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Virtual Reality Pre-Prosthetic Hand Training with
Physics Simulation and Robotic Force Interaction

Digby Chappell1, 2, 3, Honn Wee Son2, Angus B. Clark1, Zeyu Yang1,
Fernando Bello3, Petar Kormushev2, and Nicolas Rojas1

Abstract—Virtual reality (VR) rehabilitation systems have been
proposed to enable prosthetic hand users to perform training
before receiving their prosthesis. Improving pre-prosthetic train-
ing to be more representative and better prepare the patient
for prosthesis use is a crucial step forwards in rehabilitation.
However, existing VR platforms lack realism and accuracy
in terms of the virtual hand and the forces produced when
interacting with the environment. To address these shortcomings,
this work presents a VR training platform based on accurate
simulation of an anthropomorphic prosthetic hand, utilising an
external robot arm to render realistic forces that the user would
feel at the attachment point of their prosthesis. Experimental
results with non-disabled participants show that training with
this platform leads to a significant improvement in Box and Block
scores compared to training in VR alone and a control group with
no prior training. Results performing pick-and-place tasks with
a wider range of objects demonstrates that training in VR alone
negatively impacts performance, whereas the proposed platform
has no significant impact on performance. User perception results
highlight that the platform is much closer to using a physical
prosthesis in terms of physical demand and effort, however
frustration is significantly higher during training.

Index Terms—Prosthetics and Exoskeletons; Virtual Reality
and Interfaces; Rehabilitation Robotics

I. INTRODUCTION

S IMULATION is an important tool in the vast majority
of engineered systems, allowing developers to rapidly

test and improve designs in a controlled, low-risk setting.
Recently, virtual reality (VR) has gained popularity as not only
a simulation tool, but also for user training [1]. Areas where
user operation and interaction is critical stand to benefit sig-
nificantly from VR, and this is particularly true for prosthetic
hands.

Virtual reality has been utilised many times in amputee
rehabilitation, with known benefits in alleviating phantom limb
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Fig. 1: The proposed robot-enhanced virtual reality training
platform (a) in real life, (b) in virtual reality—the virtual hand
is mounted below the forearm of the user.

pain [2] and task-specific user training [3]. VR prosthetic
systems can be used in combination with exercises and even in
combination with a physical prosthetic hand to create targeted
rehabilitation schedules that are personalised to the patient.
Importantly, VR prosthetic systems can potentially enable
patients to begin working towards full control of a prosthetic
hand at an earlier stage after amputation, before the fitting
of a prosthesis even takes place. Currently, prior to receiving
their prosthetic hand, patients begin rehabilitation by using
simplistic rehabilitation games [4] which may be limited in
how well they prepare a user for actually using a prosthetic
hand. For successful uptake of a prosthetic hand it is critical
that this early-stage rehabilitation is high quality [4], [5].

Existing VR prosthetic systems typically focus on aesthetic
qualities over functionality; the virtual hand is often just
a visualisation [6], the myoelectric controller driving the
virtual hand is not representative of a real prosthetic hand
controller [3], and object interaction of the virtual hand is
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generally achieved by ‘attaching’ the hand to the object pro-
grammatically [7]. Furthermore, studies identify the need for
object weight in virtual reality for more immersive training [6]
and have found that force feedback can increase a user’s sense
of embodiment of their virtual hand [8].

It therefore follows that a VR prosthetic hand system that
accurately simulates the functionality and interaction of a real
prosthetic hand is needed, and a force feedback system could
improve the level of realism achieved by the simulation. A
VR system such as this offers key benefits to both patients
and developers; the simulation would offer patients a realistic
simulation of their future prosthesis, allowing them to perform
rehabilitation tasks usually only possible with a physical
prosthesis in the weeks before their fitting, and the simulation
would allow developers to rapidly test and evaluate new design
and control features for prosthetic hands in an accurate setting
with minimal risk. Furthermore, an accurate VR system can be
used to create training scenarios specific to user needs, and can
be combined with existing rehabilitation methods to provide
a higher level of personalisation in rehabilitation.

This work aims to address shortfalls in current VR pros-
thetic hand systems via three main contributions. The first is
an accurate VR simulation of the prosthetic device, which in
the case of this work is the OLYMPIC hand [9]—a modular,
tendon-driven prosthetic hand designed at Imperial College
London, completed with two degree of freedom (DOF) myo-
electric control. Second, an enhanced interaction between the
user and the virtual prosthesis provided by an external robot
arm rendering realistic forces that the user would feel at the
attachment point of their prosthesis. Third, a participant group
study targeting the scenario where virtual reality training is
used prior to the fitting of the prosthetic hand, comparing
the functionality and user perception after training A) using
the enhanced system, B) using virtual reality alone, against
the real-world OLYMPIC hand when performing the Box and
Blocks dexterity assessment [10] pick-and-place tasks with
objects from the YCB object and model set [11].

We find that enhancing virtual reality training with a robot
arm improves Box and Block scores and does not significantly
reduce pick-and-place performance, compared to training in
virtual reality alone. Users perceive that training is closer
to using a real prosthesis in terms physical demand and
effort. However, limitations in simulation lead to a discrepancy
between performance with the virtual hand and the real hand,
and an increase in frustration when training with the robot-
enhanced system.

II. RELATED WORK

A. Upper Limb Prosthetic Rehabilitation

Early, specialised rehabilitation as well as managing realistic
patient expectations of prosthetic technology are well known
to be important factors in achieving high retention in upper
limb prosthesis users [12], [13]. However, rehabilitation after
upper-limb amputation is a complex process involving a cross-
disciplinary team, and is rarely straight-forward due to the
traumatic nature of most injuries that lead to amputation [5].
Rehabilitation technology is therefore a critical tool of the

prosthetist in effectively targeting rehabilitation to both pro-
vide high quality training and manage expectations of the
patient’s future life with a prosthetic hand.

Existing rehabilitation tools used prior to prosthetic fitting
are generally game-based [4], and although serious games
have found success in other rehabilitation settings, such as
following a stroke [14], the games used in clinical prosthetic
rehabilitation settings are relatively simplistic. For example,
the rehabilitation game presented in [15] aims to train patients
of recent amputation to activate individual muscles. Although
this is useful for extremely early-stage rehabilitation, it is not
suitable for preparing for a real prosthesis. Furthermore, any
rehabilitation game used should be careful not to produce
unrealistic expectations of prosthetic control, ability to grasp
objects, or other functionality.

B. Virtual Reality Prosthetic Rehabilitation

In recent years, virtual rehabilitation for prosthetic hand
users has become a popular idea [16], as a method of training
users in an immersive way prior to prosthetic fitting. Virtual
reality lends itself well to this style of rehabilitation; the appeal
of operating a virtual version of either a human or prosthetic
hand is clear, and has been shown to reduce phantom limb
pain and other issues surrounding prosthetic hand use [2].
VR also enables the development of immersive rehabilitation
scenarios, with some works producing attractive renderings
of activities of daily living (ADLs) [6]–[8]. Similarly, [3]
proposes an immersive rehabilitation game setup in which
the user must complete three tasks designed to represent
ADLs. However, in these recent works, although the task
and environment may be designed to represent the real-world,
the virtual hand is not. A common issue is that the virtual
hand is not designed to replicate the function of its real-
world counterpart; instead of accurately simulating the motion
and interaction of a prosthetic hand, many works predefine
a small number of interactions [3], [6], [7], [17] whereby
grasped objects ‘attach’ themselves to the prosthetic hand.
Naturally, this makes objects easier to grasp than in reality,
and leads to prosthesis users performing better in assessment
tasks in VR than in the real world [7]. It is clear that in order
for VR prosthetic training to be effective the hand should
be simulated, rather than animated, and it should interact
with its environment with accurate physics. Another major
shortcoming in recent work is the level of myoelectric control
the user has over the virtual prosthesis. In order to form a
realistic training environment, the myoelectric control system
used to interpret muscle signals and convert them into desired
hand movements should be as close to those used in clinical
practice as possible. Yet, multiple works instead use EMG-
based gesture recognition systems not designed for prosthetic
hand control [3], [6].

In order to close the gap between virtual reality and the real
world, force feedback should be considered. Previous works
have highlighted the need for some form of rendering of the
weight of the prosthesis in VR prosthetic systems [6]. [8]
goes some way towards achieving this, using a robot arm
to render forces from a simulated prosthetic hand, but its
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Fig. 2: Left: lateral view of finger i of the OLYMPIC prosthetic hand, (a) relaxed (b) flexed (c) real finger. Right: lateral view
of the thumb of the OLYMPIC prosthetic hand, (d) relaxed, (e) flexed, (f) real finger.

Fig. 3: The OLYMPIC hand attached to the forearm of a user.
Annotated: EMG Sensors, Offset Block, Control Electronics,
and the OLYMPIC Hand. To be as close as possible to existing
direct control prosthetic control methods, only two of the eight
EMG electrodes on the Myo Armband are monitored. No other
Myo Armband features were used.

workspace is small, and the work only preliminary. The effect
of missing haptic feedback is particularly evident in [18], who
present a simulated human hand controlled through motion
capture of non-disabled users’ real hands. Although accurate
hand simulation is achieved and high quality control, the
functionality of the VR hand is still significantly lower than
its real counterpart, with the authors citing haptic feedback as
the biggest factor at play.

III. METHODS

A. Physical Prosthetic Hand Setup

The OLYMPIC hand is a modular prosthetic hand that offers
independent control of the flexion/extension of each finger, and
an additional degree of freedom in thumb abduction/adduction,
which is manually set by the user [9]. A single tendon controls
finger flexion, and extension springs mounted on the dorsal
side of each finger are able to open the finger in the absence
of tendon force. In this study, the hand is mounted to non-
disabled users using a 3D printed offset block, shown in Fig. 3,
which holds the hand and accompanying socket below the
participants real arm at a distance of ∼100 mm. The prosthetic
hand and participant arm are attached to the mounting block
using velcro straps, where space is left between the straps on

the participant to allow for the EMG sensors to be positioned.
The OLYMPIC hand was modified to include encoders on
each motor to allow for position control of the fingers, which
in turn required a redesign of the modular wrist to support the
increased number of electrical signals. Low level control of the
hand is performed using a Nvidia Jetson Nano microcontroller,
located in the forearm of the prosthesis. The forearm also
houses electronics used for sensing motor torque and position.

B. Virtual Reality Setup

This subsection describes the process of simulating the
virtual prosthetic hand and rendering forces at the user’s
forearm.

1) Virtual Prosthetic Hand: To accurately simulate the
OLYMPIC hand, a mathematical model of the tendon-driven
flexion motion and spring-driven extension motion is pre-
sented. As seen in Fig. 2, each finger consists of a single
tendon actuating three joints, and two springs; one driving the
extension of the metacarpophalangeal (MCP) joint, and one
driving the extension of the proximal interphalangeal (PIP)
and distal interphalangeal (DIP) joints together.

The extension springs of the finger are on the surface of
the dorsal side, with the centre-line of the springs at a radial
distance of R + δR from each joint, so the force in each of
these, Fi,s1 and Fi,s2 is simply:

Fi,s1 = ki,s1(R+ δR)(qi,1 − q̄i,s1), (1)
Fi,s2 = ki,s2(R+ δR)(qi,2 + qi,3 − q̄i,s2), (2)

where q̄i,s1 and q̄i,s2 are the zero-force angles of the first and
second extension springs, respectively. Assuming the tendon
is light and inextensible, the flexion torque applied to each
joint in the finger is equal to FiR. Neglecting dynamics, the
torque, τi,j , on each joint of finger i, taking flexion as the
positive direction, is equal to

τi,1 = FiR− Fi,s1(R+ δR), (3)
τi,2 = FiR− Fi,s2(R+ δR), (4)
τi,3 = FiR− Fi,s2(R+ δR). (5)

Note that the torques in the PIP and DIP joints of the finger
are identical.

The thumb has two joints that move in the flexion/extension
direction, the metacarpophalangeal (MCP) joint q1,1 and the
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Fig. 4: The real OLYMPIC hand (a) open, (b) partially closed, (c) fully closed. The virtual OLYMPIC hand (d) open, (e)
partially closed, (f) closed.

Fig. 5: The motor torque required to drive to encoder position
for the thumb and index finger of the OLYMPIC hand. (a)
torque required to overcome pre-tensioned springs. (b) friction
pattern in the gear driving the thumb. (c) non-linearity caused
by the offset spring mounting. (d) static friction overcome as
joint begins to move. (e) finger contacts palm.

interphalangeal (IP) joint q1,2. The spring force of the thumb
is complicated by the offset attachment of the first extension
spring, shown in Fig. 2. The length, L1.s1 of the spring can
be calculated as a function of the joint angle q1,1:

L1,s1(q1,1) =
√

(ax + bx cosα)2 + (ay − by sinα)2, (6)

where α = q1,1 − arctan(by, bx). The force in each of the
extension springs of the thumb is then equal to

F1,s1 = k1,s1(L1,s1(q1,1)− L1,s1(q̄1,s1)), (7)
F1,s2 = k1,s2(R+ δR)(q1,2 − q̄1,s2). (8)

The perpendicular distance, d1,s1, of the first extension spring
to the centre of the first joint is:

d1,s1(q1,1) =
(ax + bx cosα)ay + (ay − by sinα)ax

L1,s1(q1,1)
. (9)

The torque on each joint of the thumb is then equal to

τ1,1 = F1R− F1,s1d1,s1(q1,1), (10)
τ1,2 = F1R− F1,s2(R+ δR). (11)

As seen in Fig. 5, the thumb and index finger of the
OLYMPIC hand approximately follow the force-position rela-
tionships described in (1) - (11). As expected, the finger ex-
hibits a linear relationship between motor torque and encoder

position, deviating due to periodic gear friction and at points
where a new joint overcomes its own static friction and begins
to move. The thumb shows similar characteristics, but due to
the offset mounting of the extension spring on the first joint of
the thumb described in (6)-(10), the relationship is nonlinear.

The motors that drive the tendon forces have a high gear
ratio of 300 : 1, meaning they are not back-driveable. This
effect is modelled by adding a barrier term to commanded
tendon force F̄i that is active if the tendon length Li extends
beyond its taut value L̂i without the motor allowing:

Fi =

{
F̄i +Kbmax(L̂i − Lj , 0), F̄i ≥ 0
0, F̄i < 0

, (12)

where Kb is a proportional constant set at a suitably high
value to prevent backdriving. Position control of each finger
is achieved by adding a proportional-integral control loop to
the taut tendon length, with desired length L̄i:

F̄i = Kp,t(L̄i − L̂i) +Ki,t

∫ t

0

(L̄i − L̂i)dτ. (13)

The OLYMPIC hand is simulated (as shown in Fig. 1) in
Unity3D [19] as an articulated kinematic tree built on the
NVIDIA PhysX engine. At each time step, the torques defined
in (3)-(5) and (10)-(11) are applied to the joints of the hand.
The manually operated thumb abduction and adduction of the
simulated hand is controlled via a separate user input from a
virtual reality in-hand controller, held in the free hand of the
user. Fig. 4 shows a visual comparison between the real and
virtual OLYMPIC hand while closing the hand. As seen, the
hands follow similar trajectories, and reach nearly identical
closed positions.

The pose of the base link of the hand is controlled as
part of the entire articulation using an extra 6 joints, with
the position, x, and orientation of the base of the prosthetic
hand driven to a reference tracker pose using a proportional-
derivative controller:

F = Kp,x(x− xref )−Kd,xẋ, (14)
T = Kp,rn̂θ −Kd,rω (15)

where n̂θ is the relative angle-axis rotation between the
reference tracker and the base of the OLYMPIC hand projected
into the world frame, and ω is the angular velocity of the base.
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Fig. 6: The magnitude of the force (top) and torque (bottom)
applied by the user to trace a circle at constant speed while
attached to the robot arm. Blue - with compensation, red -
without compensation. Without compensation the robot arm
reaches joint limits and the user is unable to complete the
trajectory.

This relative rotation represents the rotation from the hand, Rh,
to the tracker, Rt:

hRt = RT
hRt. (16)

The angle-axis representation of this relative rotation is
extracted by solving:

1 + 2 cos θ = trace(hRt), (17)

(hRt − I)n = 0. (18)

Then, projecting n to the world reference frame:

n̂ = Rtn. (19)

2) Force Feedback Setup: In order to produce the most
realistic VR prosthetic hand possible, a robot arm is used
to render the forces that the user would experience from
a physical prosthesis attached to their forearm. The physics
solver governing the motion of the simulated prosthetic hand
makes use of one of Featherstone’s algorithms [20] to solve
forward and inverse dynamics at each time step. The force and
torque transmitted to the attachment point of the prosthetic
hand to the user is applied by the end effector of a Franka
Emika robot arm [21] attached to the forearm of the user, as
shown in Fig. 1.

The robot arm applies the wrench defined in (14), and (15),
along with compensation for the robot’s own gravity, inertia,
joint friction, and a safety term to allow the robot to avoid
joint limits:

τ = JT

[
F
T

]
+ τg +K1Hq̈+K2∆τ +K3N(q0 − q), (20)

where J is the Jacobian of the end-effector of the robot
arm, τg is the torque required to compensate for gravity, H
is the joint-space inertia matrix of the arm, and q̈ is its joint

(a) Box and block test. (b) YCB objects.
Fig. 7: The real (top) and simulated (bottom) experimental
setups used in this work.

accelerations. ∆τ is the difference between the compensated
joint torques and the measured joint torques at the previous
time step, which captures the excess torque that the user must
apply to move the robot arm. The null-space projector N is
used to apply safety torques in order to keep the robot arm
close to a zero configuration q0 (and therefore away from joint
limits) without impacting the wrench applied to the user. K1,
K2, and K3 are diagonal weighting matrices used to tune the
level of compensation at each joint. K1 and K2 are tuned to
target joints that require a large user force to move, and are
carefully set to low values since both apply positive feedback
to the user. After tuning K3, the robot arm is able to avoid
joint limits as the user moves, and maintain this even in the
presence of external disturbances. As seen in Fig. 6, a user
can trace a circle at constant speed by applying a force and
torque of their own at the end effector. Without compensation,
these forces and torques are slightly increased and the robot
arm is unable to avoid joint limits, meaning the user fails to
complete the desired trajectory.

For safety, the robot arm is limited in maximum force that
it can apply, and the robot-user connection is held by an
electromagnet that has a holding force of 30 N, which detaches
the user from the robot when an e-stop is pressed.

C. Myoelectric Control

A direct control myoelectric control method is used in this
study. To simulate existing direct control prosthetic control
methods, only two of the eight EMG electrodes on the Myo
Armband are monitored. The first electrode is positioned in the
inner forearm to detect muscle activity during wrist flexion
while the second electrode is positioned on the antagonistic
muscle group on the outer forearm to detect wrist extension.
These signals are interpreted as part of a binary control system;
if the signal on the wrist flexion electrode passes a threshold
then the hand closes, if the signal on the wrist extension
electrode passes a separate threshold then the hand opens:

L̄i =

{
Lmin, e1 ≥ E1

Lmax, e2 ≥ E2
, (21)

where e1 and e2 are the post-processed values read from the
two electrodes, and E1 and E2 are tuned thresholds that are
personal to each user. This method of control was chosen
because direct control methods are common in prosthetic
hands available to patients, and offer a robust baseline to test
the virtual reality platform with.
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Fig. 8: Average Box and Block scores of user groups across
10 training trials and 5 test trials. Shaded regions represent
±1 standard deviation. VR - virtual reality group, RE - robot-
enhanced group, C - control group.

D. Assessing Task Performance

To assess how well the VR prosthetic system is able to
train users for physical prosthesis use, two control group
experiments were performed. In each experiment, participants
completed a number of sets of timed pick-and-place exercises
(each set is henceforth referred to as a trial) in training before
transitioning to use the physical prosthetic hand for a number
of test trials. Participants were placed into three groups: a
VR group, who performed training trials in virtual reality, a
Robot-Enhanced (RE) group, who performed training trials in
virtual reality with the robot arm providing force feedback,
and a Control group, who performed no training trials. Non-
disabled participants were recruited for each group, and are
particularly useful for this work because they have no prior
experience controlling prosthetic hands, and can therefore
be considered naive users. The use of human participants
in this work was granted ethical approval by the Imperial
College London Research Governance and Integrity Team
(RGIT), Science Engineering and Technology Research Ethics
Committee (SETREC) number 21IC6716. Written consent was
obtained from participants prior to taking part in the study.

The Box and Blocks dexterity assessment [10] was used
for the first experiment, in which 10 training trials were
performed, then 5 test trials with the physical prosthetic hand.
In each trial, participants were given 60 seconds to transfer as
many individual blocks from one box to another, with a higher
number of blocks representing a higher level of dexterity. 5
participants were recruited to each group, giving a total of 15
participants.

For the second experiment, 10 objects from the YCB object
and model set [11] were used to explore user dexterity across
a wider range of objects that are representative of objects used
in ADLs. 5 training trials were performed, followed by 5 test
trials in order to provide a direct comparison between the
virtual and physical setups. In each trial, each of the 10 objects
were grasped, lifted, then transferred 500 mm, before being
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Fig. 9: Average pick-and-place times of YCB objects of user
groups across 5 training trials and 5 test trials. Shaded regions
represent ±1 standard deviation. VR - virtual reality group,
RE - robot-enhanced group, C - control group.

placed, as in [9]. In this work, the pick and place action is
timed to offer a more detailed measure of functionality, similar
to other dexterity assessments such as the Southampton Hand
Assessment Procedure [22] or the Box and Block Test [10]; a
quicker time to complete the pick and place task is thought to
correspond to better hand functionality. Average pick and place
time over a trial is recorded. 3 participants were recruited to
each group, giving a total of 9 participants in this experiment.

E. Assessing User Perception

User perception is an important aspect of prosthesis use that
is often neglected. To assess user perception of the system,
each participant completed a supplementary questionnaire and
a copy of the NASA Task Load Index, also known as the
NASA-TLX [23], first after completing the training trials,
then after the test trials of the YCB pick-and-place experiment
(it should be noted that the Box and Blocks experiment con-
tains more training trials than testing trials, so cannot be com-
pared). The NASA-TLX contains questions assessing mental
and physical demand, temporal demand, task performance,
effort, and frustration. The questionnaire was completed by
each participant after training and again after testing. In this
work, we report the ‘raw’ TLX scores scaled between 0 and
100, as they allow for direct comparison between each aspect
of task load [24].

IV. RESULTS & DISCUSSION

Average Box and Block scores of each group for the 10
training trials and 5 test trials are shown in Fig. 8. As seen,
neither group perform as well in training as with the physical
prosthetic hand. Both groups show a statistically significant
difference in performance compared to the control group with
an uneven t-test across the 10 training trials against the 5
control test trials (p < 0.01). However, the RE group perform
consistently better in training than the VR group (p < 0.01).
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Fig. 10: Average NASA-TLX responses for physical demand, effort, and frustration for user groups. VR - virtual reality group,
RE - robot-enhanced group, C - control group. Statistical significance of: *p < 0.1, **p < 0.05, ***p < 0.01.

After transitioning onto using the physical prosthetic hand,
the RE group outperforms both the VR group and the Control
group across the 5 test trials, showing statistical significance
with p-values of below 0.05 and 0.01, respectively. No statis-
tical significance was observed between the VR and Control
group in testing.

Average YCB pick-and-place time of each group for the 5
training trials and 5 test trials are shown in Fig. 9. Again, both
the VR and RE group perform significantly worse in training
than the control group (p < 0.01), however in this experiment
the RE group also performed comparably to the VR group in
training. When transitioning to the physical prosthesis, the VR
group were unable to adapt within the 5 test trials, performing
significantly worse than the Control group (p < 0.01). The
RE group, on the other hand, show no statistical significance
for average pick-and-place time across testing trials compared
to the Control group.

It is clear that there is a gap between the virtual and phys-
ical prostheses that prevents users from attaining real-world
performance on the chosen pick-and-place tasks. One major
source of this that is common to both the VR and RE groups
is that the simulation relies on rigid-body collisions; the actual
prosthesis is equipped with soft silicone pads that deform on
contact to provide a better grip. This is particularly important
when grasping small objects such as the blocks present in the
Box and Blocks test, or objects of irregular shape such as
the screwdriver in the YCB object set, and is not possible to
simulation with current physics simulators. Furthermore, the
collision geometry used in the simulation is an approximation
of the collision geometry of the physical hand. Small features
and irregularities on the surfaces of the physical hand can
also improve grasping ability, but are not present in the virtual
prosthesis. Despite this gap, Robot-Enhanced training results
in better physical hand results compared to VR training alone.
Furthermore, results with the YCB objects indicate that VR
training alone could even be detrimental to performance when
using the real prosthesis, although a larger participant group
would be required to validate this fully. A result that is perhaps
surprising is that RE training has a significant impact on Box
and Block performance, whereas VR training does not. The
force feedback from the robot arm may allow users to identify

with greater certainty whether the virtual hand is in contact
with its surroundings when attempting to grasp a block, which
can prevent the hand from closing successfully.

Group NASA-TLX responses for the virtual reality, robot-
enhanced, and control groups are shown in Fig. 10. As seen,
the physical demand and effort to complete the pick-and-place
tasks in VR training are lower than the control group, and
significantly lower than RE training (p < 0.05), due to the lack
of force feedback to the user. Similarly, the effort required to
complete the training trials for the VR group is significantly
lower than both the RE and Control groups (p < 0.01).
However, frustration is significantly higher for RE training
than the control group, although to a lesser degree (p < 0.1).

TLX results highlight an important shortcoming in VR train-
ing alone; training without realistic force feedback may lead
to an unrealistic expectation of the physical demand and effort
required by the user. Frustration before and after VR training
is not significantly higher than the control group, but a high
variance can be seen in responses. This could be detrimental
to rehabilitation, as it is difficult to predict how someone
will respond to VR training. This issue is not present in the
RE group, however the RE group found training significantly
more frustrating than the control group found using the real
prosthetic hand. This could be caused by the aforementioned
discrepancies between simulation and reality, making grasping
objects more difficult than expected, coupled with the weight
of the prosthetic hand amplifying user frustration. After the RE
group transition to using the physical prosthesis this frustration
is alleviated, returning to control levels, indicating that training
with the Robot-Enhanced system is not detrimental to user
frustration in the long term. In fact, RE group results for
effort were significantly lower than control results after testing
trials, giving hope that RE training may be beneficial for user
perception when transitioning to using a real prosthesis.

V. CONCLUSIONS & FUTURE WORK

In this work we have presented a virtual reality platform for
pre-prosthetic hand training, enhanced by utilising a robot arm
to render the forces the user would experience when using a
real prosthetic hand. This platform addresses significant short-
comings in other comparable systems by using an accurate
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physics simulation of the prosthetic hand, standard myoelectric
control technology, and force feedback.

Experimental results with non-disabled participants show
that training with the robot-enhanced platform improved user
performance on the Box and Blocks dexterity assessment
significantly compared to both participants who had trained in
virtual reality alone, and the control group who had received
no prior training. On more complex pick-and-place tasks with
YCB objects, the final performance of the robot-enhanced
training group were comparable to the control group, whereas
training in purely virtual reality resulted in a significant
reduction in performance.

Results of the NASA-TLX questionnaire show that train-
ing with the robot-enhanced system is comparable in terms
of physical demand and effort to directly using the real
prosthesis, a considerable improvement over training in VR
alone. However, limitations of rigid-body simulation create
discrepancies between the simulated and real hand that lead
to an increase in frustration during robot-enhanced training,
which is exacerbated by force feedback applied to the user.
This is alleviated when transitioning to the real prosthesis.

This work has shown that this platform can be an effective
tool to prepare users for prosthetic hand use, without produc-
ing negative side-effects such as non-representative control and
interaction, and unrealistic user expectations. It is anticipated
that robot-enhanced training can be used as part of a scheduled
rehabilitation process, where the level of force feedback can be
graduated as the patient progresses. Furthermore, the platform
can allow users to practice specific scenarios in a controlled
manner, leading to personalised rehabilitation environments,
in combination with ongoing rehabilitation with a physical
prosthetic hand. This work also offers benefits for future
prosthetic hand development, as new designs and control
algorithms can be tested with a higher degree of realism than
just virtual reality.
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