530 research outputs found

    Basic Types of Coarse-Graining

    Full text link
    We consider two basic types of coarse-graining: the Ehrenfests' coarse-graining and its extension to a general principle of non-equilibrium thermodynamics, and the coarse-graining based on uncertainty of dynamical models and Epsilon-motions (orbits). Non-technical discussion of basic notions and main coarse-graining theorems are presented: the theorem about entropy overproduction for the Ehrenfests' coarse-graining and its generalizations, both for conservative and for dissipative systems, and the theorems about stable properties and the Smale order for Epsilon-motions of general dynamical systems including structurally unstable systems. Computational kinetic models of macroscopic dynamics are considered. We construct a theoretical basis for these kinetic models using generalizations of the Ehrenfests' coarse-graining. General theory of reversible regularization and filtering semigroups in kinetics is presented, both for linear and non-linear filters. We obtain explicit expressions and entropic stability conditions for filtered equations. A brief discussion of coarse-graining by rounding and by small noise is also presented.Comment: 60 pgs, 11 figs., includes new analysis of coarse-graining by filtering. A talk given at the research workshop: "Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena," University of Leicester, UK, August 24-26, 200

    CONVERGENCE, PATH DEPENDENCE AND THE NATURE OF STOCHASTIC EQUILIBRIA: A TERATOLOGY OF GROWTH METHODS

    Get PDF
    This paper establishes global stability for a class of stochastic increasing returns accumulation models. The nature of the unique stochastic steady state is investigated. It is found that the models generate highly path dependent time series over long horizons. The findings demonstrate that the standard stability concept used in stochastic growth theory is satisfied by models which contradict our intuitive association of globally stability with unique, history-independent outcomes for each set of economic fundamentals. At the same time, the analysis provides a principled theoretical framework for integrating increasing returns models more closely with the cross-country income data.

    Regularisation and Long-Time Behaviour of Random Systems

    Get PDF
    Schenke A. Regularisation and Long-Time Behaviour of Random Systems. Bielefeld: Universität Bielefeld; 2020.In this work, we study several different aspects of systems modelled by partial differential equations (PDEs), both deterministic and stochastically perturbed. The thesis is structured as follows: Chapter I gives a summary of the contents of this work and illustrates the main results and ideas of the rest of the thesis. Chapter II is devoted to a new model for the flow of an electrically conducting fluid through a porous medium, the tamed magnetohydrodynamics (TMHD) equations. After a survey of regularisation schemes of fluid dynamical equations, we give a physical motivation for our system. We then proceed to prove existence and uniqueness of a strong solution to the TMHD equations, prove that smooth data lead to smooth solutions and finally show that if the onset of the effect of the taming term is deferred indefinitely, the solutions to the tamed equations converge to a weak solution of the MHD equations. In Chapter III we investigate a stochastically perturbed tamed MHD (STMHD) equation as a model for turbulent flows of electrically conducting fluids through porous media. We consider both the problem posed on the full space R3\R^{3} as well as the problem with periodic boundary conditions. We prove existence of a unique strong solution to these equations as well as the Feller property for the associated semigroup. In the case of periodic boundary conditions, we also prove existence of an invariant measure for the semigroup. The last chapter deals with the long-time behaviour of solutions to SPDEs with locally monotone coefficients with additive L\'{e}vy noise. Under quite general assumptions, we prove existence of a random dynamical system as well as a random attractor. This serves as a unifying framework for a large class of examples, including stochastic Burgers-type equations, stochastic 2D Navier-Stokes equations, the stochastic 3D Leray-α\alpha model, stochastic power law fluids, the stochastic Ladyzhenskaya model, stochastic Cahn-Hilliard-type equations, stochastic Kuramoto-Sivashinsky-type equations, stochastic porous media equations and stochastic pp-Laplace equations

    Random attractors for 2D and 3D stochastic convective Brinkman-Forchheimer equations in some unbounded domains

    Full text link
    In this work, we consider the two and three-dimensional stochastic convective Brinkman-Forchheimer (2D and 3D SCBF) equations driven by irregular additive white noise du[μΔu(u)uαuβur1up]dt=fdt+dW, u=0,\mathrm{d}\boldsymbol{u}-[\mu \Delta\boldsymbol{u}-(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}-\alpha\boldsymbol{u}-\beta|\boldsymbol{u}|^{r-1}\boldsymbol{u}-\nabla p]\mathrm{d} t=\boldsymbol{f}\mathrm{d} t+\mathrm{d}\mathrm{W},\ \nabla\cdot\boldsymbol{u}=0, for r[1,),r\in[1,\infty), μ,α,β>0\mu,\alpha,\beta>0 in unbounded domains (like Poincar\'e domains) ORd\mathcal{O}\subset\mathbb{R}^d (d=2,3d=2,3) where W()\mathrm{W}(\cdot) is a Hilbert space valued Wiener process on some given filtered probability space, and discuss the asymptotic behavior of its solution. For d=2d=2 with r[1,)r\in[1,\infty) and d=3d=3 with r[3,)r\in[3,\infty) (for d=r=3d=r=3 with 2βμ12\beta\mu\geq 1), we first prove the existence and uniqueness of a weak solution (in the analytic sense) satisfying the energy equality for SCBF equations driven by an irregular additive white noise in Poincar\'e domains by using a Faedo-Galerkin approximation technique. Since the energy equality for SCBF equations is not immediate, we construct a sequence which converges in Lebesgue and Sobolev spaces simultaneously and it helps us to demonstrate the energy equality. Then, we establish the existence of random attractors for the stochastic flow generated by the SCBF equations. One of the technical difficulties connected with the irregular white noise is overcome with the help of the corresponding Cameron-Martin space (or Reproducing Kernel Hilbert space). Finally, we address the existence of a unique invariant measure for 2D and 3D SCBF equations defined on Poincar\'e domains (bounded or unbounded). Moreover, we provide a remark on the extension of the above mentioned results to general unbounded domains also

    On the transition to turbulence of wall-bounded flows in general, and plane Couette flow in particular

    Full text link
    The main part of this contribution to the special issue of EJM-B/Fluids dedicated to Patrick Huerre outlines the problem of the subcritical transition to turbulence in wall-bounded flows in its historical perspective with emphasis on plane Couette flow, the flow generated between counter-translating parallel planes. Subcritical here means discontinuous and direct, with strong hysteresis. This is due to the existence of nontrivial flow regimes between the global stability threshold Re_g, the upper bound for unconditional return to the base flow, and the linear instability threshold Re_c characterized by unconditional departure from the base flow. The transitional range around Re_g is first discussed from an empirical viewpoint ({\S}1). The recent determination of Re_g for pipe flow by Avila et al. (2011) is recalled. Plane Couette flow is next examined. In laboratory conditions, its transitional range displays an oblique pattern made of alternately laminar and turbulent bands, up to a third threshold Re_t beyond which turbulence is uniform. Our current theoretical understanding of the problem is next reviewed ({\S}2): linear theory and non-normal amplification of perturbations; nonlinear approaches and dynamical systems, basin boundaries and chaotic transients in minimal flow units; spatiotemporal chaos in extended systems and the use of concepts from statistical physics, spatiotemporal intermittency and directed percolation, large deviations and extreme values. Two appendices present some recent personal results obtained in plane Couette flow about patterning from numerical simulations and modeling attempts.Comment: 35 pages, 7 figures, to appear in Eur. J. Mech B/Fluid

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    corecore