose the M-estimate function, Hampel’s three part e-descending

function, for the unmixing problem, that either decreases the impact of or assigns zero

weight to large errors and outliers [119]. The threshold parameters of the M-estimate

function are calculated based on the variance of the estimation error, and used to control

the magnitude of the restrictions on the outliers. Hence the ability to diminish the influence

of such outliers in noisy environments can offer greater robustness.

We incorporate a sparsity inducing term via an `p norm with 0 < p < 1 in the sparse

regression problem to induce sparsity in the number of active pure spectral components.

This makes the problem non-convex, but enables the method to be used on large, semi-

supervised spectral libraries or in unsupervised scenarios where the number of pure spectral

signatures present in a typical pixel is much smaller than the number present in the image

scene.

We add a spatial total variation regularization term |∇x| into the sparse hyperspectral

unmixing framework in order to take into account the spatial-spectral information inherent

in spectral data. Instead of using the `1 norm with the ADMM method as in [37], we intend

to promote more sparsity in the results via an `p norm with 0 < p < 1. We propose the

following non-convex optimization problem for the estimation of the fractional abundances

x

arg min
x

ρ (y −Mx) + λ ‖x‖pp + λTV ‖∇x‖pp , (5.1)

97
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where y,x,M have the corresponding dimensions LP × 1, NP × 1, LP ×NP and define

the unmixing problem over all pixels jointly. Then,

y =
[
y>1 ,y

>
2 , . . . ,y

>
P

]>
,

x =
[
x>1 ,x

>
2 , . . . ,x

>
P

]>
,

M = IP ⊗M0 , (5.2)

where ⊗ is defined as the Kronecker product, yn ∈ RL×1 denotes the spectral reflectance of

the nth pixel, xn with size N ×1 is the fractional abundance vector of the N endmembers

in pixel n, and M0 ∈ RL×N is the endmember library that fashions a block-diagonal

matrix M with P entries of M0 on the main diagonal and the remainder zeros.

To be physically realistic and interpretable, two constraints are imposed on the frac-

tional abundances x. The ANC and ASC are defined as x ≥ 0,axn = 1 for n = 1, . . . , P

pixels, where a = [1, . . . , 1] has dimension N . The ASC is sometimes executed using

a renormalization heuristic as in [78] and [35, 103] or iteratively in the ADMM frame-

work [28]. We derive and hence incorporate a well-principled reparametrization for op-

timization problem (5.1), which we have seen to increase the unmixing performance in

our experiments. To both, perform unconstrained optimization and include the con-

straints [81], we reparametrize the fractional abundance vector x and estimate the N − 1

unconstrained parameters for each pixel, defined as

ti = log

(
xi

1−
∑N

j=2 xj

)
∈ R , (5.3)

where i = 2, . . . , N .

We propose a new two-step algorithm to solve the robust optimization problem (5.1).

First, we reparametrize the the coefficients as in Eq.(5.3). Next, we solve the optimization

problem in Eq.(5.1) in an unconstrained setting via a trust region algorithm based on

first and second order analytical derivatives. Trust region optimization is stable and has

strong convergence properties [52,114,116], which is beneficial for our cause. The proposed

algorithm ROBROC performs unconstrained `p − `2 optimization with spatial total vari-

ation regularization using the reparametrization of constraints. Qualitative hyperspectral

unmixing results on simulated data and real hyperspectral image data corroborate the

efficacy of the proposed method.
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5.1 Mixing Model

5.1.1 Robust M-Estimates

M-estimate is defined by a minimum problem of the form
∑
ρ(e) =min, where ρ is an

arbitrary function and e = y−Mx. M-estimates are flexible and generalize easily to mul-

tiparameter problems [120]. They can handle outliers more effectively than the commonly

used quadratic loss function ‖e‖2 [119]. The M-estimate function for the likelihood term

is the following function.

min
x

ρ (e) , (5.4)

where e = y −Mx. Huber’s function is frequently used for ρ(e) [88]. It lessens the

influence of the outliers to a certain level, but does not remove it completely. Hampel’s

method is better at reducing the effect of noise with large amplitudes as it can even assign

them zero weight. The difference between the two robust functions and the least squares

function can be seen in Fig.4.1.

The Hampel’s three part re-descending function is defined as

ρ(e) =



e2

2 0 ≤ |e| < ξa,
ξa|e|−ξ2a

2 ξa ≤ |e| < ξb,

ξa

[
ξb+ξc−ξa+ (|e|−ξc)2

ξb−ξc

]
2 ξb ≤ |e| < ξc,

ξa(ξb+ξc)
2 − ξ2a

2 ξc ≤ |e| ,

(5.5)

ψ(e) =
∂ρ(e)

∂e
=


e 0 ≤ |e| < ξa,

sign (e) · ξa ξa ≤ |e| < ξb,
sign(e)·(|e|−ξc)ξa

ξb−ξc ξb ≤ |e| < ξc,

0 ξc ≤ |e| ,

(5.6)

ω(e) =
∂ψ(e)

∂e
=
∂2ρ(e)

∂e2
=


1 0 ≤ |e| < ξa,

0 ξa ≤ |e| < ξb,
ξa

ξb−ξc ξb ≤ |e| < ξc,

0 ξc ≤ |e| ,

(5.7)

where ψ(e) = ∂ρ(e)/∂e is the derivative of the M-function ρ(e), ω(e) = ∂2ρ(e)/∂e2 is the

second derivative of ρ(e), and ξa, ξb, ξc are threshold parameters.

In M-estimation the degree of outlier suppression is regulated by threshold parameters.

The parameters are estimated based on the variance of impulse-free estimation error σ2.
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These can be estimated as ξa = 1.96 · σ̂, ξb = 2.24 · σ̂, ξc = 2.58 · σ̂, and σ̂ can be estimated

using the robust noise variance estimator σ̂ = median
(∣∣yn − yn−1∣∣) / (√2 · 0.6745

)
, where

n = 2, ..., P [119,121].

In order to find the gradient and the Hessian of the robust function ρ(e), we need to

use the chain rule to differentiate with respect to x.

∂f

∂x
=

(
∂e

∂x

)> ∂f
∂e

. (5.8)

Then we obtain

∂e

∂x
=

∂

∂x
(y −Mx) = −M ,

∂f

∂e
= ψ ,

∂f

∂x
= −M>ψ . (5.9)

Similarly for the Hessian we need to find the second derivative with respect to x.

∂2f

∂x2
=

(
∂e

∂x

)> ∂2f
∂e2

∂e

∂x
+

(
∂2e

∂x2

)>
∂f

∂e
, (5.10)

∂2f

∂e2
=

∂ψ

∂e
= ω ,

∂2e

∂x2
=

∂

∂x
(−M) = 0 ,

∂2f

∂x2
= M>ωM . (5.11)

5.1.2 Sparsity Regularizer

The constrained, sparse `p− `2 hyperspectral unmixing task, with 0 < p < 1, is defined as

the optimization problem

min
x

ρ (y −Mx) + λ ‖x‖pp , (5.12)

where λ is the Lagrange multiplier that regulates the sparsity of the solution and y,x,M

are defined as in (5.2). It is possible to rewrite the Lasso objective as a weighted ridge

regression, thus (5.12) becomes

min
x

ρ (y −Mx) + λ ‖Dx‖22 , (5.13)

with D = diag
(
d

1
2

)
, d =

((
x(α−1)

)2
+ ε2

) p
2
−1

,
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where the weights d are calculated using the x(α−1) results from the previous iteration

α− 1. Hence the weighted `2 norm in (5.13) is a first-order approximation to the `p norm

in (5.12). Here, D is a positive diagonal matrix, ε measures the error in the solution for

the pixels in the whole image, and goes to zero as the IRLS algorithm converges. εn for

the nth pixel is a vector of size N × 1, ε covers the whole image s.t.
[
ε>1 , ε

>
2 , . . . , ε

>
P

]>
,

size NP × 1. When the algorithm converges then ε → 0 and x(α−1) ∼= x(α). It follows

that ‖Dx‖22 = ‖x‖pp.
The algorithm proceeds by initializing the weights with ones and then iterating be-

tween: (i) solving the quadratic problem in problem (5.13) and (ii) updating the weight

matrix D. This is a fixed-point iteration for solving the optimization problem (5.12).The

algorithm enjoys two very attractive properties: simplicity and flexibility [116]. The next

section shows that it is easy to accommodate additional p-norm penalty terms, such as a

total-variation regularizer, in the objective function.

5.1.3 Spatial Total Variation Regularizer

We propose to solve the sparse, total variation (TV) regularization problem

min
x

ρ (y −Mx) + λ ‖x‖pp + λTV ‖∇x‖pp , (5.14)

where y,x,M are defined as in (5.2). The TV term is equivalent to placing a hyper-

Laplacian prior on the horizontal and vertical increments of the abundances. The parame-

ter λTV balances the influence of this prior against the sparsity and likelihood terms; larger

values will result in smoother solutions. The differencing operator ∇ computes the spatial

increments of the fractional abundances, i.e. differences of abundances over neighboring

pixels. It can be decomposed into horizontal ∇h and vertical ∇v differences so that ∇ ≡
[∇>h ,∇>v ]>. The differences between horizontal neighbors are ∇hx = [d1,d2, ...,dm]>,

where dn = xn − xnh
, with n and nh indicating a pixel and its horizontal neighbor. ∇v

performs similarly for vertical neighbors. The difference operator ∇ has one 1 and −1 in

each row for the respective vertical or horizontal endmembers. The rest of the entries are

zeros. The distance between the 1 and −1 in the rows of ∇h is the number of endmembers

N . The difference is taken in between xn[i] and xn+1[i] for endmember i and pixels n and

n + 1. For ∇v the distance is cN , where c indicates the number of pixels in each row of

the image. In order to solve the optimization problem in (5.14) the `p norm is rewritten

in terms of a weighted `2 norm, to obtain

min
x

ρ (y −Mx) + λ ‖Dx‖22 + λTV
∥∥Φ∇x∥∥2

2
, (5.15)

with D = diag(d
1
2 ), d =

((
x(α−1)

)2
+ ε2

) p
2
−1
,

Φ = diag(φ
1
2 ), φ =

((
∇x(α−1)

)2
+ η2

) p
2
−1
.
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Here, Φ is a positive diagonal matrix containing the weights, the constant η is a column

vector consisting of small integer values 10−6, which is included in order to avoid division

by zeros, and the weights d and φ are calculated using the x(α−1) results from the previous

iteration α − 1. Note that the weighted `2 norm is equivalent to the `p norm for small

enough η and when x(α−1) = x(α) , that is
∥∥Φ∇x∥∥2

2
= ‖∇x‖pp.

5.2 Reparametrization of Constraints

In order to obtain realistic optimization results we need to constrain the regularization

problem in Eq. (5.14) with sum-to-one and non-negativity constraints such that x ≥ 0

and axn = 1 for n = 1, . . . , P pixels. To address this in an effective and theoretically valid

way we reparametrize the model’s coefficients. Another advantage of reparametrization

is that it allows us to use an unconstrained optimizer such as the trust region algorithm.

We propose to use the unconstrained parameters

ti = log

(
xi

1−
∑N

j=2 xj

)
∈ R (i = 2, . . . , N). (5.16)

Then the original (constrained) parameters are

xi =
eti

1 +
∑N

j=2 e
tj
, (5.17)

where i = 2, . . . , N , and x1 = 1 −
∑N

i=2 xi = 1 −
∑N

i=2
eti

1+
∑N
j=2 e

tj
[81]. The next sections

derive the quantities needed for the trust region optimization.

5.2.1 Gradient

The robust sparse spatially regularized mixing model in Equation (5.14) can be expressed

as

f(x) = ρ (y −Mx) + λ (Dx)> (Dx) + λTV (Φ∇x)> (Φ∇x)

= ρ (y −Mx) + λx>D>Dx+ λTV x
>∇>Φ>Φ∇x , (5.18)

which is maximized with respect to the N−1 unconstrained parameters t = [t2, · · · , tN ]>.

The derivation of the gradient using the chain rule similar to Eq.(5.8) is described below.

First, the partial derivative with respect to x is found. Here the weight matrices D and

Φ are kept fixed since they are computed using the previous iteration value x(α−1). Using
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Eq.(5.9) we have

∂f(x)

∂x
= −M>ψ + λ

(
D>D +

(
D>D

)>)
x

+λTV

(
∇>Φ>Φ∇+

(
∇>Φ>Φ∇

)>)
x

= −M>ψ + 2λD>Dx+ 2λTV∇>Φ>Φ∇x . (5.19)

The partial derivatives with respect to ti for i = 2, . . . , N derived as in (3.13)-(3.15). When

k = 2, . . . , N and k 6= i we have that

∂xk
∂ti

= − etk+ti(
1 +

∑N
j=2 e

tj
)2 . (5.20)

When k = i we have

∂xk
∂ti

=
etk

1 +
∑N

j=2 e
tj
− etk+ti(

1 +
∑N

j=2 e
tj
)2 . (5.21)

For k = 1 the partial derivatives are

∂x1
∂ti

= − eti(
1 +

∑N
j=2 e

tj
)2 . (5.22)

Hence we have the gradient of the function, which is the following

∂f(x)

∂t
=

(
∂xk
∂ti

)> (
−M>ψ + 2λD>Dx+ 2λTV∇>Φ>Φ∇x

)
, (5.23)

where

∂xk
∂ti

=


− eti

(1+
∑N
j=2 e

tj )
2 , for k = 1

− eti+tk

(1+
∑N
j=2 e

tj )
2 , for k = 2, . . . , N & k 6= i

− eti+tk

(1+
∑N
j=2 e

tj )
2 + eti

1+
∑N
j=2 e

tj
, for k = 2, . . . , N & k = i .

(5.24)

This can be also expressed as:

∂f(x)

∂t
=

 − eti

(1+
∑N
j=2 e

tj )
2

− eti+tk

(1+
∑N
j=2 e

tj )
2 + diag

(
eti

1+
∑N
j=2 e

tj

)

> (
−M>ψ + 2λD>Dx

+ 2λTV∇>Φ>Φ∇x
)

(5.25)
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The partial derivatives ∂x/∂t are of dimension N×(N−1),∂f(x)/∂x of dimension N×1,

and ∂f(x)/∂t of dimension (N − 1)× 1; they demand the estimation of N − 1 gradients.

5.2.2 Initial steps for the Hessian

We used the gradient in Eq. (5.23)-(5.24) and the chain rule in Eq.(3.19)-(3.20) to derive

the second partial derivatives of f(x) with respect to ti, where i = 2, . . . , N . Using the

results from Eq.(5.11) and Eq. (5.19) the second order partial derivatives with respect to

x with fixed weights D and Φ are

∂2f(x)

∂x2
= M>ωM + λD>D + λTV∇>Φ>Φ∇ . (5.26)

The second order derivatives with respect to ti follow the derivation shown in Eq.

(3.22)-(3.24). For k = 1 the derivative is

∂2x1
∂t2i

=
2e2ti(

1 +
∑N

j=2 e
tj
)3 − eti(

1 +
∑N

j=2 e
tj
)2 . (5.27)

When k = 2, . . . , N and k 6= i, we have

∂2xk
∂t2i

=
2etk+2ti(

1 +
∑N

j=2 e
tj
)3 − etk+ti(

1 +
∑N

j=2 e
tj
)2 . (5.28)

For k = i, when k = 2, . . . , N

∂2xk
∂t2i

=
2etk+2ti(

1 +
∑N

j=2 e
tj
)3 − 2etk+ti + 2eti(

1 +
∑N

j=2 e
tj
)2 +

eti

1 +
∑N

j=2 e
tj
. (5.29)

Accordingly,

∂2xk
∂t2i

=


2e2ti

(1+
∑N
j=2 e

tj )
3 − eti

(1+
∑N
j=2 e

tj )
2 , for k = 1

2e2ti+tk

(1+
∑N
j=2 e

tj )
3 − eti+tk

(1+
∑N
j=2 e

tj )
2 , for k = 2, . . . , N & k 6= i

2e2ti+tk

(1+
∑N
j=2 e

tj )
3 − 2eti+tk+2e2ti

(1+
∑N
j=2 e

tj )
2 + eti

1+
∑N
j=2 e

tj
, for k = 2, . . . , N & k = i .

(5.30)

The mixed second order derivatives with s 6= i werre derived as in Eq.(3.26)-(3.28).

When k = 1

∂2x1
∂ti∂ts

=
2eti+ts(

1 +
∑N

j=2 e
tj
)3 . (5.31)
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When k = 2, . . . , N , k 6= i & k 6= s,

∂2xk
∂ti∂ts

=
2etk+ti+ts(

1 +
∑N

j=2 e
tj
)3 . (5.32)

When k = i or k = s, such that k = 2, . . . , N ,

∂2xk
∂ti∂ts

=
2etk+ti+ts(

1 +
∑N

j=2 e
tj
)3 − eti+ts(

1 +
∑N

j=2 e
tj
)2 . (5.33)

Ergo, for i 6= s the equations for the mixed second derivatives are

∂2xk
∂ti∂ts

=


2eti+ts

(1+
∑N
j=2 e

tj )
3 , for k = 1

2etk+ti+ts

(1+
∑N
j=2 e

tj )
3 , for k = 2, . . . , N & k 6= i, k 6= s

2etk+ti+ts

(1+
∑N
j=2 e

tj )
3 − eti+ts

(1+
∑N
j=2 e

tj )
2 , for k = 2, . . . , N & k = i or k = s .

(5.34)

5.2.3 The Hessian

These components that form the Hessian matrix of size (N − 1)× (N − 1) are as follows.

∂2f(x)

∂t2i
=

(
∂x

∂ti

)> (
M>ωM + λD>D + λTV∇>Φ>Φ∇

) ∂x
∂ti

+

(
∂2x

∂t2i

)> (
−M>ψ + 2λD>Dx+ λTV∇>Φ>Φ∇x

)
. (5.35)

∂2f(x)

∂ti∂ts
=

(
∂x

∂ti

)> (
M>ωM + λD>D + λTV∇>Φ>Φ∇

) ∂x
∂ts

+

(
∂2x

∂ti∂ts

)> (
−M>ψ + 2λD>Dx+ 2λTV∇>Φ>Φ∇x

)
, (5.36)

where s 6= i, ψ and ω are defined as in Equation (5.6)-(5.7) and

∂xk
∂ti

=


− eti

(1+
∑N
j=2 e

tj )
2 , for k = 1

− eti+tk

(1+
∑N
j=2 e

tj )
2 , for k = 2, . . . , N & k 6= i

− eti+tk

(1+
∑N
j=2 e

tj )
2 + eti

1+
∑N
j=2 e

tj
, for k = 2, . . . , N & k = i

(5.37)
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∂2xk
∂t2i

=


2e2ti

(1+
∑N
j=2 e

tj )
3 − eti

(1+
∑N
j=2 e

tj )
2 , for k = 1

2e2ti+tk

(1+
∑N
j=2 e

tj )
3 − eti+tk

(1+
∑N
j=2 e

tj )
2 , for k = 2, . . . , N & k 6= i

2e2ti+tk

(1+
∑N
j=2 e

tj )
3 − eti+tk+2e2ti

(1+
∑N
j=2 e

tj )
2 + eti

1+
∑N
j=2 e

tj
, for k = 2, . . . , N & k = i

(5.38)

∂2xk
∂ti∂ts

=


2eti+ts

(1+
∑N
j=2 e

tj )
3 , for k = 1

2etk+ti+ts

(1+
∑N
j=2 e

tj )
3 , for k = 2, . . . , N & k 6= i, k 6= s

2etk+ti+ts

(1+
∑N
j=2 e

tj )
3 − eti+ts

(1+
∑N
j=2 e

tj )
2 , for k = 2, . . . , N & k = i or k = s .

(5.39)

The partial derivatives ∂x/∂t are of dimension N × (N − 1), ∂f(x)/∂x of dimension

N × 1; ∂f(x)/∂t of dimension (N − 1)× 1, ∂2x/∂t2i of dimension N × 1, and ∂2x/∂ti∂ts

of dimension N × 1. The second order partial derivatives ∂2f(x)/∂t2 and ∂2f(x)/∂ti∂ts

form the Hessian matrix of size (N − 1)× (N − 1).

5.3 Unmixing algorithm

5.3.1 Trust region optimization

The optimization of the full function f(x) can be challenging and/or time consuming.

Trust region optimization uses an approximation of f(x) that closely mirrors the function

f in a fixed region ∆ (radius of the trust region) close to a point x. The simpler function

m makes the calculations more easily tractable. To find step size b for each iteration we

minimize the approximate function m in the trust region [52],

min
b
m(b) s.t. b ∈ ∆. (5.40)

The current estimate is updated to x + b if the trial step b has a lower function value.

Alternatively the trust region radius ∆ is changed, and the procedure is rerun.

The first and second order Taylor terms are frequently used for approximating the

function f [114, 117]. An extension of the standard method is to broaden the trial step

search to the span of g and B−1g, which makes it more refined. Consequently we have an

accurate and efficient method [51].

min
b
m(b) = f + g>b+

1

2
b>Bb (5.41)

s.t. ‖b ‖ ≤ ∆, b ∈ span[g,B−1g].

Trust region algorithm has many advantages, that includes being reliable, robust and

having very strong convergence properties [52]. The iterative method of trust region

optimization can be seen in Algorithm 3 on page 61.
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5.3.2 Numerical algorithm of ROBROC

The robust unmixing algorithm including reparametrization of constraints along with

sparsity and total variation regularizers is optimized by the unconstrained trust region

algorithm. The pseudocode of the ROBROC algorithm can be seen in Alg.6. To begin

with, the algorithm initializes the constrained parameters by assigning them equal frac-

tional abundance values according to the sum-to-one constraint (step 1). These are then

reparametrized to get the working parameters t. In step 3, within the main loop, the un-

constrained working parameters are converted back to the constrained ones for calculating

the weights for the regularization terms. By definition the weightsD and Φ are positive di-

agonal matrices with the values
((
x(α−1))2 + ε2

)(p/2−1)/2
and

((
∇x(α−1))2 + η2

)(p/2−1)/2
,

respectively, on the diagonal. This is fixed-point iteration using the iterate x(α−1) to up-

date the weights for iteration α. When ε = η = 0 and x(α−1) = x(α)then we obtain

‖x‖pp+‖∇x‖pp = ‖Dx‖22 +
∥∥Φ∇x∥∥2

2
. ∇ is an operator that enables us to calculate the hor-

izontal and vertical differences in the fractional abundances between neighbouring pixels

in the image. η is a column vector consisting of fixed small integers of size ≈ 10−6. It is

added to absolute value of ∇x with the purpose of avoiding infinite values in step 6.

Algorithm 6 Pseudocode of ROBROC.

Task: Solve ρ (y −Mx) + λ ‖x‖pp + λTV ‖∇x‖pp, using reparametrization of coefficients

t = log(x/(1−
∑N

j=2 xj)). Find x.
Input: M0 : L×N spectral library, Y : L× P hyperspectral data matrix, λ : sparsity
regularization parameter, λTV : spatial regularization parameter, p : quasi-norm.
Output: X : N × P fractional abundance matrix w.r.t. M0.

Initialization:

1: x← [1, ..., 1]/N , t = log

(
x

1−
∑N
j=2 xj

)
.

2: ε← [1, ..., 1].
Iteration α:

3: x = et

1+
∑N
j=2 e

tj
.

4: d←
((
x(α−1))2 + ε2

) p
2
−1
.

5: D = diag(d
1
2 ).

6: φ =
((
∇x(α−1))2 + η2

) p
2
−1

.

7: Φ = diag(φ
1
2 ) .

8: x(α)←arg min
x

∑
ρ (y −Mx) + λ ‖Dx‖22 + λTV

∥∥Φ∇x∥∥2
2

s.t. t = log

(
x

1−
∑N
j=2 xj

)
.

9: εn ← min
(
εn,

sort(xn)q+1

N

)
.

Post processing:
10: x = et

1+
∑N
j=2 e

tj
.
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In step 9, the function sort(xn)q+1 orders the absolute values of the current abundance

estimates xn in each pixel in a decreasing sequence and chooses the (q+1)th number for a

predetermined integer q. The abundance vector x is q-sparse if and only if r(x)q = 0 [34].

Therefore the information about the sparsity of xn at each iteration is transferred into the

value of εn and the updated weights.

The optimization problem in step 8 of Alg. 6 has a quadratic objective. We can use

classic programming techniques, similar to the ones represented in [51], to solve it. We use

the reparametrization along with the function
∑
ρ (y −Mx) + λ ‖Dx‖22 + λTV

∥∥Φ∇x∥∥2
2

to find the function value, the gradient and the Hessian of the optimization problem.

The derived gradient can be seen in Equations (5.23)-(5.24) and the Hessian in Equa-

tions (5.35)-(5.39). The function value, gradient and Hessian are employed within the

trust region optimization of the objective function to estimate t at each iteration. The

iterative process continues until the algorithm converges. Finally in step 10, the uncon-

strained working parameters t are converted back to the constrained fractional abundance

parameters x, which is the final solution of the estimation.

The purpose of the reparametrization is to take the constraints into account and to

be able to carry out the estimation on real numbers. The sparsity constraint forces the

abundances x to zero. If xi = 0, then the reparametrized parameter ti = −∞ in Eq. (5.16),

that can create instability in the optimization. This issue is avoided by the setup of the

trust region algorithm that is bounded by definition [52], which is one of the advantages

of the algorithm. As the optimization is only solved within the trust region, then ti is

bounded and would never reach −∞. It follows that the trust region algorithm is pushing

the xi towards zero, but never exactly equating them to zero. However, the estimated

coefficients that are very close to zero can be effectively treated as zero, thus we still

achieve sparse results.

With regard to the computational complexity of the ROBROC algorithm, the most

costly step is the computation of the Hessian, which has the complexity of O(PN2). Hence

we can generalize that this is the computational complexity at each iteration. However,

due to the fast convergence of the trust region algorithm, the method is efficient.

5.4 Experimental results

In this section, we examine the performance of the robust sparse spatially regularized

unmixing algorithm with reparametrization of constraints (ROBROC) on both simulated

and real world data. We use the simulated data experiments to evaluate how the proposed

algorithm performs quantitatively compared to other state-of-the-art algorithms, and the

real satellite data to show qualitative performance results on real hyperspectral data.

For the simulated data experiments, the abundances are known, hence we used both

the signal to reconstruction error (SRE) and the root mean square error (RMSE) to

assess to quality of reconstruction of the image. SRE is defined in decibels: SRE(dB)
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= 10 log10

(
E
[
‖x‖22

]
/E
[
‖x− x̂‖22

])
. Here x contains the true endmember fractional

abundance values, and x̂ the estimated fractional abundance values. A higher value for

SRE indicates a better reconstruction of the image. Average root mean square error can be

calculated for the image in the following way: RMSE=

√
1
NP

P∑
n=1
‖xn − x̂n‖2. For RMSE,

a lower value signifies a better unmixing performance.

Comparison with other algorithms

We compared the proposed ROBROC algorithm to two linear least squares based fully

constrained algorithms to see how the robust method enhances performance. The meth-

ods are: Fully Constrained Sparse Unmixing via variable Splitting and Augmented La-

grangian (SUnSAL-FC) [28], Iteratively Reweighted Least Squares (IRLS) [35]. We also

compared our approach with other recent robust/bilinear methods: Fully Constrained

Correntropy-based Unmixing by Variable Splitting and Augmented Lagrangian (CUSAL-

FC) [97], Coordinate Decent Algorithm with Mismodeling Effects (CDA-ME) [93], Ro-

bust Linear Mixing Model (rLMM) [92], Block Coordinate Descent Alternating Direction

Method of Multipliers (BCD/ADMM) [99], Unsupervised Generalized Normal Composi-

tional Model (UsGNCM) [98].

Simulated Data

In the first simulated data experiment we used the USGS digital spectral library. It

consists of the spectral reflectance of hundreds of materials measured in the lab. These

spectral reflectance values have 224 bands that lie uniformly in the interval 0.4-2.5 µm.

We created a 75×75 simulated image with 224 spectral bands for each pixel with five

randomly selected spectral signatures from the spectral library, see Fig. 2.1. The data

were generated using a linear mixing model, and the abundance’s sum constraint was

enforced on each pixel. The true abundance of the five endmembers in the simulated

image are displayed in Fig. 2.2. The simulated data were contaminated with white noise

as well as spectrally correlated noise. The signal-to-noise ratio was set to 40dB, 30dB and

20dB. We set the maximum number of iterations to 400, and the number of endmembers

after the MUSIC library pruning to 20 for these experiments. For this experiment we did

not display the results of CUSAL-FC and UsGNCM due to the methods taking excessively

long to compute and not getting presentable results respectively.

The simulated hyperspectral image in Fig. 2.2 was used to assess the performance

of different sparse unmixing algorithms. The quantitative unmixing results for different

methods are displayed in Table 5.1. The Fig. 5.1 shows the abundance maps calculated

using the optimal parameter values for λ, λTV and p by IRLS, SUnSAL-FC, CDA-ME,

rLMM, BCD/ADMM and ROBROC, for SNR= 40. We used five-fold cross-validation

to find the optimal tuning parameters. The optimal parameter values were p = 0.5,
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λ = λTV = 10−4 for SNR= 40 and 10−4 for SNR= 30, 20.

Table 5.1: Comparison of ROBROC at different noise levels

Method
SNR=40 SNR=30 SNR=20

SRE RMSE SRE RMSE SRE RMSE

IRLS 8.59 11.48 5.60 15.68 1.53 24.60
SUnSAL-FC 11.13 9.98 6.02 16.92 2.23 24.03
CDA-ME -15.30 231.85 -13.44 185.72 -16.33 261.49
rLMM 0.05 37.53 0.05 37.53 0.04 37.53
BCD/ADMM 2.27 29.37 2.38 28.41 -3.13 37.26
ROBROC 14.48 6.94 12.51 7.54 5.88 14.86

The fractional abundance maps in Fig. 5.1 show that the CDA-ME and rLMM methods

did not perform well as there was too much noise in the images. Although the least-squares

methods IRLS and SUnSAL-FC displayed significant noise in the abundance maps as well,

they appeared to identify the square regions with common fractional abundances in the

image better. These results were supported by the quantitative performance measures

in Table 5.1 with IRLS and SUnSAL-FC having higher SRE and lower RMSE values.

The abundance maps of BCD/ADMM algorithm showed much less noise and appeared to

allocate similar fractional abundances to neighboring pixels more consistently. However,

the algorithm attained a lower SRE than IRLS and SUnSAL-FC, which indicates that it

assigned skewed proportions to large areas of pixels. The results of the ROBROC algorithm

showed some noise as well, but it was much less severe than for other methods. Also, it

managed to correctly identify most square zones of common fractional abundance in the

simulated image. This was confirmed by the best quantitative performance measures seen

in Table 5.1.

The performance of the methods with increased noise can be seen in Fig. 5.2 and Fig.

5.3. The SNR was lowered to 30dB and 20dB in these images respectively. As expected,

all algorithms fared worse in noisier conditions. Most algorithms failed to identify any

regularity for endmember 3 when SNR is 20dB, only rLMM and ROBROC showed some

identification of the square areas. Also, rLMM attained higher SRE than BCD/ADMM in

this case. The abundance maps of rLMM were much noisier than ROBROC though, and

the algorithm did not locate as many square regions. The ROBROC method acquired the

highest SRE and lowest RMSE results for the noisier scenarios.

The SRE calculated for each method of unmixing was an average for the image, i.e.

for the 75×75 image it was an average of 5625 pixels. However, to see the variance

of the performance from pixel to pixel we calculated the SRE for individual pixels and

acquired the standard deviation for each method. These can be seen in Fig. 5.4 together

with the best SRE results for three different noise levels. The variance of the quality

of unmixing results for CDA-ME, rLMM, and ROBROC increased with noise. This was

especially severe for CDA-ME, where the range of values became very wide. For IRLS and
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Figure 5.1: Fractional abundance maps obtained by IRLS, SUnSAL-FC, CDA-ME, rLMM,
BCD/ADMM, and ROBROC for endmember (EM) 1 in (a), EM 2 in (b), EM 3 in (c),
and EM 4 in (d). SNR=40dB.

SUNSAL-FC, the standard deviation for higher noise levels was lower than for SNR=40.

In general, ROBROC showed the best results as the SRE values were the highest. Also,

the standard deviation of values was fairly small, especially in scenarios with less noise.
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Figure 5.2: Fractional abundance maps obtained by IRLS, SUnSAL-FC, CDA-ME, rLMM,
BCD/ADMM, and ROBROC for endmember (EM) 1 in (a), EM 2 in (b), EM 3 in (c),
and EM 4 in (d). SNR=30dB.

Monte Carlo simulation

This section evaluates the performance of the proposed fully constrained robust unmixing

method and compares it with other state-of-the-art methods. Since the signal to noise ratio

(SNR) in the images generally affects the unmixing results, we performed the experiments

using three different noise levels SNR ∈ {10, 20, 30}. The number of endmembers present

in the spectrum of a pixel can also influence the outcome. Hence, we considered three
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Figure 5.3: Fractional abundance maps obtained by IRLS, SUnSAL-FC, CDA-ME, rLMM,
BCD/ADMM, and ROBROC for endmember (EM) 1 in (a), EM 2 in (b), EM 3 in (c),
and EM 4 in (d). SNR=20dB.

different levels of endmembers mixed in the pixel such that N ∈ {3, 6, 9}.

For the simulated data experiments we used the endmember signatures from the USGS

digital spectral library. It consists of the spectral reflectance of hundreds of materials

measured in the lab. These spectral reflectance values have 224 bands that lie uniformly

in the interval 0.4− 2.5µm. The chosen signatures can be seen in Fig.2.10. We created a

50 × 50 image using the LMM in Eq.(1.1). Then we added Gaussian noise such that the
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Figure 5.4: Individual SRE box-plots for three different noise levels for (a) IRLS, (b)
SUnSAL-FC, (c) CDA-ME, (d) rLMM, (e) BCD/ADMM, (f) ROBROC.

noise level varies across the spectral bands. Then the Dirichlet distribution was used for

the uniform generation of the fractional abundance vectors x as in [97,98].

The proposed ROBROC algorithm has three adjustable parameters: λ, λTV and p.

As the performance of the model depends on the choice of these values, we need a way to

select them. Cross-validation (CV) is commonly used for this task, however standard CV

uses the mean squared error (MSE) with a squared objective. This means that large errors

are given significantly more weight, and the performance results are skewed. Therefore,

standard CV is not suitable for robust estimators. Instead of the MSE we used a robust

loss function (RLF) defined by: RLF = 1 − e−|y−ŷ|. Here y is the image data, and ŷ is

the estimated image data calculated using the estimated fractional abundances x̂ and the

spectral libraryM . We performed five-fold robust RLF-CV with parameter values ranging

from −1 to −5 for log10(λ) and log10(λTV ); and values from 0.1 to 1 with an interval of

0.1 for p. The optimal parameter values for the simulated data were λ = λTV = 10−3,

p = 0.5.

The unmixing results for various SNR levels and different numbers of endmembers

can be found in Table 5.2−5.4. The displayed performance measures were averages over

10 Monte-Carlo realizations for the simulated image. The CDA-ME algorithm had good

image reconstruction when there was only a small number of endmembers and high signal-

to-noise ratio, but it struggled when the number of endmembers in a pixel increased to

6 or higher. CUSAL-FC performed well for all endmember numbers and SNR levels,

but it achieved the best unmixing result only in one instance. The least squares based

method SUnSAL-FC mostly performed just slightly worse than CUSAL-FC, and IRLS,

another least squares method, showed even worse unmixing. The results of the rLMM,

BCD/ADMM and UsGNCM unmixing techniques were weak compared to other methods.

The proposed robust algorithm ROBROC showed great performance across all lower SNR

levels and all endmember numbers, and acquired the best SRE and RMSE values for most

cases. In the few instances where other methods attained a better performance value,

ROBROC was close second. The only time ROBROC fell behind other methods was

when the SNR was the highest, suggesting that the method performs better in noisier
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environments.

Table 5.2: Comparison of unmixing performance of ROBROC with various SNR, N=3

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

IRLS 14.74 0.12 6.32 0.08 13.68 0.18 7.15 0.15
SUnSAL-FC 29.43 0.18 1.13 0.02 27.13 0.31 1.39 0.05
CUSAL-FC 29.44 0.18 1.13 0.02 27.26 0.29 1.38 0.04
CDA-ME 29.84 4.45 0.92 0.54 28.79 0.65 0.94 0.10
rLMM 4.80 1.24 19.31 2.66 4.85 1.19 19.13 2.57
BCD/ADMM 27.92 0.14 1.29 0.02 26.52 0.42 1.44 0.06
UsGNCM 12.83 0.14 7.73 0.13 13.11 0.15 7.48 0.14
ROBROC 20.47 0.89 3.28 0.32 27.34 1.39 1.36 0.15

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

IRLS 9.34 0.36 11.90 0.53 8.95 0.45 11.98 0.71
SUnSAL-FC 19.94 0.69 3.39 0.30 11.62 0.73 8.94 0.77
CUSAL-FC 19.65 0.26 3.11 0.12 11.99 0.40 7.95 0.42
CDA-ME 20.93 0.49 2.53 0.18 12.95 0.97 7.29 1.00
rLMM 2.63 4.98 27.88 36.04 -14.99 16.73 1324.8 3232.8
BCD/ADMM 6.07 0.71 16.34 1.12 1.62 0.07 23.44 0.24
UsGNCM 9.17 0.24 11.99 0.37 4.90 1.35 18.62 2.20
ROBROC 21.04 0.49 3.02 0.31 13.52 0.38 7.20 0.31

Table 5.3: Comparison with various SNR, N=6

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

IRLS 7.93 0.11 7.39 0.16 6.04 0.30 9.77 0.39
SUnSAL-FC 26.84 0.52 0.96 0.06 18.42 0.67 2.57 0.20
CUSAL-FC 27.07 0.54 0.91 0.06 18.59 0.64 2.52 0.19
CDA-ME 18.34 0.64 2.53 0.19 10.13 0.67 6.50 0.55
rLMM 2.89 0.22 11.80 0.35 2.75 0.19 11.91 0.36
BCD/ADMM 15.58 0.21 4.01 0.08 9.73 0.63 6.58 0.48
UsGNCM 11.63 0.95 4.48 0.60 8.71 1.00 7.08 0.76
ROBROC 18.43 0.98 2.72 0.31 19.76 0.54 2.21 0.17

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

IRLS 3.09 0.10 13.79 0.39 3.16 0.20 12.07 0.49
SUnSAL-FC 10.41 0.51 6.13 0.24 3.91 0.28 11.20 0.47
CUSAL-FC 11.33 0.21 5.63 0.16 4.83 0.25 10.66 0.31
CDA-ME 4.53 0.21 11.67 0.44 6.07 0.51 9.45 0.70
rLMM -0.53 9.45 79.53 214.59 -23.79 18.80 4537.2 12418
BCD/ADMM -1.92 0.18 21.98 0.63 -3.68 0.09 22.56 0.50
UsGNCM 4.43 0.52 11.57 1.03 -2.29 0.98 26.40 4.19
ROBROC 11.80 0.26 5.20 0.17 5.33 0.22 9.52 0.22
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Table 5.4: Comparison with various SNR, N=9

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

IRLS 2.81 0.07 8.76 0.05 1.72 0.12 9.58 0.19
SUnSAL-FC 22.95 0.43 1.22 0.07 14.01 0.41 3.15 0.20
CUSAL-FC 22.68 0.40 1.28 0.07 14.05 0.45 3.18 0.23
CDA-ME 13.99 0.41 3.09 0.16 7.10 0.29 6.25 0.29
rLMM 2.43 0.10 8.77 0.25 2.18 0.09 8.96 0.19
BCD/ADMM 10.86 0.20 4.78 0.09 6.59 0.32 6.63 0.45
UsGNCM 11.07 0.24 3.50 0.19 6.27 1.16 6.98 1.70
ROBROC 17.85 0.56 3.00 0.08 15.00 0.72 2.83 0.35

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

IRLS 0.03 0.07 12.60 0.24 -0.31 0.13 10.76 0.37
SUnSAL-FC 7.04 0.28 5.95 0.32 1.75 0.27 8.85 0.17
CUSAL-FC 7.24 0.28 6.13 0.35 2.72 0.18 8.16 0.23
CDA-ME 2.69 0.16 9.41 0.31 2.76 0.38 8.63 0.56
rLMM 1.79 0.24 9.27 0.70 -24.01 17.14 1349.3 2625.9
BCD/ADMM -3.06 0.20 18.48 0.46 -5.91 0.06 20.79 0.99
UsGNCM 2.52 0.22 11.54 0.89 -1.84 2.93 22.33 8.76
ROBROC 8.22 0.22 5.22 0.14 2.81 0.20 8.04 0.14

The average running times over 10 Monte-Carlo realizations of the simulated image

can be seen in Table 5.5. The table gives an indication of the speed of the algorithms, but

does not show everything. According to the table the proposed method ROBROC was one

of the slowest, similar to the UsGNCM algorithm. However, as mentioned beforehand, we

could not get results for the CUSAL-FC and UsGNCM algorithms for the first simulated

image, whereas ROBROC showed good performance. The unmixing by the UsGNCM

could not be performed due to too large matrices having to be created by Matlab. This

indicates that the computational time of the algorithm would have been much slower if it

would have been possible to execute. In addition, we let the unmixing of the CUSAL-FC

run for two weeks before giving up due to time constraints. Hence, although CUSAL-FC

showed a fast computational time in Table 5.5, it is not a feasible option when the image

and library size is large.

German Alpine foothills

The Environmental Mapping and Analysis Program (EnMAP) German Alpine foothills

image scene was used to test the performance of the proposed algorithm. The hyper-

spectral image covers the spectral range of 420nm−2460nm that divides into 244 spectral

bands. We use a 150 × 150 pixel sub-image from the scene, see Fig. 2.11. We used the

N-FINDR algorithm to identify the spectral signatures of the pure endmembers in the

image. The optimal parameter values from RLF-CV for the data were λ = λTV = 10,
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Table 5.5: ROBROC average running times in 1000s of seconds

Method N=3 N=6 N=9

IRLS 0.0017 0.0005 0.0009
SUnSAL-FC 0.0007 0.0024 0.0019
CUSAL-FC 0.0913 0.1600 0.1912
CDA-ME 0.0363 0.0615 0.0652
rLMM 0.0999 0.1507 0.1560
BCD/ADMM 0.1263 0.2314 0.2156
UsGNCM 1.6689 2.9029 3.0337
ROBROC 1.4371 3.2533 7.9527

p = 0.3. The resulting estimated fractional abundance maps of the Alpine scene for the

proposed method and other robust/bilinear algorithms can be found in Fig. 5.5.

The CUSAL-FC, UsGNCM and ROBROC algorithms managed to separate the areas

of grass in the image well, and assigned high fractional abundances to these pixels. The

proposed ROBROC method identified the water zones in the Alpine image the best. The

CUSAL-FC, CDA-ME and UsGNCM appeared to determine water fairly well, but there

were certain areas, specifically in the south-east side of the image, where they appeared

to have some difficulty. The rLMM and BCD/ADMM did not display a very good perfor-

mance for the Alpine image in general. Also, the BCD/ADMM algorithm assigned values

larger than 1 to some abundances, which is not realistic. None of the methods, except

ROBROC, performed well in finding the abundance of the forest.

Jasper Ridge

We used the Jasper Ridge hyperspectral image for unmixing, see Fig. 2.13. The image has

224 spectral bands in the 380nm−2500nm range with a spectral resolution up to 9.46nm.

The low SNR and water absorption bands were removed, thus unmixing was performed

on 198 remaining bands. The N-FINDR algorithm was used to extract the endmember

signatures from the image scene. The optimal parameter values found by RLF-CV were

λ = 10−1,λTV = 10−2, p = 0.4. The fractional abundance maps for tree, water, soil, and

road for the proposed algorithm as well as other robust/bilinear methods are shown in

Fig. 5.6.

The CUSAL-FC, RLMM, UsGNCM and ROBROC methods determined the areas

of water in the Jasper image very distinctly, consistently assigning them high fractional

abundance values. The BCD/ADMM algorithm seemed to find the water areas as well,

but there was a lot of noise in the rest of the image. The estimation of tree and soil

abundance was fairly similar for all methods. The road areas appeared to be more difficult

to determine as most methods were not able to model this. The CDA-ME algorithm falsely

identified the shoreline of water as road. ROBROC and CUSAL-FC managed to find road

areas the best.
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Figure 5.5: Fractional abundance maps of the German Alpine foothills hyperspectral data
obtained for forest in (a), water in (b), and grass in (c).

5.5 Discussion

Sparse regression techniques based on various least squares methods have gained popu-

larity for spectral unmixing. However, the impulsive noise environment of hyperspectral

images makes it difficult to handle outliers. Also, in order to obtain realistic estimates for

the fractional abundances of endmembers, it is essential to account for sum-to-one and

non-negativity constraints, which can be difficult as it makes the optimization problem

non-convex. Due to the characteristics of hyperspectral data, it is advantageous to enforce

sparsity on the estimates and take the spatial correlation into account.
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Figure 5.6: Fractional abundance maps of the Jasper Ridge hyperspectral data obtained
for tree in (a), water in (b), soil in (c), and road in (d).

In this chapter, we introduced a new algorithm called ROBROC to overcome these

restraints and employ a robust model. We introduced a reparametrization of coefficients,

to account for the sum-to-one and non-negativity constraints. We also employed a spatial

total variation regularization term, and enforced sparsity on the estimates via `p norm.

Even though the optimization problem is non-convex, the trust region optimization based

algorithm ROBROC handled the situation well; it solved a sequence of smoothed robust

sub-problems instead of directly solving the non-convex `p norm. Experimental results on

simulated and real hyperspectral data showed that the robust M-estimate method with

reparametrization of coefficients gave an improved performance, compared to its least
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squares counterparts, and other robust and bilinear methods.

Comparison

The IRRF algorithm presented in the previous chapter differs from ROBROC from the way

the constraints were handled and by the optimization algorithm used. IRRF enforced con-

straints in a heuristic manner using renormalization and projection onto the non-negative

orthant, which kept the method more simple and flexible. The reparametrization used

for ROBROC increased the computational complexity of the algorithm which resulted in

slower processing times. The unmixing performance of ROBROC and IRRF varied. Their

performance results for the Monte Carlo simulation can be seen in the summary Tables

5.6-5.8, that consolidate the results for the two methods. The unmixing results of RO-

BROC and IRRF are generally fairly similar. The largest difference in their performance

is for high SNR ratio and low endmember number. IRRF is much superior in this case.

When looking at the obtained fractional abundance maps of the endmembers in Fig. 4.6

and 5.5 of the Alpine image, ROBROC appeared to identify the water areas better. How-

ever, the abundance maps for the Jasper Ridge hyperspectral image (Fig. 4.7 and 5.6) and

the simulated hyperspectral image (Fig. 4.2-4.4 and Fig. 5.1-5.3 ) demonstrated mostly

better image reconstruction by the IRRF method. Both algorithms have their benefits

and preferred scenarios.

Table 5.6: Comparison of unmixing performance of IRRF and ROBROC, N=3

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

IRRF 37.99 0.39 0.41 0.02 30.72 0.46 0.92 0.05
ROBROC 20.47 0.89 3.28 0.32 27.34 1.39 1.36 0.15

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

IRRF 20.91 0.50 3.00 0.19 9.52 0.15 11.01 0.23
ROBROC 21.04 0.49 3.02 0.31 13.52 0.38 7.20 0.31

Table 5.7: Comparison with various SNR, N=6

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

IRRF 28.12 0.52 0.80 0.04 19.27 0.38 2.26 0.10
ROBROC 18.43 0.98 2.72 0.31 19.76 0.54 2.21 0.17

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

IRRF 8.27 0.17 6.75 0.17 6.14 0.09 7.63 0.13
ROBROC 11.80 0.26 5.20 0.17 5.33 0.22 9.52 0.22
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Table 5.8: Comparison with various SNR, N=9

Method
SNR=40 SNR=30

SRE std RMSE std SRE std RMSE std

IRRF 23.08 0.34 1.19 0.11 13.59 0.68 3.33 0.28
ROBROC 17.85 0.56 3.00 0.08 15.00 0.72 2.83 0.35

Method
SNR=20 SNR=10

SRE std RMSE std SRE std RMSE std

IRRF 7.12 0.17 5.88 0.14 3.59 0.21 6.64 0.22
ROBROC 8.22 0.22 5.22 0.14 2.81 0.20 8.04 0.14



6

Summary and concluding remarks

Sparse regression techniques based on various least squares methods have gained popu-

larity for spectral unmixing. Despite the success that sparse unmixing has had in certain

applications, some of the following limitations need to be considered: enforcing the sum-

to-one and non-negativity constraints on the model’s parameters is crucial for obtaining

realistic results; due to the substantial size of the spectral libraries, using the classical `1

norm regularization to enforce sparsity is often not sufficient; sparse unmixing methods do

not account for spatial correlation in the images; the magnitude of the spectral libraries

and the high mutual coherence limit the success of sparse unmixing algorithms; and the

impulsive noise environment of hyperspectral images makes it difficult to handle outliers.

We introduced four new algorithms that tackled the above-mentioned limitations and

overcame the problems. The main contributions are as follows:

• We proposed to use the `p norm to enforce further sparsity on the fractional abun-

dance estimates. This non-differentiable problem was solved by an approximation of

a weighted 2-norm that integrated easily into our iterative algorithmic framework.

• We employed a spatial total variation regularizer to account for the spatial correlation

in the images.

• We included a library reduction step similar to the MUSIC array processing algo-

rithm, that could be used when the number of endmembers was large.

• We introduced a reparametrization of coefficients, to account for the sum-to-one and

non-negativity constraints.

• We proposed a robust M-estimate function that adaptively assigned reduced or even

zero weights to noisy bands. This reduced the effect of outliers and made the model

more insensitive to noise.
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Our experimental results support the benefits of the proposals. Specifically, repara-

metrization of the model’s coefficients was an effective and efficient way of taking the

constraints into account. Changing the `1 norm on sparsity to `p norm with 0 < p < 1

improved the unmixing performance, and including spatial information via the TV term

enhanced the results. In situations when the endmember number was low, the usage of the

sparsity promoting `p norm was still beneficial. The library reduction step made the com-

putation faster and increased the quality of the reconstruction of the images significantly

when the initial library size was huge. The unmixing algorithms performed well, even

when there was no spectral library available, and the endmembers were extracted from

the data by an endmember extraction algorithm. Even though the optimization prob-

lem was non-convex, the IRLS and trust region optimization based algorithms handled

the situation well. They solved a sequence of smoothed sub-problems instead of directly

minimizing the non-convex `p optimization problem. Experimental results on simulated

and real hyperspectral data showed that the introduced sparse total variation regularized

hyperspectral unmixing methods gave an improved performance, compared to its least

squares counterparts, and other robust and bilinear methods. Finally, the proposed al-

gorithms showed improved performance in noisy situations as compared to other similar

unmixing algorithms.

We recommend the use of the different introduced methods according to their strengths.

The MUSIC-IRLSTV and ROCSSUM algorithm are more appropriate for images that do

not contain many outliers since they are based on the least squares mixing model. ROC-

SSUM performs better in noisy situations when the spectral library and image size is

smaller, or when the speed of computation is not important. The MUSIC-IRSLTV is less

complex and provides much faster computational results, and it can be used for larger

images as well as in circumstances when speed matters. The IRRF and ROBROC meth-

ods can be adopted when there are outliers present in the data. The robust methodology

included in the algorithms can handle noisy bands and outliers more competently. For

better unmixing performance, it would make sense to determine the presence of outliers

by examining the image data before choosing to use robust methods. The ROBROC

algorithm generally provides a better unmixing result for lower signal-to-ratio scenarios.

However, as the computational complexity of the method is higher, it is more suitable

for use on smaller images. The IRRF algorithm on the other hand, is great for unmixing

larger images as well as providing computational results in a timely manner.
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