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CONVERGENCE, PATH DEPENDENCE AND THE 
NATURE OF STOCHASTIC EQUILIBRIA: 
A TERATOLOGY OF GROWTH MODELS 

JOHN STACHURSKI 

ABSTRACT. This paper establishes global stability for a class of 

stochastic increasing returns accumulation models. The nature 

of the unique stochastic steady state is investigated. It is found 

that the models generate highly path dependent time series over 

long horizons, The findings demonstrate that the standard stabil- 

ity concept used in stochastic growth theory is satisfied by mod- 

els which contradict our intuitive association of globally stability 

with unique, history-independent outcomes for each set of eco- 

nomic fundamentals. At the same time, the analysis provides a 

principled theoretical framework for integrating increasing returns 

models more closely with the cross-country income data. 

The long-run behavior of deterministic growth models with decreas- 

ing returns technology was first studied by Solow [36], Swan [39], Cass 

[6] and Koopmans [22]. It  was shown that Inada-type conditions on 

technology and preferences imply the existence of a unique steady state 

that acts as a global attractor for all initial values of capital per head. 

The major implication of these findings was clear: each set of economic 

fundamentals was shown to be associated with a unique long-run out- 

come. This observation in turn motivated the large empirical literature 

on conditional convergence.' 

The author thanks John Creedy and Rabee Tourky for helpful comments. 
'See, for example, Barro and Sala-i-Martin [4], Mankiw, Romer and tlieil 1271, 

Galor [14] and Durlauf and Quah [12]. 
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2 JOHN STACHURSKI 

These results on uniqueness and global stability of equilibrium were 

extended t o  include nondeterministic models by Brock and Mirman [5]. 

Using identical Inada-type assumptions, they proved that analogous re- 

sults hold for models where the production function includes a random 

component. Based on careful inferences from the model primitives, 

their "stable interval" proof showed clearly that even with the addi- 

tion of uncertainty, the correspondence from economic fundamentals to 

long-run outcomes was indeed unique. 

Subsequently the major focus of theoretical research on stochastic 

growth became simplification of the proofs and investigation of alter- 

native sufficient conditions.' These conditions extended stability to 

new classes of models, Relatively little attention was paid t o  investi- 

gation of the nature of the stochastic steady state itself [28]. 

This paper studies stability in a class of increasing returns growth 

models originally analysed by Azariadis and Drazen 121. Despite the 

existence of multiple equilibria in the deterministic case, the  stochas- 

tic version is shown to  have a unique and globally stable stochastic 

steady state. At the same time, the models generate highly path de- 

pendent time series over long horizons for each given set of economic 

fundamentals. These finding imply tha t  in general, stability results 

for stochastic growth models cannot be reduced to  a statement of the 

existence of a unique and globally stable stochastic steady state: the 

implied association of global stability with unique long-run outcomes 

is problematic. 

2 ~ e e ,  for example, the contributions of F'utia [13], Stokey et al. [38] and Hopen- 

hay19 and Prescott [17]. 
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In the model, uniqueness and stability of the steady state is induced 

by the introduction of noise. The notion of noise-induced stability is 

not new to economics. Kandori, Mailath and Rob [21] study the effects 

of adding noise to a game-theoretic model with random matching. The 

introduction of mutations to  player strategies in a repeated one-shot 

game leads to  the existence of a unique, globally stable distribution of 

agents over strategies. This result is observed for games tha t  without 

mutation exhibit multiple strict Nash equilibria. 

Previously, the phenomenon of noise-induced stability was observed 

in physical systems. Mackey, Longtin and Lasota 1261 demonstrated 

global stability when additive or multiplicative Gaussian white noise is 

included in the Fokker-Planck differential equation. In the determin- 

istic model, variation of a parameter leads to switching between single 

and multiple steady states. With Gaussian noise, global stability holds 

and is invariant across parameter values, although the switching behav- 

ior of the original model is paralleled by varying degrees of nonergodic 

state dynamics. 

In development, path dependent behavior is driven by persistent 

shocks coupled to  a nonlinear feedback system of locally increasing 

returns over phases of the development process. These in turn are gen- 

erated by self-reinforcing or "autocatalytic" growth mechanisms. Ex- 

amples of such phenomena include externalities associated with human 

capital formation [2, 151, investment with barriers to capital mobility 

[32], complementarities across industries [lo], and stages of growth 1161, 

as well as the less formal models of earlier development  theorist^.^ 

3For a survey of growth and development with locally increasing returns see 

Azariadis [3]. 
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All of t h e  above models share the property that returns to scale are 

decreasing in the limit, in the sense that  there exists a bounded subset 

of the s t a t e  space such that returns to  accumulation decrease on its 

complement. This property is referred to  here as global decreasing 

returns, a n d  is critical to  proving existence and asymptotic stability of 

equilibrium in the sense of Brock and Mirman; noise does not induce 

stability i n  the "persistent growth" models of Romer [34] and others. 

I t  is arguably the case that local path dependency combined with 

global stability is a natural feature of many economic, physical and 

biological systems. The classic example is Darwinian evolution, where 

shocks a r e  initially amplified and then stabilized as successive muta- 

tions trigger progress and change 1181. Similar dynamics can be ob- 

served in some nonlinear business cycle models, where self-reinforcing 

sluinps in the level of activity are eventually damped as falling prices 

alter real money balances. Even the strongest feedback systems-such 

as llyperinflation-must ultimately be limited by systemic constraints 

and the adjustment of underlying b e h a ~ i o r . ~  

Thus while the analysis developed here runs counter to  intuition on 

the behaviour of globally stable models, it should not be regarded as  

nonconstructive. Indeed the salience of the model is apparent from 

the empirical growth literature. The transition probability matrix for 

income estimated from cross-country data by Quah [31] has a unique 

and stable limiting distribution, while a t  the same time exhibiting per- 

sistence at the extremes of the distribution. Mankiw, Romer and Weil 

- 
4See in particular the discussion in Krugman [23, pp. 1-71, where these types of 

models are referred to as "self-reinforcing7' in the short-run and "self-limiting'' in 

the long-run. 
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[27] find evidence to support conditional convergence a t  an aggregate 

level; Durlauf and Johnson [ll] find multiple regimes. 

Section 2 outlines the techniques used to prove global asymptotic 

stability of the stochastic Azariadis-Drazen model. Section 3 considers 

a general growth problem, and gives the major definitions. Section 4 

discusses pa th  dependence and its relationship to  global stability. A 

persistence concept called finite-horizon path dependence is introduced. 

Section 5 formulates a stochastic Azariadis-Drazen model. The model 

is proved t o  be both globally stable and finite-horizon path dependent. 

Section 6 discusses econometric implications of these results. 

This section provides a discussion of methods that can be used to  

establish existence of unique, globally stable equilibria in increasing 

returns models. The ideas are based on a framework for studying 

perturbed nonlinear systems due to Lasota [24]. 

Consider a model of economic growth where the state space is income 

per head. Discretize the state space into N disjoint regions, or "bins," 

where N is a positive integer. Very little generality is lost assuming 

that income evolves according to a first order Markov process, which 

can be associated with an N x N matrix P = (p,,), where pi, is the  

conditional probability that  the economy moves from bin i to bin j 

in one period. Evidently p,, 3 0 and x j p ,  = 1. Matrices with this 

property are called stochastic. 

Suppose that the current state of the economy is drawn according 

to distribution .~r = ( T ~ ,  . . . , rN) ,  where is the probability that the  

realized value of income is in bin i. In this case, the distribution n' for 
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the next period state is 

The intuition is that Cipi jni  sums the probability pij of the state 

moving from i to j across all i ,  weighted by the probability of i 

occurring a s  the current state. Hence the sum gives the (unconditional) 

prolbability of entering bin j next period, and n P  is the distribution 

that  governs the next-period state. 

By identical reasoning, n P P  = nP2 is the distribution two periods 

hence, and  so on. A stochastic equilibrium is a distribution n* such 

that  n* = n*P. The equilibrium is globally stable if rPt + n* in norm 

as t + cm for all possible initial distributions n. 

It is assumed that transition from any bin i to any other bin j occurs 

with positive (possibly very small) ~ r o b a b i l i t ~ . ~  

That there exists a unique and globally stable equilibrium whenever 

p;j > 0 for all i ,  j is a classical result due t o  A. A. Markov. Al- 

ternatively, consider the following operator-theoretic argument. To 

each N x N matrix P there corresponds a unique linear operator 

P: RN + JWN,  where for row vector x E RN, the image Px of x under 

P is xP. In  the current context a probability distribution is an element 

of the N - 1 dimensional simplex A c RN.  I t  is straightforward t o  

verify that when P is stochastic, P maps A into itself. 

Ilistance between points in RN can be measured by the norm llxll = 

xi Ixil. We now show that  the operator P is strongly contractive on 

5 ~ a s e d  on postwar data, Quah [32] calculates a 5% transition probability from 

first to last income decile in three generatians, 
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A in this norm, in the sense that 

Recall tha t  pij > 0 for each pair i ,  j .  Note also that if 7r and 7r' are any 

two distributions, n # 7r1, then 7ri - 7r: is positive for at  least one i and 

negative for at least one i. But then 

which proves (2). 

In addition, under 11 . 1 1  the set A is a closed, bounded subset of RN. 

Therefore A is compact under the same m e t r i ~ . ~  Moreover, i t  is known 

[20, Theorem 4.1.6, Corollary 11 that a strongly contractive operator P 

mapping a compact space into itself has a unique fixed point T*, and 

that all points in the space are norm-convergent to 7r* under iteration 

of P. Clearly n* is a unique and globally stable equilibrium for the 

economy in question.7 

The advantage of the above approach is that it can be extended to 

growth models with infinite, noncompact state space. For such models, 

strong contractiveness holds for a large and important class of produc- 

tivity shocks. The main difficulty to overcome is that the operator P 

now acts in a space of infinite dimension, corresponding to  the set of 

6 ~ 1 1  norms are equivalent in finite dimensional space. 

7 ~ n  alternative contraction-based argument for discrete space Markov chains is 

given in Stokey et  al. [38, Lemma 11.31. 
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all distributions on an arbitrary (rather than finite) state space. In this 

case compactness of the distribution space fails. However, in some cases 

it can be proved that the closure of the set of iterates { P t r  : t 2 1) is 

compact for any initial distribution n. The key criterion for obtaining 

this property is global decreasing returns to capital accumulation. 

When combined with strong contractiveness, compactness of the clo- 

sure of t h e  set of iterates is sufficient to obtain identical stability results. 

This section sets out the main concepts discussed in the paper using 

the framework of a generic growth problem. In contrast to the previous 

seci;ion, the  state space is now treated as continuous. In particular, the 

model evolves on state space X ,  where X is a Borel subset of the real 

line R. The  collection of all Borel subsets of X is denoted 3, and y is 

Lebesgue measure on (X, 3).  The symbol Ll(y) denotes the  space of 

y-integrable real functions on X.' 

3.1. Stochastic g rowth  models. For the purposes of this paper, a 

growth model E on X is a pair (S, a), where S is a period-to-period 

transition rule and 9 is a "random number generator" from which un- 

correlated and identically distributed shocks are drawn. Given current 

state xt € X, an X-valued shock tt is drawn by \k and the next period 

- 
8 ~ s  usual, LI (p) is a Banach lattice of equivalence classes; functions equal off a p- 

null set are identified and "almost everywhere" notation is suppressed throughout. 

Real functions introduced in the paper are assumed to be Borel functions, and 

subsets of X are assumed to be Borel sets. Integration is always with respect to p, 

ancl is denoted by dx, dy, etc. 
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state xt+l E X is determined as 

The state variable x can be thought of as representing per capita income 

or some proxy thereof. The transition rule S :  X x X -+ X encodes 

the implications of the model primitives and the restrictions imposed 

by optimizing behavior. 

Once a current state xt and the pair E = ( S ,  Q) are specified, it 

is possible t o  calculate a conditional distribution for the next period 

state xt+l from (3). For fixed growth model 23, the probability that  

xt+l is in B C X given that  xt = x is denoted Q ( x ,  B ) .  A function 

Q which associates a distribution for the next period to  each current 

period value x is called a transition probability function. 

The sequence of state variables generated by (3)  is a stochastic pro- 

cess on X. Given the transition probability function Q and an initial 

state value xo, probabilities of events (sample paths) for the process 

can be calculated. An event can be represented by a subset of the 

sample space for the stochastic process, which is the infinite Cartesian 

product x g o X .  Thus for given xo, the event xi E Bt C X for t in 

a subset A of N is written as xtEABt,  and its probability is denoted 

nz, ( x tE~Bt ) . '  

'More formally, the distribution II,, is a probability on measurable space 

(x,M=,X, @SO%), where x,"O=,X is the space of all X-valued sequences and @,60=oB 

is the tr-algebra on x,Od=,X generated by the Cartesian product x,M=,%. It is known 

[35, 11.9, Theorem 21 that such a distribution a,, always exists and can be con- 

structed uniquely from an initial condition xo and the transition probability Q,  
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3.2. The L1 approach.  In this paper stochastic processes evolve in 

the space of  density functions.1° Here a density function is a nonnega- 

tive element of L 1 ( p )  that  integrates t o  unity. 

In order t o  work in the space of densities, we require that  the common 

distribution !P of the shocks Jt can be represented by a density function 

q!~. In addition, we assume that 

A s s u m p t i o n  3.1. For each fixed x E X, the map z t+ S ( x ,  z) is 

In this case, the transition probability function Q can always be 

represented by a density function p :  X x X --+ I&. Here p(x, .) is 

a density in its second argument for each fixed x E X. The number 

p(x, y )  can  be thought of as analogous to  the conditional transition 

probability pij in Section 2. The relationship between p and Q is 

and p is called the stochastic kernel for growth model E. 

Given stochastic kernel p corresponding to  El define an operator P 

from the function space L1 (p )  into itself by 

It can be verified using Fubini's theorem that  i f f  is a density function 

on X, then its image Pf is again a density function. The operator P 

is called t h e  Marlcou operator corresponding to E,  and has the follow- 

ing interpretation: If the current state of the economy E is selected - 
an introduction to the literature on density techniques, see the monograph 

of Lasota and Mackey [25]. For further discussion of stochastic growth by L1 

methods see Stachurski [37]. 

"A map is nonsingular when the preimage of every p-null set is p-null. 
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according to density f ,  then Pf is the density function for the next 

period state. The intuition is analogous to  that  given for the discrete 

version (1) of (4) in Section 2. 

Iteration of the operator P is equivalent to  moving forward in time. 

If Pt is defined by Pt = P o p t - '  and P1 = P, and i f f  is the distribution 

that  currently describes the probabilistic laws that govern El then Pt f 

gives the current distribution for E t periods hence,'' 

The standard Brock-Mirman definition of stochastic equilibrium [5, 

p. 4921 is  given below. The definition of stability used here requires 

convergence in L1 (p )  norm, which is stronger than stability in the weak 

topology used by Brock and Mirman. 

Definition 3.1. Let E be a growth model on X, and let P be the 

corresponding Markov operator. An equilibrium or steady state  for E 

is a density f *  on X such that P f * = f *. An equilibrium f *  is called 

globally s table if Ptf -+ f *  in L1(p) norm as t -+ cc for every density 

function f .  The economy E is called globally stable if i t  has a unique, 

globally stable equilibrium. 

Thus an equilibrium or stochastic steady state in the sense of Brock 

and Mirman is a probability distribution over the state space that  is 

invariant from the current period t o  the next, given the optimal behav- 

ior of agents and the laws of motion that determine the evolution of the 

system. It is an immediate consequence of the definition of stability 

that  in t h e  infinite limit initial conditions do not matter. 

1 2 ~ o r  a stylized diagrammatic representation of the evolution of densities over 

income space see, for example, Quah [32, Figure 41, [33, Figure 11. For nonpararnet- 

ric estimation of a sequence of actual cross-country densities see Quah 131, Figure 

61, or Jones [19, Figure 11. 
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4. PATH DEPENDENCE 

This section provides a definition of path dependence, as well as 

an auxillary persistence concept called finite-horizon path dependence. 

Path dependent dynamic systems are common to  many sciences. In 

economics, much of the early work on increasing returns and history- 

dependent selection in explicitly stochastic systems is due to Arthur 

[I]. In the growth literature, path dependence has recently come to  be 

associated with concepts such as stratification, polarization and con- 

vergence clu bs.13 

4.1. Infinite horizon results. Arthur defined a stochastic process to 

be path dependent whenever it is not ergodic (i.e., globally stable) [I, 

p. 131. David [7, p. 141 defined a path dependent stochastic process 

to be one "whose asymptotic distribution evolves as a consequence 

(function) of the processes' own history." He cited "multiplicity of 

absorbing states7' as a source of this outcome. 

The definition of Arthur is mathematically precise but may not in 

all cases coincide with our intuitive notion of history dependent selec- 

tion (how t o  regard a Markov process which is sweeping t o  infinity?), 

while David's definition cannot be applied for processes which do not 

have a limiting distribution for every initial state. Here multiplicity of 

absorbing states is used as the primitive to define path dependence.14 

I3see, for example, Quah [32, 331, Galor 1141 and Durlauf and Quah [12]. 

14see also the related definition of Mitra and Nishimura, who call (deterministic) 

systems on the real line path dependent whenever there exist at least two sets of 

positive measure such that trajectories originating in these regions have different 

limit sets [29, p. 26'11. 
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Definition 4.1. Let E be a growth model, and let Q be the corre- 

sponding transition probability function. The model E is called path 

dependent if there exist at least two disjoint open intervals Al ,  A2 in X 

such tha t  

(5) Q ( x ,  A;) = 0, b'x E A,, 2 = 1 , 2 ,  

where A: is the complement of Ai on X. 

A set A satisfying (5) has the property that,  once entered, the prob- 

ability of exit is zero. Such sets are called absorbing or ergodic for the 

process defined by Q. Thus E is called path dependent if there exist 

multiple disjoint open intervals which are absorbing for the stochastic 

process generated by E. 

Intuitively, if open interval A is absorbing for E,  and if the initial 

state xo is drawn according to a density f that vanishes off A, then 

the state is in A in every future period with probability one. That  is, 

S A  Pt f = 1 for every t E N. The statement holds for t = 1, because 

A similar argument confirms the result for arbitrary t E N under an 

induction hypothesis for t - 1. 

It is implicit in the stochastic growth literature that  global stability 

rules out path dependence, in the same sense that  global stability in 
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deterministic models rules out the presence of multiple local attractors. 

The following proposition formalizes this idea. 

P r o p o s i t i o n  4.1. If economy E is globally stable, then it is not path 

dependent. 

Proof. Suppose otherwise. In particular, let E be globally stable with 

equilibrium f *, and let disjoint open intervals Al and A2 be absorbing 

for E.  If, i n  addition, f l  , f 2  are two densities that vanish off Al and A2 

respectively, then 

Contradiction. 

4.2. F in i t  e-horizon path dependence.  The following definition cap- 

tures the idea that,  while a model may not be path dependent in the 

sense of Definition 4.1, it may still have disjoint open subsets of the 

state space with the property that, given any finite time horizon, i t  is 

possible to adjust the parameters of the model such that the condi- 

tional probabilities of exiting either region prior to the end of the given 

time horizon is arbitrarily small. 

Llet E denote the class of growth models Ee = (S, I l l e ) ,  0 > 0. Here 

8 parameterizes the variance of the productivity shock [, in the sense 

that [ converges in probability to a constant as 0 4 0. 

Definition 4.2. The class E is defined t o  be finite-horizon path depen- 

dent if there exist at least two disjoint open intervals A l ,  A2 C X with 

the property that,  for any finite time horizon T and any E > 0, there 

exists an Ee E E such that for Ee the conditional probabilities of 

(1) the  state xt leaving Al while t 5 T given xo C- A l ,  and 
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(2) t h e  state zt leaving A2 while t < T given zo E Az 

are both less than E. That  is, QE > 0, QT E N, 3 0 > 0 such that 

T-1 

Here IT:, is the distribution of the stochastic process generated by Es. 

Based o n  the above notions of global stability and path dependence, 

this section analyses a stochastic version of the "threshold externali- 

ties" model due to Azariadis and Drazen [2]. Global stability of the 

stochastic version is established. Properties of the stochastic equilibir- 

ium are then investigated. We use the model to  show that  Proposition 

4.1 fails when path dependence is replaced by finite-horizon path de- 

pendence. 

5.1. Stability in a model with externalities. The framework is an 

overlapping generations model. The state space X is the positive real 

numbers (0, GO). Agents live for two periods, working in the first and 

living off savings in the second. Savings in the first period forms capital 

stock, which in the following period is combined with the labor of a 

new generation of young agents for production under the technology 

where y is  output, k is capital and l is labor input. The function 

k +-+ A(k) signifies the existence of increasing social returns resulting 

from sensitivity of "technology" to  economy-wide capital aggregates. 

In particular, it is assumed that  A(k) = Al when k < kb and A2 when 

k 2 jCb, 0 < Al < A2, where the bifurcation point kb is a "critical mass" 
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level of capital stock. This dependence is external to individual agents, 

and A is treated as constant with respect to private investment.15 

For convenience, labor supply is normalized to unity. The produc- 

tivity shocks St are uncorrelated and identically distributed by density 

$. The exponent 0 on < is a positive number which parameterizes the 

variance. 

Let c (c')  denote consumption while young (old). Agents maximize 

utility 

subject to the budget constraint c:+~ = (wt - ct)(l + r,+l), where 

,O E (0 , l )  is a discount factor, and wt and rt are the wage and interest 

rates at  t respectively. In this case optimization implies a savings rate 

from wage income of @/( I  - P), and hence kt+l = (@/(I - ,B))wt. 

Assuming that labor is paid its marginal factor product yields the 

law of motion 

where D = (,O/(l - P ) )  (1 - a) .  Define kt = (DA~)''('-~) for i = 1,2. 

We (asassume that k; < kb < k;. This situation is illustrated in the plot 

of kt c-, DA(kt)  kP given in Figure 1. 

Let 3 = {F6 : 6 > 0) be the class of all such economies, param- 

eterized by the exponent 0 on the productivity shock. The implied 

stochastic kernel for Fe is 

%or motivation see Azariadis and Drazen 121. 
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FIGURE 1. The map kt I-+ DA(kt)kr 

The kernel can be obtained from (6) using a standard change of variable 

argument. 

In addition to  the formulation of Azariadis and Drazen, the  following 

three assumptions are required. 

Assumption 5.1. The density $ satisfies $(z) > 0, VZ E X. 

Assumption 5.2. The shock ( satisfies El ln(l < MI. 

Assumption 5.3. The density $ satisfies $ ( x ) z  5 M, VZ E X, M a 

given constant. 

Assumption 5.1 provides a "mixing" condition, which is crucial to  

the proof of global stability. In the current context, the implication 

of the assumption is to admit the possibility of "growth miracles" and 

"growth disasters." Provided that they are nonzero, the possibility 

of these occurrences may be made arbitrarily small.16 Most common 

distributions on the positive reals satisfy this assumption (e.g., the log- 

normal, gamma, exponential, X-squared, Weibull and F distributions). 

l6J?or a summary of the data on such phenomena, see Parente and Precott [30]. 
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Assumptions 5.2 and 5.3 enforce small left- and right-hand tails on 

the density of the shock: very small and very large shocks are rare. 

Small-tail assumptions are used to prove existence of equilibrium; the 

economy does not collapse or grow without bounds. 

We are now ready to  state the main technical result of the paper. 

Proposition 5.1. The following statements are true. 

1. If the shock [ satisfies Assumption 5.1, then no economy in 3 

has more than one equilibrium. 

2. If,  in addition, Assumptions 5.2 and 5.3 are also satisfied, then 

the class 3 is globally stable. That is, Fg E 3 is globally stable 

for each 0 > 0.  

The proof is given the Appendix. The methodology is a s  was de- 

scribed in Section 2. The Markov operator associated with the sto- 

chastic kernel (7) is shown to  be strongly contractive and generate 

precornpact trajectories on the space of all density functions. Neither 

compactness of the state space X nor continuity of the underlying tran- 

sition rule k ++ DA(lc)ka is required. Many of the ideas used in the 

proof were inspired by results on real dynamical systems with additive 

perturbations found in the monograph of Lasota and Mackey [25] .  

Figure 2 presents a sequence of densities generated by iterating the 

Markov operator implied by (7) on an arbitrary initial distribution fo. 

All variables are in logs for convenience. The horizontal axis is the 

logarithm of capital per head. Here fo can be thought of a s  an initial 

distribution of a "large" number of Azariadis-Drazen economies. The 

density fo is the left-most distribution, with probability mass shifting 

rightwards over time, and developing the bimodal structure observed in 
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FIGURE 2 .  Convergence to equilibrium 

the actual cross-country growth data by, among others, Quah [32, 331, 

Jones [19] and Durlauf and Quah [12]. The two modes correspond to  

(the logs of) the two local attractors in the deterministic case.17 

Proposition 5.1 implies that the sequence of densities (ft) converge 

to a unique limiting density f *. There is little observable change after 

t = 2000 (the third density plotted in the figure), 

5.2. Persistence in a stable model. Despite the global stability re- 

sult obtained in Proposition 5.1, intuition suggests that when the vari- 

ance of t he  shock is low (i,e., when 0 is close to zero), initial conditions 

may be very persistent over finite time intervals. In fact the following 

result holds. 

1 7 ~ h e  parameters used in the simulation are 8 = 1, D = 1, cr = 0.5, Al = 0.5, 

Az = 2, ka = 0.6875, J lognormal, In J - N(0,0.5). The densities are generated 

using Monte Carlo simulation and estimated nonparametricdly by the Parzen win- 

dow method with Gaussian kernel and bandwidth 0.38. Such estimates are known 

to converge to the true density in L1 norm for large sample size [8]. Here each 

generation is represented by 200 sample points. 
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FIGURE 3. Finite-horizon path dependence 

Proposition 5.2. The class 3 2s finite-horizon path dependent .  

The proof is given in the Appendix. The intervals supporting the 

two modes of the limiting distribution in Figure 2 become progressively 

more "absorbing" as the variance of the shock is reduced. 

An illustration of path dependence in the Azariadis-Drazen economy 

over 500 generations is given in the Figure 3. The x-axis is time, and the 

y-axis is t h e  log of the state variable k. In the figure, two time series are 

generated by simulation, one with a low initial level of capital and the 

other with a high initial level.18 Figure 3 corresponds to the situation 

in ITigure 1, where kb is half-way between k;  and k;. Despite the fact 

that  the economy satisfies global stability, individual time series exhibit 

strong path dependence. 

- 
1 8 ~ h e  parameters are D = 1, ct = 0.95, Al = 1.0, Az = 1.05, 6' = 1, [ lognormal, 
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6. IMPLICATIONS 

In this section some implications of the analysis are considered in 

the light of  the evolving cross-country income panel. 

Following the contributions of Romer [34], Mankiw, Romer and Weil 

[27] and others, empirical analysis of growth data has typically been un- 

derpinned by explicit theoretical structure. In recent years, however, it 

has been forcefully argued that standard regression analysis-justified 

by linearizing a deterministic Solow-Ramsey model in the neighbor- 

hood of its long-run steady state-does not provide a sufficiently flexi- 

ble architecture to capture the major features of the cross-country data 

[32, 121. In other words, linear analysis suffers from specification bias. 

In contrast, more flexible descriptive and nonparametric methods 

have proved revealing. Several authors have obtained empirical sup- 

port for t h e  deterministic multiple equilibria models 12, 31, 32, 331. 

Nevertheless, theoretical aspects of the link between these determinis- 

tic models and the inherently stochastic growth data have not always 

been clear. For example, Parente and Prescott [30, p. 131 argue that  

the evidence does not support "poverty traps," given the observable 

fact of mobility across the income distribution. 

The stochastic increasing returns model developed in this paper of- 

fers a theoretical structure suitable for integrating the multiple equi- 

libria development literature into the empirical growth research. In 

particular, it has been shown that the relationship between the deter- 

ministic multiple equilibria models and the globally stable stochastic 

models is not  dichotomous; the degree of path dependence instead de- 

pends on t he  parameters that determine persistence and mixing across 
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FIGURE 4. Phase transition 

the income distribution. This observation highlights the theoretical 

structure provided for investigation of convergence, take-off, persis- 

tence, polarization, growth miracles and other salient aspects of the 

evolution of the cross-country income distribution. 

As one illustration of these ideas, consider the simulated growth mir- 

acle in the  time series shown in Figure 4. Relative to Figure 3, Icb is 

taken to be  closer to the lower fixed point k;. A growth miracle occurs 

after some 300 generations, and the economy makes the transition to  

the mode associated with the higher "attractor" k,*. As further re- 

search clarifies the nature of the increasing returns mechanism and the 

necessary model parameters, ensemble Monte Carlo simulations of this 

time series could, for example, provide estimates of take-off or "first 

passage7' probabilities under different policy regimes (determining the 

critical value k b ) .  
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We begin with the proof of Proposition 5.1. The framework used here is 

due to Lasota [24]. An application of these methods to the classical problem 

of Brock and Mirman is found in Stachurski [37]. 

The basic construct for the proof is a semidynamical system, which is a 

pair (U, T ) ,  where U is a metric space with distance Q and T is a continuous 

map from U into itself. The system (U, T )  is called strongly contractive if 

Every strongly contractive system (U, T)  has at most one fixed point in U. 

To see this, suppose that x and sf are both fixed points. Then ~ ( T x ,  Tx') = 

Q(X, X I ) ,  which is only possible if x = a'. 

The system (U,T) is called Lagrange stable if the trajectory {Tnx : n E 

N} is precompact (i.e., has compact closure) for every x E X. If (U, T )  is 

both strongly contractive and Lagrange stable then there exists a unique 

fixed point x* of T on U, and Tnx  -+ x* as n -+ oo for every x E X. (See 

Lasota [24, Theorem 3.31. An alternative proof is available in Stachurski 

[37, Theorem 5.21.) 

Let D ( p )  be the set of density functions on (X, 23, p), X the positive 

reals. The set D(p)  is a metric space under the L1(p) norm. In addition, let 

Po: L1(p) -+ L1 (p) be the Markov operator associated with the stochastic 

kernel (7) by (4). Since Po is a positive linear operator on a Banach lattice 

it must be norm-continuous. It  can also be readily verified that Pe : D(p) -+ 
D(p). Hence (D(p) ,  Po) is a semidynamical system. 

Proof of Proposition 5 , l .  There is no loss of generality in assuming that the 

exponent 0 = 1, because if $ is the density of and $e is the density of 

to, then $0 satisfies Assumptions 5.1, 5.3 and 5.2 whenever $ does, for any 

given 19 > 0. 

When Assumption 5,1 holds the system (D(p),  P) is strongly contracting. 

That this is the case can be verified by noting that positivity of $ on X 
implies positivity of the stochastic kernel (7) for all k, k', and then extending 

in a straightforward manner the proof of contractiveness on finite state space 

given in Section 2. This proves the first assertion of Proposition 5.1, 

The second assertion of the proposition will be established if (D(p) , P) 
is shown to be Lagrange stable under the additional Assumptions 5.2 and 

5.3. By an important result of Lasota [24, Proposition 3.41, it is sufficient to 

prove that {Pn f} is weakly precompact for all f E M, where 3VC is a subset 
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of L1(p) with the property that its closure contains the density functions. 

The remainder of the proof shows that this is in fact the case. 

Let 3vI b e  the set of all nonnegative functions in L1 (p) such that 

is finite. We claim that M has the desired properties. 

Pick any density f. To see that there exists a (fk) C M with fk -+ f ,  
define fk = l( ,kl f, where 1 is the characteristic function. Clearly fk E 

Ll (p).  Moreover, fk f pointwise, implying convergence in norm. Finally, 

fk 2 0 and 

Hence fk E M, 'dk E N. 
It remains to show that if f E M then {Pnf : n E N) is weakly pre- 

compact. Note first that {Pn f) is norm-bounded, because IIPgl( = 11g11 for 

all nonnegative g E L1(p).19 By a well-known condition of Dunford and 

Schwartz [9, IV.13.541, a norm-bounded collection of functions {Pn f) in 

L1 (p) is weakly precompact whenever it satisfies 

(i) VE > 0, 36 > 0 such that if A E: 'B and P(A) < 6, then 

(ii) YE > 0, there exists a bounded set E such that 

Evidently it is sufficient to prove that these conditions are satisfied for all 

but a finite (n  < N )  number of the collection {Pn f : n E N). 
Regarding (i), pick any E > 0. We require a 6 > 0 and an N € N such 

that 

whenever n 2 N and p(A) < 6. 

- 
I g ~ h i s  can be verified from the definition using hbini 's  theorem. 
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There i s  no loss of generality in assuming that the constant D in (6) is 

equal to 1. Define the map H:  X 3 x r-, Ilnxl E IR+. We have 

But 

where C = maxk 1 In A ( k )  1 + El lnEI. Here C is finite by the definition of 

A(k) and Assumption 5.2. Thus, 

Repeating this argument obtains 

Since E(H 1 f ) is finite by (8), it follows that 

for some N E N. 
On the other hand, for arbitrary positive a, 

1 lnklPn f (k)dk + S I1nkIPnf(k)dk 
( k :  (lnkl<a} (k : I In k(La} 

Combining this result with (12) yields the estimate 
exp -a Cllf l l  Pn (k)dk + JW pnf(k)dk 5 1 (I + -) 

exp a a 1 - a  
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whenever n 2 N. 

Consider now the decomposition 

Substituting in (13) gives 

whenever n 2 N. 

Since $( r )z  < M for all positive z by Assumption 5.3, 

llf llM <- - kl * 

Therefore, 

We conclude that 

l - a  

when n 2 N. 

Choose a so small that 

Now pick any positive S satisfying 

(16) 
E 

6 5 ( ~ l l f  II ~ X P  

Then n 2 N and p(A) < S implies 

This proves condition (i). 
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It remains to establish that the weak precompactness condition (ii) also 

holds for the same collection (P* f ) ,  Fix again an arbitrary E > 0. By (13), 

for all positive a, when n 2 N .  Choose a such that 

Then the integral of Pn f off the bounded set (0, exp a) is less than E for all 

n > N ,  and condition (ii) is also satisfied. 

It now follows that (D (L1  ( p ) )  , P) is Lagrange stable. This completes the 

proof of the proposition. 0 

The following lemma is useful in establishing finite-horizon path depen- 

dence. We begin with a definition. A subset A of the state space X to be 

&-absorbing for the class & if it satisfies 

lim sup Q@ (s, A:)] = 0, 
@J.Q [ ,€A 

where Q e  is the transition probability function corresponding to E@. Com- 

pare this t o  the definition (5) for an absorbing set. A set is absorbing for an 

economy E if the probability of exit in one step is zero. A set is &-absorbing 

for a class of economies & = { E e )  if the maximum probability of exit can 

be made smaller than any positive E by reducing the degree of noise, as 

parameterized by 8. 

The definition of finite-horizon path dependence can now be simplified as 

follows. 

Lemma 7.1. A class & i s  finite-horizon path dependent whenever there ezist 

two or more disjoint open intervals that are &-absorbing for &. 

Proof. Fix T E N and E > 0. By hypothesis, there exists a 8 > 0 and two 

disjoint open intervals Al , A2 such that 
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Take any t in 0 , .  . . , T - 1 and any so E A,. We have 

But then 

as was to b e  shown. 

We are now able to give the proof of finitehorizon path dependence. 

Proof of Proposition 5.2. Let Qe be the transition probability function cor- 

responding to Ee. Let Al = (0, X 1 )  and A2 = ( A z ,  m), where A1 e ( k ; ,  kb) 

and X 2  E (kb ,  k;). Consider first the probability of leaving Al in one step, 

given that the current state is k  E Al: 

But then 
00 

Qe(k, A:) 5 4 I - ~ )  & +(z)dzl Vk e Ale 
X1 
D A1 

Note that x : - ~ / ( D A ~ )  > 1 by construction. It now follows that Qs(k ,  AT) J, 
0  uiliformly in k  E Al as 13 J, 0. A similar argument proves that Qe(k ,  As) 3.0 

uniformly in k  E A2 as 0 J, 0. Evidently the conditions of Lemma 7.1 are 

satisfied. 
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