3,806 research outputs found

    Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring

    Get PDF
    How to fuse multi-channel neurophysiological signals for emotion recognition is emerging as a hot research topic in community of Computational Psychophysiology. Nevertheless, prior feature engineering based approaches require extracting various domain knowledge related features at a high time cost. Moreover, traditional fusion method cannot fully utilise correlation information between different channels and frequency components. In this paper, we design a hybrid deep learning model, in which the 'Convolutional Neural Network (CNN)' is utilised for extracting task-related features, as well as mining inter-channel and inter-frequency correlation, besides, the 'Recurrent Neural Network (RNN)' is concatenated for integrating contextual information from the frame cube sequence. Experiments are carried out in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Experimental results demonstrate that the proposed framework outperforms the classical methods, with regard to both of the emotional dimensions of Valence and Arousal

    Towards the recognition of the emotions of people with visual disabilities through brain-computer interfaces

    Get PDF
    This article belongs to the Section Intelligent Sensors.A brain&-computer interface is an alternative for communication between people and computers, through the acquisition and analysis of brain signals. Research related to this field has focused on serving people with different types of motor, visual or auditory disabilities. On the other hand, affective computing studies and extracts information about the emotional state of a person in certain situations, an important aspect for the interaction between people and the computer. In particular, this manuscript considers people with visual disabilities and their need for personalized systems that prioritize their disability and the degree that affects them. In this article, a review of the state of the techniques is presented, where the importance of the study of the emotions of people with visual disabilities, and the possibility of representing those emotions through a brain&-computer interface and affective computing, are discussed. Finally, the authors propose a framework to study and evaluate the possibility of representing and interpreting the emotions of people with visual disabilities for improving their experience with the use of technology and their integration into today's society.This work was supported by the Consejo Nacional de Ciencia y Tecnología CONACyT, through the number 709656 and by the Research Program of the Ministry of Economy and Competitiveness—Government of Spain, (DeepEMR project TIN2017-87548-C2-1-R)

    A Review on EEG Signals Based Emotion Recognition

    Get PDF
    Emotion recognition has become a very controversial issue in brain-computer interfaces (BCIs). Moreover, numerous studies have been conducted in order to recognize emotions. Also, there are several important definitions and theories about human emotions. In this paper we try to cover important topics related to the field of emotion recognition. We review several studies which are based on analyzing electroencephalogram (EEG) signals as a biological marker in emotion changes. Considering low cost, good time and spatial resolution, EEG has become very common and is widely used in most BCI applications and studies. First, we state some theories and basic definitions related to emotions. Then some important steps of an emotion recognition system like different kinds of biologic measurements (EEG, electrocardiogram [EEG], respiration rate, etc), offline vs online recognition methods, emotion stimulation types and common emotion models are described. Finally, the recent and most important studies are reviewed

    Increasing associative plasticity in temporo-occipital back-projections improves visual perception of emotions

    Get PDF
    The posterior superior temporal sulcus (pSTS) is a critical node in a network specialized for perceiving emotional facial expressions that is reciprocally connected with early visual cortices (V1/V2). Current models of perceptual decision-making increasingly assign relevance to recursive processing for visual recognition. However, it is unknown whether inducing plasticity into reentrant connections from pSTS to V1/V2 impacts emotion perception. Using a combination of electrophysiological and neurostimulation methods, we demonstrate that strengthening the connectivity from pSTS to V1/V2 selectively increases the ability to perceive facial expressions associated with emotions. This behavior is associated with increased electrophysiological activity in both these brain regions, particularly in V1/V2, and depends on specific temporal parameters of stimulation that follow Hebbian principles. Therefore, we provide evidence that pSTS-to-V1/V2 back-projections are instrumental to perception of emotion from facial stimuli and functionally malleable via manipulation of associative plasticity. Temporo-occipital areas are involved in perceiving emotional faces

    Evaluation Of Automated Eye Blink Artefact Removal Using Stacked Dense Autoencoder

    Get PDF
    The presence of artefacts in Electroencephalograph (EEG) signals can have a considerable impact on the information they portray. In this comparative study, the automated removal of eye blink artefacts using the constrained latent representation of a stacked dense autoencoders (SDAE) and comparing its ability to that of the manual independent component analysis (ICA) approach was evaluated. A comparative evaluation of 5 stacked dense autoencoder architectures lead to a chosen architecture for which the ability to automatically detect and remove eye blink artefacts were both statistically and humanistically evaluated. The ability of the stacked dense autoencoder was statistically evaluated with the manual approach of ICA using the correlation coefficient, a comparative affect on the SNR using both approaches and a humanistic evaluation using visual inspections of the components of the stacked dense autoencoder reconstruction to that of the post ICA reconstruction where an inverse RMSE allowed for a further statistical evaluation of this comparison. It was found that the stacked dense autoencoder was unable to reconstruct random signal segments in any meaningful capacity when compared to that of ICA

    Chapter From the Lab to the Real World: Affect Recognition Using Multiple Cues and Modalities

    Get PDF
    Interdisciplinary concept of dissipative soliton is unfolded in connection with ultrafast fibre lasers. The different mode-locking techniques as well as experimental realizations of dissipative soliton fibre lasers are surveyed briefly with an emphasis on their energy scalability. Basic topics of the dissipative soliton theory are elucidated in connection with concepts of energy scalability and stability. It is shown that the parametric space of dissipative soliton has reduced dimension and comparatively simple structure that simplifies the analysis and optimization of ultrafast fibre lasers. The main destabilization scenarios are described and the limits of energy scalability are connected with impact of optical turbulence and stimulated Raman scattering. The fast and slow dynamics of vector dissipative solitons are exposed
    • …
    corecore