31,787 research outputs found

    Reach modelling for drive-up self-service

    Get PDF
    People using a self-service terminal such as an automated teller machine (ATM) tend to adjust their physical position throughout a transaction. This is particularly apparent with terminals that are designed to be used from a vehicle (i.e. drive up automated teller machines or ATMs). Existing predictive tools tend to focus on static reach and provide limited predictions for how far people are willing to stretch to complete a task. Drive-up self-service products have 3 main challenges: the variability of vehicles, people and driver behaviour. Such conventional tools are therefore of limited use in understanding how much people are willing to move to use a self-service terminal. Work is described to build in-house predictive models based on 2 large empirical studies of reach in a drive up installation. These 2 studies assessed comfortable and extended reach from 10 vehicle categories. Extended reach was defined as stretching/leaning as far as participants would normally be willing to in order to complete a drive-up transaction. Findings from these studies indicated that participants are prepared to adopt more extreme postures at drive-up than in other situations with extended reach at drive-up being significantly different to what might be seen at a walk-up kiosk

    Power Flow Modelling of Dynamic Systems - Introduction to Modern Teaching Tools

    Get PDF
    As tools for dynamic system modelling both conventional methods such as transfer function or state space representation and modern power flow based methods are available. The latter methods do not depend on energy domain, are able to preserve physical system structures, visualize power conversion or coupling or split, identify power losses or storage, run on conventional software and emphasize the relevance of energy as basic principle of known physical domains. Nevertheless common control structures as well as analysis and design tools may still be applied. Furthermore the generalization of power flow methods as pseudo-power flow provides with a universal tool for any dynamic modelling. The phenomenon of power flow constitutes an up to date education methodology. Thus the paper summarizes fundamentals of selected power flow oriented modelling methods, presents a Bond Graph block library for teaching power oriented modelling as compact menu-driven freeware, introduces selected examples and discusses special features.Comment: 12 pages, 9 figures, 4 table

    Engineering: good for technology education?

    Get PDF
    Recent curriculum changes in the educational system of Australia have resulted in study options being available in Engineering for senior secondary students to use for university entrance. In other educational systems, Engineering is playing an increasingly important role, either as a stand-alone subject or as part of an integrated approach to Science, Mathematics and Technology. These developments raise questions about the relationship between Engineering and Technology education, some of which are explored in this paper

    The Fundamentals of Radar with Applications to Autonomous Vehicles

    Get PDF
    Radar systems can be extremely useful for applications in autonomous vehicles. This paper seeks to show how radar systems function and how they can apply to improve autonomous vehicles. First, the basics of radar systems are presented to introduce the basic terminology involved with radar. Then, the topic of phased arrays is presented because of their application to autonomous vehicles. The topic of digital signal processing is also discussed because of its importance for all modern radar systems. Finally, examples of radar systems based on the presented knowledge are discussed to illustrate the effectiveness of radar systems in autonomous vehicles
    • 

    corecore