1,871 research outputs found

    Use of accelerometers in the control of practical prosthetic arms

    Get PDF
    Accelerometers can be used to augment the control of powered prosthetic arms. They can detect the orientation of the joint and limb and the controller can correct for the amount of torque required to move the limb. They can also be used to create a platform, with a fixed orientation relative to gravity for the object held in the hand. This paper describes three applications for this technology, in a powered wrist and powered arm. By adding sensors to the arm making these data available to the controller, the input from the user can be made simpler. The operator will not need to correct for changes in orientation of their body as they move. Two examples of the correction for orientation against gravity are described and an example of the system designed for use by a patient. The controller for all examples is a distributed set of microcontrollers, one node for each joint, linked with the Control Area Network (CAN) bus. The clinical arm uses a version of the Southampton Adaptive Manipulation Scheme to control the arm and hand. In this control form the user gives simpler input commands and leaves the detailed control of the arm to the controller

    Virtual reality pre-prosthetic hand training with physics simulation and robotic force interaction

    Get PDF
    Virtual reality (VR) rehabilitation systems have been proposed to enable prosthetic hand users to perform training before receiving their prosthesis. Improving pre-prosthetic training to be more representative and better prepare the patient for prosthesis use is a crucial step forwards in rehabilitation. However, existing VR platforms lack realism and accuracy in terms of the virtual hand and the forces produced when interacting with the environment. To address these shortcomings, this work presents a VR training platform based on accurate simulation of an anthropomorphic prosthetic hand, utilising an external robot arm to render realistic forces that the user would feel at the attachment point of their prosthesis. Experimental results with non-disabled participants show that training with this platform leads to a significant improvement in Box and Block scores compared to training in VR alone and a control group with no prior training. Results performing pick-and-place tasks with a wider range of objects demonstrates that training in VR alone negatively impacts performance, whereas the proposed platform has no significant impact on performance. User perception results highlight that the platform is much closer to using a physical prosthesis in terms of physical demand and effort, however frustration is significantly higher during training

    Optimization of Prosthetic Hands: Utilizing Modularity to Improve Grip Force, Grasp, and Versatility

    Full text link
    It has been demonstrated that although many varieties of upper limb prosthetics exist, commercially available prosthetics are outdated and unsatisfactory. Ineffectiveness and limitations have led to some prosthesis wearers having to own multiple devices, whereas others have given up on them entirely. Even though ample research has been conducted to design and test new hand designs, the industry appears to rest in an overall stagnated state. It was proposed here, that one problem with prosthetic research is an excess of variables involved in testing, and therefore the improper application of the scientific method. It seems that each time a research team desires to test a new idea, a completely new hand and system is designed to house it. A costly and time-consuming cycle is then initiated which may lead to comparing the merits of one hand to the performance of distinct hand designs with multiple differences. Since these comparisons involve multiple variables, the results are often inconclusive and many projects end up shelved. To help advance prosthetic improvement, it seems necessary to unclog the process by lowering costs, speeding up development, and implementing an improved basis for comparison. The proposed method for achieving the first two objectives is to make use of a 3D printed hand platform. Such prosthetics are durable, inexpensive, and quick to manufacture and assemble. This allows for rapid transition from idea to prototype, and from observation to improvement. The method for improving comparison is the addition of modularity into the prosthetic. If a single hand could be reconfigured to implement different attributes and ideas, the merit of each innovation could be independently demonstrated and verified. In this research, a 3D printed hand was chosen which could accommodate configurations capable of adding adaptation as well as a resting state of partial curvature to the basic hand. The various configurations, including neither, each, and both changes were then tested in a series of experiments. These were arranged to discover the maximum weight that could be sustained while the hand attempted to maintain grasp on various bar shapes. These tests were run in two different test setups: attached to a non-amputeeā€™s arm and suspended by clamps, in order to determine the influence introduced by the limitations of human strength and physiology. These rounds of testing successfully demonstrated that small modifications to the prosthetic could yield improvements in performance (even with a basic, low-cost hand), and that the merit of various ideas can be independently demonstrated on a singular platform

    Use of stance control knee-ankle-foot orthoses : a review of the literature

    Get PDF
    The use of stance control orthotic knee joints are becoming increasingly popular as unlike locked knee-ankle-foot orthoses, these joints allow the limb to swing freely in swing phase while providing stance phase stability, thus aiming to promote a more physiological and energy efficient gait. It is of paramount importance that all aspects of this technology is monitored and evaluated as the demand for evidence based practice and cost effective rehabilitation increases. A robust and thorough literature review was conducted to retrieve all articles which evaluated the use of stance control orthotic knee joints. All relevant databases were searched, including The Knowledge Network, ProQuest, Web of Knowledge, RECAL Legacy, PubMed and Engineering Village. Papers were selected for review if they addressed the use and effectiveness of commercially available stance control orthotic knee joints and included participant(s) trialling the SCKAFO. A total of 11 publications were reviewed and the following questions were developed and answered according to the best available evidence: 1. The effect SCKAFO (stance control knee-ankle-foot orthoses) systems have on kinetic and kinematic gait parameters 2. The effect SCKAFO systems have on the temporal and spatial parameters of gait 3. The effect SCKAFO systems have on the cardiopulmonary and metabolic cost of walking. 4. The effect SCKAFO systems have on muscle power/generation 5. Patientā€™s perceptions/ compliance of SCKAFO systems Although current research is limited and lacks in methodological quality the evidence available does, on a whole, indicate a positive benefit in the use of SCKAFOs. This is with respect to increased knee flexion during swing phase resulting in sufficient ground clearance, decreased compensatory movements to facilitate swing phase clearance and improved temporal and spatial gait parameters. With the right methodological approach, the benefits of using a SCKAFO system can be evidenced and the research more effectively converted into clinical practice

    The effect of prefabricated wrist-hand orthoses on grip strength

    Get PDF
    Prefabricated wrist-hand orthoses (WHOs) are commonly prescribed to manage the functional deficit and compromised grip strength as a result of rheumatoid changes. It is thought that an orthosis which improves wrist extension, reduces synovitis and increases the mechanical advantage of the flexor muscles will improve hand function. Previous studies report an initial reduction in grip strength with WHO use which may increase following prolonged use. Using normal subjects, and thus in the absence of pain as a limiting factor, the impact of ten WHOs on grip strength was measured using a Jamar dynamometer. Tests were performed with and without WHOs by right-handed, female subjects, aged 20-50 years over a ten week period. During each test, a wrist goniometer and a forearm torsiometer were used to measure wrist joint position when maximum grip strength was achieved. The majority of participants achieved maximum grip strength with no orthosis at 30Ā° extension. All the orthoses reduced initial grip strength but surprisingly the restriction of wrist extension did not appear to contribute in a significant way to this. Reduction in grip must therefore also be attributable to WHO design characteristics or the quality of fit. The authors recognize the need for research into the long term effect of WHOs on grip strength. However if grip is initially adversely affected, patients may be unlikely to persevere with treatment thereby negating all therapeutic benefits. In studies investigating patient opinions on WHO use, it was a stable wrist rather than a stronger grip reported to have facilitated task performance. This may explain why orthoses that interfere with maximum grip strength can improve functional task performance. Therefore while it is important to measure grip strength, it is only one factor to be considered when evaluating the efficacy of WHOs
    • ā€¦
    corecore