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Abstract. In this work, we study several different aspects of systems modelled by
partial differential equations (PDEs), both deterministic and stochastically perturbed.
The thesis is structured as follows:

Chapter I gives a summary of the contents of this work and illustrates the main
results and ideas of the rest of the thesis.

Chapter II is devoted to a new model for the flow of an electrically conducting
fluid through a porous medium, the tamed magnetohydrodynamics (TMHD) equations.
After a survey of regularisation schemes of fluid dynamical equations, we give a physical
motivation for our system. We then proceed to prove existence and uniqueness of a strong
solution to the TMHD equations, prove that smooth data lead to smooth solutions and
finally show that if the onset of the effect of the taming term is deferred indefinitely, the
solutions to the tamed equations converge to a weak solution of the MHD equations.

In Chapter III we investigate a stochastically perturbed tamed MHD (STMHD)
equation as a model for turbulent flows of electrically conducting fluids through porous
media. We consider both the problem posed on the full space R3 as well as the problem
with periodic boundary conditions. We prove existence of a unique strong solution to
these equations as well as the Feller property for the associated semigroup. In the case
of periodic boundary conditions, we also prove existence of an invariant measure for the
semigroup.

The last chapter deals with the long-time behaviour of solutions to SPDEs with
locally monotone coefficients with additive Lévy noise. Under quite general assump-
tions, we prove existence of a random dynamical system as well as a random attractor.
This serves as a unifying framework for a large class of examples, including stochas-
tic Burgers-type equations, stochastic 2D Navier-Stokes equations, the stochastic 3D
Leray-α model, stochastic power law fluids, the stochastic Ladyzhenskaya model, sto-
chastic Cahn-Hilliard-type equations, stochastic Kuramoto-Sivashinsky-type equations,
stochastic porous media equations and stochastic p-Laplace equations.
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CHAPTER I

Introduction and Motivation

Random phenomena occur in numerous places in nature and society. They can often
be modelled by partial differential equations perturbed by a noise term.

In this thesis, we analyse several different facets of (S)PDE models, ranging from well-
posedness and regularity to their long-time behaviour. Many, but not all, of the models
considered here have their origin and their main applications in fluid dynamics.

The chapters are written in a self-contained way and can largely be read independently
from each other. This chapter serves to give a short overview of the contents of each of
the following chapters and some of the main ideas used there.

1. Tamed MHD Equations - Deterministic and Stochastic

The first two chapters of this thesis deal with a regularised version of the magnetohy-
drodynamics (MHD) equations, which we call the tamed MHD (TMHD) equations and
which are of the form

∂v

∂t
=

1

Re
∆v − (v · ∇)v + S (B · ∇)B +∇

(
p+

S|B|2

2

)
− gN(|(v,B)|2)v,

∂B

∂t
=

1

Rm
∆B − (v · ∇)B + (B · ∇)v +∇π − gN(|(v,B)|2)B.

Here v = v(x, t) denotes the velocity field of the fluid, B = B(x, t) its magnetic field
and p = p(x, t) the pressure, for points x in a domain D ⊆ R3. For the appearance of
the additional term π = π(x, t), which arises from introducing the taming term into the
equation for the magnetic field and to which we refer to as the “magnetic pressure”, cf.
Chapter II, Section 1.3.4. The numbers Re,Rm > 0 are the Reynolds numbers of the
velocity field and the magnetic field, and S > 0 denotes the Lundquist number. The
parameter N models the onset of an additional restoring force, i.e. the size of the norm of
the fields needed for the additional force to kick in. The function gN is smooth, equal to
zero for small arguments and, after a short onset, for arguments of order N and greater
it starts to grow linearly. A more precise definition is given in Chapter II, Section 1.3.6.

This new system of equations is a generalisation of the tamed Navier-Stokes equations
of M. Röckner, X.C. Zhang and T.S. Zhang, cf. [194–197,250], to the MHD case.

The MHD equations (where gN ≡ 0) are an important model in the field of fluid dy-
namics, which describes the flow of a fluid consisting of electrically conducting particles
(e.g. a liquid metal or a plasma). They share many traits with the related Navier-Stokes
equations (where B = 0), and the uniqueness and regularity of their solutions are open
problems to this day. To address this issue, different regularisation schemes have been pro-
posed in the past, starting with the classical work of J. Leray [148] for the Navier-Stokes
equations. They aim at making the equations more amenable to analysis by changing
them, either by modifying the terms (weakening the influence of the nonlinear convec-
tive terms, or strengthening the linear dissipative term) or adding additional regularising
terms.

v



vi I. INTRODUCTION AND MOTIVATION

These changes then ensure that the resulting equations become well-posed, and one
often can prove that if one makes the effect of the regularisation smaller and smaller, their
solutions converge to weak solutions of the non-regularised equations. Moreover, in many
models, the long-time behaviour of the regularised and the non-regularised equations can
be shown to coincide.

We start in each of the two chapters by giving a relatively detailed (though by no
means complete) overview of the existing literature of regularisation schemes for Navier-
Stokes as well as MHD equations in the introductions of the chapters, comparing different
schemes with each other and embedding our own results into the broader context.

Apart from being a regularised version of the MHD equations, the tamed equations
are of their own interest. As a special case of (a magnetohydrodynamical) version of
the so-called Brinkman-Forchheimer-extended Darcy model, they describe the flow of
an electrically conducting fluid through porous media. The tamed equations have the
property that bounded solutions to the MHD equations – if they exist, which has yet
to be shown – coincide with solutions to the TMHD equations, a fact that does not
necessarily hold for other regularisation schemes.

In Chapter II, we then proceed to study the deterministic tamed MHD equations.
After providing the necessary tools in a preparatory section as well as in Appendix A,
and defining the notion of weak solution, we prove existence and uniqueness of such weak
solutions to the TMHD equations by a Faedo-Galerkin approximation scheme. We then
prove that not only uniqueness holds for weak solutions but that for sufficiently smooth
initial data, the solutions of the TMHD equations are smooth themselves, i.e. a regularity
statement. For the untamed equations, similar regularity results are unknown. Finally,
we prove that the solution to the tamed equations converges to a suitable weak solution
of the untamed MHD equations as the onset of the taming force is deferred indefinitely,
i.e. as N tends to infinity.

In Chapter III, we consider stochastically perturbed TMHD equations, both on the
whole space R3 and on the torus T3, given by1

dv =

[
∆v − (v · ∇)v + (B · ∇)B +∇

(
p+

S|B|2

2

)
− gN(|(v,B)|2)v

]
dt

+
∞∑
k=1

[(σk(t) · ∇)v +∇pk(t) + hk(t, y(t))] dW k
t + fv(t, y(t))dt,

dB =
[
∆B − (v · ∇)B + (B · ∇)v +∇π − gN(|(v,B)|2)B

]
dt

+
∞∑
k=1

[
(σ̄k(t) · ∇)B +∇πk(t) + h̄k(t, y(t))

]
dW̃ k

t + fB(t, y(t))dt.

We study problems of existence and uniqueness, more precisely, we study existence of a
probabilistically weak solution, prove pathwise uniqueness and then conclude that there
exists a unique (probabilistically) strong solution to the problem by employing the theorem
of Yamada and Watanabe. In the time-homogeneous case, the well-posedness ensures that
the solution to our equation is a Markov process and hence we can define an associated
operator semigroup. This semigroup is then proven to be a Feller semigroup, which means
that it maps the space of bounded and locally uniformly continuous functions to itself.
Furthermore, we prove that in the periodic case there exists an invariant measure for the
problem.

1Note that we have set all the parameters Re,Rm,S appearing in the equations to unity.
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2. Random Dynamical Systems and Random Attractors

Dynamical systems can exhibit very complicated behaviour on short timescales. On
longer timescales, however, their behaviour often simplifies considerably by being confined
to a small subset of phase space, called an attractor. Although these attractors themselves
can still be very intricate objects, they nonetheless provide a simplification in many cases.

For systems subjected to randomness, the notion of a random attractor was proposed
by H. Crauel and F. Flandoli in their 1994 paper [47], see also [45]. They have since then
been studied extensively by many authors – their paper is the most highly cited article
of the journal Probability Theory and Related Fields since its creation in 1962 – for a
variety of different systems described by stochastic evolution equations (a more detailed
overview is given in the introduction of Chapter IV). Many of the papers, albeit devoted to
particular equations, follow the same patterns in proving existence of random attractors
(and also random dynamical systems, the existence of which is a nontrivial task in itself,
cf. [78]). In Chapter IV of this thesis we consider equations of the form

dXt = A(Xt)dt+ dNt,

with a locally monotone operator A : V → V ∗ and a Lévy process Nt ∈ H. Here, the
spaces V,H, V ∗ form a so-called Gelfand triple, i.e. V ⊂ H ⊂ V ∗ with compact, dense
embeddings. The compactness means, in the case that A is a differential operator, that
the underlying domain on which our model is defined is bounded.

Typically, for the dynamics of a complex system to settle on a “small” set in phase
space, one needs to have some dissipation effects in the system. This dissipativity is
provided in our case by the locally monotone operator present in the evolution equation
description of the system.

Within the variational or weak solution framework for stochastic equations, the case
of monotone operators was treated by B. Gess in [94], who generalised an earlier work
the porous medium equations by W.-J. Beyn, B. Gess, P. Lescot and M. Röckner [17].
In a joint work [98] with B. Gess as well as W. Liu, the author has worked on showing
existence of random dynamical systems as well as random attractors for equations with lo-
cally monotone coefficients driven by additive Lévy noise. We generalised the idea of [94],
especially the introduction of a nonlinear Ornstein-Uhlenbeck process generated by the
strongly monotone part of the equation, which ensures sufficient regularity to allow for a
transformation of the equation into a deterministic PDE with random coefficients, which
in turn can be treated pathwise by methods from the deterministic theory of dynamical
systems. Then we can undo this transformation and obtain existence of a random dy-
namical system for the stochastic equation. Random attractors are obtained by using the
a priori estimates to show there exists an absorbing set. Using the compactness of the
flow (which in the variational setting follows immediately from the compactness of the
embeddings in the Gelfand triple), we prove that this absorbing set is in fact compact,
which is equivalent to the existence of a random attractor, cf. [44].

Our methods apply to a wide range of equations from different areas of science. They
include stochastic reaction-diffusion equations, stochastic Burgers-type equations, sto-
chastic 2D Navier-Stokes equations, the stochastic Leray-α model, stochastic power law
fluids, the stochastic Ladyzhenskaya model, stochastic Cahn-Hilliard-type equations as
well as stochastic Kuramoto-Sivashinsky-type equations. And, of course, those equations
with (weakly) monotone coefficients from [94] satisfy the conditions of our theorems and
hence we also cover generalised p-Laplace equations, as well as generalised porous media
equations. In each of these examples, we can prove the existence of a random dynamical
system and a random attractor, in some range of the parameters of each model.
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We tried to find the largest possible such range for the models considered. The results
were in several cases, but not always, known before, and can of course be improved when
one exploits features particular to each model. For most of the examples considered, re-
sults in the generality (especially concerning the noise considered here) are new, e.g. for
the Burgers-type equations, the 2D Navier-Stokes equations, the hydrodynamical systems
of I.D. Chueshov and A. Millet [40,41] including the Leray-α model, where existence of a
random attractor, to the best of the author’s knowledge, has not been shown before. The
same holds for the Cahn-Hilliard-type equations as well as the Kuramoto-Sivashinsky-
type equations. Further discussions of each example can be found in Chapter IV, Section
6. We consider our main contribution to be a unifying framework for dealing with this
large class of equations.

Proving the existence of random attractors is only one of several steps towards a
full understanding of the long-term dynamics of random dynamical systems. Next steps
would include estimating the Lyapunov exponents (i.e. how fast neighbouring trajectories
diverge), the exponential decay of the volume element as well as estimating the dimension
of the attractor (which can be infinite, as it lies in a space of functions). For more
information on this programme, cf. [213]. In this thesis, however, we confine ourselves to
proving the existence of random attractors.

3. Acknowledgements

First of all, I would like to express my deep gratitude to my advisor Prof. Dr. Michael
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CHAPTER II

The Deterministic Tamed MHD Equations

Abstract. We study a regularised version of the MHD equations, the tamed MHD
(TMHD) equations. They describe the flow of electrically conducting fluids through
porous media and have the property that bounded solutions to the MHD system also
satisfy the tamed equations. Thus, these (hypothetical) solutions may be studied through
the study of the tamed equations. We first give a review of the literature on regularised
fluid dynamical equations. Then we prove existence and uniqueness of TMHD on the
whole space R3, that smooth data give rise to smooth solutions, and show that solutions
to TMHD converge to a suitable weak solution of the MHD equations as the taming
parameter N tends to infinity. Furthermore, we adapt a regularity result for the Navier-
Stokes equations to the MHD case.

1. Introduction

1.1. Magnetohydrodynamics. The magnetohydrodynamics (MHD) equations de-
scribe the dynamic motion of electrically conducting fluids. They combine the equations
of motion for fluids (Navier-Stokes equations) with the field equations of electromagnetic
fields (Maxwell’s equations), coupled via Ohm’s law. In plasma physics, the equations
are a macroscopic model for plasmas in that they deal with averaged quantities and
assume the fluid to be a continuum with frequent collisions. Both approximations are
not met in hot plasmas. Nonetheless, the MHD equations provide a good description
of the low-frequency, long-wavelength dynamics of real plasmas. In this thesis, we con-
sider the incompressible, viscous, resistive equations with homogeneous mass density, and
regularised variants of it. In dimensionless formulation, the MHD equations are of the
following form:

∂v

∂t
=

1

Re
∆v − (v · ∇)v + S (B · ∇)B +∇

(
p+

S|B|2

2

)
,

∂B

∂t
=

1

Rm
∆B − (v · ∇)B + (B · ∇)v

div v = 0, divB = 0.

(1.1)

Here, v = v(x, t), B = B(x, t) denote the velocity and magnetic fields, p = p(x, t) is the
pressure, Re > 0, Rm > 0 are the Reynolds number and the magnetic Reynolds number
and S > 0 denotes the Lundquist number (all of which are dimensionless constants).
The two last equations concerning the divergence-freeness of the velocity and magnetic
field are the incompressibility of the flow and Maxwell’s second equation. Mathematical
treatment of the deterministic MHD equations reaches back to the works of G. Duvaut
and J.-L. Lions [65] and M. Sermange and R. Temam [201]. Since then, a large amount of
papers have been devoted to the subject. We only mention several interesting regularity
criteria [30, 111, 112, 126] and the more recent work on non-resistive MHD equations
(Rm =∞) by C.L. Fefferman, D.S. McCormick J.C. Robinson and J.L. Rodrigo on local
existence via higher-order commutator estimates [73,74].

1



2 II. DETERMINISTIC TAMED MHD EQUATIONS

In this chapter, we want to study a regularised version of the MHD equations, which
we call the tamed MHD equations (TMHD), following M. Röckner and X.C. Zhang [197].
They arise from (1.1) by adding two extra terms (the taming terms) that act as restoring
forces:

∂v

∂t
=

1

Re
∆v − (v · ∇)v + S (B · ∇)B +∇

(
p+

S|B|2

2

)
− gN(|(v,B)|2)v,

∂B

∂t
=

1

Rm
∆B − (v · ∇)B + (B · ∇)v +∇π − gN(|(v,B)|2)B.

The taming terms are discussed in more detail in Section 1.3, and we discuss the results
of this chapter in Section 1.4. The extra term ∇π, which we call the magnetic pressure,
will be explained in Section 1.3.4. However, before we study the tamed equations, we
want to give an overview of regularisation schemes for the Navier-Stokes and the MHD
equations to put our model into the broader context of the mathematical literature.

We consider both the case of the whole space R3 (Cauchy problem) as well as that of
a bounded, smooth domain with zero boundary conditions (Dirichlet problem), but treat
each case with different methods due to the lack of compactness of embeddings of the
associated function spaces in the former case.

1.2. Regularised Fluid Dynamical Equations. Since the question of global well-
posedness still remains an open problem for the Navier-Stokes and MHD equations alike,
it has been suggested by different authors to regularise the equations to make them
more tractable. We consider the following abstract evolution equation-type form of our
equations which contains both the case of the Navier-Stokes as well as the MHD equations
(more on deriving it in the case of the MHD equations is said in Chapter III, Section 2.1,
cf. Equation (2.4)):

(1.2) ∂ty = L(y) +N (y, y) + f, ∇ · y = 0.

Here, L is a linear or nonlinear operator (usually related to the Stokes operator 1
Re
P∆,

with Helmholtz-Leray projection P : L2 → L2∩div−1({0})), N is a bilinear operator, and
f is a forcing term. Usually, the operator N consists of terms of the form P [(ϕ · ∇)ψ],
where ϕ, ψ are vectors made of components of y. Using the divergence-freeness con-
straint, this may be rewritten as P [∇ · (ϕ⊗ ψ)]. The operator ∇·y has to be understood
appropriately.

To be yet more precise, we focus on the following two cases:

(i) Navier-Stokes equations. Here y = v is the velocity field, L = 1
Re
P∆ and

N (y, y) = N (v,v) = −P (v · ∇)v, and ∇ · y := ∇ · v.

(ii) MHD equations. Here y =

(
v
B

)
, with velocity field v and magnetic field B,

Ly :=

(
1
Re
P∆v

1
Rm
P∆B

)
,

N (y, y) := P ⊗ P
(
−(v · ∇)v + (B · ∇)B
−(v · ∇)B + (B · ∇)v

)
=

(
−P (v · ∇)v + P (B · ∇)B
−P (v · ∇)B + P (B · ∇)v

)
,

and ∇ · y = 0 has to be understood in the following sense:

∇ · y =

(
∇ · v
∇ ·B

)
=

(
0
0

)
.
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There are two classes of regularisations in the literature that we want to consider here:

(A) Modify the nonlinear term N ;
(B) Add regularising terms to the operator L.

Note that all of the proposed models are equations different from the original model and
their solutions thus in general do not coincide. We can at this stage only show a range
of convergence results. These are usually of the form “if the smoothing terms vanish, we
get convergence to a weak solution of the original equation” or “if the original equations
possess a (weak) solution for all times, then, as t→∞, the regularised solution converges
to a weak solution of the original equation”.

There are, of course, several other ways (e.g. introducing artificial compressibility) of
regularising the equations which we cannot all discuss here. It is also clear that one can
combine several schemes with each other, and this has been done in the literature (e.g.
there are Brinkman-Forchheimer-Voigt regularisations of the Navier-Stokes equations).

Name Type L(v) = N (v) =

Mollifying nonlinearity (A) P∆v −P [((v ∗ ρκ) · ∇)v]

Leray-α model (A) P∆v −P [({(I − α2∆)−1v} · ∇)v]

Linear cutoff-scheme (A) P∆v −ψM(‖∆1/2u‖L2)P [(u · ∇)u]

Globally modified NSE (A) P∆v −min
{

1, N
‖∆1/2u‖L2

}
P [(u · ∇)u]

Regularisation by delay (A) P∆v −P [(v(t− µ, x) · ∇)v(t, x)]

Hyperviscosity (B) P
(
∆v − κ(−∆)`/2v

)
−P (v · ∇)v

Navier-Stokes-Voigt (B) P (∆v + α2∆∂tv) −P (v · ∇)v

Damped (B) P
(
∆v − α|v|β−1v

)
−P (v · ∇)v

Tamed (B) P (∆v − gN(|v|2)v) −P (v · ∇)v

Table 1. Overview of several regularisation schemes for the Navier-Stokes
equations. We have set the viscosity ν (and hence the Reynolds number
Re) to one for simplicity.

We first give a brief survey of strategies of type (A), then of (B). This survey is not
aimed at completeness, but just intended to give an overview of the topic of regularised
Navier-Stokes and MHD equations. We would also like to draw attention to the survey
article by P. Constantin [42], providing a more detailed view on the Navier-Stokes cases
of several of the models discussed here. Furthermore, the paper [114] by M. Holst, E.
Lunasin and G. Tsogtgerel contains a nice overview as well as a unified framework and
many results for many regularised hydrodynamical equations, including MHD.

For ease of presentation, we restrict ourselves to reproducing the formulas only for the
Navier-Stokes case and in the MHD case just provide references. The full adaptation to
the MHD system can then be found in the references given. Furthermore, we set Re = 1
for simplicity.
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1.2.1. Mollifying the Nonlinearity and the Force. This classical example of a strategy
of type (A) was already considered by J. Leray in his seminal 1934 paper [148]. Instead
of N (v,v) := −P (v · ∇)v, he considered the mollified nonlinearity

Nmoll(v,v) := −P [((v ∗ ρκ) · ∇)v] ,

fmoll := f ∗ ρκ,
where κ > 0, ρ is a smooth, compactly supported function with

´
R3 ρdx = 1 and ρκ(x) :=

κ−3ρ(x/κ), i.e. a mollifier. The operator u 7→ u∗ρκ is sometimes called filtering operator
(cf. [92,93] and [107], Sect. 2.3) as it filters out high spatial frequencies and thus maps
(L1(O))3 to (C∞(O))3, at least for O = T3, the torus.

This smoothing of the advection velocity allows one to prove the existence of a unique
smooth solution, which converges to a weak solution of the original equation as κ → 0.
Moreover, as t→∞, for fixed κ > 0, these solutions converge in a suitable sense toward
weak solutions of the Navier-Stokes equations. This result – at least so far – needs the
assumption that the initial conditions and forces are “small” in a suitable norm, cf. M.
Cannone, G. Karch [29].

1.2.2. Leray-α Model and Related Models (Clark-α, LANS, . . . ) Another way to reg-
ularise the nonlinearity consists in applying the smoothing (or filtering) operator (I −
α2∆)−1, usually called Helmholtz filter, to the first factor of the nonlinearity. Thus

NLeray−α(v,v) := −P
[((

(I − α2∆)−1v
)
· ∇
)
v
]
,

fLeray−α := (I − α2∆)−1f .

Intuitively, the smoothing operator has the effect of damping high (spatial) Fourier modes1

k, which correspond to small length scales ` ∼ k−1. As this appears in the convection
term, it means that convection occurs only by large-scale features, usually called large
eddies. Thus, the Leray-α model is an example of a large-eddy simulation (LES) model.

The model was proposed by A. Cheskidov, D.D. Holm, E. Olson and E.S. Titi in [39]
(cf. [218] for more references). The resulting model for the Navier-Stokes equations is
called Leray-α model. For this equation there exists a unique global strong solution.

In the case of MHD equations, Leray-α-type models have been studied in several
papers. The first paper seems to have been by J.S. Linshiz and E.S. Titi [159], where
only the velocity field is filtered and periodic boundary conditions (i.e. posed on T3) are
applied.

Y.J. Yu and K.T. Li [247] proved existence and uniqueness of a global strong solution
in three dimensions for periodic boundary conditions. They proposed to apply the above
filtering to all advection terms occuring in the equations. For further results for related
MHD α-type models, see [70,129,130,181,229,247,261,262] and references therein.

Similar models in this direction include the Clark-α model, for more information
cf. [102]. There is a rich literature on these so-called α-models, see for example [114]
or [146] and the references therein. We consider another example, the Navier-Stokes-Voigt
equations, of this class of models in Section 1.2.7.

1.2.3. A Cutoff Scheme due to Yoshida and Giga. A third way to modify the non-
linearity of our fluid dynamical equations consists in truncating it. This approach was
pioneered by Z. Yoshida and Y. Giga in [243].

1As its Fourier transform is proportional to (1 + α2|k|2)−1, thus suppressing higher frequencies, i.e.
higher |k| = k.
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They consider the case of a bounded domain O, and a truncated operator equal to

NYG(u) := ψM(‖∆1/2u‖L2)P [(u · ∇)u] ,

with the following piecewise linear cutoff function

ψM(s) :=


1, 0 ≤ s ≤ M

2
,

2(1− s
M

), M
2
< s < M

0, s ≥M.

This makes the operator L + NY G − cM4I hyperdissipative (cf. [133, 134]) in H :=
L2(O) := L2(O) ∩ div−1({0}) for sufficiently large constant c > 0, and hence one can
apply nonlinear semigroup theory to find a unique global-in-time solution to the truncated
system. For d = 2, this solution coincides with the global-in-time solution of the Navier-
Stokes equations. For d = 3, this is only true locally in time, unless the initial data are
small, in which case it gives a global (in time) solution to the Navier-Stokes equations.

It seems that this approach has not yet been applied to the case of MHD equations
and neither do there exist stochastic versions of this equation in the literature.

1.2.4. Globally Modified Navier-Stokes Equations. A cutoff scheme similar to the one
considered above was introduced by T. Caraballo, P.E. Kloeden and J. Real in [38]. They
called the resulting equations the globally modified Navier-Stokes (GMNS) equations.
They arise by introducing a different (nonlinear) cutoff function in the nonlinear term:

NGMNS(u) := FN(‖∆1/2u‖L2)P [(u · ∇)u] ,

with the damping function (N ∈ (0,∞)) given by

FN(r) := min

{
1,
N

r

}
.

Like Yoshida and Giga, they considered the equation on a bounded domain, but instead of
studying mild solutions, they study weak (or variational) solutions. The above mentioned
authors prove existence and uniqueness of a weak solution, that this solution is even a
strong solution, as well as long-time behaviour and continuous dependence of the solutions
and the global attractors on the parameter N . Several further properties of the model
have been studied in subsequent papers, cf. [33, 34, 132] and references therein. Global
as well as exponential attractors for this system were studied recently by F. Li and B.
You [150]. A globally modified version of the MHD equations has not yet been considered.

1.2.5. Regularisation by Delay. H. Bessaih, M. Garrido-Atienza and B. Schmalfuss
[15] recently suggested regularising the nonlinear term by introducing a time delay in the
advection velocity, i.e. they consider the nonlinearity

Ndelay(v,v)(x, t) := P [(v(t− µ, x) · ∇)v(t, x)] ,

where the initial conditions (i.e. the initial velocity v0 and the initial delay φ) must be
sufficiently smooth, e.g.

v0 ∈ Ḣα(T3), φ ∈ L2((−µ, 0); Ḣ1+α(T3)),

for some α > 1/2. Here Ḣα denotes the homogeneous fractional Sobolev space of order
α of functions with vanishing divergence (for this notation, see Section 1.5). This time
delay again has a smoothing effect on the solution and allows the authors to obtain
unique global-in-time weak solutions and for α ≥ 1 also strong solutions. Letting the
delay µ → 0, the solutions converge to a weak solution of the Navier-Stokes equations.
Their work builds on that of S.M. Guzzo and G. Planas [109,110] as well as C.J. Niche
and G. Planas [183] and W. Varnhorn [217].
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T. Caraballo and J. Real [37] seem to have been the first to consider Navier-Stokes
equations with delays, proving existence in d = 2, 3 and uniqueness for d = 2. However,
their model contained delay in the forcing term, not in the convective term. To the best
of the authors knowledge, MHD equations with delay of this type have not been studied
yet.

1.2.6. Lions’ Hyperviscosity Method. Our first method of type (B) provides another
way to add more dissipativity to the model. As opposed to the cutoff scheme of Yoshida
and Giga (cf. Section 1.2.3), this is not achieved by weakening the nonlinearity but
instead by strengthening the linear operator L. J.-L. Lions [160] proposed to consider
the operator

Lhyper(v) := P∆v − κP (−∆)`/2v,

where ` > 2 and κ > 0. For ` > 5/2, he could prove existence of a unique regular solution
in a bounded domain. The case of the whole space R3 has been treated by N.H. Katz
and N. Pavlović in [128]. As in the case of the mollified Navier-Stokes equations (Section
1.2.1), this solution – for small data – converges towards the weak solution of the Navier-
Stokes equations as t→∞, cf. M. Cannone and G. Karch [29]. Further related problems
have been studied, such as optimal control by S.S. Sritharan [205] or the inhomogeneous
Navier-Stokes system by D.Y. Fang and R.Z. Zi [72].

In the MHD case, variants of this approach have been studied in three dimensions, e.g.
by J.H. Wu, W.R. Yang and Q.S. Jiu in [233,240] (see the latter for more references).

1.2.7. Navier-Stokes-Voigt Equations. The Navier-Stokes-Voigt (sometimes written as
Voight) equations employ the following regularisation of the Stokes operator

LNSV(v) := P∆v + α2P∆∂tv.

This regularisation changes the parabolic character of the equations and simulates a prop-
erty of so-called Kelvin-Voigt fluids, e.g. in polymer solutions, of not immediately revert-
ing back to the original state once external stress is removed. It was pioneered by A.P.
Oskolkov [186] in 1973 and has since then been studied by many authors. The Navier-
Stokes-Voigt equations were shown to be globally well-posed in [186, 187] as well as in
the work of Y.P. Cao, E.M. Lunasin and E.S. Titi, cf. [32]. The long-term behaviour
was studied by V.K. Kalantarov and E.S. Titi in [123] and by Kalantarov, Titi and B.
Levant in [122]. The case of unbounded domains was treated by C.T. Anh and P.T.
Trang in [3,4].

In the case of the MHD equations, a Voigt regularisation in the inviscid case was
studied first by A. Larios and E.S. Titi in a series of papers [144–146]. Consult these for
further references.

1.2.8. Damped Navier-Stokes Equations (or Brinkman-Forchheimer-extended Darcy
Models). Instead of adding a linear dissipative term, one can also add nonlinear, power-
type terms that counteract the nonlinearity. This leads to the so-called (nonlinearly)
damped Navier-Stokes equations, where one considers the (nonlinear) operator

Ldamped(v) := P∆v − αP |v|β−1v,

with α > 0 and β ≥ 1. The damping term −α|v|β−1v models the resistence to the motion
of the flow resulting from physical effects like porous media flow, drag or friction or other
dissipative mechanisms (cf. [28] and Section 1.3.1). It represents a restoring force, which
for β = 1 assumes the form of classical, linear damping, whereas β > 1 means a restoring
force that grows superlinearly with the velocity (or magnetic field). X.J. Cai and Q.S.
Jiu [28] first proved existence and uniqueness of a global strong solution for 7

2
≤ β ≤ 5.

This range was lowered down to β ∈ (3, 5] by Z.J. Zhang, X.L. Wu and M. Lu in [252].
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Furthermore, they considered the case β = 3 to be critical [252, Remark 3.1]. Y. Zhou
in [260] proved the existence of a global solution for all β ∈ [3, 5]. For the case β ∈ [1, 3),
he established regularity criteria that ensure smoothness. Uniqueness holds for any β ≥ 1
in the class of weak solutions. Existence, decay rates and qualitative properties of weak
solutions were also investigated by S.N. Antontsev and H.B. de Oliveira [5].

The Brinkman-Forchheimer-extended Darcy model (cf. Section 1.3.1) is a related
model for flow of fluids through porous media and uses the operator

LBFeD(v) := P∆v − α0v − α1P |v|v − α2P |v|2v.
The first problems studied were continuous dependence of the solutions on their pa-
rameters, e.g. in F. Franchi, B. Straughan [83]. V.K. Kalantarov and S. Zelik [124]
and P.A. Markowich, E.S. Titi and S. Trabelsi [173] proved existence and uniqueness
of a weak solution for Dirichlet and periodic boundary conditions, respectively. Long-
time behaviour and existence of global attractors have been studied by several authors
[188,216,224,246]. An anisotropic version of the equations was studied by H. Bessaih,
S. Trabelsi and H. Zorgati [16].

The flow of electrically conducting fluids through porous media, modelled by MHD
equations with damping, was studied first by Z. Ye in [241]. He considered the system with
nonlinear damping in the equations for both the velocity field (with nonlinear damping
parameter α) and the magnetic field (with paramter β) and he proved existence and
uniqueness of global strong solutions in the full space case for several ranges of parameters,
most interestingly for our purposes for α, β ≥ 4. Z.J. Zhang and X. Yang [253] tried to
improve this to α, β > 3, but apparently made a mistake in their proof ( [251, Remark
after Equation (9), p. 2]). Z.J. Zhang, C.P. Wu, Z.A. Yao [251] then improved the
range to α ∈ [3, 27

8
], β ≥ 4. The present chapter, in a way, deals with the “critical”

case α = β = 3, see the discussion of the results below. Furthermore, E.S. Titi and S.
Trabelsi [215] proved global well-posedness for an MHD model with nonlinear damping
only in the velocity field. They thus avoid the magnetic pressure problem outlined in
Section 1.3.4, as opposed to the above papers which seem to have overlooked this issue.

1.3. The Tamed Equations. We first motivate the tamed equations, both from a
physical point of view by pointing out situations where similar models arise naturally in
applications, as well as from a mathematical point of view. The tamed Navier-Stokes
equations are in a sense a variant of the Navier-Stokes equations with damping in the
critical case β = 3, combined with a cutoff.

1.3.1. Physical Motivation. Since the tamed equations are closely related to the damped
equations of Section 1.2.8, which are much more well-studied, we focus on the occurence
of these in the physics literature.

1. Shallow-Water Systems with Friction on the Bottom. F. Marche derived,
at least formally, in [171] a set of equations modelling a shallow-water system with free
surface height h including damping terms with β = 1 and β = 2 via asymptotic analysis
and hydrostatic approximation. The damping terms originate from the kind of boundary
conditions imposed on the bottom of the ocean: linear (or laminar) friction of the form

(1.3) (σ(v) · nb) · τbi = klaminar(v · τbi), z = 0

leads to a linear damping term of the form −α0(h)v. Here, σ denotes the total stress
tensor, nb denotes the outward normal, the vectors τbi form a basis of the tangential
surface on the bottom, and klaminar is the laminar friction coefficient.
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On the other hand, quadratic friction (associated with turbulence)

(1.4) (σ(v) · nb) · τbi = kturbulent(h|v|v · τbi), z = 0,

implies a damping term of the form −α1(h)h|v|v. The full set of equations (cf. [171,
Equation (5.20), p. 59]), with both forms of friction, has the form

∂th+ div(hv) = 0

∂t(hv) + div(hv ⊗ v) + gh∇h = −α0(h)v − α1(h)h|v|v + 2µ div(hD(v))

+2µ∇(h div(v)) + βh∇∆h− f(hv)⊥ − gh∇d,

where h denotes the variable height of the body of water, v the horizontal velocity, aver-
aged vertically, g is the acceleration due to gravity, µ denotes the dynamical viscosity, β a
capillary constant, f the Coriolis coefficient and d describes variations in the topography
of the bottom. A mathematical analysis can be found in D. Bresch, B. Desjardins [19].

We now make the following simplifying assumptions: h(x, y, t) = h̄ ∈ (0,∞), constant
in space and time, so the first equation reduces to the incompressibility condition. Ne-
glecting gravity, capillary effects and the Coriolis force, i.e. setting g = 0, β = 0 and f = 0
and dividing the second equation by h, we heuristically obtain the following equations:

div(v) = 0,

∂tv + div(v ⊗ v) = −α0v − α1|v|v + 2µ∆v.

These are the damped Navier-Stokes equations with β = 1 and β = 2. However, there
are several problems with this approach:

(i) The resulting equations are in two space dimensions only, and this derivation
does not cover the case of three dimensions, which is most interesting from a
mathematical point of view.

(ii) The heuristic simplifications above, especially concerning the height, would have
to be justified.

(iii) From this model, we can only get β ∈ {1, 2}, in particular we cannot get the
“tamed” case β = 3.

They do provide, however, an example of a physically relevant system that includes fluid
dynamical systems with damping of a form similar to the one we consider in this work.

2. Flows Through Porous Media. Brinkman-Forchheimer-extended Darcy
Model. Another system with possibly nonlinear damping is considered as a model for the
flow of a fluid through porous media, described for example by the following compressible
Euler equations with damping:

ρt + ∂x(ρv) = 0,

(ρv)t + ∂x
(
ρv2 + p

)
= −αρv.

(1.5)

The interpretation that this equation models the flow through porous media is in line
with the result that as t → ∞, the density ρ converges to the solution of the porous
medium equation (cf. F.M. Huang, R.H. Pan [117]). The momentum, on the other hand,
is described in the limit by Darcy’s law :

∇p = −µ
k
v,

which represents a simple linear relationship between the flow rate and the pressure drop
in a porous medium. Here, k is the permeability of the porous medium and µ is the
dynamic viscosity. The velocity v is called Darcy’s seepage velocity.
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In the interface region between a porous medium and a fluid layer, C.T. Hsu and P.
Cheng [116, Equation (31), p. 1591] proposed the following equation2:

div v = 0,

∂tv + div(v ⊗ v) = −∇p+ ν∆v − α0v − α1|v|v,

where v is the so-called volume-averaged Darcy seepage velocity and p is the volume-
averaged pressure. This equation is motivated by a quadratic correction of P. Forchheimer
to Darcy’s law, called Forchheimer’s law or Darcy-Forchheimer law (cf. for example P.A.
Markowich, E.S. Titi, S. Trabelsi [173]):

∇p = −µ
k
vF − γρF |vF |vF ,

with the Forchheimer coefficient γ > 0, the Forchheimer velocity vF as well as the density
ρF . Furthermore, this correction becomes necessary at higher flow rates through porous
media, see below for a more detailed discussion.

The question arises whether there are cases where a nonlinear correction of yet higher
degree is necessary, i.e. where the flow obeys a cubic Forchheimer’s law :

(1.6) ∇p = −µ
k
v − γρ|v|v − κρ2|v|2v.

Indeed, this seems to be the case. P. Forchheimer [81] himself suggested several corrections
to Darcy’s law at higher flow velocities, one of them being the cubic law (1.6). M.
Firdaouss, J.-L. Guermond and P. Le Quéré [77] revisited several historic data sets,
amongst them the ones used by Darcy and Forchheimer (who did not correct for Reynolds
numbers) and found that the data are actually better described by a linear and cubic
Darcy-Forchheimer law (i.e. where γ = 0), at least in the regime of low to moderate
Reynolds numbers, which, as they note3, includes most practical cases:

(1.7) ∇p = −µ
k
v − κρ2|v|2v.

Concerning the question of when this happens, M. Fourar, G. Radilla, R. Lenormand and
C. Moyne [82, p. 670] write: “it is generally admitted that the onset of non-Darcy flow
occurs for Re (based on the average velocity and grain size) between 1 and 10.”

At higher Reynolds numbers, the correct behaviour seems to be quadratic, i.e. Forch-
heimer’s law, in accordance with numerical simulations, e.g. in the work of M. Fourar et
al. [82]. The point at which this behaviour changes seems to be dimension-dependent: it
occurs much earlier in the numerical simulations of [82, Figure 7] in the 3D case than in
the 2D case. Another instance where a cubic Forchheimer law is observed is the high-rate
flow in a radial fracture with corrugated walls, cf. M. Buès, M. Panfilov, S. Crosnier and
C. Oltean [27, Equation (7.2), p. 54].

Taking into account all nonlinear corrections of Darcy’s law, we arrive at the Brinkman-
Forchheimer-extended Darcy model

div v = 0,

∂tv + div(v ⊗ v) = −∇p+ ν∆v − α0v − α1|v|v − α2|v|2v.

2For ease of presentation, we have omitted various physical constants in the formulation of the
equations.

3 [77, p. 333]: “[T]he most frequent practical applications (for either gas or liquids) involve Reynolds
numbers of order 1 or less.”
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The tamed Navier-Stokes equations model the behaviour of the flow through porous media
in the regime of relatively low to moderate Reynolds numbers, assuming that the higher-
order behaviour is much more significant than the linear Darcy behaviour. For a more
physically accurate model, one should also include the linear damping term, but we want
to focus on the nonlinear effects here and thus for simplicity have omitted this term. The
fact that the onset of nonlinear behaviour occurs at higher flow rates is modelled by the
cutoff function gN which is nonzero only for sufficiently high velocity. Apart from these
physical reasons, there is also a mathematical reason for the form of the taming term.

1.3.2. Mathematical Motivation. The tamed Navier-Stokes equations were introduced
in [197] by M. Röckner and X.C. Zhang and have the following form:

∂v

∂t
= ν∆v − (v · ∇)v − gN(|v|2)v +∇p+ f

∇ · v = 0

v(0, x) = v0(x).

(1.8)

The “taming function” allowed them to obtain stronger estimates than for the untamed
Navier-Stokes equations, and hence regularity results that are out of reach for the Navier-
Stokes equations. Furthermore, they could show that bounded solutions to the Navier-
Stokes equations, if they exist, coincide with the solutions to the tamed Navier-Stokes
equations, as shown in [197]. This is a feature that most regularisations of the Navier-
Stokes equations do not share.

1.3.3. Review of Results for Tamed Navier-Stokes Equations. The deterministic case
was further studied by X.C. Zhang on uniform C2-domains in [250]. In a series of subse-
quent papers, various properties of the stochastic version of the equations were studied:
existence and uniqueness to the stochastic equation as well as ergodicity in [197], Freidlin-
Wentzell type large deviations in [195] as well as the case of existence, uniqueness and
small time large deviation principles for the Dirichlet problem in bounded domains [194]
(both with T.S. Zhang). More recently, there has been resparked interest in the subject,
with contributions by Z. Dong and R.R. Zhang [64] (existence and uniqueness for multi-
plicative Lévy noise) as well as Z. Brzeźniak and G. Dhariwal [23] (existence, uniqueness
and existence of invariant measures in the full space R3 for a slightly simplified system
and by different methods).

The taming function was subsequently simplified by changing the expression of gN
as well as replacing the argument of the function gN by the square of the spatial L∞

norm of the velocity, i.e. gN (‖v‖2
L∞), see W. Liu and M. Röckner [167, pp. 170 ff].

This leads to simpler assumptions on gN as well as easier proofs, especially when spatial
derivatives are concerned (which then act only on the remaining factor v). However, this
only works within the framework of locally monotone operators which cannot be applied
in all settings due to the crucial assumption of compact embeddings. Thus we do not use
this simplification in this work.

1.3.4. The Magnetic Pressure Problem. From the form of the MHD equations, it would
seem like there should also be a “pressure” term ∇π in the equation for the magnetic field.
That this is not the case is due to the structure of the nonlinear term in the equation, as
was noted already in the work of M. Sermange and R. Temam [201, p. 644]. To make
this precise, consider the MHD equations on R3

∂v

∂t
= ∆v − (v · ∇)v + (B · ∇)B +∇

(
p+
|B|2

2

)
,(1.9)

∂B

∂t
= ∆B − (v · ∇)B + (B · ∇)v,(1.10)
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and the associated equation projected on the space of divergence-free functions:

∂v

∂t
= ∆v − P (v · ∇)v + P (B · ∇)B,

∂B

∂t
= ∆B − P (v · ∇)B + P (B · ∇)v.

Assume that (v,B) is a smooth weak solution. Now since the first equation lies in the
space of square-integrable divergence-free functions H0, there exists a function ∇p̃ in the
orthogonal complement (H0)⊥ such that4

∂v

∂t
= ∆v − (v · ∇)v + (B · ∇)B +∇p̃.

Note that

(1.11) − (v · ∇)B + (B · ∇)v = ∇× (v ×B),

i.e. the nonlinear terms in the magnetic field equation combine to an expression that is
manifestly divergence-free. If there existed a magnetic pressure π such that

∂tB = ∆B +∇× (v ×B) +∇π,
taking the divergence of this equation, observing that divB = 0, would give

∆π = 0,

where ∇π(t, x) ∈ L2
loc(R+;L2(R3)), which implies5 ∇π = 0. Thus, a careful balancing

in the two nonlinear terms leads to the “magnetic pressure” being zero. Now, if we
introduce further nonlinearities into the equation for the magnetic field, we might offset
this cancellation and thus we will get an artificial “magnetic pressure” in our tamed
equations. We can show that this pressure converges to zero as N → ∞, but for the
tamed equations, it is undeniably present. We will informally name this phenomenon the
magnetic pressure problem:

Definition 1.1 (Magnetic Pressure Problem). Introducing extra terms N (y) that are
not divergence-free into the equation for the magnetic field B in the MHD equations will
lead to the appearance of an artificial, possibly unphysical “magnetic pressure” π, i.e.
(1.10) will be of the form

∂tB = ∆B − (v · ∇)B − (B · ∇)v +∇π +N (y).

This term does not manifest itself in the weak formulation of the problem, which is
most often studied. Our system is no exception here, so when talking about the pointwise
form of the equation, we have to include the magnetic pressure term π, as above. This fact
is easily overlooked when introducing regularising terms into the equation for the magnetic
field. To give an example, in the work of Z.J. Zhang, C.P. Wu and Z.A. Yao [251], the
authors introduce a damping term |B|β−1B into the magnetic field equation, but forgot
to include a “magnetic pressure” in the strong form of this equation. Note that in other
regularisations of the MHD equations, such as the Leray-α model, this problem is avoided
by only introducing terms that preserve the structure of the nonlinearities (1.11).

4The function p̃ can then be chosen to have the form p̃ = p+ |B|2
2 .

5Since ∇π is C2 by assumption, we find that each of its components ∂iπ solves Laplace’s equation
∆∂iπ = 0 and is thus smooth. The integrability condition implies that ∂iπ is bounded outside a sufficiently
large compact set. The smoothness implies that it is also bounded inside that compact set. Then
Liouville’s theorem [100] implies π ≡ const, hence ∂iπ ≡ 0. In the case of bounded domains, we can
argue in a similar way using uniqueness.
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Ideally, one should thus introduce taming terms for the velocity field only. For math-
ematical reasons, however, at this point we have to content ourselves with taming terms
in both components, for otherwise, in the crucial H1-estimate (2.10) we could not cancel
all four nonlinearities.

1.3.5. The Magnetic Field: To Regularise or Not to Regularise? There seems to be no
clear answer, even for schemes which do not introduce magnetic pressure, to the question
of whether in the MHD equations the magnetic field should be regularised as well, or
whether one should restrict oneself to only regularising the velocity field. A mathematical
criticism formulated in J.S. Linshiz and E.S. Titi [159, p. 3] is that regularising the
magnetic part as well might add an unnecessary amount of dissipativity to the system.
However, for the mathematical reasons discussed in the previous section, we add a taming
term to the magnetic field equation as well.

1.3.6. The Tamed MHD Equations. We investigate the case of the deterministic ver-
sion of tamed magnetohydrodynamics (TMHD) equations in this chapter. They can be
understood as a model of an electrically conducting fluid in a porous medium at low
to moderate Reynolds numbers (cf. P.A. Markowich, E.S. Titi and S. Trabelsi [173]).
Following the approach of M. Röckner and X.C. Zhang, we study the following equations:

∂v

∂t
= ∆v − (v · ∇)v + (B · ∇)B +∇

(
p+
|B|2

2

)
− gN(|(v,B)|2)v + fv

∂B

∂t
= ∆B − (v · ∇)B + (B · ∇)v +∇π − gN(|(v,B)|2)B + fB.

(1.12)

For simplicity we have set all the constants appearing in the MHD equations to one:

(1.13) S = Rm = Re = 1.

If we write y := (v,B), the equations differ from the “untamed” MHD equations by the
taming term

−gN(|y(t, x)|2)y(t, x),

which is a direct generalisation of the term in (1.8). The norm is defined in equation (2.2)
below. One could think of other generalisations as well such as adding four taming terms,
each tailored to one of the nonlinear terms, so e.g. for the term −(B · ∇)v we could add
−gN(|B|2)v etc. However, this is not necessary. In a sense, the most problematic terms
are the ones of the form (v ·∇)X, where X ∈ {v,B}. The other terms can be dealt with
in any case.

The taming function gN : R+ → R+ is defined by

(1.14)


gN(r) := 0, r ∈ [0, N ],

gN(r) := Ctaming

(
r −N − 1

2

)
, r ≥ N + 1,

0 ≤ g′N(r) ≤ C1, r ≥ 0,

|g(k)
N (r)| ≤ Ck, r ≥ 0, k ∈ N.

Here, the constant Ctaming is be defined by

Ctaming := 2 max{Re,Rm} = 2.

For the Navier-Stokes case, M. Röckner and X.C. Zhang in [197] set C = 1
ν
∝ Re, so the

fact that Ctaming ∝ Re is not surprising. The factor 2 arises from the fact that we need
to tame more terms here. The dependency on Rm seems natural as well.

The idea of the taming procedure remains very clear: try to counteract the nonlinear
terms of which there are four in the case of the MHD equations. To pinpoint the exact
place where the power of the taming function unfolds, see the discussion after Lemma 2.2.
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1.4. Results and Structure of This Chapter. We follow the ideas of [197]. How-
ever, the proof of the regularity of the solution requires an MHD adaptation of a result
from E.B. Fabes, B.F. Jones and N.M. Rivière [69], which the author could not find in
the literature. See Appendix A for a discussion and a proof of this result.

Our main results can be summarised as follows:

Theorem 1.2 (Global well-posedness, cf. Theorems 2.7 and 2.8 below). Let y0 =
(v0,B0) ∈ H1 and f = (fv,fB) ∈ L2

loc(R+;H0). For any N > 0, there exists a unique
weak solution y to the TMHD equation in the sense of Definition 2.5, depending contin-
uously on the initial data, such that

(i) For all t ≥ 0,

‖y(t)‖H0 ≤ ‖y0‖H0 +

ˆ t

0

‖f(s)‖H0ds,

andˆ t

0

‖∇y(s)‖H0 + ‖
√
gN(|y(s)|2)|y(s)|‖2

L2ds ≤ ‖y0‖2
H0 + 2

[ˆ t

0

‖f(s)‖H0ds

]2

.

(ii) The solution satisfies y ∈ C(R+;H1) ∩ L2
loc(R+;H2), ∂ty ∈ L2

loc(R+;H0) and for
all t ≥ 0,

‖y(t)‖2
H1 +

ˆ t

0

(
‖y(s)‖2

H2 + ‖|y(s)||∇y(s)|‖2
L2

)
ds

≤ C

(
‖y0‖2

H1 +

ˆ t

0

‖f(s)‖2
H0ds

)
+ C(1 +N + t)

(
‖y0‖2

H0 +

[ˆ t

0

‖f(s)‖H0ds

]2
)
.

(iii) There exist real functions p(t, x) and π(t, x), satisfying ∇p ∈ L2
loc(R+;L2(R3;R3)),

∇π ∈ L2
loc(R+;L2(R3;R3)), such that for almost all t ≥ 0, in L2(R3;R6) we have

∂v

∂t
= ∆v − (v · ∇)v + (B · ∇)B +∇

(
p+
|B|2

2

)
− gN(|(v,B)|2)v + fv,

∂B

∂t
= ∆B − (v · ∇)B + (B · ∇)v +∇π − gN(|(v,B)|2)B + fB.

In the case of smooth data, we can prove smoothness of the solutions to the TMHD
equations:

Theorem 1.3 (Regularity and Strong Solutions, cf. Theorem 2.9 below). Let y0 ∈
H∞ :=

⋂
m∈N0

Hm and R+ 3 t 7→ f(t) ∈ Hm be smooth for any m ∈ N0. Then there exists
a unique smooth velocity field

vN ∈ C∞(R+ × R3;R3) ∩ C(R+;H2),

a unique smooth magnetic field

BN ∈ C∞(R+ × R3;R3) ∩ C(R+;H2),

and smooth pressure functions

pN , πN ∈ C∞(R+ × R3;R),

which are defined up to a time-dependent constant. The quadruplet (vN ,BN , pN , πN)
solves the tamed MHD equations (1.12).
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Moreover, we have the following estimates: for any T,N > 0

sup
t∈[0,T ]

‖yN(t)‖2
H0 +

ˆ T

0

‖∇yN‖2
H0ds ≤ C

(
‖y0‖2

H0 +

[ˆ T

0

‖f(s)‖H0ds

]2
)
,

sup
t∈[0,T ]

‖yN(t)‖2
H1 +

ˆ T

0

‖yN(s)‖2
H2ds ≤ CT,y0,f · (1 +N),

sup
t∈[0,T ]

‖yN(t)‖2
H2 ≤ C ′T,y0,f

+ CT,y0,f · (1 +N2).

Finally, we have the following convergence result for vanishing taming terms, i.e. in
the limit N →∞.

Theorem 1.4 (Convergence to the untamed equations, cf. Theorem 2.10 below).
Let y0 ∈ H0, f ∈ L2([0, T ];H0), yN0 ∈ H1 such that H0 − limN→∞ y

N
0 = y0. Denote by

(yN , pN , πN) the unique solutions to the tamed equations (1.12) with initial value yN0 given
by Theorem 1.2.

Then there is a subsequence (Nk)k∈N such that yNk converges to a y in L2([0, T ];L2
loc)

and pNk converges weakly to some p in L9/8([0, T ];L9/5(R3)). The magnetic pressure πNk
converges to zero, weakly in L9/8([0, T ];L9/5(R3)). Furthermore, (y, p) is a weak solution
to (1.1) such that the following generalised energy inequality holds:

2

ˆ T

0

ˆ
R3

|∇y|2φdxds ≤
ˆ T

0

ˆ
R3

[
|y|2 (∂tφ+ ∆φ) + 2〈y, f〉φ

+ (|y|2 − 2p)〈v,∇φ〉 − 2〈B,v〉〈B,∇φ〉
]
dxds.

We have been able to extend all the results of [197] as well as [167] to the case
of tamed MHD equations. This posed several technical obstacles: we had to extend
the regularity result of [69] to the MHD case, which the author could not find in the
literature. Moreover, we describe the magnetic pressure problem in regularised MHD
equations. Furthermore, our work basically provides the critical case α = β = 3 of the
model considered in [241,251,253].

The chapter is organised as follows: we first treat the Cauchy problem (i.e. the
equations posed on R3) in Section 2. We start in Section 2.1 by introducing the functional
framework of the problem. Then we state and prove a number of elementary lemmas
regarding estimates as well as (local) convergence results for the operators appearing
in the tamed MHD equations. Existence and uniqueness of a weak solution is shown
in Section 2.2 via a Faedo-Galerkin approximation procedure. Employing the results of
Appendix A, we then show in Section 2.3 that for smooth data the solution to the tamed
MHD equations remains smooth. Finally, in Section 2.4 we show that as N → ∞, the
solution to the tamed MHD equations converges to a weak solution of the (untamed)
MHD equations.

A publication of the results of this chapter is in preparation, cf. [198].
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1.5. Notation. Let G ⊂ R3 be a domain and denote the divergence operator by div.
We use the following notational hierarchy for Lp and Sobolev spaces:

(1) For the spaces Lp(G,R) of real-valued integrable (equivalence classes of) functions
we use the notation Lp(G) or Lp if no confusion can arise. These are the spaces
of the components vi, Bi of the velocity and magnetic field vector fields.

(2) We sometimes use the notation Lp(G) := Lp(G;R3) to denote 3-dimensional
vector-valued integrable quantities, especially the velocity vector field and mag-
netic vector field v and B.

(3) The divergence-free and p-integrable vector fields are denoted by \mathbb sym-
bols, so Lp(G) := Lp(G) ∩ div−1{0}. Its elements are still denoted by bold-faced
symbols v, B and they satisfy by definition div v = ∇ · v = 0, divB = 0.

(4) Finally, we denote the space of the combined velocity and magnetic vector fields
by \mathcal symbols, i.e. Lp(G) := Lp(G)× Lp(G). It contains elements of the
form y = (v,B), with both v and B divergence-free.

For Sobolev spaces, we use the same notational conventions, so for example Hk(G) :=
Hk(G) ∩ div−1{0} := W k,2(G;R3) ∩ div−1{0} etc. Finally, if the domain of the functions
is not in R3, in particular if it is a real interval (for the time variable), then we use the
unchanged Lp notation.

For brevity, we use the following terminology when discussing the terms on the right-
hand side of the tamed MHD equations: the terms involving the Laplace operator are
called the linear terms, the terms involving the taming function gN are called taming terms
and the other terms are called the nonlinear terms. Furthermore, we refer to the initial
data y0 = (v0,B0) and the force f = (fv,fB) collectively as the data of the problem.

2. The Case of the Whole Space

We first consider the equations on an unbounded domain, namely the full space R3.
Note that in this case, as the embedding V ⊂ H is not compact, we cannot apply the local
monotonicity framework of W. Liu and M. Röckner, [167], Theorem 5.2.2. Compactness
is used heavily in the crucial step of proving that a locally monotone and hemicontinuous
operator is pseudo-monotone. Thus we have to prove the claim directly. To this end, will
follow the steps in [197]. Starting with stating the main definitions and some important
lemmas in Section 2.1, we then move on to prove existence and uniqueness of weak solu-
tions in Section 2.2. For sufficiently smooth data, we show that these are actually strong
solutions and prove their regularity in Section 2.3. Finally, we show in Section 2.4 that as
N →∞, the solution to the TMHD equations converges to a weak solution of the MHD
equations.

2.1. Auxiliary Results. We define the following spaces6:

Wm,p := C∞0 (R3;R3)
‖·‖m,p

,

the closure with respect to the norm (using the so-called Bessel potentials)

‖u‖m,p :=

(ˆ
R3

|(I −∆)m/2u|pdx
)1/p

.

6As we are in the case of full space as a domain, there are no boundary considerations and hence the
spaces Wm,p

0 and Wm,p coincide.
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This norm is equivalent to the Sobolev norm given by

‖u‖Wm,p :=
m∑
j=0

‖∇ju‖Lp

where ∇ju denotes the j-th total weak derivative of u of order j. We define the solenoidal
spaces by

(2.1) Hm := {u ∈Wm,2 | ∇ · u = 0},

where the divergence is taken in the sense of Schwartz distributions.
To handle the velocity and the magnetic field of the MHD equations at the same time,

we will need to define a norm on the space Hm := Hm × Hm. We will define the scalar
products in the usual way (see [201], p. 7): for the vector field y = (v,B) define

(2.2) 〈y1(x), y2(x)〉 :=

〈(
v1

B1

)
(x),

(
v2

B2

)
(x)

〉
:= 〈v1(x),v2(x)〉+ 〈B1(x),B2(x)〉

and similarly, for y ∈Hm ×Hm, we set

(2.3) (y1, y2)Hm := (v1,v2)Hm + (B1,B2)Hm ,

and accordingly for the norms. They behave just like an `2-type product norm. In the
variational formulation of the problem, we will take the scalar product w.r.t. a test
function.

In a similar fashion we define Lebesgue norms by

‖y‖Lp :=

(ˆ
Rd

(
|v|2 + |B|2

)p/2
dx

)1/p

= ‖ |y| ‖Lp(R3)

and

(2.4) ‖y‖L∞ := ess supx∈R3

(
|v(x)|2 + |B(x)|2

)1/2
= ess supx∈R3|y(x)|.

In the following, we will often employ the following Gagliardo-Nirenberg-Sobolev-type
interpolation inequality: Let p, q, r ≥ 1 and 0 ≤ j < m. Assume the following three
conditions:

m− j − 3

p
/∈ N0,

1

r
=
j

3
+ α

(
1

p
− m

3

)
+

1− α
q

,
j

m
≤ α ≤ 1.

Then for any u ∈ Wm,p ∩ Lq(R3;R3) we have the following estimate:

(2.5) ‖∇ju‖Lr ≤ Cm,j,p,q,r‖u‖αm,p‖u‖1−α
Lq .

Applying it to each component of the norm for y = (v,B), the same estimate carries over
to yield

(2.6) ‖∇jy‖Lr ≤ Cm,j,p,q,r‖y‖αm,p‖y‖1−α
Lq .

Define the space of (solenoidal) test functions by

V := {y = (v,B) : v,B ∈ C∞0 (R3;R3),∇ · v = 0,∇ ·B = 0} ⊂ C∞0 (R3;R6).

We then have the following lemma, the proof of which can be transferred verbatim as it
is simply a property of the spaces Hm and not of the equations.

Lemma 2.1. The space V is dense in Hm for any m ∈ N.

Proof. See [197], Lemma 2.1. �
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Let P : L2(R3;R3)→ H0 be the Leray-Helmholtz projection. Then P commutes with
derivative operators ( [192, Lemma 2.9, p. 52]) and can be restricted to a bounded linear
operator

P |Hm : Hm → Hm.

Furthermore, consider the tensorised projection

P := P ⊗ P, Py := (P ⊗ P )

(
v
B

)
=

(
Pv
PB

)
.

Then P : L2 → H0 is a bounded linear operator:

‖Py‖2
H0 = ‖Pv‖2

H0 + ‖PB‖2
H0 ≤ ‖P‖2

L2→H0

(
‖v‖2

L2 + ‖B‖2
L2

)
= ‖P‖2

L2→H0‖y‖2
L2 .

We define the following operator for the terms on the right-hand side of the TMHD
equations, projected on the space of divergence free functions:

A(y) := P∆y − P
(

(v · ∇)v − (B · ∇)B
(v · ∇)B − (B · ∇)v

)
− P

(
gN(|y|2)y

)
.

For y := (v,B) and a test function ỹ := (ṽ, B̃) ∈ H1, consider (using the self-adjointness
of the projection P)

〈A(y), ỹ〉H0 = 〈v,∆ṽ〉L2 + 〈B,∆B̃〉L2 − 〈(v · ∇)v, ṽ〉L2 + 〈(B · ∇)B, ṽ〉L2

− 〈(v · ∇)B, B̃〉L2 + 〈(B · ∇)v, B̃〉L2 − gN(|y|2)〈y, ỹ〉.
(2.7)

and for ỹ ∈ H3

〈A(y), ỹ〉H1 = 〈A(y), (I −∆)ỹ〉0
= −〈∇v, (I −∆)∇ṽ〉L2 − 〈∇B,∇(I −∆)B̃〉L2

− 〈(v · ∇)v, (I −∆)ṽ〉L2 + 〈(B · ∇)B, (I −∆)ṽ〉L2

− 〈(v · ∇)B, (I −∆)B̃〉L2 + 〈(B · ∇)v, (I −∆)B̃〉L2

− 〈gN(|y|2)y, (I −∆)ỹ〉L2 .

(2.8)

Let us give names to the linear, nonlinear and taming terms of (2.8):

A1(y, ỹ) := −〈∇v, (I −∆)∇ṽ〉L2 − 〈∇B,∇(I −∆)B̃〉L2 ,

A2(y, ỹ) := −〈(v · ∇)v, (I −∆)ṽ〉L2 + 〈(B · ∇)B, (I −∆)ṽ〉L2

− 〈(v · ∇)B, (I −∆)B̃〉L2 + 〈(B · ∇)v, (I −∆)B̃〉L2 ,

A3(y, ỹ) := −〈gN(|y|2)y, (I −∆)ỹ〉L2 .

The following lemma provides elementary estimates on the terms defined above.

Lemma 2.2.

(i) For any y ∈ H1 and ỹ ∈ V,

|〈A(y), ỹ〉H1| ≤ C(1 + ‖y‖3
H1)‖ỹ‖H3 ,

i.e. 〈A(y), ·〉H1 can be considered as an element in the dual space (H3)′ with its
norm bounded by C(1 + ‖y‖3

H1).
(ii) If y ∈ H1, then

(2.9) 〈A(y), y〉H0 = −‖∇y‖2
H0 − 〈gN(|y|2)y, y〉L2 .
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(iii) If y ∈ H2, then

〈A(y), y〉H1 ≤ −1

2
‖y‖2

H2 + ‖y‖2
H0 + 2(N + 1)‖∇y‖2

H0

− ‖|v||∇v|‖2
L2 − ‖|B||∇B|‖2

L2

− ‖|v||∇B|‖2
L2 − ‖|B||∇v|‖2

L2 .

(2.10)

Remark 2.3. The estimate (2.10) of this lemma lies at the heart of the improved
estimates of the tamed equations compared to the untamed equations. Young’s inequality
allows us to create a minus sign in front of the first two terms on the right-hand side
and hence to bring it to the other side of the inequality. The taming term produces the
minus signs in the terms of the second and third lines. Thus the otherwise uncontrollable
nonlinear term is transformed into a nonpositive term that can be estimated from above
by zero and hence made to disappear in subsequent estimates.

Proof of Lemma 2.2. Throughout this proof, let ϕ,ψ,θ ∈ {v,B}.
To prove (i), we observe that by Cauchy-Schwarz-Buniakowski for

〈(I −∆)1/2ϕ, (I −∆)1/2∆ψ〉 ≤ C‖ϕ‖H1‖ψ‖H3

and hence

A1(y, ỹ) ≤ C‖y‖H1‖ỹ‖H3 .

Similarly, using also the Sobolev embedding theorem we find

〈ϕ⊗ψ,∇(I −∆)θ〉L2 ≤ ‖ϕ⊗ψ‖L2‖∇(I −∆)θ‖H0

≤ C‖ϕ‖L4‖ψ‖L4‖θ‖H3 ≤ C‖ϕ‖H1‖ψ‖H1‖θ‖H3 ,

which yields

A2(y, ỹ) ≤ C‖y‖2
H1‖ỹ‖H3 .

For the taming term we use the estimate gN(r) ≤ Cr and the embedding of H1 into L6

to find

A3(y, ỹ) ≤ |〈gN(|y|2)y, (I −∆)ỹ〉L2| ≤ ‖gN(|y|2)y‖L2‖(I −∆)ỹ‖L2

≤ C‖y‖3
L6‖ỹ‖H2 ≤ C‖y‖3

H1‖ỹ‖H3 ,

to get

|〈A(y), ỹ〉H0| ≤ C(‖y‖H1 + ‖y‖2
H1 + ‖y‖3

H1)‖ỹ‖H3 ,

which implies the assertion.
For equality (2.9), we note that by the zero divergence conditions on v and B,

〈(ϕ · ∇)ψ,ψ〉L2 = 0.

Thus the first and the third nonlinear term will drop out. The remaining two terms cancel
since we have (for the same reason) the symmetry condition

〈(ϕ · ∇)ψ,θ〉L2 = −〈(ϕ · ∇)θ,ψ〉L2 .

Let us proceed to prove the inequality (2.10). Again, we analyse the linear, nonlinear and
taming terms separately. First we find the equality

A1(y, y) = 〈(∆− I + I)v, (I −∆)v〉L2 + 〈(∆− I + I)B, (I −∆)B〉L2

= −‖v‖2
H2 − ‖B‖2

H2 + ‖∇v‖2
H0 + ‖∇B‖2

H0

+ ‖v‖2
H0 + ‖B‖2

H0 .
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The nonlinear terms can be estimated by the Cauchy-Schwarz-Buniakowski and Young
inequality:

A2(y, y) = −〈(v · ∇)v, (I −∆)v〉L2 + 〈(B · ∇)B, (I −∆)v〉L2

− 〈(v · ∇)B, (I −∆)B〉L2 + 〈(B · ∇)v, (I −∆)B〉L2

≤ ‖(v · ∇)v‖2
L2 +

1

4
‖v‖2

H2 + ‖(B · ∇)B‖2
L2 +

1

4
‖v‖2

H2

‖(v · ∇)B‖2
L2 +

1

4
‖B‖2

H2 + ‖(B · ∇)v‖2
L2 +

1

4
‖B‖2

H2 .

Thus,

A1(y, y) +A2(y, y) ≤ −1

2
‖v‖2

H2 −
1

2
‖B‖2

H2 + ‖∇v‖2
H1 + ‖∇B‖2

H1

+ ‖v‖2
H0 + ‖B‖2

H0

+ ‖(v · ∇)v‖2
L2 + ‖(B · ∇)B‖2

L2

+ ‖(v · ∇)B‖2
L2 + ‖(B · ∇)v‖2

L2 .

The taming terms are estimated using integration by parts, the product rule and gN(r) ≥
C(r −N):

A3(y, y) = −〈gN(|y|2)y, (I −∆)y〉L2

= −〈gN(|y|2)y, y〉L2 − 〈∇
(
gN(|y|2)y

)
,∇y〉L2

≤ −
ˆ
R3

3∑
i,k=1

∂iv
k∂i
(
gN(|y|2)vk

)
− S∂iBk∂i

(
gN(|y|2)Bk

)
dx

= −
ˆ
R3

3∑
i,k=1

(
∂iv

k
)2
gN(|y|2) + g′N(|y|2)

(
∂i|y|2

)
vk∂iv

kdx

−
ˆ
R3

3∑
i,k=1

(
∂iB

k
)2
gN(|y|2) + g′N(|y|2)

(
∂i|y|2

)
Bk∂iB

kdx

= −
ˆ
R3

gN(|y|2)|∇y|2dx−
ˆ
R3

g′N(|y|2)
∑
i,j,k

{
∂i
(
(vj)2 + (Bj)2

)
vk∂iv

k

+ ∂i
(
(vj)2 + (Bj)2

)
Bk∂iB

k

}
dx

= −
ˆ
R3

gN(|y|2)|∇y|2dx

− 2

ˆ
R3

g′N(|y|2)
∑
i,j,k

{
vj∂iv

jvk∂iv
k +Bj∂iB

jvk∂iv
k

+ vj∂iv
jBk∂iB

k +Bj∂iB
jBk∂iB

k

}
dx

= −
ˆ
R3

gN(|y|2)|∇y|2dx

− 1

2

ˆ
R3

g′N(|y|2) (〈∇|v|,∇|v|〉+ 2〈∇|v|,∇|B|〉+ 〈∇|B|,∇|B|〉) dx
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= −
ˆ
R3

gN(|y|2)|∇y|2dx− 1

2

ˆ
R3

g′N(|y|2)
∣∣∇|y|2∣∣ dx

≤ −
ˆ
R3

gN(|y|2)|∇y|2dx,

as the last term in the penultimate equation is non-negative. Finally, since gN(|y|2) ≥
Ctaming

(
|y|2 − (N + 1

2
)
)

by definition, we get that

A3(y, y) ≤ −Ctaming

ˆ
R3

|y|2|∇y|2dx+ Ctaming(N +
1

2
)‖∇y‖2

H0

= −Ctaming

(
‖|v||∇v|‖2

L2 + ‖|v||∇B|‖2
L2

+ ‖|B||∇v|‖2
L2 + ‖|B||∇B|‖2

L2

)
+ Ctaming(N +

1

2
)‖∇y‖2

H0 .

Since Ctaming = 2, we get (2.10) by combining the above three estimates. �

Lemma 2.4. Let yn, ỹ ∈ V and y ∈ H1. Let Ω := supp(ỹ) and assume that

sup
n
‖yn‖H1 <∞, lim

n→∞
‖(yn − y)1Ω‖L2 = 0.

Then

lim
n→∞
〈A(yn), ỹ〉H1 = 〈A(y), ỹ〉H1 .

Proof. For the linear part we get

lim
n→∞

|A1(yn, ỹ)−A1(y, ỹ)| = lim
n
|〈yn − y,∆(I −∆)ỹ〉L2|

= lim
n
|〈(yn − y)1Ω,∆(I −∆)ỹ〉L2| ≤ C lim

n
‖(yn − y)1Ω‖L2‖ỹ‖H4 = 0.

The nonlinear part is treated using the trick

∇ · (φ⊗ψ) = (φ · ∇)ψ.

Thus, for example

lim
n→∞

|〈(vn · ∇)Bn, (I −∆)B̃〉L2 − 〈(v · ∇)B, (I −∆)B̃〉L2|

= lim
n
|〈vn ⊗Bn − v ⊗B,∇(I −∆)B̃〉L2|

= lim
n
|〈(vn ⊗Bn − v ⊗B) 1Ω,∇(I −∆)B̃〉L2|

= 0.

The other three terms are shown to converge in just the same way.
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Using the estimate |g′N | ≤ C as well as the Sobolev embedding theorem, we find for
the taming term

lim
n
|A3(yn, ỹ)−A3(y, ỹ)| = lim

n
|〈gN(|yn|2)yn − gN(|y|2)y, (I −∆)ỹ〉|

≤ lim
n
|〈gN(|yn|2)(yn − y)1Ω, (I −∆)ỹ〉|

+ |〈g′N(θ)(|yN |2 − |y|2)y1Ω, (I −∆)ỹ〉|

≤ C sup
x∈R3

|(I −∆)ỹ(x)| lim
n

{
‖yn‖2

L4‖(yn − y)1Ω‖L2

+ ‖(yn − y)1Ω‖L2(‖yn‖2
L4 + ‖y‖2

L4)
}

≤ C sup
x∈R3

|(I −∆)ỹ(x)| lim
n

{
‖yn‖2

H1‖(yn − y)1Ω‖L2

+ ‖(yn − y)1Ω‖L2(‖yn‖2
H1 + ‖y‖2

H1)
}

= 0.

�

2.2. Existence and Uniqueness of Weak Solutions. In this section we will study
the well-posedness of the weak formulation of the TMHD equations. We start by stating
our notion of weak solution. We proceed to show uniqueness first and then existence of
weak solutions via a Faedo-Galerkin approximation scheme.

Definition 2.5 (Weak solution). Let y0 ∈ H0, f ∈ L2
loc(R+;H0). Let y =

(
v
B

)
where v and B are measurable vector fields, v,B : R+ × R3 → R3. We call y a weak
solution of the tamed MHD equations if

(i) v,B ∈ L∞loc(R+;L4(R3;R3)) ∩ L2
loc(R+;H1).

(ii) For all ỹ ∈ V and t ≥ 0,

〈y(t), ỹ〉H0 = 〈y0, ỹ〉H0 −
ˆ t

0

〈∇y,∇ỹ〉H0ds

−
ˆ t

0

〈(v · ∇)v, ṽ〉L2ds+

ˆ t

0

〈(B · ∇)B, ṽ〉L2ds

−
ˆ t

0

〈(v · ∇)B, B̃〉L2ds+

ˆ t

0

〈(B · ∇)v, B̃〉L2ds

−
ˆ
〈gN(|y|2)y, ỹ〉L2ds+

ˆ t

0

〈f, ỹ〉H0ds.

(2.11)

(iii) limt↓0 ‖y(t)− y0‖L2 = 0.

This definition deals with purely spatial test functions, but it can be extended to the
case of test functions that depend also on time, as the next proposition demonstrates.
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Proposition 2.6. Let y =

(
v
B

)
be a weak solution and let T > 0. Then for all

ỹ ∈ C1([0, T ];H1) such that ỹ(T ) = 0, we haveˆ T

0

〈y, ∂tỹ〉H0dt = −〈y0, ỹ(0)〉H0 +

ˆ t

0

〈∇y,∇ỹ〉H0ds

+

ˆ t

0

〈(v · ∇)v, ṽ〉L2ds−
ˆ t

0

〈(B · ∇)B, ṽ〉L2ds

+

ˆ t

0

〈(v · ∇)B, B̃〉L2ds−
ˆ t

0

〈(B · ∇)v, B̃〉L2ds

+

ˆ t

0

〈gN(|y|2)y, ỹ〉L2ds−
ˆ t

0

〈f, ỹ〉H0ds.

(2.12)

Moreover, the following energy equality holds:

‖y(t)‖2
H0 + 2

ˆ t

0

‖∇y‖2
H0ds+ 2

ˆ t

0

‖
√
gN(|y|2)|y|‖2

L2ds

= ‖y0‖2
H0 + 2

ˆ t

0

〈f, y〉H0ds, ∀t ≥ 0.

(2.13)

Proof. We first show that the right-hand side of (2.12) is well-defined.
Starting with the nonlinear terms, by applying Hölder’s inequality for (p, q) = (4, 4

3
)

and (p, q) = (3, 3
2
) as well as the Sobolev embedding theorem, we getˆ T

0

|〈(v · ∇)v, ṽ〉L2|dt ≤
ˆ T

0

‖ṽ‖L4‖(v · ∇)v‖L4/3dt

≤
ˆ T

0

‖ṽ‖L4‖|v||∇v|‖L4/3dt

≤
ˆ T

0

‖ṽ‖L4‖v‖L4‖∇v‖L2dt

≤ C sup
t∈[0,T ]

‖v‖L4

(ˆ T

0

‖ṽ‖H1dt

)1/2(ˆ T

0

‖v‖H1dt

)1/2

.

The other three nonlinear terms can be handled in exactly the same way.
For the taming terms, we get, by applying Hölder’s inequality (to the spatial integra-

tion) and the Sobolev embedding theorem:ˆ T

0

|〈gN(|y|2)y, ỹ〉L2 |dt ≤
ˆ T

0

ˆ
R3

∣∣gN(|y|2)
∣∣ |〈y, ỹ〉|dxdt

≤ C

ˆ T

0

ˆ
R3

|y|3|ỹ|dxdt

≤ C

ˆ T

0

‖y‖3
L4‖ỹ‖L4ds

≤ C sup
0≤t≤T

‖y(t)‖3
L4

ˆ T

0

‖ỹ‖H1dt.

Thus, the right-hand side of (2.12) is well-defined and if we use the definition of a weak
solution, (2.11) and (2.12), the energy equality follows from approximating the solution
accordingly, cf. [18, Lemma 2.7, p. 635]. �
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Theorem 2.7 (Uniqueness of weak solutions). Let y1, y2 be two weak solutions in the
sense of Definition 2.5. Then we have y1 = y2.

Proof. We fix a T > 0 and set z(t) := y1(t) − y2(t) =:

(
v
B

)
. Then z satisfies the

equation

〈z(t), ỹ〉H0 = −
ˆ t

0

〈∇z,∇ỹ〉ds−
ˆ t

0

〈(v1 · ∇)v1 − (v2 · ∇)v2, ṽ〉L2ds

+

ˆ t

0

〈(B1 · ∇)B1 − (B2 · ∇)B2, ṽ〉L2ds

−
ˆ t

0

〈(v1 · ∇)B1 − (v2 · ∇)B2, B̃〉L2ds

+

ˆ t

0

〈(B1 · ∇)v1 − (B2 · ∇)v2, B̃〉L2ds

−
ˆ t

0

〈gN(|y1|2)y1 − gN(|y2|2)y2, ỹ〉L2ds.

Now, running the same proof as for (2.13) (which essentially amounts to being able to set
ỹ = z), we get

‖z(t)‖2
H0 = −2

ˆ t

0

‖∇z‖2
H0ds− 2

ˆ t

0

〈v, (v1 · ∇)v1 − (v2 · ∇)v2〉L2ds

+ 2

ˆ t

0

〈v, (B1 · ∇)B1 − (B2 · ∇)B2〉L2ds

− 2

ˆ t

0

〈B, (v1 · ∇)B1 − (v2 · ∇)B2〉L2ds

+ 2

ˆ t

0

〈B, (B1 · ∇)v1 − (B2 · ∇)v2〉L2ds

− 2

ˆ t

0

〈z, gN(|y1|2)y1 − gN(|y2|2)y2〉L2ds

=: IL(t) + INL(t) + IT (t).

We first investigate the linear term and find, using integration by parts and the definition
of the norms ‖ · ‖H1 that

IL(t) = −2

ˆ t

0

〈∇z,∇z〉H0ds = 2

ˆ t

0

〈∆z, z〉H0ds

= −2

ˆ t

0

‖z‖2
H1ds− 2

ˆ t

0

‖z‖2
H0ds.

The nonlinear term INL(t) consists of four terms of the same structure

〈ϕ, (ψ1 · ∇)θ1 − (ψ2 · ∇)θ2〉L2 = −〈∇ϕ,ψ1 ⊗ θ1 −ψ2 ⊗ θ2〉L2 .

We estimate them by using Cauchy-Schwarz-Buniakowski and Young’s inequality:

〈∇ϕ,ψ1 ⊗ θ1 −ψ2 ⊗ θ2〉L2 ≤ 1

4
‖∇ϕ‖2

H0 + ‖ψ1 ⊗ θ1 −ψ2 ⊗ θ2‖2
L2 .
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Thus we need to estimate the latter term which we do by applying Cauchy-Schwarz-
Buniakowski, the Sobolev embedding theorem as well as Young’s inequality with ε for
(p, q) = (4, 4/3):

‖ψ1 ⊗ θ1 −ψ2 ⊗ θ2‖2
L2 = ‖(ψ1 −ψ2)⊗ θ1 +ψ2 ⊗ (θ1 − θ2)‖2

L2

≤ 2
(
‖ψ1 −ψ2‖2

L4‖θ1‖2
L4 + ‖ψ2‖2

L4‖θ1 − θ2‖2
L4

)
≤ 2C1,0,2,2,4

(
‖ψ1 −ψ2‖3/2

H1 ‖ψ1 −ψ2‖1/2

H0 ‖θ1‖2
L4

+ ‖ψ2‖2
L4‖θ1 − θ2‖3/2

H1 ‖θ1 − θ2‖1/2

H0

)
≤ Cε

(
‖ψ1 −ψ2‖2

H0‖θ1‖8
L4 + ‖θ1 − θ2‖2

H0‖ψ2‖8
L4

)
+ ε‖ψ1 −ψ2‖2

H1 + ε‖θ1 − θ2‖2
H1 .

We collect the four terms and use the previous estimates and find (again using the defi-
nition of the Sobolev norms)

INL(t) ≤
ˆ t

0

‖∇(y1 − y2)‖2
H0ds+ 8ε

ˆ t

0

‖y1 − y2‖2
H1ds

+ Cε

ˆ t

0

(
‖y1 − y2‖2

H0‖y1‖8
L4 + ‖y1 − y2‖2

H0‖y2‖8
L4

)
ds

≤
ˆ t

0

‖z‖2
H1ds+ 8ε

ˆ t

0

‖z‖2
H1ds

+ Cε

ˆ t

0

‖z‖2
H0

(
1 + ‖y1‖8

L4 + ‖y2‖8
L4

)
ds

≤ (1 + 8ε)

ˆ t

0

‖z‖2
H1ds+ CεMy1,y2,t

ˆ t

0

‖z‖2
H0ds,

where

My1,y2,t := ess sups∈[0,t]

(
1 + ‖y1‖8

L4 + ‖y2‖8
L4

)
<∞

by our definition of weak solutions.
Concerning the taming term, IT (t), we have, using Cauchy-Schwarz-Buniakowski for

the scalar product 〈·, ·〉, the mean-value theorem of calculus (and the fact that |g′| ≤ C),
the inequality gN(r) ≤ Cr, as well as Cauchy-Schwarz-Buniakowski for the 3D integral,
Sobolev’s embedding theorem and Youngs inequality (for (p, q) = (4, 4/3))

|〈z, gN(|y1|2)y1 − gN(|y2|2)y2〉L2|
= |〈z, gN(|y1|2)z〉L2 + 〈z,

(
gN(|y1|2)− gN(|y2|2)

)
y2〉L2|

≤
ˆ
R3

|z|2gN(|y1|2)dx+

ˆ
R3

|z||gN(|y1|2)− gN(|y2|2)||y2|dx

≤ C

ˆ
R3

|z|2|y1|2 + |z|||y1|2 − |y2|2||y2|dx

≤ C

ˆ
R3

|z|2|y1|2 + |z|2 (|y1|+ |y2|) |y2|dx

= C

ˆ
R3

|z|2
(
|y1|2 + |y1||y2|+ |y2|2

)
dx

≤ C

ˆ
R3

|z|2 (|y1|+ |y2|)2 dx

≤ C‖|z| (|y1|+ |y2|) ‖2
L2
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≤ C‖z‖2
L4‖|y1|+ |y2|‖2

L4

≤ C‖z‖3/2

H1 ‖z‖1/2

H0 ‖|y1|+ |y2|‖2
L4

≤ Cε‖z‖2
H0

(
‖y1‖8

L4 + ‖y2‖8
L4

)
+ ε‖z‖2

H1 .

This implies that

IT (t) = −2

ˆ t

0

〈z, gN(|y1|2)y1 − gN(|y2|2)y2〉L2ds

≤ 2ε

ˆ t

0

‖z‖2
H1ds+ Cε

ˆ t

0

‖y‖2
H0

(
‖y1‖8

L4 + ‖y2‖8
L4

)
ds

≤ 2ε

ˆ t

0

‖z‖2
H1ds+ CεMy1,y2,t

ˆ t

0

‖z‖2
H0ds.

Hence, altogether we have the inequality

‖z(t)‖2
H0 ≤ −2

ˆ t

0

‖z(s)‖2
H1ds+ (1 + 10ε)

ˆ t

0

‖z(s)‖2
H1ds

+ CεMy1,y2,t

ˆ t

0

‖z(s)‖2
H0ds.

Choosing ε = 1
10

, we find that

‖z(t)‖2
H0 ≤ CMy1,y2,t

ˆ t

0

‖z(s)‖2
H0ds

and Gronwall’s lemma implies that z(s) = 0 for all s ∈ [0, t]. �

Our next step is to establish existence of weak solutions.

Theorem 2.8. Let y0 ∈ H1 and f ∈ L2
loc(R+;H0). For any N > 0, there exists a

weak solution y = yN in the sense of Definition 2.5 to the TMHD equations such that

(i) For all t ≥ 0,

(2.14) ‖y(t)‖H0 ≤ ‖y0‖H0 +

ˆ t

0

‖f‖H0ds

and

(2.15)

ˆ t

0

‖∇y(s)‖H0 + ‖
√
gN(|y|2)|y|‖2

L2ds ≤ ‖y0‖2
H0 + 2

[ˆ t

0

‖f(s)‖H0ds

]2

(ii) The solution satisfies y ∈ C(R+;H1) ∩ L2
loc(R+;H2), ∂ty ∈ L2

loc(R+;H0) and for
all t ≥ 0,

‖y(t)‖2
H1 +

ˆ t

0

(
‖y‖2

H2 + ‖|y||∇y|‖2
L2

)
ds

≤ C

(
‖y0‖2

H1 +

ˆ t

0

‖f‖2
H0ds

)
+ C(1 +N + t)

(
‖y0‖2

H0 +

[ˆ t

0

‖f‖H0ds

]2
)

=: C1
t,N,y0,h

.

(2.16)
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(iii) There exist real functions p(t, x), π(t, x), satisfying ∇p,∇π ∈ L2
loc(R+;L2(R3;R3))

such that for almost all t ≥ 0, in L2(R3;R6) we have

∂v

∂t
= ∆v − (v · ∇)v + (B · ∇)B +∇

(
p+
|B|2

2

)
− gN(|(v,B)|2)v

∂B

∂t
= ∆B − (v · ∇)B + (B · ∇)v +∇π − gN(|(v,B)|2)B.

Proof. We use a Faedo-Galerkin approximation on [0, T ]. Let us construct an or-
thonormal basis tailored to our needs.

By the separability of H3 and the density of V ⊂ H3, there is a linearly independent
countable subset {ēk | k ∈ N} ⊂ V which is dense in H3. To be more precise, by the
separability of H3, there exists a countable topological basis (Un)n∈N of open subsets of
H3. Choose an ē1 ∈ V ∩ U1 (which exists by the density of V). Now let {ē1, . . . , ēn} be
chosen already, and define Sn := span{ē1, . . . , ēn}. Since the dimension of H3 is infinite,
the finite-dimensional subspace Sn is a proper subspace and thus has empty interior (if it
contained an open ball, it would be equal to the whole space). In particular, it does not
contain Un+1. Since Sn is closed, Un+1\Sn = Un+1 ∩ Scn is open and thus there exists an
ēn+1 ∈ V ∩ (Un+1\Sn).

Using the Gram-Schmidt orthonormalisation procedure in H1, we can construct an
orthonormal basis {ek | k ∈ N} ⊂ V of H1 such that span{ek} is dense in H3. Fix an
n ∈ N. For z =

(
z1, . . . , zn

)
∈ Rn and e =

(
e1, . . . , en

)
∈ Vn set

z · e :=
n∑
i=1

ziei ∈ V

bn(z) := (〈A(z · e), ei〉H1)ni=1

fn(t) := (〈ρn ∗ f(t), e1〉H1 , . . . , 〈ρn ∗ fn(t), en〉H1) ,

where the ρn are a family of mollifiers such that

‖ρn ∗ f(t)‖H0 ≤ ‖f(t)‖H0 , lim
n→∞

‖ρn ∗ f(t)− f(t)‖H0 = 0.

Now we consider the ordinary differential equation

(2.17)

{
dzn
dt

(t) = bn(zn(t)) + fn(t),

zn(0) = (〈y0, ei〉H1)ni=1 .

Then we have

〈z, bn(z)〉Rn =
n∑
i=1

zi〈A(z · e), ei〉H1 = 〈A(z · e), z · e〉H1 .

Noting that z · e ∈ H3 ⊂ H2, the estimate (2.10) on 〈A(y), y〉H1 from Lemma 2.2 then
yields

〈z, bn(z)〉Rn = 〈A(z · e), z · e〉H1 ≤ Cn,N |z|2,
where the constant Cn,N contains the norms of all the ei for i = 1, . . . , n (as all the terms
on the right-hand side of (2.10) are quadratic in y). Moreover, since

z 7→ bn(z) = (〈A(z · e), ei〉H1)ni=1 ∈ Rn

is a polynomial in the components of z in each component, it is a smooth map. Hence,
the differential equation (2.17) has a unique solution zn(t) such that

zn(t) = zn(0) +

ˆ t

0

bn(zn(s))ds+

ˆ t

0

fn(s)ds, t ≥ 0.
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Now we set

yn(t) := zn(t) · e =
n∑
i=1

zin(t)ei

∏
n

A(yn(t)) :=
n∑
i=1

〈A(yn(t)), ei〉H1ei

∏
n

f(t) :=
n∑
i=1

〈ρn ∗ f(t), ei〉H1ei.

Then the function yn satisfies the differential equation

∂tyn(t) = (∂tzn(t)) · e = (bn(zn(t)) · e) + (fn(t) · e)

=
∏
n

A(yn(t)) +
∏
n

f(t)

and for all n ≥ k

〈yn(t), ek〉H1 = 〈yn(0), ek〉H1

+

ˆ t

0

〈∏
n

A(yn(s)), ek

〉
H1

ds+

ˆ t

0

〈∏
n

f(s), ek

〉
H1

ds

= 〈y0, ek〉H1 +

ˆ t

0

〈A(yn(s)), ek〉H1ds+

ˆ t

0

〈ρn ∗ f(s), ek〉H1ds.

(2.18)

This implies that

‖yn(t)‖2
H1 = ‖y0‖2

H1 + 2

ˆ t

0

〈A(yn(s)), yn(s)〉H1ds+ 2

ˆ t

0

〈ρn ∗ f(s), yn(s)〉H1ds.

Using the definition of H1, the self-adjointness of (I − ∆) and the Cauchy-Schwarz-
Buniakowski and Young inequalities for the last term as well as (2.10) for the second
term (dropping the nonlinear terms, all of which have negative signs), we find that

‖yn(t)‖2
H1 ≤ ‖y0‖2

H1 −
ˆ t

0

‖yn‖2
H2 + 2‖yn‖2

H0 + 4(N + 1)‖∇yn‖2
H0ds

+ 2

ˆ t

0

‖ρn ∗ f(s)‖2
H0ds+

1

2

ˆ t

0

‖yn‖2
H2ds

≤ ‖y0‖2
H1 −

ˆ t

0

1

2
‖yn‖2

H2 + 2‖yn‖2
H0 + 4(N + 1)‖∇yn‖2

H0ds

+ 2

ˆ t

0

‖f(s)‖2
H0ds.

This implies that

(2.19) ‖yn(t)‖2
H1 +

ˆ t

0

‖yn‖2
H2ds ≤ CN

(
‖y0‖2

H1 +

ˆ t

0

‖yn‖2
H1ds+

ˆ t

0

‖f‖2
H0ds

)
.

Dropping the second term on the left-hand side and using Gronwall’s lemma, we find that

sup
t≤T
‖yn(t)‖2

H1 ≤ Cy0,N,T,f .

Using this information in (2.19), we find that alsoˆ t

0

‖yn‖2
H2ds ≤ Cy0,N,T,f .
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Now for a fixed k ∈ N, set G
(k)
n (t) := 〈yn(t), ek〉H1 . Then by the preceding step, the G

(k)
n

are uniformly bounded on [0, T ]. Furthermore, they are equi-continuous, as can be seen
from

|G(k)
n (t)−G(k)

n (r)| = |〈yn(t), ek〉H1 − 〈yn(r), ek〉H1|

=

∣∣∣∣ˆ t

r

〈A(yn(s), ek〉H1ds+

ˆ t

r

〈ρn ∗ f(s), ek〉H1ds

∣∣∣∣
≤ C

ˆ t

r

(1 + ‖yn(s)‖3
H1)‖ek‖H3ds+ ‖ek‖H2

ˆ t

r

‖f(s)‖H0ds,

and equation (2.19), where we used Lemma 2.2 (i). Therefore, the theorem of Arzelà-

Ascoli implies that
(
G

(k)
n

)
n∈N

is sequentially relatively compact with respect to the uni-

form topology and hence there is a subsequence such that
(
G

(k)

nkl

)
l∈N

converges uniformly

to a limit G(k). Now a diagonalisation argument implies that there is a subsequence,
which we denote again by (Gk

n)n∈N

∀k ∈ N : lim
n→∞

sup
t∈[0,T ]

|G(k)
n (t)−G(k)(t)| = 0.

Again invoking (2.19), we see that supn∈N supt∈[0,T ] ‖yn(t)‖2
H1 ≤ C. Since closed balls

of H1 are weakly compact by the Banach-Alaoglu theorem, we find that for almost all
t ∈ [0, T ] we have the H1-weak convergence yn(t) ⇀ y(t) as n→∞. To conclude that this
holds true for all t ∈ [0, T ] we note that G(k), as the uniform limit of continuous functions,
is continuous, and that on the other hand by the weak convergence just mentioned,

G(k)
n (t) = 〈yn(t), ek〉H1 → 〈y(t), ek〉H1 .

Hence, t 7→ 〈y(t), ek〉H1 is continuous for all k ∈ N and by the density of the {ek}k∈N, we
find that t 7→ 〈y(t), ỹ〉H1 is continuous for all ỹ ∈ H1. We can thus conclude that t 7→ y(t)
is weakly continuous in H1, and that for all ỹ ∈ H1:

lim
n→∞

sup
t∈[0,T ]

|〈yn(t)− y(t), ỹ〉H1| = 0.

This implies (by considering ỹ = (I −∆)−1z̃ ∈ H2 ⊂ H1 for z ∈ H0 and using the formal
self-adjointness of (I −∆))

lim
n→∞

sup
t∈[0,T ]

|〈yn(t)− y(t), z̃〉H0| = 0.

We next invoke the Helmholtz-Weyl decomposition L2 = H0⊕(H0)
⊥

. Since yn(t)−y(t) ∈
H1 ⊂ H0, this allows us to conclude that

(2.20) lim
n→∞

sup
t∈[0,T ]

|〈yn(t)− y(t), z̃〉L2| = 0 ∀z̃ ∈ L2.

To be more precise, we can use the Helmholtz-Weyl decomposition for L2(R3;R3) for both
the velocity component and the magnetic field component of yn−y, and putting these two
together yields (2.20). Note that this equation implies the component-wise convergence

(2.21) lim
n→∞

sup
t∈[0,T ]

|〈φi,n(t)− φi(t), z̃〉L2| = 0 ∀z ∈ L2(R3;R), φ ∈ {v,B}.

This can be seen by taking z̃ of the form z̃ = (0, . . . , 0, z, 0, . . . , 0), where z ∈ L2(R3;R).
Thus, we get weak convergence of each component of the velocity and magnetic field in
L2.
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From this equation as well as (2.19) and Fatou’s lemma, we getˆ T

0

‖y(s)‖2
H2ds ≤ lim inf

n→∞

ˆ T

0

‖yn(s)‖2
H2ds <∞.

Next we want to show that y is indeed a solution of the tamed MHD equations (1.8).
To this end, recall first the following Friedrichs’ inequality7 (see e.g. [141]): let Q ⊂ R3

be a bounded cuboid. Then for all ε > 0 there is a Kε ∈ N and functions hεi ∈ L2(G),
i = 1, . . . , Kε such that for all w ∈ W 1,2

0 (G)

(2.22)

ˆ
Q

|w(x)|2dx ≤
Kε∑
i=1

(ˆ
Q

w(x)hεi (x)dx

)2

+ ε

ˆ
Q

|∇w(x)|2dx.

Now let G ⊂ Ḡ ⊂ Q and choose a smooth cutoff function ρ such that 1 ≥ ρ ≥ 0,
ρ ≡ 1 on G and supp ρ ⊂ Q. Then we have for all j = 1, 2, 3 and φ ∈ {v,B} that
ρ(φj,n(t, ·)− φj(t, ·)) ∈ W 1,2

0 (Q) and hence by applying Friedrichs’ inequality, we findˆ
G

|yn(t, x)− y(t, x)|2dx

=
3∑
j=1

ˆ
G

|vj,n(t, x)− vj(t, x)|2dx+

ˆ
G

|Bj,n(t, x)−Bj(t, x)|2dx

≤
3∑
j=1

ˆ
Q

ρ2(x)|vj,n(t, x)− vj(t, x)|2dx+

ˆ
Q

ρ2(x)|Bj,n(t, x)−Bj(t, x)|2dx

≤
3∑
j=1

Kε∑
i=1

(ˆ
Q

(vj,n − vj)ρhεidx
)2

+ ε
3∑
j=1

ˆ
Q

|∇ [ρ(vj,n − vj)] |2dx

+
3∑
j=1

Kε∑
i=1

(ˆ
Q

(Bj,n −Bj)ρh
ε
idx

)2

+ ε
3∑
j=1

ˆ
Q

|∇ [ρ(Bj,n −Bj)] |2dx.

The first and third terms in the last two lines vanish in the limit n→∞ by (2.21), since
ρhεi ∈ L2(R3). To the second and fourth term (those proportional to ε), we apply the
product rule for weak derivatives (see e.g. [68, Theorem 5.2.3.1 (iv), pp. 261 f.]) and
(2.19) to see that the integrals are bounded. As ε > 0 is arbitrary, we find

(2.23) lim
n→∞

sup
t∈[0,T ]

ˆ
G

|yn(t, x)− y(t, x)|2dx = 0.

Now let, for k ∈ N, supp(ek) ⊂ Gk for bounded sets Gk. If we fix s ∈ [0, t], then by (2.19)
and (2.23) we get

sup
n
‖yn(s, ·)‖H1 <∞ and lim

n
‖(yn(s, ·)− y(s, ·))1Gk‖L2 = 0.

Thus an application of Lemma 2.4 and Lebesgue’s dominated convergence theorem yieldsˆ t

0

〈A(yn(s)), ek〉H1ds→
ˆ t

0

〈A(y(s)), ek〉H1ds.

7The first use of the inequality in the context of the Navier-Stokes equations seems to be in E.
Hopf [115, p. 230]. Hopf uses the inequality and cites R. Courant’s and D. Hilbert’s book [43]. The
inequality and a proof can be found in Chapter VII, Paragraph 3, Section 1, Satz 1, p. 489. Hopf also
notes that the statement is not true for arbitrary bounded domains. For a more modern presentation, cf.
J.C. Robinson, J.L. Rodrigo and W. Sadowski [192, Exercises 4.2–4.9, pp. 107 ff.].



30 II. DETERMINISTIC TAMED MHD EQUATIONS

Having established this convergence, we can take limits n→∞ in (2.18) to find

〈y(t), ek〉H1 = 〈y0, ek〉H1 +

ˆ t

0

〈A(y(s)), ek〉H1ds+

ˆ t

0

〈f(s), (I −∆)ek〉H0ds.

As this equation is linear in ek, it holds for linear combinations and since span{ek} forms
a dense subset in H3, we conclude

〈y(t), ỹ〉H1 = 〈y0, ỹ〉H1 +

ˆ t

0

〈A(y(s)), ỹ〉H1ds+

ˆ t

0

〈f(s), (I −∆)ỹ〉H0ds.

Now, letting ỹ := (I −∆)−1ȳ for ȳ ∈ H3,

〈y(t), ȳ〉H0 = 〈y0, ȳ〉H0 +

ˆ t

0

〈A(y(s), ȳ〉H0ds+

ˆ t

0

〈f(s), ȳ〉H0ds,

that is, Equation (2.11).
We are left to prove (i) - (iii). We will start with (iii). At first it might seem difficult

to extract two pointwise 3-D equations from one weak 1-D equation, as [214, Chapter
I, Section 1, Proposition 1.1., p. 14] only works when the number of components of the
solution equals the space dimension. Note, however, that our weak formulation holds
for a larger class of test functions. In particular, we note that if ṽ ∈ C∞0 (R3;R3) with
∇ · ṽ = 0, then (ṽ, 0) ∈ V . Thus in equation (2.11) we set ỹ = (ṽ, 0) and we find for
almost all t ≥ 0 that

(2.24)
∂v

∂t
= ∆v − P [(v · ∇)v + (B · ∇)B]− P

[
gN(|y|2)v

]
+ f1(t)

and infer from Proposition 1.1. of [214] the existence of a function p̄ with ∇p̄ ∈
L2

loc(R+;L2(R3)) such that (for almost all t ≥ 0)

∂v

∂t
= ∆v − (v · ∇)v + (B · ∇)B − gN(|y|2)v +∇p̄+ f1(t).

Now we define the pressure p by

p̄ = p+
|B|2

2
,

and we observe that since ∇ |B|
2

2
= (B ·∇)B ∈ L2

loc(R+;L2(R3;R3)) due to (2.16), and by
the regularity of p̄, p also satisfies the right regularity condition ∇p ∈ L2

loc(R+;L2(R3)).

In the same way (cf. Section 1.3.4), by testing against ỹ = (0, B̃) ∈ V to get

(2.25)
∂B

∂t
= ∆B − P (v · ∇)B + P(B · ∇)v − P

[
gN(|(v,B)|2)B

]
+ f2,

we can find a π such that ∇π ∈ L2
loc(R+;L2(R3)) (note that this function in general

cannot be expected to be equal to zero for our equation, as we argued in Section 1.3.4)
such that for almost all t ≥ 0

∂B

∂t
= ∆B − (v · ∇)B + (B · ∇)v +∇π − gN(|(v,B)|2)B + f2.

These two statements imply (iii).
Next we want to prove (i). We take the scalar product in H0 of the system (2.24),

(2.25) with y(t) as well as (2.9) to find

〈∂ty(t), y(t)〉H0 = 〈A(y(t)), y(t)〉H0 + 〈f(t), y(t)〉H0

= −‖∇y(t)‖2
H0 − ‖

√
gN(|y(t)|2)|y(t)|‖2

L2 + 〈f(t), y(t)〉H0

≤ −‖∇y(t)‖2
H0 − ‖

√
gN(|y(t)|2)|y(t)|‖2

L2 + ‖f(t)‖H0‖y(t)‖H0 ,

(2.26)
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which yields (as 〈∂ty(t), y(t)〉H0 = 1
2

d
dt
‖y(t)‖2

H0 = ‖y(t)‖H0
d
dt
‖y(t)‖H0)

d

dt
‖y(t)‖H0 ≤ ‖f(t)‖H0 .

Integrating this inequality gives

(2.27) ‖y(t)‖H0 ≤ ‖y0‖H0 +

ˆ t

0

‖f(s)‖H0ds,

and integrating (2.26), we findˆ t

0

‖∇y(s)‖2
H0 + ‖

√
gN(|y(s)|2)|y(s)|‖2

L2ds

≤ 1

2
‖y0‖2

H0 +

ˆ t

0

‖f(s)‖H0‖y(s)‖H0ds

≤ 1

2
‖y0‖2

H0 +

ˆ t

0

‖f(s)‖H0

(
‖y0‖H0 +

ˆ s

0

‖f(r)‖H0dr

)
ds

≤ 1

2
‖y0‖2

H0 + ‖y0‖H0

ˆ t

0

‖f(s)‖H0ds+

[ˆ t

0

‖f(s)‖H0ds

]2

≤ ‖y0‖2
H0 +

3

2

[ˆ t

0

‖f(s)‖H0ds

]2

.

(2.28)

Thus we have shown (i).
For (ii), we note that

H2 ↪→ H1 ↪→ H0

forms a Gelfand triple and thus by [214, Chapter III, Section 1, Lemma 1.2, p. 260 f.]
and (2.24), (2.25) we get the equality

‖y(t)‖2
H1 = ‖y0‖2

H1 + 2

ˆ t

0

〈A(y), y〉H1ds+ 2

ˆ t

0

〈f, y〉H1ds.

The right-hand side is continuous in t and thus together with the weak continuity of
t 7→ y(t) ∈ H1 by [248, Proposition 21.23 (d), p. 258] we get that t 7→ y(t) ∈ H1 is
strongly continuous. We then apply (2.10), (i) and Young’s inequality to find

‖y(t)‖2
H1

≤ ‖y0‖2
H1 −

ˆ t

0

‖y‖2
H2ds+ 2

ˆ t

0

‖y‖2
H0ds+ 2(N + 1)

ˆ t

0

‖∇y‖2
H0ds

− 2

ˆ t

0

‖|v||∇v|‖2
L2 − ‖|B||∇B|‖2

L2 − ‖|v||∇B|‖2
L2 − ‖|B||∇v|‖2

L2ds

+ 2

ˆ t

0

‖f‖H0‖y‖H2ds

≤ C

(
‖y0‖2

H1 +

ˆ t

0

‖f‖H0ds

)
+ C(1 +N + t)

(
‖y0‖2

H0 +

[ˆ t

0

‖f‖H0ds

]2
)

− 2

ˆ t

0

‖|v||∇v|‖2
L2 − ‖|B||∇B|‖2

L2 − ‖|v||∇B|‖2
L2 − ‖|B||∇v|‖2

L2ds

− 1

2

ˆ t

0

‖y‖2
H2ds.
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Hence we can conclude that

‖y(t)‖2
H1 +

1

2

ˆ t

0

‖y‖2
H2ds

+ 2

ˆ t

0

‖|v||∇v|‖2
L2 + ‖|B||∇B|‖2

L2 + ‖|v||∇B|‖2
L2 + ‖|B||∇v|‖2

L2ds

≤ C

(
‖y0‖2

H1 +

ˆ t

0

‖f‖H0ds

)
+ C(1 +N + t)

(
‖y0‖2

H0 +

[ˆ t

0

‖f‖H0ds

]2
)
,

which implies (2.16). �

2.3. Existence, Uniqueness and Regularity of a Strong Solution. In this sec-
tion, we will show that for smooth initital data, the TMHD equations admit a smooth
solution. To prove this, we have to prove their regularity, which is done via the regularity
result of Appendix A. Our main result in this section is the following.

Theorem 2.9 (Strong Solutions). Let y0 ∈ H∞ :=
⋂
m∈N0

Hm and R+ 3 t 7→ f(t) ∈
Hm be smooth for any m ∈ N0. Then there exists a unique smooth velocity field

vN ∈ C∞(R+ × R3;R3) ∩ C(R+;H2),

a unique smooth magnetic field

BN ∈ C∞(R+ × R3;R3) ∩ C(R+;H2)

and pressure functions

pN , πN ∈ C∞(R+ × R3;R)

which are defined up to a time-dependent constant. The triple (vN ,BN , pN) solves the
tamed MHD equations, (1.12).

Moreover, we have the following estimates: for any T,N > 0

(2.29) sup
t∈[0,T ]

‖yN(t)‖2
H0 +

ˆ T

0

‖∇yN‖2
H0ds ≤ C

(
‖y0‖2

H0 +

[ˆ T

0

‖f(s)‖H0ds

]2
)

and

(2.30) sup
t∈[0,T ]

‖yN(t)‖2
H1 +

ˆ T

0

‖yN(s)‖2
H2ds ≤ CT,y0,f · (1 +N),

(2.31) sup
t∈[0,T ]

‖yN(t)‖2
H2 ≤ C ′T,y0,f

+ CT,y0,f · (1 +N2).

To be precise, the constant CT,y0,f depends on ‖y0‖H1 and
´ T

0
‖f‖H0ds and goes to zero as

both these quantities tend towards zero. The constant C ′T,y0,f
depends on T , ‖y0‖H2 and

supt∈[0,T ] ‖f(t)‖H0 as well as
´ T

0
‖∂sf‖2

H0ds.

We use the notation from Appendix A. We denote the space-time Lp norms by
‖y‖Lp(ST ). Let (Ft)t≥0 be the Gaussian heat semigroup on R3. We define its action
on a function by the space-convolution

Fth(x) :=
1

(4πt)3/2

ˆ
R3

e−
|x−z|2

4t h(z)dz.
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We can thus rewrite the operator B̄ as

B̄(u, u)i(t, x) =
3∑
j=1

ˆ t

0

(
DxjFt−s

) [
uj(s)ui(s)−

∑
k

RiRku
k(s)uj(s)

]
(x)ds.

Then by Appendix A, Lemma A.4 and Theorem A.5, the weak solution y constructed
in Theorem 2.8 satisfies the integral equation

y(t, x) = fN(t, x)− B(y, y)(t, x),

where

fN(t, x) := Fty0 − Γ~̄
(
1R+P(gN(|y|2)y − f)

)
(t, x)

:= Fty0 −
ˆ t

0

Ft−s
(
P(gN(|y(s)|2)y(s)− f(s))

)
(x)ds.

The Riesz projection term vanishes here because the Helmholtz-Leray projection P en-
sures that the divergence of the taming term is zero, and the forcing term has zero
divergence by assumption.

Proof of Theorem 2.9. We first prove the regularity statement. To this end, we
show the following for all k ∈ N:

(2.32) y ∈ L10·( 5
3

)k−1

(ST ), Dα
xD

j
ty ∈ L2·( 5

3
)k(ST ), |α|+ 2j ≤ 2.

We use a proof by induction.
k = 1. First, by the Sobolev embedding theorem, since

0

3
+

1

5

(
1

2
− 2

3

)
+

4
5

6
=

3

30
=

1

10
,

we have

‖y‖10
L10(ST ) =

ˆ T

0

ˆ
R3

|y(s, x)|10dxds

≤ C10
2,0,2,6,10

ˆ T

0

(
‖y‖1/5

H2 ‖y‖4/5

L6

)10

ds

= C10
2,0,2,6,10

ˆ T

0

‖y‖2
H2‖y‖8

L6ds

≤ C

ˆ T

0

‖y‖2
H2‖y‖8

H1ds

≤ C sup
t∈[0,T ]

‖y(t)‖8
H1

ˆ T

0

‖y(s)‖2
H2ds <∞.

Hence we find that

gN(|y|2)y ∈ L10/3(ST ).

Now, as y0 and f are smooth, by Lemma A.2, we find that

Dα
xD

j
tfN ∈ L10/3(ST ), |α|+ 2j ≤ 2.

An application of Theorem A.7 then yields

Dα
xD

j
ty ∈ L10/3(ST ), |α|+ 2j ≤ 2.
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k → k + 1. Assume (2.32). We want to apply the Sobolev embedding theorem, which is
justified as

0

3
+

1

5

(
1

2 ·
(

5
3

)k − 2

3

)
+

1− 1/5

6
=

1

10 ·
(

5
3

)k .
Therefore,

‖y‖10·( 5
3)
k

L10·( 5
3)
k ≤ C

10·( 5
3)
k

2,0,2·( 5
3)
k
,6,10·( 5

3)
k

ˆ T

0

(
‖y‖1/5

2,2·( 5
3)
k‖y‖4/5

L6

)10·( 5
3)
k

ds

≤ C

ˆ T

0

‖y‖2·( 5
3)
k

2,2·( 5
3)
k‖y‖

8·( 5
3)
k

H1 ds

≤ C sup
t∈[0,T ]

‖y(t)‖8·( 5
3)
k

H1

ˆ T

0

‖y‖2·( 5
3)
k

2,2·( 5
3)
kds <∞,

which implies

gN(|y|2)y ∈ L2·( 5
3)
k+1

(ST )

and by another application of Lemma A.2, this yields

Dα
xD

j
tfN ∈ L2·( 5

3)
k+1

(ST ), |α|+ 2j ≤ 2,

and hence, by Theorem A.7,

Dα
xD

j
ty ∈ L2·( 5

3)
k+1

(ST ), |α|+ 2j ≤ 2.

We have thus shown that

Dα
xD

j
tfN ∈

⋂
q>1

Lq(ST ), |α|+ 2j ≤ 2.

The next step of the proof consists of another induction on the number of derivatives.
Namely we want to show that

Dα
xD

j
tfN ∈

⋂
q>1

Lq(ST ), |α|+ 2j ≤ m.

We have shown the base case m = 2 already. So we are left to show the induction step
m→ m+ 1.

We have to consider two cases:

(a) There is at least one spatial derivative, i.e. we have

Dα
xD

j
tfN = DxkD

β
xD

j
tfN , |β| = |α| − 1 > 0, |β|+ 1 + 2j = m+ 1.

In this case we have

‖DxkD
β
xD

j
tfN‖Lq(ST )

=

∥∥∥∥DxkD
β
xD

j
t

(
Fty0 −

ˆ t

0

Ft−s
(
P(gN(|y(s)|2)y(s)− f(s))

)
(x)ds

)∥∥∥∥
Lq
.
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Applying linearity and the triangle inequality, we see that the term containing
the initial condition y0 is bounded. For the other term we get the upper bound∥∥∥∥DxkD

β
xD

j
t

ˆ t

0

Ft−s
(
P(gN(|y(s)|2)y(s)− f(s))

)
ds

∥∥∥∥
Lq

≤
∥∥Dj−1

t DxkD
β
xP(gN(|y(t)|2)y(t)− f(t))

∥∥
Lq

+

∥∥∥∥ˆ t

0

(DxkFt−s)Dβ
xD

j
t

(
P(gN(|y(s)|2)y(s)− f(s))

)
ds

∥∥∥∥
Lq
.

The first term is bounded by the induction hypothesis, since

|β|+ 1 + 2(j − 1) = |α| − 1 + 2j = m.

The second term is bounded by Young’s convolution inequality and the fact that
DxkFt ∈ L1(ST ) just like in the proof of Lemma A.1.

(b) There are only derivatives with respect to time, i.e.

Dα
xD

j
tfN = Dj

tfN , 2j = m+ 1.

The term containing the initial condition is again not a problem. In a similar
way as before we find∥∥∥∥Dj

t

ˆ t

0

Ft−s
(
P(gN(|y(s)|2)y(s)− f(s))

)
ds

∥∥∥∥
Lq

≤
∥∥Dj−1

t P(gN(|y(t)|2)y(t)− f(t))
∥∥
Lq

+

∥∥∥∥ˆ t

0

(DtFt−s)Dj−1
t

(
P(gN(|y(s)|2)y(s)− f(s))

)
ds

∥∥∥∥
Lq

=
∥∥Dj−1

t P(gN(|y(t)|2)y(t)− f(t))
∥∥
Lq

+

∥∥∥∥ˆ t

0

(∆Ft−s)Dj−1
t

(
P(gN(|y(s)|2)y(s)− f(s))

)
ds

∥∥∥∥
Lq
,

where we have used that Ft solves the heat equation. Now by using integration
by parts, in the last term, we transfer one spatial derivative from the Laplacian
to the second factor and since 2j−1 = m, we conclude the boundedness as before
by Young’s convolution inequality and the L1-boundedness of DxkFt−s.

By the Sobolev embedding theorem we now find that y is smooth. Thus we get for every
t ≥ 0 that

∂tv(t) = ∆v(t)− P((v · ∇)v) + P((B · ∇)B)− P(gN(|v|2)v) + fv(t)

∂tB(t) = ∆B(t)− P((v · ∇)B) + P((B · ∇)v)− P(gN(|B|2)B) + fB(t)
(2.33)

We take this equation and apply 3 different inner products to both sides of the equations:

(a) 〈·, ∂ty(t)〉H0 , which will lead to an estimate for
´ T

0
‖∂ty‖2

H0dt
(b) First apply ∂t, then apply 〈·, ∂ty(t)〉H0 . This will lead to an estimate for ‖∂ty‖2

H0 .
(c) 〈·, y(t)〉H1 , which gives an estimate for ‖y(t)‖2

H2 .
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(a) We find by using Young’s inequality

‖∂ty‖2
H0 = 〈∆y, ∂ty(t)〉H0 − 〈(v · ∇)v, ∂tv〉L2 + 〈(B · ∇)B, ∂tv〉L2

− 〈(v · ∇)B, ∂tB〉L2 + 〈(B · ∇)v, ∂tB〉L2 − 〈gN(|y|2)y, ∂ty〉L2

+ 〈f, ∂ty〉H0

= −〈∇y, ∂t∇y(t)〉H0 − 〈(v · ∇)v, ∂tv〉L2 + 〈(B · ∇)B, ∂tv〉L2

− 〈(v · ∇)B, ∂tB〉L2 + 〈(B · ∇)v, ∂tB〉L2 −
ˆ
gN(|y|2)

1

2
∂t|y|2dx

+ 〈f, ∂ty〉H0

= −1

2

d

dt
‖∇y‖H0 − 〈(v · ∇)v, ∂tv〉L2 + 〈(B · ∇)B, ∂tv〉L2

− 〈(v · ∇)B, ∂tB〉L2 + 〈(B · ∇)v, ∂tB〉L2 − 1

2

d

dt
‖GN(|y|2)‖L1

+ 〈f, ∂ty〉H0

≤ −1

2

d

dt
‖∇y‖H0 +

1

8

(
2‖∂tv(t)‖2

H0 + 2‖∂tB(t)‖2
H0

)
+ 2

(
‖|v||∇v|‖2

L2 + ‖|B||∇B|‖2
L2 + ‖|v||∇B|‖2

L2 + ‖|B||∇v|‖2
L2

)
+

1

4
‖∂ty(t)‖2

H0 + ‖f(t)‖2
H0 −

1

2

d

dt
‖GN(|y|2)‖L1

= −1

2

d

dt
‖∇y‖H0 +

1

2
‖∂ty(t)‖2

H0 + 2‖|y| · |∇y|‖2
L2

+ ‖f(t)‖2
H0 −

1

2

d

dt
‖GN(|y|2)‖L1 .

Here, we denote by GN a primitive function of gN . Since gN(r) ≤ 2r, we find

0 ≤ GN(r) :=
´ r

0
gN(s)ds ≤ 2 r

2

2
= r2. Integrating from 0 to T yields – estimating

the nonpositive terms by zero – the following:

1

2

ˆ T

0

‖∂ty(t)‖2
H0dt

≤ 1

2
‖∇y(0)‖2

H0 +

ˆ T

0

(
2‖|y| · |∇y|‖2

L2 + ‖f‖2
H0

)
dt

+
1

2
‖GN(|y(0)|2)‖L1

≤ 1

2
‖∇y(0)‖2

H0 + 2TC
(1)
T,N,y0,f

+

ˆ T

0

‖f‖2
H0dt+

1

2
‖y0‖4

L4

=: C
(2)
T,N,y0,f

.

(2.34)

(b) We first differentiate Equation (2.33) with respect to t and then take the inner
product with ∂ty in H0. Note that for θ,φ,ψ ∈ {v,B}, we get

(2.35) 〈∂t((θ · ∇)φ), ∂tψ〉L2 = 〈(∂tθ · ∇)φ, ∂tψ〉L2 + 〈(θ · ∇)∂tφ, ∂tψ〉L2 .

By the (anti-)symmetry of the nonlinear terms, if φ = ψ, the second term van-
ishes, which accounts for the (v · ∇)v and (B · ∇)B terms. The other two
nonlinear terms cancel each other, so we are left with four variations of the first
term of the right-hand side of Equation (2.35), which can be simplified further
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using the divergence-freeness to yield

〈(∂tθ · ∇)φ, ∂tψ〉L2 = 〈∇ · (∂tθ ⊗ φ), ∂tψ〉L2 = −〈∂tθ ⊗ φ, ∂t∇ψ〉L2 .

Taking this into account and applying Young’s inequality, we find

1

2

d

dt
‖∂ty(t)‖2

H0

= 〈∆∂ty(t), ∂ty(t)〉H0 + 〈∂tf, ∂ty〉H0

+ 〈∂tv ⊗ v, ∂t∇v〉L2 − 〈∂tB ⊗B, ∂t∇v〉L2

+ 〈∂tv ⊗B, ∂t∇B〉L2 − 〈∂tB ⊗ v, ∂t∇B〉L2

− 〈gN(|y|2)∂ty, ∂ty〉L2 − 〈g′N(|y|2)y∂t|y|2, ∂ty〉L2

= −‖∂t∇y(t)‖2
H0 + 〈∂tf, ∂ty〉H0

+ 〈∂tv ⊗ v, ∂t∇v〉L2 − 〈∂tB ⊗B, ∂t∇v〉L2

+ 〈∂tv ⊗B, ∂t∇B〉L2 − 〈∂tB ⊗ v, ∂t∇B〉L2

− ‖
√
gN(|y|2) |∂ty| ‖2

L2 − ‖
√
g′N(|y|2) |∂t|y|2| ‖2

L2

≤ −‖∂t∇y(t)‖2
H0 +

1

4
‖∂tf‖2

H0 + ‖∂ty‖2
H0

+ ‖|v||∂tv|‖2
L2 + ‖|B||∂tB|‖2

L2 + ‖|v||∂tB|‖2
L2 + ‖|B||∂tv|‖2

L2

+
1

4

(
2‖∂t∇v‖2

H0 + 2‖∂t∇B‖2
H0

)
− ‖
√
gN(|y|2) |∂ty| ‖2

L2

≤ −1

2
‖∂t∇y(t)‖2

H0 + ‖|y||∂ty|‖2
L2 +

1

4
‖∂tf‖2

H0 + ‖∂ty‖2
H0

− ‖
√

2(|y|2 − (N +
1

2
))|∂ty|‖2

L2

= −1

2
‖∂t∇y(t)‖2

H0 − ‖|y||∂ty|‖2
L2 +

1

4
‖∂tf‖2

H0 + 2(N + 1)‖∂ty‖2
H0 .

Integrating from 0 to t ≤ T then gives (again estimating non-positive terms by
zero)

‖∂ty(t)‖2
H0

≤ ‖∂ty(0)‖2
H0 + 4(N + 1)

ˆ T

0

‖∂sy(s)‖2
H0ds+

1

2

ˆ T

0

‖∂sf(s)‖2
H0ds

≤ C(1 + ‖y0‖6
H2 + ‖f(0)‖2

H0) + 8(N + 1)C
(2)
T,N,y0,f

+
1

2

ˆ T

0

‖∂sf‖2
H0ds

=: C
(3)
T,N,y0,f

.

(2.36)



38 II. DETERMINISTIC TAMED MHD EQUATIONS

Here we used (2.34) as well as the following estimate for the time derivative of
the initial condition: since (2.33) holds for all t, we can set t = 0 there to and
take the H0-norm to find

‖∂ty0‖2
H0 ≤ C

(
‖∆y0‖2

H0 + ‖|y0||∇y0|‖2
L2 + ‖y0‖6

H0 + ‖f(0)‖2
H0

)
≤ C

(
‖y0‖2

H2 + ‖|y0|‖2
H0‖|∇y0|‖2

H0 + ‖y0‖6
H2 + ‖f(0)‖2

H0

)
≤ C

(
‖y0‖2

H2 + ‖|y0|‖4
H0 + ‖|∇y0|‖4

H0 + ‖y0‖6
H2 + ‖f(0)‖2

H0

)
≤ C

(
1 + ‖y0‖6

H2 + ‖f(0)‖2
H0

)
.

(c) Finally, we take the H1 inner product with y(t) and use Equation (2.10):

〈∂ty(t), y(t)〉H1

= 〈Ay(t), y(t)〉H1 + 〈f(t), y(t)〉H1

≤ −1

2
‖y‖2

H2 + ‖y‖2
H0 + 2(N + 1)‖∇y‖2

H0 − ‖|v||∇v|‖2
L2 − ‖|B||∇B|‖2

L2

− ‖|v||∇B|‖2
L2 − ‖|B||∇v|‖2

L2 +
1

4
‖y‖2

H2 + ‖f‖2
H0 ,

which implies

‖y(t)‖2
H2

≤ 4‖y(t)‖2
H0 + 8(N + 1)‖∇y(t)‖2

H0 + 4‖f(t)‖2
H0 + 4|〈∂ty(t), y(t)〉H1 |

≤ 4‖y(t)‖2
H0 + 8(N + 1)‖∇y(t)‖2

H0 + 4‖f(t)‖2
H0 + 8‖∂ty(t)‖2

H0 +
1

2
‖y(t)‖2

H2 ,

and hence, using (2.36) and (2.29),

sup
t∈[0,T ]

‖y(t)‖2
H2

≤ 16(N + 1) sup
t∈[0,T ]

‖∇y(t)‖2
H0 + 8 sup

t∈[0,T ]

‖y(t)‖2
H0

+ 8 sup
t∈[0,T ]

‖f(t)‖2
H0 + 16 sup

t∈[0,T ]

‖∂ty(t)‖2
H0

≤ C(N + 1)C
(1)
T,N,y0,f

+ 4

[
‖y0‖H0 +

ˆ T

0

‖f‖H0ds

]2

+ 8 sup
t∈[0,T ]

‖f(t)‖2
H0 + 16C

(3)
T,N,y0,f

= C ′T,N,y0,f
+ CT,N,y0,f (1 +N2),

i.e. (2.31). Equation (2.29) follows from (2.15), and Equation (2.30) follows from
(2.16). This concludes the proof.

�
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2.4. Convergence to the Untamed MHD Equations. In this section we stress
the dependence of the solution to the tamed equation on N by writing yN . We will prove
that as N → ∞, the solutions to the tamed equations converge to weak solutions of the
untamed equations. The precise statement is given in the following theorem.

Theorem 2.10 (Convergence to the untamed equations). Let the data y0 ∈ H0, f ∈
L2([0, T ];H0), yN0 ∈ H1 be given such that H0− limN→∞ y

N
0 = y0. Denote by (yN , pN , πN)

the unique solutions to the tamed equations (1.12) with initial value yN0 given by Theorem
2.8.

Then there is a subsequence (Nk)k∈N such that yNk converges to a y in L2([0, T ];L2
loc)

and pNk converges weakly to some p in L9/8([0, T ];L9/5(R3)). The magnetic pressure
πNk converges to a zero, weakly in L9/8([0, T ];L9/5(R3)). Furthermore, (y, p) is a weak
solution to the (untamed) MHD equations (1.1) such that the following generalised energy
inequality holds: for any non-negative φ ∈ C∞0 ((0, T )× R3),

2

ˆ T

0

ˆ
R3

|∇y|2φdxds ≤
ˆ T

0

ˆ
R3

[
|y|2 (∂tφ+ ∆φ) + 2〈y, f〉φ

+ (|y|2 − 2p)〈v,∇φ〉 − 2〈B,v〉〈B,∇φ〉
]
dxds.

(2.37)

Remark 2.11. Compared to the Navier-Stokes case, we get a different type of term in
the inequality, namely the last one on the right-hand side of the inequality.

Note also that the ”magnetic pressure” disappears as Nk →∞.

Proof. The proof follows along the same lines as that of Theorem 1.2 in [197].
Let yN0 ∈ H1 with yN0 → y0 in H0 and (yN , pN) be the associated unique strong

solution given by Theorem 2.8. Combining (2.27) with (2.28) yields

(2.38) sup
t∈[0,T ]

‖yN(t)‖2
H0 +

ˆ T

0

‖yN‖2
H1 + ‖

√
gN(|y|2)|y|‖2

L2ds ≤ Cy0,f,T .

For q ∈ [2,∞), r ∈ (2, 6] such that

3

r
+

2

q
=

3

2
,

by an application of the Sobolev embedding (2.6) and (2.38) we find

(2.39)

ˆ T

0

‖yN‖qLrdt ≤ Cq
1,0,2,2,r

ˆ T

0

‖yN‖2
H1‖yN‖q−2

H0 dt ≤ Cy0,f,T,r,q.

Employing the Arzelà-Ascoli theorem and the Helmholtz-Weyl decomposition in the same
way as in the proof of Theorem 2.8, we find a subsequence yNk (again denoted by yN) and
a y =

(
v,B

)
∈ L∞([0, T ];H0) ∩ L2([0, T ];H1) such that for all ỹ =

(
ṽ, B̃

)
∈ L2

(2.40) lim
N→∞

sup
t∈[0,T ]

|〈yN(t)− y(t), ỹ〉L2 | = 0.

In fact, we can even prove that for every bounded open set G ⊂ R3, we have

(2.41) lim
N→∞

ˆ T

0

ˆ
G

|yN(t, x)− y(t, x)|2dxdt = 0.
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To this end, let G ⊂ Ḡ ⊂ Q for a cuboid Q, and ρ be a smooth, non-negative cutoff
function with ρ ≡ 1 on G, ρ ≡ 0 on R3\Q, and by Friedrichs’ inequality (2.22)

ˆ T

0

ˆ
G

|yN(t, x)− y(t, x)|2dxdt

=

ˆ T

0

ˆ
G

|vN(t, x)− v(t, x)|2dxdt+

ˆ T

0

ˆ
G

|BN(t, x)−B(t, x)|2dxdt

≤
ˆ T

0

ˆ
Q

|vN(t, x)− v(t, x)|2ρ2(x)dxdt+

ˆ T

0

ˆ
Q

|BN(t, x)−B(t, x)|2ρ2(x)dxdt

≤
Kε∑
i=1

ˆ T

0

(ˆ
Q

(vN(t, x)− v(t, x))ρ(x)hεi (x)dx

)2

dt

+
Kε∑
i=1

ˆ T

0

(ˆ
Q

(BN(t, x)−B(t, x))ρ(x)hεi (x)dx

)2

dt

+ ε

ˆ T

0

ˆ
Q

|∇ ((vN − v)ρ) (x)|2dxdt+ ε

ˆ T

0

ˆ
Q

|∇ ((BN −B)ρ) (x)|2dxdt

=: I1(N, ε) + I2(N, ε) + I3(N, ε) + I4(N, ε).

The terms I1(N, ε), I2(N, ε) vanish for N →∞ as using (2.40) we get

lim
N→∞

I1(N, ε) ≤ T
Kε∑
i=1

lim
N→∞

sup
t∈[0,T ]

∣∣∣∣ˆ
R3

(vN(t, x)− v(t, x))ρ(x)hεi (x)1Q(x)dx

∣∣∣∣2 = 0,

and an analogous computation yields limN→∞ I2(N, ε) = 0.
The other two terms can be bounded by

I3(N, ε) + I4(N, ε) ≤ ε · Cρ
ˆ T

0

(
‖yN(t)‖2

H1 + ‖y(t)‖2
H1

)
dt ≤ Cρ,y0,T,f · ε,

and the arbitrariness of ε > 0 implies the claim.
Next we prove that for any ỹ ∈ V

lim
N→∞

ˆ t

0

〈gN(|yN(s)|2)yN(s), ỹ〉H0ds = 0.

This can be seen as follows:

lim
N→∞

ˆ t

0

〈gN(|yN(s)|2)yN(s), ỹ〉H0ds

≤ ‖ỹ‖L∞ · lim sup
N→∞

ˆ t

0

ˆ
R3

|yN(s)|3 · 1{|yN (s,x)|2≥N}dxds

≤ ‖ỹ‖L∞ · lim sup
N→∞

(ˆ t

0

‖yN(s)‖10/3

L10/3ds

)9/10

·
(ˆ t

0

ˆ
R3

1{|yN (s,x)|2≥N}dxds

)1/10

≤ Cỹ,y0,T,f · lim sup
N→∞

(
1

N

ˆ t

0

‖yN(s)‖2
H0ds

)1/10

= 0,

where we have used (2.39) and Chebychev’s inequality.
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As in the proof of Theorem 2.8, there are pN , πN ∈ L2([0, T ];L2
loc(R3)) such that

∇pN ,∇πN ∈ L2([0, T ];L2(R3;R3)), and we have for almost all t ≥ 0 that

∂vN
∂t

= ∆vN − (vN · ∇)vN + (BN · ∇)BN +∇
(
pN +

|BN |2

2

)
(2.42)

− gN(|(vN ,BN)|2)vN + f1

∂BN

∂t
= ∆BN − (vN · ∇)BN + (BN · ∇)vN +∇πN − gN(|(vN ,BN)|2)BN + f2.(2.43)

To derive the generalised energy inequality, we take a non-negative φ ∈ C∞0 ((0, T )× R3)
and then take the inner products with 2yNφ in H0 of this equation. Let us use the

abbreviation
˜

=
´ T

0

´
R3 dxdt. Then we get¨

∂tvN · 2vNφ+

¨
∂tBN · 2BNφ(2.44)

=

¨
∆vN · 2vNφ+

¨
∆BN · 2BNφ(2.45)

−
¨

(vN · ∇)vN · 2vNφ+

¨
(BN · ∇)BN · 2vNφ(2.46)

−
¨

(vN · ∇)BN · 2BNφ+

¨
(BN · ∇)vN · 2BNφ(2.47)

− 2

¨
gN(|yN |2)|vN |2φ− 2

¨
gN(|yN |2)|BN |2φ(2.48)

+ 2

¨
∇pN · vNφ+ 2

¨
∇πN ·BNφ+ 2

¨
〈f, yN〉φ.(2.49)

Let us discuss this equation line by line. The first line (2.44) is a simple application of
integration by parts (with respect to the time variable):¨

∂tyN · yNφ = −
ˆ ˆ

yN · ∂t (yNφ)

= −
¨

yN · (∂tyN)φ−
¨
|yN |2∂tφ

which in turn yields

2

¨
∂tyN · yNφ = −

¨
|yN |2∂tφ.

For the second line (2.45), we proceed along similar lines, this time with respect to the
space variable. To avoid confusion, we will write the equation in components:

2

¨
∆vN · vNφ+ 2

¨
∆BN ·BNφ

= 2

¨ ∑
i,k

(
∂i∂iv

k
N

)
vkNφ+ 2

¨ ∑
i,k

(
∂i∂iB

k
N

)
Bk
Nφ

= −2

¨ ∑
i,k

(
∂iv

k
N

)
∂i
(
vkNφ

)
− 2

¨ ∑
i,k

(
∂iB

k
N

)
∂i
(
Bk
Nφ
)
.

We will focus on the velocity terms, the magnetic field works in exactly the same way.

−2

¨ ∑
i,k

(
∂iv

k
N

)
∂i
(
vkNφ

)
= −2

¨ ∑
i,k

∣∣∂ivkN ∣∣2 φ− 2

¨
(∂iv

k
N)vkN∂iφ.
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The last term on the right-hand side equals, after another application of integration by
parts,

− 2

¨
(∂iv

k
N)vkN∂iφ = 2

¨
vkN∂i

(
vkN∂iφ

)
= 2

¨ (
∂iv

k
N

)
vkN∂iφ+ 2

¨
vkNv

k
N

(
∂2
i φ
)
,

and thus

−2

¨
(∂iv

k
N)vkN∂iφ =

¨
|vN |2∆φ.

Hence, (2.45) can be rewritten as

2

¨
∆yN · yNφ = −

¨
|∇yN |2φ+

¨
|yN |2∆φ.

The third line, (2.46) will be dealt with term by term. By the incompressibility condition

−2

¨
(vN · ∇)vN · vNφ = 2

¨
|vN |2∇ · (vNφ) = 2

¨
|vN |2vN · ∇φ.

The second term, in a similar fashion, becomes (again using the divergence-freeness)

2

¨
(BN · ∇)BN · vNφ = 2

∑
i,k

¨
Bi
N

(
∂iB

k
N

)
vkNφ

= −2
∑
i,k

¨
Bi
NB

k
N∂i

(
vkNφ

)
= −2

∑
i,k

¨
Bi
NB

k
N

(
∂iv

k
N

)
φ− 2

∑
i,k

¨
Bi
NB

k
Nv

k
N∂iφ

= −2

¨
(BN · ∇)vN ·BNφ− 2

¨
(BN · vN)(BN · ∇φ).

The first term of the last line here cancels with the second term of (2.47). Thus we only
have to deal with the first term of (2.47):

− 2

¨
(vN · ∇)BN ·BNφ = −2

∑
i,k

¨
viN
(
∂iB

k
N

)
Bk
Nφ

= 2
∑
i,k

¨
Bk
N∂i

(
viNB

k
Nφ
)

= 2
∑
i,k

¨
viNB

k
N∂i

(
Bk
Nφ
)

= 2
∑
i,k

¨
viNB

k
N

(
∂iB

k
N

)
φ+ 2

∑
i,k

¨
viNB

k
NB

k
N∂iφ

= 2

¨
(vN · ∇)BN ·BNφ+ 2

¨
|BN |2vN · ∇φ,

and therefore

−2

¨
(vN · ∇)BN ·BNφ =

¨
|BN |2vN · ∇φ.
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The last terms that we have to treat are the pressure terms of (2.49). For the first term,
we find, again by integration by parts and the incompressibility

2

¨
∇pN · vNφ = −2

¨
pNvN · ∇φ,

and similarly for the second term

2

¨
∇πN ·BNφ = −2

¨
πNBN · ∇φ.

Thus, altgether we find that

2

ˆ T

0

ˆ
R3

|∇yN |2φ dxds+ 2

ˆ T

0

ˆ
R3

gN(|yN |2)|yN |2φ dxds

=

ˆ T

0

ˆ
R3

[
|yN |2 (∂tφ+ ∆φ) + 2〈yN , f〉φ− 2πN〈BN ,∇φ〉R3

+ (|yN |2 − 2pN)〈vN ,∇φ〉R3 − 2〈BN ,vN〉R3〈BN ,∇φ〉R3

]
dxds.

(2.50)

Since 0 ≤ φ ∈ C∞c , it acts as a density, and thus, by [53, Theorem 1.2.1], the map

y 7→
´ T

0

´
R3 |∇y|2φ dxds is lower semi-continuous in L2([0, T ];H0). Thus, the limit of the

left-hand side of (2.50) as N →∞ is greater than or equal to

lim inf
N→∞

ˆ T

0

ˆ
R3

|∇yN |2φ dxds+ 2

ˆ T

0

ˆ
R3

gN(|yN |2)|yN |2φ dxds

≥ lim inf
N→∞

ˆ T

0

ˆ
R3

|∇yN |2φ dxds ≥ 2

ˆ T

0

ˆ
R3

|∇y|2φ dxds.

On the other hand, the limit of the right-hand side as N → ∞ consists of four terms,
which we treat individually. We denote G := suppφ.

For the first term, by Cauchy-Schwarz-Buniakowski, (2.38) and (2.41), we find
ˆ T

0

ˆ
R3

(
|yN |2 − |y|2

)
(∂tφ+ ∆φ) dxds

≤
ˆ T

0

ˆ
G

|yN − y|(|yN |+ |y|) (∂tφ+ ∆φ) dxds

≤ Cφ

(ˆ T

0

ˆ
G

|yN − y|2dxds

)1/2(ˆ T

0

ˆ
G

2(|yN |2 + |y|2)dxds

)1/2

≤ Cφ,y0,T,f

(ˆ T

0

ˆ
G

|yN − y|2dxds

)1/2
N→∞−→ 0.

The second term can be treated in a similar fashion:ˆ T

0

ˆ
R3

2〈yN − y, f〉φ dxds

≤
(ˆ T

0

ˆ
G

|yN − y|2dxds

)1/2(ˆ T

0

ˆ
G

|f |2φ2dxds

)1/2

≤ Cφ‖f‖L2([0,T ];H0)

(ˆ T

0

ˆ
G

|yN − y|2dxds

)1/2
N→∞−→ 0.
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For the term
ˆ T

0

ˆ
R3

|yN |2〈vN ,∇φ〉R3dxds =

ˆ T

0

ˆ
G

|yN |2
〈
vN , 1G

∇φ
φ

〉
R3

φdxds,

we note that since φ ∈ C∞c ((0, T ) × R3), (2.41) implies convergence in measure for the
finite measure µ := φdx ⊗ ds. This can be seen as follows: Let ε > 0. Define XN :=

1G|yN |2
〈
vN ,

∇φ
φ

〉
R3

. By the binomial formula and Young’s inequality∣∣∣∣|yN |2〈vN , 1G∇φφ
〉

R3

− |y|2
〈
v, 1G

∇φ
φ

〉
R3

∣∣∣∣
≤ 3

2
|yN − y|

(
|yN |2 + |y|2

)
1G

∣∣∣∣∇φφ
∣∣∣∣ .

Set A :=
{

3
2
|yN − y| (|yN |2 + |y|2) 1G

∣∣∣∇φφ ∣∣∣ > ε
}

. Fix an arbitrary δ > 0. By the above

computation we find

µ (|XN −X| > ε) ≤ µ

(
3

2
|yN − y|

(
|yN |2 + |y|2

)
1G

∣∣∣∣∇φφ
∣∣∣∣ > ε

)
= µ(A ∩ {|yN − y| > δ}) + µ(A ∩ {|yN − y| ≤ δ})
≤ µ(|yN − y| > δ) + µ(A ∩ {|yN − y| ≤ δ}).

The first term converges to zero by the Chebychev inequality and (2.41):

µ(|yN − y| > δ) ≤ 1

δ2

ˆ ˆ
G

|yN − y|2φdxds

≤ Cφ
δ2

ˆ ˆ
G

|yN − y|2dxds
N→∞−→ 0.

The second term can be bounded by the Markov inequality and (2.38):

µ(A ∩ {|yN − y| ≤ δ}) ≤ µ

(
3

2
δ
(
|yN |2 + |y|2

)
1G

∣∣∣∣∇φφ
∣∣∣∣ > ε

)
≤ δ · 3

2ε

ˆ ˆ
G

(
|yN |2 + |y|2

)
1G

∣∣∣∣∇φφ
∣∣∣∣φdxds

≤ δ · 3

2ε

ˆ ˆ
G

(
|yN |2 + |y|2

)
|∇φ| dxds

≤ δ · 3

2ε
Cφ,y0,T,f .

The claim limN→∞ µ(|XN −X| > ε) = 0 now follows since δ > 0 was arbitrary.
Furthermore, the family (XN)N lies in L1([0, T ]×R3, µ) since by (2.39) for r = q = 10/3

‖XN‖L1(µ) ≤
ˆ T

0

ˆ
R3

|yN |3|∇φ|dxds

≤
(ˆ T

0

ˆ
R3

|yN |10/3dxds

)9/10(ˆ T

0

ˆ
R3

|∇φ|10dxds

)1/10

≤ Cy0,T,f · Cφ <∞.
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Finally, using (2.39) in a similar way, we see that the family (XN)N is µ-uniformly inte-
grable:

lim
c→∞

sup
N

ˆ ˆ
{|XN |≥c}

|XN |µ(dx, ds) = lim
c→∞

sup
N

ˆ ˆ
1{|XN |≥c}|XN |φdxds

= lim
c→∞

sup
N

ˆ ˆ
1{|XN |≥c}|yN |2|〈vN ,∇φ〉R3|dxds

≤ lim
c→∞

sup
N

ˆ ˆ
1{|XN |≥c}|yN |3|∇φ|dxds

≤ lim
c→∞

sup
N

(ˆ ˆ
|yN |10/3dxds

)9/10(ˆ ˆ
1{|XN |≥c}|∇φ|dxds

)1/10

≤ Cy0,T,f lim
c→∞

sup
N

(ˆ ˆ
1{|XN |≥c}|∇φ|dxds

)1/10

= 0.

Thus, by the generalised Lebesgue dominated convergence theorem we getˆ T

0

ˆ
R3

|yN |2〈vN ,∇φ〉R3dxds
N→∞−→

ˆ T

0

ˆ
R3

|y|2〈v,∇φ〉R3dxds.

Moving on with the energy inequality, the last term of (2.50) can be treated in the same
way as just discussed. We are left with the pressure term. As in [197], pp. 547 f., we
take the divergence of (2.42) to find

∆pN = div

(
(vN · ∇)vN − (BN · ∇)BN −∇

|BN |2

2
+ gN(|yN |2)vN

)
= div

(
(vN · ∇)vN − (BN · ∇)BN −BN · (∇BN) + gN(|yN |2)vN

)
.

(2.51)

Similarly, we take the divergence of (2.43) and obtain8

(2.52) ∆πN = div
(
gN(|yN |2)BN

)
.

We note that for N sufficiently large

(gN(r))9/8 · r9/16 ≤ CgN(r) · r.
This is obviously true on the set {r | gN(r) = 0}. If r > 0 is such that gN(r) > 0 (which
implies r ≥ 1), we have

(gN(r))9/8 · r9/16 ≤ gN(r)(gN(r))1/8 · r9/16

≤ gN(r)21/8r1/8 · r9/16 ≤ gN(r)21/8 · r11/16 ≤ 21/8gN(r) · r,
where the factor of 2 appears due to the definition of the taming function. Using this
inequality and (2.38), we find

(2.53)

ˆ T

0

ˆ
R3

|gN(|y|2)y|9/8dxdt ≤ C

ˆ T

0

ˆ
R3

gN(|y|2) · |y|2dxdt ≤ CT,y0,f .

8Noting that (vN · ∇)BN − (BN · ∇)vN = ∇× (v ×B), which is divergence-free, cf. Section 1.3.4.
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For the first three nonlinear terms on the right-hand side of (2.51), we note that by
Hölder’s inequality (first for the product measure dx ⊗ dt and with p = 16/7, q = 16/9,
then for dt with p = 14/6, q = 14/8) and the Sobolev embedding (2.6) we haveˆ T

0

ˆ
R3

|(vN · ∇)vN |9/8dxdt ≤
ˆ T

0

ˆ
R3

|vN |9/8|∇vN |9/8dxdt

≤
(ˆ T

0

‖vN‖18/7

L18/7

) 7
16

·
(ˆ T

0

‖vN‖2
H1dt

) 9
16

≤
(ˆ T

0

‖yN‖18/7

L18/7dt

) 7
16

·
(ˆ T

0

‖yN‖2
H1dt

) 9
16

≤ Cy0,T,f

(
C

18/7
2,0,2,2,18/7

ˆ T

0

(
‖yN‖1/3

H1 ‖yN‖2/3

L2

)18/7

dt

)7/16

= Cy0,T,fC
9/8
2,0,2,2,18/7

(ˆ T

0

‖yN‖6/7

H1 ‖yN‖12/7

L2 dt

)7/16

≤ Cy0,T,fC
9/8
2,0,2,2,18/7

((ˆ T

0

‖yN‖2
H1dt

)6/14(ˆ T

0

‖yN‖3
L2dt

)8/14
)7/16

≤ CT,y0,f .

(2.54)

The other terms can be bounded in the same way.
Again using the interpolation inequality (2.6), this time with j = 0, m = 1, p = 9/8,

r = 9/5 and α = 1, we find

(2.55)

ˆ T

0

‖pN‖9/8

L9/5dt ≤ C
9/8
1,0,9/8,9/8,9/5

ˆ T

0

‖pN‖9/8
1,9/8dt.

Recall that ∆pN = divRN , where RN is defined by (2.51). Then we have

‖pN‖1,9/8 = ‖(I −∆)1/2∆−1∆pN‖L9/8

= ‖(I −∆)1/2∆−1 divRN‖L9/8

= ‖(I −∆)1/2(div∇)−1 divRN‖L9/8

= ‖(I −∆)1/2∇−1div−1 divRN‖L9/8

= ‖(I −∆)1/2∇−1RN‖L9/8 ≤ ‖RN‖L9/8 .

In the last step, we used the Lp theory for singular integrals, e.g. [207, Chapter V.3.2,
Lemma 2, p. 133 f.]. By (2.53) and (2.54) it follows that the right-hand side of (2.55) is
uniformly bounded in N .

Therefore, by the Eberlein-Šmuljan theorem (cf. [248, Theorem 21.D, p. 255]), there
is a subsequence (pNk)k and a function

p ∈ L9/8([0, T ];L9/5(R3;R3))

such that for k →∞
(2.56) pNk → p weakly in L9/8([0, T ];L9/5(R3;R3)).

Finally, by another application of (2.39), with q = 12, r = 9/4 (so 3
9/4

+ 2
12

= 12
9

+ 2
12

=
54
36

= 3
2
), we find ˆ T

0

‖yN‖12
L9/4dt ≤ CT,y0,f .
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Thus, in the same way as above, we can employ the generalised Lebesgue dominated
convergence theorem to conclude that for φ ∈ C∞0 ((0, T )× R3)

lim
N→∞

∣∣∣∣ˆ T

0

ˆ
R3

〈pNvN − pv,∇φ〉R3dxdt

∣∣∣∣
≤ lim

N→∞

∣∣∣∣ˆ T

0

ˆ
R3

(pN − p)〈v,∇φ〉R3dxdt

∣∣∣∣
+

∣∣∣∣ˆ T

0

ˆ
R3

pN〈vN − v,∇φ〉R3dxdt

∣∣∣∣
≤ lim

N→∞

(
‖pN‖9/8

L9/5dt
)8/9

(ˆ T

0

‖|vN − v| · |∇φ|‖9
L9/4

)1/9

= 0.

In exactly the same way we find a subsequence (Nk)k∈N such that

πNk → π weakly in L9/8([0, T ];L9/5(R3;R3)).

The limit π satisfies the equation

∆π = 0,

which, combined with the integrability property of π yields π ≡ 0, thus eliminating the
”magnetic pressure” from the resulting weak equation as well as the generalised energy
inequality. Hence we have shown that the solutions to the tamed MHD equations converge
to suitable weak solutions to the MHD equations. �

Remark 2.12. It is to be expected that existence and uniqueness in the case of a
bounded domain D ⊂ R3 can be shown in a similar way as for the tamed Navier-Stokes
equations, as in W. Liu and M. Röckner [167, p. 170 ff.]. However, their method uses
an inequality [167, Equation (5.61), p. 166], sometimes called Xie’s inequality, for the
L∞-norm of a function in terms of the L2-norms of the gradient and the Laplacian (more
precisely, the Stokes operator). This inequality holds for Dirichlet boundary conditions
on quite general domains (cf. R.M. Brown, Z.W. Shen [20, Equation (0.2), p. 1184]
for Lipschitz boundaries). If we were to use method of [167], we would need to have a
similar inequality for the magnetic field as well. Unfortunately, to the best of the author’s
knowledge, such an inequality has not yet been established for the boundary conditions

B · ν = 0, (∇×B)× ν on ∂D
of the magnetic field (which mean that the boundary is perfectly conducting, cf. [201,
Equation (1.3), p. 637]). Here, ν is the outward unit normal vector of the boundary of
the domain. If such an inequality could be shown, the rest of the proof of Liu and Röckner
should follow in exactly the same way.





CHAPTER III

The Stochastic Tamed MHD Equations

Abstract. We study the tamed magnetohydrodynamics equations perturbed by mul-
tiplicative Wiener noise of transport type on the whole space R3 and on the torus T3.
In a first step, existence of a unique strong solution are established by constructing a
weak solution, proving that pathwise uniqueness holds and using the Yamada-Watanabe
theorem. We then study the associated Markov semigroup and prove that it has the
Feller property. Finally, existence of an invariant measure of the equation is shown for
the case of the torus.

1. Introduction

In this chapter, we consider a randomly perturbed version of the tamed MHD (TMHD)
equations of the previous chapter. This aims at modelling the turbulent behaviour of a
flow of electrically conducting fluids through porous media. To be precise, we study
existence and uniqueness of strong solutions, as well as existence of invariant measures of
the following system of equations:

dv =

[
∆v − (v · ∇)v + (B · ∇)B +∇

(
p+
|B|2

2

)
− gN(|(v,B)|2)v

]
dt

+
∞∑
k=1

[(σk(t) · ∇)v +∇pk(t) + hk(t, y(t))] dW k
t + fv(t, y(t))dt,

dB =
[
∆B − (v · ∇)B + (B · ∇)v +∇π − gN(|(v,B)|2)B

]
dt

+
∞∑
k=1

[
(σ̄k(t) · ∇)B +∇πk(t) + h̄k(t, y(t))

]
dW̄ k

t + fB(t, y(t))dt,

div(v) = 0, div(B) = 0.

(1.1)

Here, v = v(t, x) denotes the velocity field of the fluid, B = B(t, x) is the magnetic field,
p = p(t, x) is the pressure, π = π(t, x) is the “magnetic pressure” (cf. Chapter II, Section
1.3.4), gN denotes the taming function, whereas fv = fv(t, x, y(t)) and fB = fB(t, x, y(t))
are forces acting on the fluid. The form of the noise term will be discussed below. For
simplicity, we have set all the constants appearing in the equations to one. For the
assumptions on the coefficients, see Section 2.1.

We do not repeat the motivation for studying these equations, cf. Chapter II, Section
1.3, but note that these equations can be seen as a model for the flow of electrically
conducting fluids through porous media at low to moderate Reynolds numbers.

The stochastic MHD equations were first studied by S.S. Sritharan and P. Sundar
in [206] who proved existence of martingale solutions in the two- and three-dimensional
case. The paper [211] by Z. Tan, D.H. Wang and H.Q. Wang contains results on existence
of a global strong solution in 3D for small initial data as well as existence and uniqueness of
a local solution. Their paper, however, was later retracted due to allegations of plagiarism.
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Questions of ergodicity in two dimensions were studied by V. Barbu, G. Da Prato
[11] for Wiener noise, and for α-stable noise by T.L. Shen and J.H. Huang [203]. K.
Yamazaki [237] proved ergodicity in the case of random forcing only by a few modes.
In three dimensions, he also proved ergodicity of a Faedo-Galerkin approximation of the
MHD equations for degenerate noise in [236].

The asymptotic behaviour of the SMHD equations was studied in the 2D additive
white noise case by W.Q. Zhao and Y.R. Li [257], and in the 2D fractional case by J.H.
Huang and T.L. Shen [118]. H.Q. Wang [227] studied the system’s exponential behaviour.
Furthermore, S.H. Wang and Y.R. Li [228] proved long-time robustness of the associated
random attractor.

Jump-type and fractional noises have been studied by P. Sundar [209]. U. Manna and
M.T. Mohan [169], as well as E. Motyl [182] studied the jump noise case, and the latter
author provided a nice and very general framework for 3D hydrodynamic-type equations
with Lévy noise on unbounded domains, generalising the 2D framework of I.D. Chueshov
and A. Millet [40]. Chueshov and Millet proved large deviations principles as well, and
in [41] also a Wong-Zakai approximation and a support theorem.

The existence of solutions to the non-resistive MHD equations with Lévy noise was
investigated by U. Manna, M.T. Mohan and S.S. Sritharan [170].

K. Yamazaki proved existence of global martingale solutions for the nonhomogeneous
system [234]. The case of non-Newtonian electrically conducting fluids and their long-
time behaviour was studied in a paper by P.A. Razafimandimby and M. Sango [190].

In modelling the noise, we follow the approach of R. Mikulevicius and B.L. Rozovskii
[178–180] who proposed a multiplicative noise of transport-type for the Navier-Stokes
equations, motivated by the turbulence theory of R.H. Kraichnan [135], which was further
developed by K. Gawedzki and co-authors in [90,91]. Transport-type noise was studied
by several other authors as well, e.g. Z. Brzeźniak, M. Capiński and F. Flandoli [21,22],
as well as in Flandoli and D. Gatarek [79, Section 3.3, pp. 378 f.]. More recently,
M. Hofmanová, J.-M. Leahy and T. Nilssen [113] studied the problem via rough path
methods.

We note that Mikulevicius and Rozovskii consider the case of only Hölder continuous σ
as being important to Kraichnan’s turbulent velocity model, but for simplicity, we restrict
ourselves to the case of differentiable σ (see Assumption (H2) below). We would also like
to point out that we have chosen Itô noise instead of the Stratonovich noise considered
in [179].

Existence and uniqueness as well as ergodicity for the stochastic tamed Navier-Stokes
equation were studied by M. Röckner and X.C. Zhang in [197]. The study of Freidlin-
Wentzell-type large deviations was carried out by M. Röckner, T.S. Zhang and X.C. Zhang
in [195]. The case of existence, uniqueness and small time large deviation principles for
the Dirichlet problem in bounded domains can be found in the work of M. Röckner and
T.S. Zhang [194]. More recently, there has been resparked interest in the subject, with
contributions by Z. Dong and R.R. Zhang [64] (existence and uniqueness for multiplicative
Lévy noise), as well as Z. Brzeźniak and G. Dhariwal [23] (existence, uniqueness and
existence of invariant measures in the full space R3 by different methods).

From a physical point of view, the fact that our model is most appropriate for low to
moderate Reynolds numbers raises the question of whether or not a stochastic model for
turbulence (which is commonly associated with high Reynolds numbers) is appropriate
in this setting. It is, nevertheless, an interesting mathematical problem that we want to
address in this chapter.
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Note also that there are instances of apparently turbulent flows at low Reynolds numbers,
such as elastic turbulence (which can even occur at arbitrarily low Reynolds numbers),
found in non-Newtonian fluids like polymer solutions and described by A. Groisman and
V. Steinberg in [103]. Another example occurs in microfluidics, as discovered by G.R.
Wang, F. Yang and W. Zhao [226]. Here, the Reynolds number at which the flow exhibits
turbulent behaviour is of order Re ≈ 1. However, these are more “exotic” examples and
not relatable to our case.

1.1. Regularisation of Fluid Dynamical Equations. In this section, we give a
short overview of other regularisations of fluid dynamical equations. For additional regu-
larisations, cf. Section 1.2 of Chapter II. As in that section, we consider fluid dynamical
equations as abstract evolution equations

(1.2) ∂ty = L(y) +N (y, y) + f, ∇ · y = 0,

where L is a linear or nonlinear operator, N is a bilinear operator, and f is a forcing term.
We limit our presentation of the regularised terms to the Navier-Stokes case, where y = v,
L(y) := L(v) := 1

Re
P∆v, and N (y, y) := N (v,v) = −P [(v · ∇)v]). Here we denote the

Helmholtz-Leray projection by P : L2 → L2 ∩ div−1({0}). For the related MHD models,
we give references for each model.

1.1.1. Leray-α Model. The Leray-α model for the deterministic Navier-Stokes equa-
tions was introduced by A. Cheskidov, D.D. Holm, E. Olson and E.S. Titi in [39] (cf. [218]
for more references). Here, the nonlinearity is regularised by applying the smoothing (or
filtering) operator (I − α2∆)−1 to the first factor of the nonlinearity. Thus

NLeray−α(v,v) := −P
[({

(I − α2∆)−1v
}
· ∇
)
v
]
,

fLeray−α := (I − α2∆)−1f.

In the stochastic case, the model was first studied by G. Deugoué and M. Sango in a
series of papers [58–62]. The works [58–60] establish (probabilistically) weak and strong
solutions for Wiener noise and prove convergence to a weak solution of the stochastic
Navier-Stokes equations. [61] investigates the convergence of a numerical scheme to these
equations, whereas [62] is devoted to proving the existence and uniqueness of strong
solutions in the case of Lévy noise. The case of the Euler equations (i.e. with zero
viscosity, ν = 0, or equivalently Re = ∞) was carried out by D. Barbato, H. Bessaih
and B. Ferrario [10]. More recently, the less regularising Leray-α model with fractional
dissipation (akin to the hyperviscosity scheme introduced below, but for ` < 2 instead
of ` > 2, i.e. the “hypoviscous” case) was studied by L. Debbi [54] who proved well-
posedness on bounded domains and on the torus T3, and also by S.H. Li, L. Wei and Y.C.
Xie in [151–153] where they prove large deviation principles, ergodicity and exponential
mixing, respectively. Finally, the existence of random dynamical systems and random
attractors for additive Lévy noise was studied by B. Gess, W. Liu and the author in [98],
and is discussed in greater detail in Chapter IV, Section 6.3.

The stochastic 3D MHD Leray-α model was introduced by G. Deugoué, M. Sango
and P.A. Razafimandimby in [57], where both weak and strong solutions are studied.
Deugoué [56] considered the long-time behaviour for α → 0. Furthermore, R.R. Zhang
[249] proved backwards uniqueness for these equations. Moreover, a related model for
the MHD equations was investigated by N.E. Wilson in [231,232].
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1.1.2. Globally Modified Navier-Stokes Equations. The globally modified Navier-Stokes
equations (GMNS) were introduced by T. Caraballo, P.E. Kloeden and J. Real in [38].
Here, the nonlinearity is modified through a nonlinear damping factor:

NGMNS(u) := FN(‖∆1/2u‖L2)P [(u · ∇)u] ,

with a damping function (N ∈ (0,∞)) given by

FN(r) := min

{
1,
N

r

}
.

In the deterministic case, further properties of the model have been studied in a series of
subsequent papers, cf. [33,34,132] and references therein. The stochastic Navier-Stokes
case has first been treated quite recently by G. Deugoué and T. Tachim Medjo [63], who
studied existence, uniqueness and convergence as N → ∞. To the best of the author’s
knowledge, the MHD case is still completely open.

1.1.3. Regularisation by Delay. Another way of regularising the nonlinear term, stud-
ied recently by H. Bessaih, M. Garrido-Atienza and B. Schmalfuss [15], consists in intro-
ducing a time delay in the advection velocity, i.e. in considering the nonlinearity

Ndelay(v,v)(t, x) := P [(v(t− µ, x) · ∇)v(t, x)] .

This time delay again has a smoothing effect on the solution and allows the authors to
obtain unique global-in-time weak solutions and, for a certain parameter range in the
regularity of the initial conditions, also strong solutions. For µ → 0, their solutions
converge to a weak solution of the Navier-Stokes equations. Their work builds on that of
S.M. Guzzo and G. Planas [109,110] as well as C.J. Niche and G. Planas [183] and W.
Varnhorn [217].

In the stochastic Navier-Stokes case, X.C. Gao and H.J. Gao [89] showed existence
and uniqueness of weak solutions for the above model with linear multiplicative noise.
The stochastic MHD equations have not been studied yet.

1.1.4. Lions’ Hyperviscosity Method. Another way to add more dissipativity to the
model was proposed by J.-L. Lions [160], who considered the operator

Lhyper(v) := ν0P∆v − ν1P (−∆)`/2v,

where ` > 2, ν0 ≥ 0 and ν1 > 0. For ` > 5/2, he could prove existence of a unique
regular solution in a bounded domain. In the stochastic case, it was first considered in
2D by J.C. Mattingly and coauthors in [174,175] where ν0 = 0 and by S.S. Sritharan in
the setting of stochastic control (in 2D and 3D) in [205]. It was then further studied by
B. Ferrario [75] who proved well-posedness in 3D and in [76] characterised the law via a
Girsanov transformation for the vorticity form of the equation for ` > 3. Furthermore,
F.Y. Wang and L. Xu [225] derived a Bismut-type derivative formula for the semigroup
associated with the stochastic hyperdissipative equations on the torus for ` > 5.

To the best of our knowledge, the stochastic MHD equations with this regularisation
have not yet been studied mathematically.

1.1.5. Navier-Stokes-Voigt Equations. The Navier-Stokes-Voigt (sometimes written as
Voight) equations employ the following regularisation of the Stokes operator

LNSV(v) := νP∆v + α2P∆∂tv.

This regularisation changes the parabolic character of the equations and simulates a prop-
erty of so-called Kelvin-Voigt fluids, e.g. polymer solutions, of not immediately reverting
back to the original state once external stress is removed. It was pioneered by A.P. Os-
kolkov [186] in 1973 and has since then been studied by many authors.
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The stochastic case was studied by H. Gao and C. Sun in [88,208], where the existence
and uniqueness of weak solutions as well as questions regarding the system’s random at-
tractor and its Hausdorff dimension were posed and answered, see also C.T. Anh and
N.V. Thanh [2]. Q.B. Tang [212] proved existence and upper semicontinuity of random
attractors for unbounded domains and H. Liu and C. Sun first proved large deviation
principles in [163].

The stochastic MHD-Voigt case has not been studied so far.
1.1.6. Damped Navier-Stokes Equations (or Brinkman-Forchheimer-extended Darcy

Models). Instead of adding a linear dissipative term, one can also add nonlinear, power-
type terms that counteract the nonlinearity. This leads to the so-called (nonlinearly)
damped Navier-Stokes equations. Thus, we consider the (nonlinear) operator

Ldamped(v) := P∆v − αP |v|β−1v,

where α > 0 and β ≥ 1. The damping term −α|v|β−1v models the resistence to the
motion of the flow resulting from physical effects like porous media flow, drag or friction,
or other dissipative mechanisms (cf. [28]). It represents a restoring force, which for β = 1
assumes the form of classical, linear damping, whereas β > 1 means a restoring force
that grows superlinearly with the velocity (or magnetic field). X.J. Cai and Q.S. Jiu [28]
first proved existence and uniqueness of a global strong solution for 7

2
≤ β ≤ 5. This

range was lowered down to β ∈ (3, 5] by Z.J. Zhang, X.L. Wu and M. Lu in [252] and
considered this the case β = 3 to be critical [252, Remark 3.1]. Y. Zhou in [260] proved
the existence of a global solution for all β ∈ [3, 5]. For the case β ∈ [1, 3), he established
regularity criteria that ensure smoothness. Uniqueness holds for any β ≥ 1 in the class of
weak solutions.

The first problems studied in the stochastic damped Navier-Stokes case were related
to the inviscid limit of the damped equations for β = 1 in 2D, cf. H. Bessaih and B.
Ferrario [14] and N. Glatt-Holtz, V. Šverák and V. Vicol [101]. B. You [244] proved
existence of a random attractor under the assumption of well-posedness for additive noise
for β ∈ (3, 5] (notably leaving out the critical, or tamed, case β = 3). K. Yamazaki
[235] proved a Lagrangian formulation and extended Kelvin’s circulation theorem to the
partially damped case (i.e. only a few components are damped, but the damping there
is much stronger, e.g. βk = 9 in two components k = 3, 4 in the 4D case). Z. Brzeźniak
and B. Ferrario [24] showed existence of stationary solutions on the whole space R3 for
β = 1. H. Liu and H.J. Gao [161] proved existence and uniqueness of an invariant
measure and a random attractor for β ∈ [3, 5]. The same authors in [86] proved a small-
time large deviation principle for the same parameter range. Furthermore, again for the
same range, for multiplicative noise, exponential convergence of the weak solutions in L2

to the stationary solution as well as stabilisation were proved by H. Liu, L. Lin, C.F. Sun
and Q.K. Xiao [162]. Finally, for jump noise, H. Liu and H.J. Gao showed well-posedness
and existence of invariant measures in [87].

To the best of the author’s knowledge, the stochastic damped MHD equations have
not been considered so far. This work is a first step in this direction.
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1.2. Results and Structure of This Chapter. Here are our main results for this
chapter. First, we prove existence and uniqueness of a strong solution to the tamed MHD
equations. To be precise, we show this for the evolution equation form (2.4).

Theorem 1.1 (Existence and uniqueness, Theorems 3.9, 3.10 and 3.11 below). Let the
coefficients f := (fv,fB), Σ := (σ, σ̄) and H := (h, h̄) satisfy Assumptions (H1)–(H3)
and let y0 ∈ H1. Then there exists a unique strong solution y to the stochastic tamed
MHD equations, in the sense of Definition 3.7, with the following properties:

(i) y ∈ L2(Ω, P ;C([0, T ];H1)) ∩ L2(Ω, P ;L2([0, T ];H2)) for all T > 0 and

(1.3) E

[
sup
t∈[0,T ]

‖y(t)‖2
H1

]
+

tˆ

0

E
[
‖y(s)‖2

H2

]
ds ≤ CT,f,H

(
1 + ‖y0‖2

H1

)
·N.

(ii) In H0, the following equation holds:

(1.4) y(t) =

tˆ

0

[A(y(s)) + Pf(s, y(s))]ds+
∞∑
k=1

tˆ

0

Bk(s, y(s))dW k
s ∀t ≥ 0, P − a.s.

By the preceding theorem, for time-homogeneous coefficients, the solution process y =
(y(t; y0))t≥0 is a strong Markov process. For t ≥ 0, we can define the associated Markov

semigroup on the space BCloc(H1) of bounded, locally uniformly continuous functions on
the divergence-free Sobolev space H1, by

Ttφ(y0) := E [φ(y(t; y0))] , φ ∈ BCloc(H1), y0 ∈ H1.

Then, under a slightly stronger assumption on the coefficients of the noise, this semigroup
satisfies the Feller property.

Theorem 1.2 (Feller property, Theorem 4.2 below). Under the Assumptions (H1),
(H2) and (H3)’, for every t ≥ 0, Tt maps BCloc(H1) into itself, i.e. it is a Feller semigroup
on BCloc(H1).

In the case of a periodic domain D = T3, we prove the existence of an invariant
measure.

Theorem 1.3 (Existence of an invariant measure, Theorem 4.3 below). Under the
hypotheses (H1), (H2), (H3)’, in the periodic case D = T3, there exists an invariant
measure µ ∈ P(H1) associated to (Tt)t≥0, i.e. a measure µ such that for every t ≥ 0,
φ ∈ BCloc(H1) ˆ

H1

Ttφ(y0)dµ(y0) =

ˆ
H1

φ(y0)dµ(y0).

The goal of this chapter is to generalise the results of M. Röckner and X.C. Zhang [196]
for the stochastic tamed Navier-Stokes equations to the stochastic tamed MHD case. In
doing so, we have to prove MHD versions of several technical tools they use, in particular
the estimates of the Lemmas 2.3, 2.4 and 2.5, which are more difficult in our setting, the
tightness criterion Lemma 2.6 and the a priori estimates 3.11.

The chapter is organised as follows: we state our assumptions in Section 2.1 as well
as auxiliary results and estimates on the coefficients of our equation in Section 2.2. Since
our proof of existence involves a tightness argument, we provide a tightness criterion in
Section 2.3. Existence and uniqueness of a strong solution is then proven in Section 3. We
start by defining weak and strong solutions in 3.1. The next section, 3.2 is then devoted
to proving pathwise uniqueness.
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Existence of a weak solution is proved in Section 3.3 via the by now classical strategy
of proving a priori estimates for the Faedo-Galerkin approximation to the equation and
using them to infer tightness of the sequence of laws, Skorokhod coupling to obtain almost
sure convergence, and concluding by proving uniform moment estimates and convergence
in probability. This allows us to obtain – using the Yamada-Watanabe theorem – that
there exists a unique strong solution. The Feller property of the semigroup as well as
existence of invariant measures are then shown in Section 4.

A publication of the results of this chapter is in preparation, cf. [199].

2. Preliminaries

In this section, we provide the basic tools needed later. After establishing our notation
and the assumptions the coefficients, we prove some elementary estimates for the operators
associated to the coefficients. We then provide a tightness criterion for later use.

2.1. Notation and Assumptions. We define the spaces Lq, Wm,p,Lq,Hk, etc. as
in Chapter II, Section 2.1 and follow the notational conventions established in Chapter
II, Section 1.5. By `2, we denote the space of square-summable sequences.

We make the following assumptions on our coefficients:

(H1) For any T > 0, the function f =
(
fv,fB

)
with fv,fB : [0, T ] × D × R6 → R3

satisfies: there is a constant CT,f > 0 and a function Ff (t, x) ∈ L∞([0, T ];L1(D))

|∂xjf(t, x, y)|2 + |f(t, x, y)|2 ≤ CT,f |y|2 + Ff (t, x), j = 1, 2, 3, x ∈ D, y ∈ R6,

|∂ylf(t, x, y)| ≤ CT,f , l = 1, . . . , 6, x ∈ D, y ∈ R6.

(H2) For any T > 0, for the function Σ =
(
σ, σ̄

)
with σ, σ̄ : [0, T ]×D→ `2(R3), there

are constants Cσ,T , Cσ̄,T > 0 such that for j = 1, 2, 3

sup
t∈[0,T ],x∈D

‖∂xjσ(t, x)‖`2 ≤ Cσ,T , sup
t∈[0,T ],x∈D

‖∂xj σ̄(t, x)‖`2 ≤ Cσ̄,T ,

as well as

sup
t∈[0,T ],x∈D

‖Σ(t, x)‖2
`2 ≤

1

36
.

(H3) For any T > 0, for the function H = (h, h̄) with h, h̄ : [0, T ]×D×R6 → `2(R3),
there exists a constant CT,H > 0 and FH(t, x) ∈ L∞([0, T ];L1(D)) such that for
any 0 ≤ t ≤ T , x ∈ D, y ∈ R6 and j = 1, 2, 3, l = 1, 2, . . . , 6

‖∂xjH(t, x, y)‖2
`2 + ‖H(t, x, y)‖2

`2 ≤ CT,H |y|2 + FH(t, x),

‖∂ylH(t, x, y)‖`2 ≤ CT,H .

Remark 2.1. The origin of the constant 36 = 4 · 32 in Assumption (H2) lies in the
fact that in the places where we need the numerical value, i.e. in the proof of (2.13) of
Lemma 2.5 as well as in the proof of Lemma 4.1, we estimate the homogeneous second-
order Sobolev norm against the Bessel potential norm via Lemma 2.2 below, giving an
additional factor of 9 = 32. We do not claim that this value for Σ is sharp, but we wanted
to give an explicit bound that suffices to make all the calculations work.

The integrability conditions Ff , FH ∈ L∞([0, T ];L1(D)) are used in proving continuity
in time, as we want to estimateˆ t

s

‖Ff,H(r)‖L1(D)dr ≤ C|t− s|

in the proof of Lemma 3.12.
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One could also model the equations in a way that the terms fv and h in the equations
of v depend only on v instead of y. However, this case is included in our assumptions,
which are more symmetric this way.

For definiteness, we want to state the following very elementary relationship between
the classical homogeneous second-order Sobolev norm and the norm we use in this work
(which is defined via Bessel potentials).

Lemma 2.2. Let D ∈ {R3,T3} and y ∈ H2(D). Then the following estimate holds:

(2.1) ‖y‖2
Ẇ2,2(D)

:=
d∑

i,j=1

‖∂xi∂xjy‖2
L2(D) ≤ 32‖y‖2

H2(D).

Proof. Using Plancherel’s theorem and Young’s inequality, we find

3∑
i,j=1

‖∂xi∂xjy‖2
L2 =

3∑
i,j=1

‖ξiξj ŷ‖2
L2 =

3∑
i,j=1

(
‖ξiξj ŷ‖2

L2({|ξ|≤1}) + ‖ξiξj ŷ‖2
L2({|ξ|>1})

)

≤
3∑

i,j=1

‖ŷ‖2
L2 +

∥∥∥∥∥
(
ξ2
i + ξ2

j

)
2

ŷ

∥∥∥∥∥
2

L2({|ξ|>1})

 ≤ 32‖y‖2
L2 + 3

∥∥|ξ|2ŷ∥∥2

L2({|ξ|>1})

≤ 32
(
‖y‖2

L2 + ‖∆y‖2
L2

)
≤ 32

(
‖y‖2

L2 + 2‖∇y‖2
L2 + ‖∆y‖2

L2

)
= 32‖(I −∆)y‖2

L2

= 32‖y‖2
H2 .

�

We define the set of solenoidal test functions as

V := {y =
(
v,B

)
| v,B ∈ C∞c (D;R3), div(v) = div(B) = 0}.

As in Chapter II, Lemma 2.1, V is dense in Hk for any k ∈ N. Let P : L2(D;R3)→ H0 be
the Leray-Helmholtz projection. In the case of D ∈ {T,R3}, P commutes with derivative
operators ( [192, Lemma 2.9, p. 52]) and can be restricted to a bounded linear operator

P |Hm : Hm → Hm.

Furthermore, consider the tensorised projection

P := P ⊗ P, Py := (P ⊗ P )

(
v
B

)
=

(
Pv
PB

)
.

Then P : L2 → H0 is a bounded linear operator:

‖Py‖2
H0 = ‖Pv‖2

H0 + ‖PB‖2
H0 ≤ ‖P‖2

L2→H0

(
‖v‖2

L2 + ‖B‖2
L2

)
= ‖P‖2

L2→H0‖y‖2
L2 .

We now define operators

A(y) := P∆y − P
(

(v · ∇)v − (B · ∇)B
(v · ∇)B − (B · ∇)v

)
− P

(
gN(|y|2)y

)
,

(2.2) 〈A(y), ỹ〉H1 = 〈A(y), (I −∆)ỹ〉H0 = A1(y, ỹ) +A2(y, ỹ) +A3(y, ỹ),
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where

A1(y, ỹ) := 〈P∆y, (I −∆)ỹ〉H0 ,

A2(y, ỹ) := −
〈
P
(

(v · ∇)v − (B · ∇)B
(v · ∇)B − (B · ∇)v

)
, (I −∆)ỹ

〉
H0

,

A3(y, ỹ) := −
〈
PgN(|y|2)y, (I −∆)ỹ

〉
H0 .

For the noise terms, we define Σ(t, x) :=

(
σk(t, x)
σ̄k(t, x)

)
k∈N
∈ `2(R6) and for y =

(
v
B

)
(Σk(t, x) · ∇) y :=

(
(σk(t, x) · ∇)v
(σ̄k(t, x) · ∇)B

)
.

Similarly, we define Hk(t, y) :=

(
hk(t, y)
h̄k(t, y)

)
, and

Bk(t, x, y) := P ((Σk(t, x) · ∇)y) + PHk(t, x, y).

Finally, let {W k
t | t ∈ R+, k ∈ N}, {W̃ k

t | t ∈ R+, k ∈ N} be two independent sequences of
independent Brownian motions, and define

Wk
t :=

(
W k
t

W̃ k
t

)
,

as well as

tˆ

0

Bk(s, x, y)dWk
s :=


t́

0

P (σk(s, x) · ∇)v + Phk(s, x, y)dW k
s

t́

0

P (σ̃k(s, x) · ∇)B + P h̃k(s, x, y)dW̃ k
s

 .

The Brownian motions W and W̄ can be understood as independent cylindrical Brownian
motions on the space `2. Similarly,W is a cylindrical Brownian motion on the space `2×`2.
For y ∈ Hm, m = 1, 2, B(t, x, y(x)) can be understood as a linear operator

B(t, ·, y) : `2 × `2 → Hm−1.

To make this clear, we note that if we take the canonical basis of `2, i.e. orthonormal basis
consisting of the sequences e1 := (1, 0, 0, . . .), e2 := (0, 1, 0, 0, . . .), . . ., then the system{(

ek
0

)
∈ `2 × `2 | k ∈ N

}
∪
{(

0
ek

)
∈ `2 × `2 | k ∈ N

}
forms an orthonormal basis of `2 × `2. Then we define

B(t, ·, y)

(
ek
0

)
(x) :=

(
P (σk(t, x) · ∇)v(x) + Phk(t, x, y(x))

0

)
∈ Hm−1,

and

(2.3) B(t, ·, y)

(
0
ek

)
(x) :=

(
0

P (σ̄k(t, x) · ∇)v(x) + P h̄k(t, x, y(x))

)
∈ Hm−1.

It turns out that B is even a Hilbert-Schmidt operator, i.e. B(t, ·, y) ∈ L2(`2 × `2;Hm−1),
as will be proven below in Lemma 2.5. Hence we are in the usual framework of stochastic
analysis on Hilbert spaces, cf. [52] or [167].
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We can now formulate Equation (1.1) in the following abstract form as an evolution
equation:

dy(t) = [A(y(t)) + Pf(t, y(t))]dt+
∞∑
k=1

Bk(t, y(t))dWk
t ,

y(0) = y0 ∈ H1.

(2.4)

2.2. Estimates on the Operators A and B. In this section, we will prove impor-
tant but elementary estimates on the operators A and B. These play an important role in
deriving the a priori estimates for the STMHD equations. The first theorem is concerned
with estimates for the case of testing with the solution y itself.

Lemma 2.3 (Estimates for A). Let y ∈ H2. Then the following estimates hold true

(2.5) ‖A(y)‖H0 ≤ C
(
1 + ‖y‖6

H0 + ‖y‖2
H2

)
,

〈A(y), y〉H0 = −‖∇y‖2
H0 − ‖

√
gN(|y|2)|y|‖2

L2(2.6)

≤ −‖∇y‖2
H0 − ‖y‖2

L4 + CN‖y‖2
H0 ,(2.7)

〈A(y), y〉H1 ≤ −1

2
‖y‖2

H2 −
(
‖|v| · |∇v|‖2

L2 + ‖|B| · |∇B|‖2
L2

+ ‖|v| · |∇B|‖2
L2 + ‖|B| · |∇v|‖2

L2

)
+ (2N + 1)‖∇y‖2

H0 + ‖y‖2
H0 .

(2.8)

Proof. For the first inequality, we have

‖A(y)‖H0 ≤ ‖P(I −∆)y + Py‖H0 +

∥∥∥∥P ((v · ∇)v − (B · ∇)B
(v · ∇)B − (B · ∇)v

)∥∥∥∥
H0

+ ‖PgN(|y|2)y‖H0

≤ CN
(
‖y‖H2 + ‖y‖H0 + ‖P (v · ∇)v‖H0 + . . .+ ‖P (B · ∇)v‖H0 + ‖y‖3

L6

)
.

The nonlinear terms can be dealt with as follows: applying first the Sobolev embedding
and then Young’s inequality twice, we find

‖P (v · ∇)B‖H0 ≤ C‖(v · ∇)B‖L2 ≤ C‖v‖L4‖∇B‖L4

≤ C
(
‖v‖3/4

H1 ‖v‖1/4

L2 ‖v‖3/4

H2 ‖v‖1/4

H1

)
≤ C

(
‖v‖3/2

H1 ‖v‖1/2

L2 + ‖v‖3/2

H2 ‖v‖1/2

H1

)
≤ C

(
‖v‖2

H1 + ‖v‖2
L2 + ‖v‖2

H2 + ‖v‖2
H1

)
≤ C

(
1 + ‖y‖2

H2

)
,

and similarly for the other terms. The last term can be estimated by the Sobolev embed-
ding theorem and Young’s inequality by

‖y‖3
L6 ≤ C‖y‖3/2

H2 ‖y‖3/2

H0 ≤ C
(
‖y‖2

H2 + ‖y‖6
H0

)
.

Combining these estimates yields (2.5).
Equation (2.6) follows in exactly the same way as Chapter II, Equation 2.9. Equation

(2.7) can then be obtained by using the definition of gN .
The proof of (2.8) is exactly the one of Chapter II, Equation (2.8). �

The next lemma deals with the case of testing the right-hand side of our equation with
another, arbitrary, compactly supported test function.
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Lemma 2.4 (Estimates for A and B). Let ỹ ∈ V with compact support supp(ỹ) ⊂ O :=
{x ∈ D | |x| ≤ m} for some m ∈ N. Let T > 0. Then for any y, y′ ∈ H2 and t ∈ [0, T ],
we have

|〈A(y), ỹ〉H1| ≤ Cỹ

(
1 + ‖y‖3

L3(O)

)
,(2.9)

‖〈B·(t, y), ỹ〉H1‖2
`2 ≤ Cỹ,Σ,H,T

(
‖FH(t)‖L1(D) + ‖y‖2

L2(O)

)
,(2.10)

and

(2.11) |〈A(y)−A(y′), ỹ〉H1| ≤ Cỹ,N‖y − y′‖L2

(
1 + ‖y‖2

H1 + ‖y′‖2
H1

)
.

Proof. The first inequality follows easily from the following calculations:

A1(y, ỹ) = 〈y, (I −∆)∆ỹ〉H0 ≤ ‖y‖L2(O)‖(I −∆)∆ỹ‖H0 ≤ Cỹ‖y‖L3(O)‖ỹ‖H4 ,

where the constant Cỹ depends on the domain O, and hence on ỹ. For the next term we
find

A2(y, ỹ) = −〈(v · ∇)v, (I −∆)ṽ〉L2 + 〈(B · ∇)B, (I −∆)ṽ〉H0

− 〈(v · ∇)B, (I −∆)B̃〉L2 + 〈(B · ∇)v, (I −∆)B̃〉L2

= 〈v ⊗ v,∇(I −∆)ṽ〉L2 − 〈B ⊗B,∇(I −∆)ṽ〉L2

+ 〈v ⊗B,∇(I −∆)B̃〉L2 − 〈B ⊗ v,∇(I −∆)B̃〉L2

≤
((
‖v‖2

L2(O) + ‖B‖2
L2(O)

)
· sup
x∈D
|∇(I −∆)ṽ(x)|

+ 2‖v‖L2(O)‖B‖L2(O) · sup
x∈D
|∇(I −∆)B̃(x)|

)
≤ 2‖y‖2

L2(O) · sup
x∈D
|∇(I −∆)ỹ(x)|

≤ Cỹ‖y‖2
L3(O) · sup

x∈D
|∇(I −∆)ỹ(x)|.

Finally,

A3(y, ỹ) = −〈gN(|y|2)y, (I −∆)ỹ〉L2 ≤ ‖gN(|y|2)y‖L1(O) · sup
x∈D
|(I −∆)ỹ(x)|

≤ C‖y‖3
L3(O) sup

x∈D
|(I −∆)ỹ(x)|.

Combining the above estimates yields (2.9).
For the second estimate (2.10), we have by the boundedness of the Leray-Helmholtz

projections

‖〈B·(t, y), ỹ〉H1‖2
`2 ≤ ‖〈(Σ · ∇)y, (I −∆)ỹ〉L2 + 〈H(t, y), (I −∆)ỹ〉L2‖2

`2

≤ 2
(∑

k

|〈(Σk · ∇)y, (I −∆)ỹ〉L2|2 + |〈Hk(t, y), (I −∆)ỹ〉L2|2
)
.
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The first term can be estimated using the definitions of the scalar products and norms
involved, integration by parts, the product rule and Jensen’s inequality:

∑
k

|〈(Σk · ∇)y, (I −∆)ỹ〉L2|2

=
∑
k

∣∣∣∣ˆ
D

(
(σk · ∇)v
(σ̄k · ∇)B

)
·
(

(I −∆)ṽ

(I −∆)B̃

)
dx

∣∣∣∣2
=
∑
k

∣∣∣∣ˆ
D
〈(σk · ∇)v, (I −∆)ṽ〉R3 +

〈
(σ̄k · ∇)B, (I −∆)B̃

〉
R3

dx

∣∣∣∣2

=
∑
k

∣∣∣∣∣
ˆ
D

3∑
j,l=1

σjk
(
∂xjv

l
)

(I −∆)ṽl + σ̄jk
(
∂xjB

l
)

(I −∆)B̃ldx

∣∣∣∣∣
2

=
∑
k

∣∣∣∣∣−
ˆ
D

3∑
j,l=1

vl∂xj
(
σjk(I −∆)ṽl

)
+Bl∂xj

(
σ̄jk(I −∆)B̃l

)
dx

∣∣∣∣∣
2

=
∑
k

∣∣∣∣∣
ˆ
O

3∑
j,l=1

vl
(
∂xjσ

j
k

)
(I −∆)ṽl + vlσjk(I −∆)∂xj ṽ

l

+Bl
(
∂xj σ̄

j
k

)
(I −∆)B̃l +Blσ̄jk(I −∆)∂xj B̃

ldx

∣∣∣∣∣
2

≤ 36λ(O)
∑
k

ˆ
O

3∑
j,l=1

∣∣vl (∂xjσjk) (I −∆)ṽl
∣∣2 +

∣∣vlσjk(I −∆)∂xj ṽ
l
∣∣2

+
∣∣∣Bl
(
∂xj σ̄

j
k

)
(I −∆)B̃l

∣∣∣2 +
∣∣∣Blσ̄jk(I −∆)∂xj B̃

l
∣∣∣2 dx

≤ 36λ(O)
(

sup
t∈[0,T ],x∈D

‖∇xσ·(t, x)‖2
`2 sup
x∈D
|(I −∆)ṽ(x)|2‖v‖2

L2(O)

+ sup
t∈[0,T ],x∈D

‖σ·(t, x)‖2
`2 sup
x∈D
|∇(I −∆)ṽ(x)|2‖v‖2

L2(O)

+ sup
t∈[0,T ],x∈D

‖∇xσ̄·(t, x)‖2
`2 sup
x∈D
|(I −∆)B̃(x)|2‖B‖2

L2(O)

+ sup
t∈[0,T ],x∈D

‖σ̄·(t, x)‖2
`2 sup
x∈D
|∇(I −∆)B̃(x)|2‖B‖2

L2(O)

)
≤ 36λ(O)

(
sup

t∈[0,T ],x∈D
‖∇xΣ·(t, x)‖2

`2 sup
x∈D
|(I −∆)ỹ(x)|2

+ sup
t∈[0,T ],x∈D

‖Σ·(t, x)‖2
`2 sup
x∈D
|∇(I −∆)ỹ(x)|2

)
‖y‖2

L2(O)

which we estimate further by using Assumption (H2), arriving at

∑
k

|〈(Σk · ∇)y, (I −∆)ỹ〉L2|2 ≤ CΣ,T,ỹ‖y‖2
L2(O).
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Similarly, for the second term we find∑
k

|〈Hk(t, y), (I −∆)ỹ〉L2|2

=
∑
k

∣∣∣∣ˆ
D

(
hk(t, x, y), h̄k(t, x, y)

)
,

(
(I −∆)ṽ

(I −∆)B̃

)
dx

∣∣∣∣2
=
∑
k

∣∣∣∣ˆ
O
〈hk(t, x, y), (I −∆)ṽ(x)〉R3 + 〈h̄k(t, x, y), (I −∆)B̃(x)〉R3dx

∣∣∣∣2
≤ 2λ(O)

∑
k

ˆ
O
|〈hk(t, x, y), (I −∆)ṽ(x)〉R3|2 +

∣∣∣〈h̄k(t, x, y), (I −∆)B̃(x)〉R3

∣∣∣2 dx

≤ 2λ(O) sup
x∈D
|(I −∆)ṽ(x)|2

ˆ
O
‖h·(t, x, y)‖|2`2 + sup

x∈D
|(I −∆)B̃(x)|2‖h̄·(t, x, y)‖2

`2dx

≤ 2λ(O)CT,H sup
x∈D
|(I −∆)ỹ(x)|2

ˆ
O
|y(x)|2 + FH(t, x)dx

≤ CH,T,ỹ

(
‖y‖2

L2(O) + ‖FH(t)‖L1(D)

)
.

Thus, altogether we have proven (2.10).
For estimate (2.11), we look at each of the three terms of A separately:

|A1(y, ỹ)−A1(y′, ỹ)| = |〈(y − y′), 1O(I −∆)∆ỹ〉H0|
≤ sup

x∈D
|(I −∆)∆ỹ(x)|‖y − y′‖L2(O) = Cỹ‖y − y′‖L2(O).

The nonlinear terms are handled in the usual way

|A2(y, ỹ)−A2(y′, ỹ)|

≤
∣∣∣〈(v · ∇)v − (v′ · ∇)v′, (I −∆)ṽ〉L2(O)

∣∣∣
+
∣∣∣〈(B · ∇)B − (B′ · ∇)B′, (I −∆)ṽ〉L2(O)

∣∣∣
+

∣∣∣∣〈(v · ∇)B − (v′ · ∇)B′, (I −∆)B̃
〉
L2(O)

∣∣∣∣
+

∣∣∣∣〈(B · ∇)v − (B′ · ∇)v′, (I −∆)B̃
〉
L2(O)

∣∣∣∣ .
We treat the third term only, the other terms work in a similar manner:∣∣∣∣〈(v · ∇)B − (v′ · ∇)B′, (I −∆)B̃

〉
L2(O)

∣∣∣∣
=

∣∣∣∣〈(v − v′) · ∇)B − (v′ · ∇)(B′ −B), (I −∆)B̃
〉
L2(O)

∣∣∣∣
=

∣∣∣∣〈(v − v′)⊗B − v′ ⊗ (B′ −B),∇(I −∆)B̃
〉
L2(O)

∣∣∣∣
≤ sup

x∈D
|∇(I −∆)B̃(x)|

(
‖v − v′‖L2(O)‖B‖L2(O) + ‖B −B′‖L2(O)‖v′‖L2(O)

)
≤ Cỹ‖y − y′‖L2(O)

(
‖y‖L2(O) + ‖y′‖L2(O)

)
,
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and thus we obtain

|A2(y, ỹ)−A2(y′, ỹ)| ≤ Cỹ‖y − y′‖L2(O)

(
‖y‖L2(O) + ‖y′‖L2(O)

)
≤ Cỹ‖y − y′‖L2(O)

(
‖y‖L4(O) + ‖y′‖L4(O)

)
.

For the taming term, we find

|A3(y, ỹ)−A3(y′, ỹ)| =
∣∣∣〈gN(|y|2)y − gN(|y′|2)y′, (I −∆)ỹ

〉
L2(O)

∣∣∣
=
∣∣∣〈gN(|y|2)(y − y′)−

(
gN(|y′|2)− gN(|y|2)

)
y′, (I −∆)ỹ

〉
L2(O)

∣∣∣
=
∣∣∣〈gN(|y|2)(y − y′)− g′N(θ)(|y|2 − |y′|2)y′, (I −∆)ỹ

〉
L2(O)

∣∣∣
≤ sup

x∈D
|(I −∆)ỹ(x)|

ˆ
O
|y − y′|

[
gN(|y|2) + g′N(θ) (|y|+ |y′|) |y′|

]
dx

≤ CỹCN

ˆ
O
|y − y′|

[
|y|2 + (|y|+ |y′|) |y′|

]
dx

≤ CỹCN

ˆ
O
|y − y′|

[
|y|2 + |y′|2

]
dx

≤ Cỹ,N‖y − y′‖L2(O)

(
‖y‖2

L4(O) + ‖y′‖2
L4(O)

)
.

Collecting the terms, we get

|〈A(y)−A(y′), ỹ〉H1|

≤ Cỹ,N‖y − y′‖L2(O)

(
1 + ‖y‖L4(O) + ‖y′‖L4(O) + ‖y‖2

L4(O) + ‖y′‖2
L4(O)

)
,

which implies (2.11) by Sobolev embedding. �

The estimates of the next lemma appear often in expressions for the quadratic variation
of the Itô term when we apply Itô’s formula.

Lemma 2.5 (Estimates for B). For any T > 0, 0 ≤ t ≤ T and y ∈ H2, the following
estimates hold:

‖B(t, y)‖2
L2(`2×`2;H0) ≤

1

2
‖y‖2

H1 + CT,H‖y‖2
H0 + ‖FH(t)‖L1(D),(2.12)

‖B(t, y)‖2
L2(`2×`2;H1) ≤

1

2
‖y‖2

H2 + CT,H,Σ‖y‖2
H1 + C‖FH(t)‖L1(D).(2.13)

Proof. To calculate the Hilbert-Schmidt norm (cf. [167, Definition B.0.5, p. 217]),
we take the orthonormal basis of `2 × `2 from Equation (2.3) and enumerate it as a set
{êl}l∈N. Then by definition, for m = 0, 1,

‖B(t, y)‖2
L2(`2×`2;Hm) =

∑
l∈N

‖B(t, y)êl‖2
Hm =

∑
k∈N

∥∥∥∥B(t, y)

(
ek
0

)∥∥∥∥2

Hm
+
∑
k∈N

∥∥∥∥B(t, y)

(
0
ek

)∥∥∥∥2

Hm

=
∑
k∈N

‖Bk(t, y)‖2
Hm .
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The first inequality follows from Assumptions (H2) and (H3):

‖B(t, y)‖2
L2(`2×`2;H0) =

∑
k

ˆ
D
|Bk(t, x, y)|2dx

=
∑
k

ˆ
D
|(Σk(t, x) · ∇)y +Hk(t, x, y)|2dx

≤ 2

ˆ
D
‖Σ(t, x)‖2

`2|∇y|2 + ‖Hk(t, x, y)‖2
`2dx

≤ 2

(
sup

t∈[0,T ],x∈D
‖Σ(t, x)‖2

`2

)ˆ
D
|∇y|2 + 2CT,H |y|2 + FH(t, x)dx

≤ 1

2
‖y‖2

H1 + (2CT,H −
1

2
)‖y‖2

H0 + ‖FH(t)‖L1(D).

For the second inequality, we note that

‖B(t, y)‖2
L2(`2×`2;H1) = ‖B(t, y)‖2

L2(`2×`2;H0) + ‖∇B(t, y)‖2
L2(`2×`2;H0),

and, using the commutativity of derivatives and P as well as the chain rule, we find

∂xjBk(t, x, y) = ∂xjP [(Σk(t, x) · ∇)y +Hk(t, x, y)] = P∂xj [(Σk(t, x) · ∇)y +Hk(t, x, y)]

= P
[
(∂xjΣk(t, x) · ∇)y + (Σk(t, x) · ∇)∂xjy + (∂xjHk) (t, x, y) +

6∑
i=1

∂yiHk(t, x, y)∂xjy
i
]
.

Therefore, employing Assumptions (H2), (H3), as well as Equation (2.1), we find

‖∇B(t, y)‖2
L2(`2×`2;H0) ≤

∑
k

3∑
j=1

ˆ
D

∣∣(∂xjΣk(t, x) · ∇)y + (Σk(t, x) · ∇)∂xjy

+ (∂xjHk) (t, x, y) +
6∑
i=1

∂yiHk(t, x, y)∂xjy
i
∣∣2dx

≤
∑
k

3∑
j=1

ˆ
D

2|(Σk(t, x) · ∇)∂xjy|2 + 2
∣∣(∂xjΣk(t, x) · ∇)y+

+ (∂xjHk) (t, x, y) +
6∑
i=1

∂yiHk(t, x, y)∂xjy
i
∣∣2dx

≤ 2

ˆ
D

3∑
i,j=1

‖Σ(t, x)‖2
`2|∂xi∂xjy|2dx+ 6

ˆ
D

3∑
j=1

‖∂xjΣ(t, x)‖2
`2|∇y|2

+ ‖ (∂xjHk) (t, x, y)‖2
`2 + 6

6∑
i=1

‖∂yiH(t, x, y)‖2
`2|∂xjyi|2dx

≤ 2 · 32 sup
t∈[0,T ],x∈D

‖Σ(t, x)‖2
`2‖y‖2

H2 + 6
(

sup
t∈[0,T ],x∈D

‖∂xjΣ(t, x)‖2
`2‖∇y‖2

H0

+ CT,H‖y‖2
H0 + ‖FH(t)‖L1(D) + CT,H‖∇y‖2

H0

)
≤ 1

2
‖y‖2

H2 + CT,H,Σ
(
‖∇y‖2

H0 + ‖y‖2
H0 + ‖FH(t)‖L1(D)

)
,

which, together with (2.12), implies (2.13). �
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2.3. A Tightness Criterion. In this section we establish a tightness criterion, which
is a version of a corresponding result in [196, Lemma 2.7]. As the case of periodic
boundary conditions can be treated in the same way, we will focus on the case of the full
space R3.

Let D = R3. We endow the space H0
loc of locally L2-integrable and divergence-free

vector fields with the following Fréchet metric: for y, z ∈ H0
loc

ρ(y, z) :=
∑
m∈N

2−m

([ˆ
|x|≤m

|y(x)− z(x)|2dx

]1/2

∧ 1

)
.

Then the space (H0
loc, ρ) is a Polish space and H0 ⊂ H0

loc.
Now set X := C(R+;H0

loc) and endow it with the metric

ρX (y, z) :=
∞∑
m=1

2−m

(
sup
t∈[0,m]

ρ(y(t), z(t)) ∧ 1

)
.

Similar to the considerations in the proof of Chapter II, Theorem 2.8, we fix a complete
orthonormal basis E := {ek | k ∈ N} ⊂ V of H1 such that span{E} is a dense subset
of H3 and - in the case D = T3 - such that it is also an orthogonal basis of H0. Given
y ∈ H0, z ∈ H2, the inner product 〈y, z〉H1 is understood in the generalised sense:

(2.14) 〈y, z〉H1 = 〈y, (I −∆)z〉H0 .

This works in accordance to our choice of evolution triple

H2 ⊂ H1 ⊂ H0.

The next lemma provides conditions for a set of X to be relatively compact, similar to
the classical theorem of Arzelá and Ascoli.

Lemma 2.6 (Compactness in X ). Let K ⊂ X satisfy the following conditions: for
every T > 0

(i) supy∈K sups∈[0,T ] ‖y(s)‖H1 <∞,
(ii) limδ→0 supy∈K sups,t∈[0,T ],|t−s|<δ |〈y(t)− y(s), e〉H1| = 0 for all e ∈ E.

Then K is relatively compact in X .

Proof. We follow the proof of [196, Lemma 2.6]. It suffices to prove that K is
relatively compact in C([0, T ];H0

loc) for every T > 0. Then for T = 1, we can find

a convergent subsequence (y
(1)
n )n → y(1) in C([0, 1];H0

loc). This sequence then has a
subsequence converging in C([0, 2];H0

loc) to y(2). By uniqueness of limits, we find that
y(2)|[0,1] = y(1). Continuing inductively, we find a function ȳ ∈ C(R+;H0

loc) by defining

ȳ(t) := y(m)(t) for t ∈ [0,m]. The diagonal sequence {y(m)
m | m ∈ N} ⊂ K then converges

to ȳ in X .
Thus we fix a T > 0 in the following. Let {yn | n ∈ N} be any sequence in K. For

e ∈ E , define

Ge
n(t) := 〈yn(t), e〉H1 (= 〈yn(t), (I −∆)e〉H0) .

The two assumptions immediately yield that the sequence of functions {t 7→ Ge
n(t) | n ∈

N} is uniformly bounded and equicontinuous on [0, T ]. By the Arzelà-Ascoli theorem, we
can find a subsequence (Ge

nk
) and a continuous function Ge such that

lim
k→∞

sup
t∈[0,T ]

|Ge
nk

(t)−Ge(t)| = 0.
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Since E is a countable set, we enumerate it as {en | n ∈ N} and apply the above observation
to e1 to find (Ge1

nk
) converging uniformly to Ge1 .

We take the associated (ynk)k ⊂ K and apply the same procedure with e2 to find a
subsequence (ynkl )l such that (Gei

nkl
) converges uniformly to Gei , i = 1, 2. We continue

again inductively and consider the diagonal sequence, which we denote by (yn)n such that
for every e ∈ E

lim
n→∞

sup
t∈[0,T ]

|Ge
n(t)−Ge(t)| = 0.

On the other hand, by Assumption (i), for every t, the sequence {yn(t) | n ∈ N} is bounded
in H1. By the Eberlein-Šmuljan theorem (cf. [248, Theorem 21.D, p. 255]), closed balls
in H1 are weakly compact and thus there is a function y ∈ L∞([0, T ];H1) such that for
any e ∈ E

lim
n→∞

sup
t∈[0,T ]

|〈yn(t)− y(t), e〉H1| = 0.

By definition of E , we can conclude that for all z ∈ H1

lim
n→∞

sup
t∈[0,T ]

|〈yn(t)− y(t), z〉H1 | = 0.

For z̃ ∈ H0, we have (I −∆)−1z̃ ∈ H2 ⊂ H1 and thus we also find

lim
n→∞

sup
t∈[0,T ]

|〈yn(t)− y(t), z̃〉H0| = lim
n→∞

sup
t∈[0,T ]

|〈yn(t)− y(t), (I −∆)−1z̃〉H1| = 0.

Finally, using the Helmholtz-Weyl decomposition for both components v, B, we find that
even for z ∈ L2

(2.15) lim
n→∞

sup
t∈[0,T ]

|〈yn(t)− y(t), z〉L2| = 0.

We use this to show the convergence

lim
n→∞

sup
t∈[0,T ]

ρ(yn(t), y(t)) = 0,

which, by definition of ρ, follows if we can show that for any m ∈ N

(2.16) lim
n→∞

sup
t∈[0,T ]

ˆ

{|x|≤m}

|yn(t)− y(t)|2dx = 0.

To this end, recall first the following Friedrich’s inequality (see e.g. [141] and Chapter II,
Equation (2.22)): let G ⊂ R3 be a bounded set. Then for all ε > 0 there is a Kε ∈ N and
functions hεi ∈ L2(G), i = 1, . . . , Kε such that for all w ∈ W 1,2

0 (G;R3)×W 1,2
0 (G;R3)

ˆ
G

|w(x)|2dx ≤
Kε∑
i=1

(ˆ
G

w(x)hεi (x)dx

)2

+ ε

ˆ
G

|∇w(x)|2dx.

Fix an ε > 0. We choose G := {|x| ≤ m} ⊂ R3, wn := ζm(yn(t)− y(t)) where 0 ≤ ζm ≤ 1
is a smooth cutoff function such that supp ζm ⊂ G and ζm ≡ 1 on an open set G′ ⊂⊂ G.
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We find, similar to the calculations in the proof of Chapter II, Theorem 2.8, thatˆ

{|x|≤m}

|yn(t)− y(t)|2dx

≤
Kε∑
i=1

(〈yn(t)− y(t), ζm · hεi 〉L2)2 + ε

ˆ
G

|[∇ζm](yn − y)(t) + ζm∇(yn − y)(t)|2dx

≤
Kε∑
i=1

(〈yn(t)− y(t), ζm · hεi 〉L2)2

+ 2ε
(
‖∇ζm‖2

L∞ ∨ ‖ζm‖2
L∞

) ˆ
R3

|yn(t)− y(t)|2 + |∇(yn(t)− y(t))|2dx

=
Kε∑
i=1

(〈yn(t)− y(t), ζm · hεi 〉L2)2 + 2ε
(
‖∇ζm‖2

L∞ ∨ ‖ζm‖2
L∞

)
‖yn(t)− y(t)‖2

H1

≤
Kε∑
i=1

(〈yn(t)− y(t), ζm · hεi 〉L2)2 + 2ε
(
‖∇ζm‖2

L∞ ∨ ‖ζm‖2
L∞

)
CT ,

where we used Assumption (i). Thus, by (2.15)

lim
n→∞

sup
t∈[0,T ]

ˆ

{|x|≤m}

|yn(t)− y(t)|2dx ≤ 2ε
(
‖∇ζm‖2

L∞ ∨ ‖ζm‖2
L∞

)
CT ,

which, since ε > 0 was arbitrary, implies (2.16) and concludes the proof. �

This compactness statement can be turned into a tightness condition, as we demon-
strate in the next lemma.

Lemma 2.7 (Tightness in X ). Let (µn)n∈N be a family of probability measures on
(X ,B(X )) and assume that

(i) For all T > 0

lim
R→∞

sup
n∈N

µn

{
y ∈ X | sup

s∈[0,T ]

‖y(s)‖H1 > R

}
= 0.

(ii) For all e ∈ E and any ε, T > 0

lim
δ↓0

sup
n∈N

µn

{
y ∈ X | sup

s,t∈[0,T ],|s−t|≤δ
|〈y(t)− y(s), e〉H1| > ε

}
= 0.

Then (µn)n∈N is tight on (X ,B(X )).

Proof. Fix η > 0. For any given l ∈ N, Assumption (i) guarantees that for Rl > 0
sufficiently large

sup
n∈N

µn

{
y ∈ X | sup

s∈[0,l]

‖y(s)‖H1 > Rl

}
≤ η

2l
.

For any k, l ∈ N, and ei ∈ E , Assumption (ii) guarantees that for δk,i,l > 0 sufficiently
small

sup
n∈N

µn

{
y ∈ X | sup

s,t∈[0,l],|s−t|≤δk,i,l
|〈y(t)− y(s), ei〉H1| > 1

k

}
≤ η

2k+i+l
.
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Now we set

K1 :=
⋂
l∈N

{
y ∈ X : sup

s∈[0,l]

‖y(s)‖H1 ≤ Rl

}
,

K2 :=
⋂

k,i,l∈N

{
y ∈ X | sup

s,t∈[0,l],|s−t|≤δk,i,l
|〈y(t)− y(s), ei〉H1| ≤ 1

k

}
.

The set K := K1 ∩ K2 is relatively compact by Lemma 2.6 and hence the closure K̄ is
compact. Then, using the definitions of the sets K1, K2, we find

µn(K̄c) ≤ µn(Kc) ≤ µn(Kc
1) + µn(Kc

2) ≤
∞∑
l=1

η

2l
+

∞∑
k,i,l=1

η

2k+i+l
≤ η.

Since η > 0 was arbitrary, we conclude that the sequence (µn)n∈N is tight on (X ,B(X )).
�

3. Existence and Uniqueness of Strong Solutions

In this section, we prove the main results of this chapter, namely that there exists
a unique strong solution to the TMHD equations. After defining the notions of weak
solution, strong solutions and unique strong solution and stating the celebrated Yamada-
Watanabe theorem, we prove that pathwise uniqueness holds for the STMHD equations.
In proving the existence of a strong solution, we employ the classical Faedo-Galerkin
approximation scheme and show existence of a weak solution via the solution of the
corresponding martingale problems. Together with the pathwise uniqueness, the Yamada-
Watanabe theorem implies existence of a unique strong solution.

3.1. Weak and Strong Solutions. For a metric space U , we denote the set of all
probability measures on U by P(U).

Definition 3.1. Equation (2.4) is said to possess a weak solution with initial law
ϑ ∈ P(H1) if there exists a stochastic basis (Ω,F , P, (Ft)t≥0), an H1-valued, (Ft)t-adapted
process y and two independent infinite sequences of independent standard (Ft)-Brownian

motions

{
Wk(t) =

(
W k(t)
W̄ k(t)

)
| t ≥ 0, k ∈ N

}
such that

(i) y(0) has law ϑ in H1;
(ii) For P -a.e. ω ∈ Ω and every T > 0, y(·, ω) ∈ C([0, T ];H1) ∩ L2([0, T ];H2);

(iii) it holds that in H0

y(t) = y0 +

ˆ t

0

[A(y(t)) + Pf(t, y(t))]dt+
∞∑
k=1

ˆ t

0

Bk(t, y(t))dWk
t ,

for all t ≥ 0, P -a.s.

The solution is denoted by (Ω,F , P, (Ft)t≥0 ;W ; y).

Remark 3.2. Under the Assumptions (H1)–(H3) in this section, the above integrals
are well-defined by Equation (2.5).

For weak solutions, there are several notions of uniqueness. In this work, we are
concerned mostly with pathwise uniqueness.
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Definition 3.3. We say that pathwise uniqueness holds for Equation (2.4) if, when-
ever we are given two weak solutions on the same stochastic basis with the same Brownian
motion,

(Ω,F , P, (Ft)t≥0;W ; y), (Ω,F , P, (Ft)t≥0;W ; y′),

the condition P{y(0) = y′(0)} = 1 implies P{y(t) = y′(t),∀t ≥ 0} = 1.

The following proposition links existence of weak solutions to existence of a solution
to a corresponding martingale problem.

Proposition 3.4. Let E and X be given as in Section 2.3. For ϑ ∈ P(H1), the
following are equivalent:

(i) There exists a weak solution to Equation (2.4) with initial law ϑ;
(ii) There exists a measure Pϑ ∈ P(X ) with the following property: for Pϑ-almost all

y ∈ X and any T > 0, the real-valued process defined by

(3.1) y ∈ L∞([0, T ];H1) ∩ L2([0, T ];H2),

and for any ϕ ∈ C∞0 (R) and any e ∈ E
Mϕ

e (t, y) := ϕ(〈y(t), e〉H1)− ϕ(〈y(0), e〉H1)

−
ˆ t

0

ϕ′(〈y(s), e〉H1) · 〈A(y(s)), e〉H1ds

−
ˆ t

0

ϕ′(〈y(s), e〉H1) · 〈f(s, y(s)), e〉H1ds

− 1

2

ˆ t

0

ϕ′′(〈y(s), e〉H1) · ‖〈B(s, y(s)), e‖`2ds

is a continuous local Pϑ-martingale with respect to (Bt(X ))t, where Bt(X ) denotes
the sub σ-algebra of X up to time t.

Proof. We follow the proof of [196], Section 6.1, pp. 257 ff.
(i)⇒(ii) follows from Itô’s formula. For (ii)⇒(i), we consider the e-th “component”

Me(t, y) := 〈(y(t)− y(0)), e〉H1 −
ˆ t

0

〈A(y(s)), e〉H1ds−
ˆ t

0

〈f(s, y(s)), e〉H1ds.

Then by [191, Chapter VII, Section 2, (2.2) Proposition, p. 295], (Me(t, y))t≥0 is a
continuous local Pϑ-martingale with respect to Bt(X ), and its quadratic variation process
is given by

[Me](t, y) =

ˆ t

0

‖〈B(s, y(s)), e〉H1‖2
`2ds.

Now we consider the process

(3.2) M(t, y) :=
∞∑
j=1

Mej(t, y)ej.

As it involves a limit, we need to show that it is well-defined. More precisely, we show
that t 7→M(t, y) is an H1-valued continuous local Pϑ-martingale with respect to (Bt(X ))t.
To this end, let R > 0 and define the stopping time

τR := τR(y) := inf{t ≥ 0 |
ˆ t

0

‖B(s, y(s))‖2
L2(`2×`2;H1)ds ≥ R}.
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By (2.13), (3.1) and Assumption (H3), we find for Pϑ-almost every y ∈ X that

ˆ T

0

‖B(s, y(s))‖2
L2(`2×`2;H1)ds ≤

ˆ T

0

1

2
‖y(s)‖2

H2 + CT,H‖y(s)‖2
H1 + C‖FH(s)‖L1(D)ds

≤ 1

2
‖y‖L2([0,T ];H2) + TCT,H‖y‖2

L∞([0,T ];H1) + C‖FH‖L1([0,T ]×D) <∞,

and therefore we have that (τR(y))R is a localising sequence for the local martingale, i.e.

τR(y) ↑ ∞, Pϑ − a.a. y, as R→∞.

Now we define the approximations

MR,n(t, y) :=
n∑
j=1

Mej(t ∧ τR, y)ej.

As a finite sum of martingales, (MR,n(t, y))t is an H1-valued continuous martingale with
square-variation (some authors use the terminology tensor-quadratic process, cf. [176, pp.
11-13])

�MR,n �H1 (t, y) =
n∑

i,j=1

[Mei ,Mej ](t ∧ τR, y) · ei ⊗ ej

=
n∑

i,j=1

ˆ t∧τR

0

〈〈B(s, y(s)), ei〉H1 , 〈B(s, y(s)), ej〉H1〉`2 · ei ⊗ ejds.

Burkholder’s inequality (cf. [172, Theorem 1.1]) applied to the H1-valued martingale
Nt := MR,n(t, y)−MR,m(t, y) implies that for any T > 0

EPϑ
[

sup
t∈[0,T ]

‖MR,n(t, y)−MR,m(t, y)‖2
H1

]
≤ CEPϑ

[
< MR,n −MR,m > (T, y)

]
= CEPϑ

[
Tr �MR,n −MR,m �H1 (T, y)

]
= CEPϑ

[
Tr �

n∑
j=m

Mej(t ∧ τR, y)ej �H1 (T, y)

]

= CEPϑ

 n∑
i,j=m

Tr

T∧τRˆ

0

(
∞∑
k=1

〈Bk(s, y(s)), ei〉H1〈Bk(s, y(s)), ej〉H1

)
· (ei ⊗ ej) ds


= CEPϑ

∑
el∈E

n∑
i,j=m

T∧τRˆ

0

(
∞∑
k=1

〈Bk(s, y(s)), ei〉H1 , 〈Bk(s, y(s)), ej〉H1

)
〈(ei ⊗ ej) el, el〉H1 ds


= CEPϑ

∑
el∈E

n∑
i,j=m

T∧τRˆ

0

(
∞∑
k=1

〈Bk(s, y(s)), ei〉H1 , 〈Bk(s, y(s)), ej〉H1

)
δj,lδi,lds


= C

n∑
j=m

EPϑ

 T∧τRˆ

0

‖〈B(s, y(s)), ej〉H1‖2
`2ds

→ 0,
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as n,m→∞. Here we have used the equality

E [< M >t] = E [Tr �M �t]

for Hilbert space-valued martingales, cf. [176, p. 9 and Equation (2.3.7)]. This proves con-
vergence of the series of (3.2) in C([0, T ];H1), Pϑ-a.s. and hence, MR(t, y) := M(t∧τR, y)
is an H1-valued continuous square-integrable martingale with tensor-quadratic process

�MR �H1 (t, y) =
∞∑

i,j=1

[Mei ,Mej ](t ∧ τR, y) · ei ⊗ ej

=
∞∑

i,j=1

ˆ t∧τR

0

〈〈B(s, y(s)), ei〉H1 , 〈B(s, y(s)), ej〉H1〉`2 · ei ⊗ ejds.

Letting R →∞, we obtain that M(t, y) is an H1-valued continuous local martingale. In
particular, we find that the following semimartingale representation holds in H0:

y(t) = y(0) +

ˆ t

0

A(y(s))ds+

ˆ t

0

f(s, y(s))ds+M(t, y), Pϑ − a.s.

Now, applying Itô’s formula to ‖y(t)‖2
H1 , we find that t 7→ ‖y(t)‖2

H1 and hence also
t 7→ ‖y(t)‖H1 are Pϑ-a.s. continuous functions. Considering the evolution triple

H2 ⊂ H1 ⊂ H0,

with the semimartingale representation of y(t) from above, we see that t 7→ y(t) is Pϑ-
almost surely continuous in H0 and hence weakly continuous in H1. By [248, Proposition
21.23 (d), p. 258], weak continuity and continuity of the norm imply strong continuity in
H1, thus

Pϑ(C([0, T ];H1)) = 1.

As any continuous martingale can be represented as the stochastic integral of some Brow-
nian motion W (by means of the martingale representation theorem, applied on the
space H1, cf. [52, Theorem 8.2, p. 220 f.]), we get the existence of a weak solution
(X ,B(X ), Pϑ, (Bt(X ))t≥0 ;W ; y). �

To be able to define the notion of strong solutions to Equation (2.4), we need a
canonical realisation of an infinite sequence of independent standard Brownian motions
on a Polish space. To this end, consider the space C(R+,R) of continuous functions on
R+ with the metric

ρ̃(w,w′) :=
∞∑
k=1

2−k

(
sup
t∈[0,k]

|w(t)− w′(t)| ∧ 1

)
.

We define the product space W :=
∞∏
j=1

C(R+;R) and endow it with the metric

ρW(w,w′) :=
∞∑
j=1

2−j
(
ρ̃(wj, w′j) ∧ 1

)
, w = (w1, w2, . . .), w′ = (w′1, w′2, . . .).

The space (W, ρW) is a Polish space. We denote the σ-algebra up to time t by Bt(W) ⊂
B(W) and endow (W,B(W)) with the Wiener measure P such that the coordinate process

w(t) :=
(
w1(t), w2(t), . . .

)
is an infinite sequence of independent standard (Bt(W))t-Brownian motions on the prob-
ability space (W,B(W),P).
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To cater for the two noise terms present in the stochastic MHD equations, we take two
copies of W and take their product W := W×W, with the metric

ρW ((w, w̄), (w′, w̄′)) := ρW(w,w′) + ρW(w̄, w̄′).

Then (W, ρW) is also a Polish space. In the same way as above, we introduce the filtration
Bt(W) ⊂ B(W), and endow (W,B(W)) with the product P := P⊗ P of the two Wiener
measures. Then the coordinate process

W(t) :=

(
W (t)
W̄ (t)

)
consists of two independent infinite sequences of independent standard Brownian motions.
For simplicity, in the following we will sometimes refer to the process W as a Brownian
motion.

Now consider the space of continuous, H1-valued paths that are square-integrable in
time with values in H2, B := C(R+;H1) ∩ L2

loc(R+;H2) with the metric

ρB(y, y′) :=
∑
k∈N

2−k

 sup
t∈[0,k]

‖y(t)− y′(t)‖H1 +

kˆ

0

‖y(t)− y′(t)‖2
H2dt

 ∧ 1.

The σ-algebra up to time t of this space is denoted by Bt(B) ⊂ B(B). For any measure
space (S,S, λ), we denote the completion of the σ-algebra S with respect to the measure
λ by S̄λ.

Definition 3.5. Let (Ω,F , P, (Ft)t≥0 ;W ; y) be a weak solution of Equation (2.4) with

initial distribution ϑ ∈ P(H1). If there exists a B(H1)× B(W)
ϑ⊗P

/B(B)-measurable
function Fϑ : H1 ×W→ B such that

(i) For every t > 0, Fϑ is B̂t/Bt(B)-measurable, where B̂t := B(H1)× Bt(W)
ϑ⊗P

,
(ii) y(·) = Fϑ(y(0),W(·)), P -a.s.,

then we call (W , y) a strong solution.

Remark 3.6. The function Fϑ is a “machine” that turns an initial value y0 ∈ H1 and
a Brownian motion W ∈ W into a solution via y = Fϑ(y0,W). The first property of Fϑ
is a type of adaptedness.

Our next definition serves the purpose to clarify what we mean by a unique solution.

Definition 3.7. Equation (2.4) is said to have a unique strong solution associated
to ϑ ∈ P(H1) if there exists a function Fϑ : H1 ×W → B as in Definition 3.5 such that
also the following two conditions are satisfied:

(i) for any two independent copies of infinite sequence of independent standard Brow-
nian motions {W(t) | t ≥ 0} on the stochastic basis (Ω,F , P, (Ft)t≥0) and any
H1-valued, F0-measurable random variable y0 with distribution P ◦ y−1

0 = ϑ,

(Ω,F , P, (Ft)t≥0 ;W ;Fϑ(y0,W(·))) is a weak solution of Equation (2.4);

(ii) for any weak solution (Ω,F , P, (Ft)t≥0 ;W ; y) of Equation (2.4) with initial law
ϑ,

y(·) = Fϑ(y(0),W(·)), P − a.s.

The following Yamada-Watanabe theorem shows the relationship between the different
definitions introduced in this section and gives a way to show existence of a unique strong
solution to our equation.
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Theorem 3.8 (Yamada-Watanabe). If there exists a weak solution to Equation (2.4)
and pathwise uniqueness holds, then there exists a unique strong solution to Equation
(2.4).

Proof. We want to apply the results of M. Röckner, B. Schmuland and X.C. Zhang
[193, Theorem 2.1]. In the setting of that paper, we have V := H2, H := H1, E := H0

such that V ⊂ H ⊂ E. Furthermore, U := `2 × `2. We define the operators

b(t, Y )(x) := A(Y (t, x)) + f(t, x, Y (t, x)), t ∈ [0, T ], Y ∈ B,

σ(t, Y )(x) := B(t, x, Y (t, x)), t ∈ [0, T ], Y ∈ B,

so our equation assumes the form

dY = b(t, Y )dt+ σ(t, Y )dW(t), t ∈ R+.

Then one can easily check that our assumptions imply the assumptions on the coefficients
b and σ in [193]. In particular, the integrability conditions

ˆ T

0

‖b(s, Y (ω))‖H0ds+

ˆ T

0

‖σ(s, Y (ω))‖2
L2(`2×`2;H1)ds <∞, P − a.e. ω ∈ Ω

follow from Equation (2.5) of Lemma 2.3, and Equation (2.13) in Lemma 2.5. Therefore
we can apply the Yamada-Watanabe theorem [193, Theorem 2.1], which concludes the
proof. �

3.2. Pathwise Uniqueness. In this section we prove that pathwise uniqueness holds
for the tamed MHD equations, following the ideas of [196].

Theorem 3.9 (pathwise uniqueness). Let the Assumptions (H1)–(H3) be satisfied.
Then pathwise uniqueness holds for (2.4).

Proof. Let y1, y2 belong to two weak solutions defined on the same stochastic basis
(Ω,F , P, (Ft)t≥0) and with the same Brownian motion W and same initial condition y0.
Let T > 0, R > 0 and define the stopping time

τR := inf{t ∈ [0, T ] | ‖y1(t)‖H1 ∨ ‖y2(t)‖H1 ≥ R} ∧ T.

By Assumption (ii) of the definition of a weak solution, we know that for P -a.e. ω
yi(·, ω) ∈ C([0, T ];H1), i = 1, 2, and thus

τR ↑ T, as R→∞, P − a.s.

So τR is a localising sequence. Now we set z(t) := y1(t)− y2(t). z satisfies the equation

dz(t) = [A(y1(t))−A(y2(t)) + P (f(t, y1(t))− f(t, y2(t)))] dt

+
∞∑
k=1

(
Bk(t, y1(t))− Bk(t, y2(t))dWk

t

)
,

z(0) = 0.
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Thus by Itô’s formula for ‖z‖2
H0 , we find (noting the self-adjointness of the projection P

with respect to 〈·, ·〉H0 = 〈·, ·〉L2)

‖z(t)‖2
H0 = 2

ˆ t

0

〈A(y1(s))−A(y2(s)), z(s)〉H0ds

+ 2

ˆ t

0

〈f(s, y1(s))− f(s, y2(s)), z(s)〉H0ds

+ 2
∞∑
k=1

ˆ t

0

〈Bk(s, y1(s))− Bk(s, y2(s)), z(s)〉H0dWk
s

+
∞∑
k=1

ˆ t

0

‖Bk(s, y1(s))− Bk(s, y2(s))‖2
H0ds

=: I1(t) + I2(t) + I3(t) + I4(t).

(3.3)

We stop with τR and estimate each term separately.
The first term I1(t ∧ τR) can be rewritten and estimated using integration by parts

and Young’s inequality:

I1(t ∧ τR) = −2

ˆ t∧τR

0

‖∇z(s)‖2
H0ds

+ 2

ˆ t∧τR

0

〈(
(v1 ⊗ v1 − v2 ⊗ v2)− (B1 ⊗B1 −B2 ⊗B2)
(v1 ⊗B1 − v2 ⊗B2)− (B1 ⊗ v1 −B2 ⊗ v2)

)
,∇z

〉
L2

ds

− 2

ˆ t∧τR

0

〈gN(y1)y1 − gN(y2)y2, z〉L2 ds

≤ −
ˆ t∧τR

0

‖∇z(s)‖2
H0ds

+ 2

ˆ t∧τR

0

[
‖v1 ⊗ v1 − v2 ⊗ v2‖2

L2 + ‖B1 ⊗B1 −B2 ⊗B2‖2
L2

+ ‖v1 ⊗B1 − v2 ⊗B2‖2
L2 + ‖B1 ⊗ v1 −B2 ⊗ v2‖2

L2

]
ds

− 2

t∧τRˆ

0

〈gN(y1)y1 − gN(y2)y2, z〉L2 ds =: J1(t ∧ τR) + J2(t ∧ τR) + J3(t ∧ τR).

The terms of J2(t ∧ τR) are of the general form

‖θ1 ⊗ψ1 − θ2 ⊗ψ2‖2
L2 , θi,ψi ∈ {v,B}, i = 1, 2,

and can be estimated as follows:

‖θ1 ⊗ψ1 − θ2 ⊗ψ2‖2
L2

= ‖θ1 ⊗ (ψ1 −ψ2) + (θ1 − θ2)⊗ψ2‖2
L2

≤ 2
(
‖θ1‖2

L4‖ψ1 −ψ2‖2
L4 + ‖θ1 − θ2‖2

L4‖ψ2‖2
L4

)
≤ 2C2

1,4

(
‖θ1‖2

H1‖ψ1 −ψ2‖3/2

H1 ‖ψ1 −ψ2‖1/2

H0 + ‖θ1 − θ2‖3/2

H1 ‖θ1 − θ2‖1/2

H0 ‖ψ2‖2
H1

)
≤ 2C2

1,4R
2
(
‖ψ1 −ψ2‖3/2

H1 ‖ψ1 −ψ2‖1/2

H0 + ‖θ1 − θ2‖3/2

H1 ‖θ1 − θ2‖1/2

H0

)
≤ 1

16
‖ψ1 −ψ2‖2

H1 +
1

16
‖θ1 − θ2‖2

H1 + CR
(
‖ψ1 −ψ2‖2

H0 + ‖θ1 − θ2‖2
H0

)
.
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Counting all possible combinations of θ and ψ and combining the v and B-norms into
the corresponding norms for y, we find that

J2(t ∧ τR) ≤ 1

4

ˆ t

0

‖∇z(s)‖2
H0ds+ CR

ˆ t

0

‖z(s)‖2
H0ds.

Since |gN(r) − gN(r′)| ≤ 2|r − r′|, we see, using a short calculation similar to the one in
Lemma 2.4 as well as the Sobolev embedding from above and Young’s inequality, that

J3(t ∧ τR) ≤ 8

t∧τRˆ

0

‖|z| · (|y1|+ |y2|)‖2
L2 ds ≤ 16

t∧τRˆ

0

‖z‖2
L4

(
‖y1‖2

L4 + ‖y2‖2
L4

)
ds

≤ 16C2
1,4

t∧τRˆ

0

‖∇z‖3/2

H0 ‖z‖1/2

H0

(
‖y1‖2

H1 + ‖y2‖2
H1

)
ds

≤ 16C2
1,4R

2

t∧τRˆ

0

‖∇z‖3/2

H0 ‖z‖1/2

H0 ds

≤ 1

4

t∧τRˆ

0

‖∇z‖2
H0ds+ CR

t∧τRˆ

0

‖z‖2
H0ds.

Thus, altogether we find that

I1(t ∧ τR) ≤ −1

2

t∧τRˆ

0

‖∇z(s)‖2
H0ds+ CR

t∧τRˆ

0

‖z(s)‖2
H0ds.

By Cauchy-Schwarz-Buniakowski and Assumption (H1), we find for I2(t ∧ τR)

2

ˆ t

0

〈f(s, y1(s))− f(s, y2(s)), z(s)〉H0ds ≤ CT,F

ˆ t∧τR

0

‖z(s)‖2
H0ds.

The term I3(t ∧ τR) is a martingale and thus killed upon taking expectations.
For I4(t ∧ τR) we have by Assumptions (H2) and (H3)

I4(t ∧ τR) =
∞∑
k=1

ˆ t∧τR

0

‖Bk(s, y1(s))− Bk(s, y2(s))‖2
H0ds

=
∞∑
k=1

ˆ t∧τR

0

‖P
(
(Σk · ∇)z(s)

)
+ P

(
Hk(s, y1(s))−Hk(s, y2(s))

)
‖2
H0ds

≤ sup
t∈[0,T ],x∈D

‖Σ(t, x)‖2
`2

ˆ t∧τR

0

‖∇z(s)‖2
H0ds+ CT,H

ˆ t∧τR

0

‖z(s)‖2
H0ds

≤ 1

4

ˆ t∧τR

0

‖∇z(s)‖2
H0ds+ CT,H

ˆ t∧τR

0

‖z(s)‖2
H0ds.
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Hence, if we stop (3.3) with τR and take expectations, we find, using the previous esti-
mates, that

E
[
‖z(t ∧ τR)‖2

H0

]
≤ CR,TE

 t∧τRˆ

0

‖z(s)‖2
H0ds


≤ CR,T,f,H

tˆ

0

E
[
‖z(s ∧ τR)‖2

H0

]
ds.

Applying Gronwall’s lemma yields that for any t ∈ [0, T ]

E
[
‖z(t ∧ τR)‖2

H0

]
= 0.

Finally, we employ Fatou’s lemma to find

E
[
‖z(t)‖2

H0

]
≤ lim inf

R→∞
E
[
‖z(t ∧ τR)‖2

H0

]
= 0.

Thus, z(t) = 0 for all t ≥ 0, P -a.s., i.e. pathwise uniqueness holds. �

3.3. Existence of Martingale Solutions. The main result of this section is the
following

Theorem 3.10. Under the Assumptions (H1)–(H3), for any initial law ϑ ∈ P(H1),
there exists a weak solution for Equation (2.4) in the sense of Definition 3.1.

The proof proceeds in the usual fashion, anaologously to the proof of [196, Theorem
3.8] by considering Faedo-Galerkin approximations of our equation. To be precise, fix a
stochastic basis (Ω,F , P, (Ft)t≥0) and two independent infinite sequences of independent

standard (Ft)t-Brownian motions {Wk(t) | t ≥ 0, k ∈ N} and an F0-measurable random
variable y0 with initial law ϑ ∈ P(H1).

The set E = {ei | i ∈ N} ⊂ V was chosen as a complete orthonormal basis of H1. We
consider the finite-dimensional subspaces

H1
n := span{ei | i = 1, . . . , n}

and consider the projections onto H1
n, i.e. for y ∈ H0, we define (recalling our convention

(2.14))

Πny :=
n∑
i=1

〈y, ei〉H1ei =
n∑
i=1

〈y, (I −∆)ei〉H0ei.

We want to study the following finite-dimensional stochastic ordinary differential equa-
tions in H1

n as approximations for our infinite-dimensional equation:{
dyn(t) = [ΠnA(yn(t)) + Πnf(t, yn(t))]dt+

∑
k ΠnBk(t, yn(t))dWk

t ,

yn(0) = Πny0.

Using the Lemmas 2.4 and 2.5, there exists a constant Cn,N such that for any y ∈ H1
n the

following growth conditions holds:

〈y,ΠnA(y) + Πnf(t, y)〉H1
n
≤ Cn,N

(
‖y‖2

H1
n

+ 1
)

‖ΠnB(t, y)‖`2×H1
n
≤ Cn,N

(
‖y‖2

H1
n

+ 1
)
.
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This can be seen as follows: by using linearity, the definition (2.2) of 〈A(y), ·〉H1 and
inequality (2.8) of Lemma 2.3 (where we drop all terms with negative sign)

〈y,ΠnA(y)〉H1
n

=

〈
y,

n∑
i=1

〈A(y), ei〉H1ei

〉
H1
n

= 〈A(y),
n∑
i=1

〈y, ei〉H1 ei〉H1

= 〈A(y), y〉H1 = 〈A(y), (I −∆)y〉H0

= 〈A(y), y〉H1 ≤ (2N + 1)‖∇y‖2
H0 + ‖y‖2

H0 ≤ 2N‖y‖2
H1
n
,

and similarly for the other terms.
Furthermore, our Assumptions (H1)–(H3) ensure that the maps

H1
n 3 y 7→ ΠnA(y) + Πnf(t, y) ∈ H1

n,

H1
n 3 y 7→ ΠnB(y) ∈ L2(`2 × `2;H1

n),

are locally Lipschitz continuous: by Equation (2.11)

‖Πn (A(y1)−A(y2)) ‖H1
n

=

∥∥∥∥∥
n∑
i=1

〈A(y1)−A(y2), (I −∆)ei〉H0ei

∥∥∥∥∥
H1
n

≤
n∑
i=1

|〈A(y1)−A(y2), ei〉H1| ‖ei‖H1
n
≤

n∑
i=1

Ci‖y1 − y2‖L2(Oi)

(
1 + ‖y1‖2

H1
n

+ ‖y2‖2
H1
n

)
,

where Oi := supp(ei), and similarly by Assumption (H1)

‖Πn (f(t, y1)− f(t, y2)) ‖H1
n
≤

n∑
i=1

|〈f(t, y1)− f(t, y2), (I −∆)ei〉H0 |‖ei‖H1
n

≤
n∑
i=1

CT,f‖(I −∆)ei‖H0
n
‖y1 − y2‖L2(Oi)‖ei‖H1

n
,

and by Assumption (H2) and (H3)

‖Πn (B(t, y1)− B(t, y2)) ‖L2(`2×`2;H1
n)

≤
n∑
i=1

‖〈(Σ · ∇)(y1 − y2) + (H(t, y1)−H(t, y2)), (I −∆)ei〉H0ei‖L2(`2×`2;H1
n)

≤
n∑
i=1

‖〈(Σ · ∇)(y1 − y2) + (H(t, y1)−H(t, y2)), (I −∆)ei〉H0‖`2‖ei‖H1
n

≤
n∑
i=1

(
sup

x∈D,t∈[0,T ]

‖Σ(t, x)‖`2 + CT,H

)
‖ei‖H2

n
‖ei‖H1

n
‖y1 − y2‖L2(Oi).

Therefore, we can employ the theory of stochastic (ordinary) differential equations (cf.
[167, Theorem 3.1.1, p. 56]) to find a unique (Ft)t-adapted process yn(t) such that P -a.s.
for all t ∈ [0, T ]

yn(t) = yn(0) +

ˆ t

0

ΠnA(yn(s))ds+

ˆ t

0

Πnf(s, yn(s))ds

+
∞∑
k=1

ˆ t

0

ΠnBk(s, yn(s))dWk
s ,

(3.4)
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and for any i ≤ n

〈yn(t), ei〉H1 = 〈yn(0), ei〉H1 +

tˆ

0

〈A(yn(s)), ei〉H1ds+

tˆ

0

〈f(s, yn(s)), ei〉H1 ds

+
∞∑
k=1

tˆ

0

〈Bk(s, yn(s)), ei〉H1 dWk
s .(3.5)

Our strategy now is as follows:

1. Prove uniform a priori estimates for yn.
2. Use these to prove tightness of the associated laws.
3. Use Skorokhod’s embedding theorem to translate the weak convergence from the

previous step to P -a.s. convergence of the random variables.
4. Prove uniform moment estimates for the terms of the associated martingale prob-

lem.
5. Show convergence in probability of the martingale problems.

We start with the a priori estimates.

Lemma 3.11 (a priori estimates). For any T > 0, there exists a constant CT,N,f,H,y0 >
0 such that for any n ∈ N

E

[
sup
t∈[0,T ]

‖yn(t)‖2
H1

]
+

ˆ T

0

E
[
‖yn(s)‖2

H2

]
ds+

ˆ T

0

E
[
‖∇|yn(s)|2‖2

L2

]
ds

≤ CT,N,f,H,y0 .

(3.6)

Furthermore, in the periodic case it holds that

(3.7)

ˆ t

0

E
[
‖yn(s)‖4

L4

]
ds ≤ CT,N,f,H,y0 .

Proof. We use Itô’s formula as well as Lemmas 2.3 and 2.5 to find

‖yn(t)‖2
H1 = ‖y0‖2

H1 + 2

ˆ t

0

〈A(yn(s)), yn(s)〉H1ds+ 2

ˆ t

0

〈f(s, yn(s)), yn(s)〉H1ds

+M(t) +

ˆ t

0

‖B(s, yn(s))‖2
L2(`2;H1)ds

≤ ‖y0‖2
H1 −

ˆ t

0

‖yn(s)‖2
H2 − 2

ˆ t

0

(
‖|vn| · |∇vn|‖2

L2 + ‖|Bn| · |∇Bn|‖2
L2

+ ‖|vn| · |∇Bn|‖2
L2 + ‖|Bn| · |∇vn|‖2

L2

)
ds(3.8)

+ 2

ˆ t

0

(2N + 1)‖∇yn(s)‖2
H0 + ‖yn(s)‖2

H0ds

+ 2

ˆ t

0

‖f(s, yn(s))‖H0‖yn(s)‖H2ds+M(t)

+

ˆ t

0

(
1

2
‖yn(s)‖2

H2 + CT,H‖yn(s)‖2
H1 + C‖FH(s)‖L1(D)

)
ds,

where the term M(t) is a continuous martingale and has the representation

M(t) := 2
∞∑
k=1

〈Bk(s, yn(s)), yn(s)〉H1dWk
s .
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Taking expectations in Equation (3.8) and applying Young’s inequality in the force term
thus gives

E‖yn(t)‖2
H1

+ 2

tˆ

0

E
[
‖|vn| · |∇vn|‖2

L2 + ‖|Bn| · |∇Bn|‖2
L2 + ‖|vn| · |∇Bn|‖2

L2 + ‖|Bn| · |∇vn|‖2
L2

]
ds

≤ E‖y0‖2
H1 −

1

4

ˆ t

0

‖yn(s)‖2
H2ds+ 2

ˆ t

0

(
(2N + 1)‖∇yn(s)‖2

H0 + ‖yn(s)‖2
H0

)
ds

+ 4

ˆ t

0

‖f(s, yn(s))‖2
H0ds+ CT,H

ˆ t

0

(
‖yn(s)‖2

H1 + C‖FH(s)‖L1(D)

)
ds

and therefore we find,

sup
t∈[0,T ]

E‖yn(t)‖2
H1 +

1

4

ˆ T

0

‖yn(s)‖2
H2ds

+ 2

T̂

0

E
[
‖|vn| · |∇vn|‖2

L2 + ‖|Bn| · |∇Bn|‖2
L2 + ‖|vn| · |∇Bn|‖2

L2 + ‖|Bn| · |∇vn|‖2
L2

]
ds

≤ E‖y0‖2
H1 + CT,H,N

ˆ T

0

sup
r∈[0,s]

E‖yn(r)‖2
H1ds+ CT,H,f .

Gronwall’s lemma then implies

sup
t∈[0,T ]

E‖yn(t)‖2
H1 +

ˆ T

0

‖yn(s)‖2
H2ds+

ˆ T

0

E
[
‖|vn| · |∇vn|‖2

L2

+ ‖|Bn| · |∇Bn|‖2
L2 + ‖|vn| · |∇Bn|‖2

L2 + ‖|Bn| · |∇vn|‖2
L2

]
ds

≤ CT,N,H,f,y0 .

(3.9)

To “exchange” expectation and supremum, we use the Burkholder-Davis-Gundy (BDG)
inequality (cf. [172], Theorem 1.1). More precisely, dropping the negative terms in (3.8),
taking suprema and expectations, applying (3.9) and then using the BDG inequality, we
find

E

[
sup
t∈[0,T ]

‖yn(t)‖2
H1

]
≤ E

[
sup
t∈[0,T ]

|M(t)|

]
+ CT,N,f,H,y0 ≤ CT,N,f,H,y0 + 3E

[
〈M〉1/2T

]

≤ CT,N,f,H,y0 + 6E

(ˆ T

0

∞∑
k=1

‖Bk(s, yn(s))‖2
H0‖yn(s)‖2

H2ds

)1/2


≤ CT,N,f,H,y0 + 6E

( sup
t∈[0,T ]

‖B(t, yn(t))‖2
L2(`2×`2;H0)

ˆ T

0

‖yn(s)‖2
H2ds

)1/2


≤ CT,N,f,H,y0 + εE

[
sup
t∈[0,T ]

‖B(t, yn(t))‖2
L2(`2×`2;H0)

]
+ Cε

ˆ T

0

‖yn(s)‖2
H2ds,

where we applied Young’s inequality in the last step.
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Now, an application of Lemma 2.5 as well as (3.9) yields

E

[
sup
t∈[0,T ]

‖yn(t)‖2
H1

]
≤ CT,N,f,H,y0,ε + εCTE

[
sup
t∈[0,T ]

‖yn(t)‖2
H1

]
,

which for small enough ε > 0 yields

E

[
sup
t∈[0,T ]

‖yn(t)‖2
H1

]
≤ CT,N,f,H,y0 .

Combining this with (3.9) yields the desired estimate.
In the periodic case, as E is also orthogonal in H0, we get an Itô formula for the

H0-norms as well and find upon taking expectations and using (2.7) of Lemma 2.3 as well
as Equation (3.6),

E‖yn(t)‖2
H0 = E‖y0‖2

H0 + 2

ˆ t

0

E〈A(yn(s)), yn(s)〉H0ds

+ 2

ˆ t

0

E〈f(s, yn(s)), yn(s)〉H0ds+

ˆ t

0

E‖B(s, yn(s))‖2
L2(`2×`2;H0)ds

≤ E‖y0‖2
H0 + 2

ˆ t

0

E
[
−‖∇yn(s)‖2

H0 − ‖yn(s)‖4
L4 + CN‖yn(s)‖2

H0

]
ds

+ 2

ˆ t

0

E
[
CT,F‖yn(s)‖2

H0 + ‖Ff (t)‖L1(D)

]
ds

+

ˆ t

0

E
[

1

2
‖yn(s)‖2

H1 + CT‖yn(s)‖2
H0 + ‖FH(t)‖L1(D)

]
ds

≤ −2

ˆ t

0

E
[
‖yn(s)‖4

L4

]
ds+ CT,N,F

ˆ t

0

E
[
‖yn(s)‖2

H0

]
ds

+ CT,N,f,H,y0 ,

and an application of Gronwall’s lemma implies (3.7). �

Next we want to prove tightness of the laws of the solutions to the approximate
equations (3.4). We recall the notation X := C(R+;H0

loc) from Section 2.3.

Lemma 3.12 (tightness). Let µn := P ◦ (yn)−1 be the law of yn in (X ,B(X )). Then
the family (µn)n∈N is tight on (X ,B(X )).

Proof. Let R > 0. We set

τnR := inf{t ≥ 0 | ‖yn(t)‖H1
n
≥ R}.

Then, using the Chebychev inequality as well as the a priori estimate (3.6), we find

sup
n∈N

P (τnR < T ) = sup
n∈N

P

(
sup
t∈[0,T ]

‖yn(t)‖H1
n
≥ R

)

≤ sup
n∈N

1

R2
E

[
sup
t∈[0,T ]

‖yn(t)‖2
H1
n

]
≤ CT,N,f,H,y0

R2
.

(3.10)
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For any q ≥ 2 and s, t ∈ [0, T ] and any e ∈ E (whose support we denote by O), we find
by using Equations (3.5), (2.9) as well as the BDG inequality (cf. [172], Theorem 1.1)

E [|〈yn(t ∧ τnR)− yn(s ∧ τnR), e〉H1|q]

≤ 3q−1

(
E

[∣∣∣∣∣
ˆ t∧τnR

s∧τnR
〈A(yn(r)), e〉H1dr

∣∣∣∣∣
q]

+ E

[∣∣∣∣∣
ˆ t∧τnR

s∧τnR
〈f(r, yn(r)), e〉H1dr

∣∣∣∣∣
q]

+ E

[∣∣∣∣∣
∞∑
k=1

ˆ t∧τnR

s∧τnR
〈Bk(r, yn(r)), e〉H1dWk

r

∣∣∣∣∣
q])

≤ Ce,q

(
E

[∣∣∣∣∣
ˆ t∧τnR

s∧τnR

(
1 + ‖yn‖3

L3(O)

)
dr

∣∣∣∣∣
q]

+ E

[∣∣∣∣∣
ˆ t∧τnR

s∧τnR
‖f(r, yn(r))‖H0dr

∣∣∣∣∣
q]

+ E

∣∣∣∣∣
ˆ t∧τnR

s∧τnR
‖B(r, yn(r))‖2

L2(`2×`2;H0)dr

∣∣∣∣∣
q/2
),

where we transferred all the spatial derivatives onto e via (2.14). Applying the Hölder
embedding L6(O) ⊂ L3(O) as well as the Sobolev embedding H1 ⊂ L6, Assumptions
(H1), (H3) and Equation (2.12), we can see that

E [|〈yn(t ∧ τnR)− yn(s ∧ τnR), e〉H1 |q]

≤ Ce,q,T

(
E

[∣∣∣∣∣
ˆ t∧τnR

s∧τnR

(
1 + sup

r∈[0,T ]

‖yn(r)‖3
H1

)
dr

∣∣∣∣∣
q]

+ E

[∣∣∣∣∣
ˆ t∧τnR

s∧τnR
‖yn(r)‖2

H1 + ‖Ff (r)‖L1(D)dr

∣∣∣∣∣
q]

+ E

∣∣∣∣∣
ˆ t∧τnR

s∧τnR
‖yn(r)‖2

H1 + ‖FH(r)‖L1(D)dr

∣∣∣∣∣
q/2
)

≤ Ce,q,T

{
E

[(
1 + sup

r∈[0,T∧τnR]

‖yn(r)‖3q
H1

)]
|t− s|q

+ E

[(
sup

r∈[0,T∧τnR]

‖yn(r)‖2q
H1 + ‖Ff‖qL∞([0,T ];L1(D))

)]
|t− s|q

+ E

[(
sup

r∈[0,T∧τnR]

‖yn(r)‖qH1 + ‖FH‖q/2L∞([0,T ];L1(D))

)]
|t− s|q/2

}

≤ Ce,q,T,RE

[(
1 + sup

r∈[0,T ]

‖yn(r)‖2
H1 + ‖Ff‖qL∞([0,T ];L1(D)) + ‖FH‖q/2L∞([0,T ];L1(D))

)]
|t− s|q/2

≤ Ce,q,T,R,f,H,N,y0|t− s|q/2,
where we have used in the penultimate step that q ≥ 2 as well as the definition of τnR
and hence that ‖yn(r)‖qH1 = ‖yn(r)‖q−2

H1 · ‖yn(r)‖2
H1 ≤ Rq−2‖yn(r)‖2

H1 and similarly for the
other terms. Finally, we have used the a priori estimate (3.6) in the last step.
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Thus by the Kolmogorov-Čentsov continuity criterion (e.g. in the version of [85, Theorem

3.1, p. 28 f.]) with parameters β = q/2
q

= 1/2, we find that for every T > 0 and

α ∈ (0, 1
2
− 1

q
)

E

[
sup

s,t∈[0,T ],|t−s|≤δ
|〈yn(t ∧ τnR)− yn(s ∧ τnR), e〉H1|q

]
≤ Ce,q,T,R,f,H,N,y0 · δα.

Therefore, for arbitrary ε > 0 and R > 0, we find using (3.10)

sup
n∈N

P

{
sup

s,t∈[0,T ],|t−s|≤δ
|〈yn(t)− yn(s), e〉H1| > ε

}

≤ sup
n∈N

P

{
sup

s,t∈[0,T ],|t−s|≤δ
|〈yn(t)− yn(s), e〉H1| > ε; τnR ≥ T

}
+ sup

n∈N
P {τnR < T}

≤ Ce,q,T,R,f,H,N,y0 · δα

εq
+
CT,N
R2

.

Letting first δ ↓ 0 and then R→∞, we find

(3.11) lim
δ↓0

sup
n∈N

P

{
sup

s,t∈[0,T ],|t−s|≤δ
|〈yn(t)− yn(s), e〉H1| > ε

}
= 0.

Thanks to (3.10) and (3.11), we can now invoke Lemma 2.6 to conclude that (µn)n∈N is a
tight family of probability measures on (X ,B(X )). �

The tightness implies the existence of a subsequence (which we again denote by
(µn)n∈N) that converges weakly to a measure µ ∈ P(X ).

Next we apply Skorokhod’s coupling theorem (cf. [125, Theorem 4.30, p. 79]) to infer
the existence of a probability space (Ω̃, F̃ , P̃ ) and X -valued random variables ỹn and ỹ
such that

(I) the law of ỹn is the same as that of yn for all n ∈ N, i.e. P̃ ◦ ỹ−1
n = µn;

(II) the convergence ỹn → ỹ holds in X , P̃ -a.s., and ỹ has law µ.

By Fatou’s lemma and the uniform (in n) a priori estimates (3.6), the same estimates
also hold for the limiting process: for every T > 0

EP̃
[

sup
t∈[0,T ]

‖ỹ(t)‖2
H1

]
≤ lim inf

n→∞
EP̃
[

sup
t∈[0,T ]

‖ỹn(t)‖2
H1

]

= lim inf
n→∞

E

[
sup
t∈[0,T ]

‖yn(t)‖2
H1

]
<∞,

(3.12)

as well as

ˆ T

0

EP̃
[
‖ỹ(s)‖2

H2

]
ds ≤ lim inf

n→∞

ˆ T

0

EP̃
[
‖ỹn(s)‖2

H2

]
ds

≤ lim inf
n→∞

ˆ T

0

E
[
‖yn(s)‖2

H2

]
ds <∞,

(3.13)
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and

T̂

0

EP̃
[
‖|ṽ| · |∇ṽ|‖2

L2 + ‖|B̃| · |∇B̃|‖2
L2 + ‖|ṽ| · |∇B̃|‖2

L2 + ‖|B̃| · |∇ṽ|‖2
L2

]
ds

≤ lim inf
n→∞

T̂

0

E
[
‖|vn| · |∇vn|‖2

L2 + ‖|Bn| · |∇Bn|‖2
L2 + ‖|vn| · |∇Bn|‖2

L2

+ ‖|Bn| · |∇vn|‖2
L2

]
ds

<∞.

(3.14)

In the periodic case D = T3, we additionally have

(3.15)

ˆ t

0

EP̃
[
‖ỹ(s)‖4

L4

]
ds ≤ lim inf

n→∞

ˆ t

0

E
[
‖yn(s)‖4

L4

]
ds <∞.

Next we want to study the martingale problem associated to our solutions ỹn and prove
that their limit solves a martingale problem as well, giving existence of a weak solution
to the TMHD equations. To this end, take any ϕ ∈ C∞c (R), e ∈ E , t ≥ 0, y ∈ X . We
define the following process:

Mϕ
e (t, y) := Iϕ1 (t, y)− Iϕ2 (t, y)− Iϕ3 (t, y)− Iϕ4 (t, y)− Iϕ5 (t, y),

where

Iϕ1 (t, y) := ϕ(〈y(t), e〉H1),

Iϕ2 (t, y) := ϕ(〈y(0), e〉H1),

Iϕ3 (t, y) :=

ˆ t

0

ϕ′(〈y(0), e〉H1) · 〈A(y(s)), e〉H1ds,

Iϕ4 (t, y) :=

ˆ t

0

ϕ′(〈y(0), e〉H1) · 〈f(s, y(s)), e〉H1ds,

Iϕ5 (t, y) :=
1

2

ˆ t

0

ϕ′′(〈y(0), e〉H1) · ‖〈B(s, y(s)), e〉H1‖2
`2ds.

Our aim now is to show that Mϕ
e (·, y) is a martingale with respect to the stochastic basis

(X ,B(X ), µ, (Bt(X ))t≥0), i.e. it solves the martingale problem. This implies the existence
of a weak solution.

Since e ∈ E ⊂ V , as noted before, it has compact support, i.e. there exists an m ∈ N
such that supp(e) ⊂ O := Bm(0) ⊂ R3.

We will use the following estimate below.

Lemma 3.13. For a function y = (v,B) such that |v||∇v| ∈ L2, |B||∇B| ∈ L2, it
holds that y ∈ L12 and

(3.16) ‖y‖4
L12 ≤ C

(
‖|v||∇v|‖2

L2 + ‖|B||∇B|‖2
L2

)
.

Proof. By the Gagliardo-Nirenberg-Sobolev inequality (cf. Chapter II, Equation
(2.5)) for scalar functions f ∈ W 1(R3)

‖f‖L6 ≤ C‖∇f‖L2 ,
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it follows that

‖|y|2‖2
L6 ≤ C‖∇|y|2‖2

L2 = ‖∇
(
|v|2 + |B|2

)
‖2
L2 = C

∥∥∥∥∥∥
(

3∑
i=1

∣∣∂i (|v|2 + |B|2
)∣∣2)1/2

∥∥∥∥∥∥
2

L2

= C

∥∥∥∥∥∥∥
 3∑

i=1

∣∣∣∣∣
3∑
j=1

∂i
(
v2
j +B2

j

)∣∣∣∣∣
2
1/2

∥∥∥∥∥∥∥
2

L2

= 4C

ˆ 3∑
i=1

∣∣∣∣∣
3∑
j=1

(vj∂ivj +Bj∂iBj)

∣∣∣∣∣
2

dx

≤ 24C

ˆ 3∑
j=1

(
|vj|2

3∑
i=1

|∂ivj|2 + |Bj|
3∑
i=1

|∂iBj|2
)

dx

= 24C

ˆ 3∑
j=1

(
|vj|2|∇vj|2 + |Bj||∇Bj|2

)
dx

≤ 24C

ˆ (
sup

j∈{1,2,3}
|vj|2

3∑
j=1

|∇vj|2 + sup
j∈{1,2,3}

|Bj|2
3∑
j=1

|∇Bj|2
)

dx

≤ 24C

ˆ (
|v|2|∇v|2 + |B|2|∇B|2

)
dx = 24C

(
‖|v||∇v|‖2

L2 + ‖|B||∇B|‖2
L2

)
,

which proves the claim. �

In order to show convergence of the martingale problems, we need to prove uniform
moment estimates as well as convergence in probability. The next lemma provides the
moment estimates.

Lemma 3.14 (uniform integrability of Mϕ
e ). The following estimate holds

(3.17) sup
n∈N

EP̃
[
|Mϕ

e (t, ỹn)|4/3
]

+ EP̃
[
|Mϕ

e (t, ỹ)|4/3
]
<∞.

Proof. We show that each of the terms of Mϕ
e are bounded. The terms Iϕ1,2 are

obviously bounded by a constant Cϕ, since ϕ ∈ C∞c .
For Iϕ3 we have by Jensen’s inequality for the temporal integral, as well as Equations

(2.9) and (3.16)

EP̃
[
|Iϕ3 (t, ỹn)|4/3

]
≤ T 4/3−1‖ϕ′‖4/3

L∞

ˆ T

0

EP̃
[
|〈A(ỹn(s)), e〉H1|4/3

]
ds

≤ CT,ϕ,e

ˆ T

0

EP̃
[
1 + ‖ỹn(s)‖4

L3(O)

]
ds

≤ CT,ϕ,e

ˆ T

0

EP̃
[
1 + ‖ỹn(s)‖4

L12(O)

]
ds

= CT,ϕ,e

ˆ T

0

EP̃
[
1 + ‖|ỹn(s)|2‖2

L6(O)

]
ds

≤ CT,ϕ,e

ˆ T

0

EP̃
[
1 + ‖∇|ỹn(s)|2‖2

L2(O)

]
ds

≤ CT,ϕ,e

ˆ T

0

EP̃
[
1 + ‖|v||∇v|‖2

L2 + ‖|B||∇B|‖2
L2

]
ds.

This last term is bounded by our a priori estimates (3.14).
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In the case of periodic domain D = T3, we have by Equations (2.9) and (3.15)

EP̃
[
|Iϕ3 (t, ỹn)|4/3

]
≤ T 4/3−1‖ϕ‖4/3

L∞

ˆ T

0

EP̃
[
|〈A(ỹn(s)), e〉H1 |4/3

]
ds

≤ CT,ϕ,e

ˆ T

0

EP̃
[
1 + ‖ỹn(s)‖4

L3(T3)

]
ds

≤ CT,ϕ,e

ˆ T

0

EP̃
[
1 + ‖ỹn(s)‖4

L4(T3)

]
ds

≤ CT,ϕ,e,N,f,H,y0 .

The other two terms can be dealt with swiftly: by Jensen’s inequality for the convex
function x 7→ x4/3, Hölder’s inequality for p = 3/2, q = 3, Jensen’s inequality for the
concave function x 7→ x2/3, Assumption (H1) and (3.12) we find

EP̃
[
|Iϕ4 (t, ỹn)|4/3

]
≤ CT,ϕ‖e‖H2

ˆ T

0

EP̃
[
1 · ‖f(s, ỹn(s))‖4/3

H0

]
ds

≤ CT,ϕ,e

ˆ T

0

(
EP̃
[
‖f(s, ỹn(s))‖2

H0

])2/3

ds

≤ CT,ϕ,e

(ˆ T

0

(
1 + EP̃

[
‖ỹn(s)‖2

H0

]
+ ‖Ff (s)‖L1(D)

)
ds

)2/3

≤ CT,ϕ,e

(
1 + EP̃

[
sup
s∈[0,T ]

‖ỹn(s)‖2
H1

]
+ ‖Ff‖L1([0,T ]×D)

)2/3

≤ CT,ϕ,e,N,f,H,y0 ,

and by Equation (2.10), we have in a similar manner

EP̃
[
|Iϕ5 (t, ỹn)|4/3

]
≤ CT,ϕ

ˆ T

0

EP̃
[
‖B(s, ỹn(s))‖2·4/3

L2(`2×`2;H0)

]
ds

≤ CT,ϕ,e,H,Σ

ˆ T

0

1 + EP̃
[
‖ỹn(s)‖8/3

L2(O)

]
ds

≤ CT,ϕ,e,H,Σ

ˆ T

0

1 + EP̃
[
‖ỹn(s)‖4

L3(O)

]
ds

≤ CT,ϕ,e,H,Σ

ˆ T

0

1 + EP̃
[
‖ỹn(s)‖4

L12(O)

]
ds

≤ CT,ϕ,e,H,Σ

ˆ T

0

EP̃
[
1 + ‖|v||∇v|‖2

L2 + ‖|B||∇B|‖2
L2

]
ds

≤ CT,ϕ,e,H,Σ,N,y0 .

�
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Our next and last ingredient for the existence proof of weak solutions is the convergence
in probability of the martingales defined above, as in [196, Lemma 3.12, p. 236 f.].

Lemma 3.15 (convergence in probability). For every t > 0, Mϕ
e (t, ỹn) → Mϕ

e (t, ỹ) in
probability, i.e. for every ε > 0

(3.18) lim
n→∞

P̃ {|Mϕ
e (t, ỹn)−Mϕ

e (t, ỹ)| > ε} = 0.

Proof. As before, we show convergence of all the terms of Mϕ
e and we denote O :=

supp(e). Note that by (II), and since O is bounded, we find by the definition of the metric
on X that

(3.19) lim
n→∞

ˆ
O
|ỹn(t, x, ω̃)− ỹ(t, x, ω̃)|2dx = 0, P̃ − a.a. ω̃ ∈ Ω̃.

This then implies that for P -a.a. ω̃ ∈ Ω̃ and all t ∈ [0, T ]

|〈ỹn(t, ·, ω̃)− ỹ(t, ·, ω̃), e〉H1| ≤ ‖ỹn(t, ·, ω̃)− ỹ(t, ·, ω̃)‖L2(O)‖e‖H2 → 0,

as n → ∞. By the continuity and boundedness of ϕ and Lebesgue’s dominated conver-
gence theorem, we find

lim
n→∞

EP̃ [|Iϕ1 (t, ỹn)− Iϕ1 (t, ỹ)|] = lim
n→∞

EP̃ [|ϕ (〈ỹn(t), e〉H1)− ϕ (〈ỹ(t), e〉H1)|] = 0,

and similarly

lim
n→∞

EP̃ [|Iϕ2 (t, ỹn)− Iϕ2 (t, ỹ)|] = lim
n→∞

EP̃ [|ϕ (〈ỹn(0), e〉H1)− ϕ (〈ỹ(0), e〉H1)|] = 0.

For Iϕ3 , we define for any R > 0 and n ∈ N the stopping times

τ̃nR := inf{t ≥ 0 | ‖ỹn(t)‖H1 ≥ R}.

Then by Chebychev’s inequality, (I) and (3.6), we get

sup
n∈N

P̃ {τ̃nR ≤ T} = sup
n∈N

P̃ {‖ỹn(t)‖H1 ≥ R} ≤ sup
n∈N

1

R2
EP̃
[
‖ỹn(t)‖2

H1

]
≤ sup

n∈N

1

R2
EP
[
‖yn(t)‖2

H1

]
≤ CT,N,f,H,y0

R2
.

(3.20)

For arbitrary R > 0 we thus find

lim
n→∞

P̃ {|Iϕ3 (t, ỹn)− Iϕ3 (t, ỹ)| > ε}

≤ lim
n→∞

P̃ {|Iϕ3 (t, ỹn)− Iϕ3 (t, ỹ)| > ε, τ̃nR > T}

+ lim
n→∞

P̃ {|Iϕ3 (t, ỹn)− Iϕ3 (t, ỹ)| > ε, τ̃nR ≤ T}

≤ lim
n→∞

P̃ {|Iϕ3 (t, ỹn)− Iϕ3 (t, ỹ)| > ε, τ̃nR > T}+
CT,N,f,H,y0

R2
.

Equations (2.9), (2.11) of Lemma 2.4 – and again the continuity and boundedness of ϕ –
imply that for any t ∈ [0, T ] and all ω̃ ∈ Ω̃ with τ̃nR(ω̃) > T

|ϕ′(〈ỹn(t, ω̃), e〉H1)〈A(ỹn(t, ω̃)), e〉H1 − ϕ′(〈ỹ(t, ω̃), e〉H1)〈A(ỹ(t, ω̃)), e〉H1|
≤ |ϕ′(〈ỹn(t, ω̃), e〉H1)− ϕ′(〈ỹ(t, ω̃), e〉H1)| |〈A(ỹn(t, ω̃)), e〉H1|

+ |ϕ′(〈ỹ(t, ω̃), e〉H1)| |〈A(ỹ(t, ω̃))−A(ỹn(t, ω̃)), e〉H1| → 0, as n→∞.
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This – combined with Markov’s inequality and Lebesgue’s dominated convergence theorem
– yields the desired convergence:

lim
n→∞

P̃ {|Iϕ3 (t, ỹn)− Iϕ3 (t, ỹ)| > ε}

≤ lim
R→∞

lim
n→∞

P̃ {|Iϕ3 (t, ỹn)− Iϕ3 (t, ỹ)| > ε, τ̃nR > T}

≤ lim
R→∞

lim
n→∞

1

ε
EP̃
[
1{τ̃nR>T}|I

ϕ
3 (t, ỹn)− Iϕ3 (t, ỹ)|

]
≤ lim

R→∞

1

ε
EP̃
[

lim
n→∞

ˆ t

0

1{τ̃nR>T} ·
∣∣∣ϕ′(〈ỹn(t), e〉H1)〈A(ỹn(t)), e〉H1

− ϕ′(〈ỹ(t), e〉H1)〈A(ỹ(t)), e〉H1

∣∣∣ds] = 0.

Similarly, for Iϕ4 we get by Assumption (H1) and similar convergence arguments that

lim
n→∞

P̃ {|Iϕ4 (t, ỹn)− Iϕ4 (t, ỹ)| > ε} = 0.

Finally, for Iϕ5 we find that since∣∣‖〈B(s, ỹn(s)), e〉H1‖2
`2 − ‖〈B(s, ỹ(s)), e〉H1‖2

`2

∣∣
≤

∣∣∣∣∣
∞∑
k=1

|〈Bk(s, ỹn(s)), e〉H1|2 − |〈Bk(s, ỹ(s)), e〉H1|2
∣∣∣∣∣

≤

∣∣∣∣∣
∞∑
k=1

|〈Bk(s, ỹn(s))− Bk(s, ỹ(s)), e〉H1| · |〈Bk(s, ỹn(s)), e〉H1 + 〈Bk(s, ỹ(s)), e〉H1|

∣∣∣∣∣
≤ ‖e‖H2

∣∣∣∣∣
∞∑
k=1

|〈Bk(s, ỹn(s))− Bk(s, ỹ(s)), e〉H1| · (‖Bk(s, ỹn(s))‖H0 + ‖Bk(s, ỹ(s))‖H0)

∣∣∣∣∣
≤ Ce ‖〈B(s, ỹn(s))− B(s, ỹ(s)), e〉H1‖`2 ·

(
‖B(s, ỹn(s))‖L2(`2×`2;H0) + ‖B(s, ỹ(s))‖L2(`2×`2;H0)

)
,

when combining this with (2.12), the convergence

lim
n→∞

P̃ {|Iϕ5 (t, ỹn)− Iϕ5 (t, ỹ)| > ε} = 0,

follows. This concludes the proof. �

We are now in a position to prove the main result of this section.

Proof of Theorem 3.10. Let t > s, G be a bounded R-valued, Bs(X )-measurable
continuous function on X . Then we have by the generalised Lebesgue theorem

Eµ [(Mϕ
e (t, y)−Mϕ

e (s, y)) ·G(y)]

= EP̃ [(Mϕ
e (t, ỹ)−Mϕ

e (s, ỹ)) ·G(ỹ)] (µ = P̃ ◦ ỹ−1)

= lim
n→∞

EP̃ [(Mϕ
e (t, ỹn)−Mϕ

e (s, ỹn)) ·G(ỹn)] ((3.17), (3.18))

= lim
n→∞

EP [(Mϕ
e (t, yn)−Mϕ

e (s, yn)) ·G(yn)] (P̃ ◦ ỹ−1
n = P ◦ y−1

n )

= 0.

The last step holds due to the martingale property of Mϕ
e (s, yn) on the stochastic basis

(Ω,F , P, (Ft)t≥0) and since G(yn) is Fs-measurable. Therefore, µ solves the martingale
problem and by Proposition 3.4 we infer the existence of a weak solution to (2.4). �
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3.4. Proof of Theorem 1.1.

Proof of Theorem 1.1. The only thing left to prove is estimate (1.3). By Itô’s
formula, taking expectations and using (2.6), Assumption (H1) and Equation (2.12), we
find

E‖y(t)‖2
H0 = ‖y0‖2

H0 + 2

ˆ t

0

E〈A(y(s)), y(s)〉H0ds

+ 2

ˆ t

0

E〈f(s, y(s)), y(s)〉H0ds+

ˆ t

0

E‖B(s, y(s))‖2
L2(`2×`2;H0)ds

≤ ‖y0‖2
H0 −

3

2

tˆ

0

E‖y(s)‖2
H1ds+ Cf,H + CT,f,H

tˆ

0

E‖y(s)‖2
H0ds,

which by Gronwall’s lemma implies

E‖y(t)‖2
H0 +

tˆ

0

E‖y(s)‖2
H1ds ≤ CT,f,H

(
‖y0‖2

H0 + 1
)
.

Applying Burkholder’s inequality and performing similar calculations as in the proof of
Lemma 3.11, we get the desired estimate. �

4. Feller Property and Existence of Invariant Measures

In this section we prove further properties of the tamed MHD equations. First, we
show that they generate a Feller semigroup under stronger assumptions. Then, we prove
that there exists an invariant measure for this Feller semigroup in the case of periodic
boundary conditions.

We consider the time-homogeneous case, i.e. the functions f,Σ, H of our equations
are assumed to be independent of time. Furthermore, we assume Lipschitz conditions on
the first-order derivatives of the function H:

(H3)’ There exists a constant CH > 0 and a function FH ∈ L1(D) such that for all
x ∈ D, y, y′ ∈ R6, j = 1, 2, 3 the following conditions hold:

‖∂xjH(x, y)‖2
`2 + ‖H(x, y)‖2

`2 ≤ CH |y|2 + FH(x),

‖∂xjH(x, y)− ∂xjH(x, y′)‖`2 ≤ CH |y − y′|,
‖∂yjH(x, y)‖`2 ≤ CH ,

‖∂yjH(x, y)− ∂(y′)jH(x, y′)‖`2 ≤ CH |y − y′|.

For an initial condition y0 ∈ H1, let y(t; y0) be the unique solution to (2.4) with y(0; y0) =
y0. Then by the uniqueness of solutions, we know that {y(t; y0) | y0 ∈ H1, t ≥ 0} is
a strong Markov process with state space H1. In proving the Feller property of the
associated semigroup, we need the following result.

Lemma 4.1. For y0, y
′
0 ∈ H1, R > 0, define the stopping times

τ y0

R := inf{t ≥ 0 | ‖y(t; y0)‖H1 > R},

τR := τ
y0,y′0
R := τ y0

R ∧ τ
y′0
R .

Assume (H1), (H2), (H3)’. Then there is a constant Ct,R,N,f,H,Σ > 0 such that

E
[
‖y(t ∧ τR; y0)− y(t ∧ τR; y′0)‖2

H1

]
≤ Ct,R,N,f,H,Σ‖y0 − y′0‖2

H1 .
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Proof. We follow the proof of [196, Lemma 4.1, p. 238 ff.] For notational conve-
nience, we denote y(t) := y(t; y0), ỹ(t) := y(t; y′0), z(t) := y(t)− ỹ(t) and tR := t∧ τR. By
Itô’s formula, we have

‖z(tR)‖2
H1 = ‖z(0)‖2

H1 + 2

tRˆ

0

〈A(y(s))−A(ỹ(s)), z(s)〉H1ds

+ 2

tRˆ

0

〈f(y(s))− f(ỹ(s)), z(s)〉H1ds

+ 2
∞∑
k=1

tRˆ

0

〈Bk(y(s))− Bk(ỹ(s)), z(s)〉H1dWk
s

+
∞∑
k=1

tRˆ

0

‖Bk(y(s))− Bk(ỹ(s)), z(s)‖2
H1ds

=: ‖z(0)‖2
H1 + I1(tR) + I2(tR) + I3(tR) + I4(tR).

We denote by zv the velocity component of z, i.e. zv := v − ṽ, and similarly we write
zB := B − B̃. Then I1(tR) has the following form:

I1(tR) = 2

tRˆ

0

〈∆z, z〉H1 − 2

tRˆ

0

〈gN(|y|2)y − gN(|ỹ|2)ỹ, z〉H1

+ 2

tRˆ

0

{
〈−(v · ∇)v + (ṽ · ∇)ṽ, zv〉H1 + 〈(B · ∇)B − (B̃ · ∇)B̃, zv〉H1

+ 〈−(v · ∇)B + (ṽ · ∇)B̃, zB〉H1 + 〈(B · ∇)v − (B̃ · ∇)ṽ, zB〉H1

}
ds.

The first term is readily analysed:

2

tRˆ

0

〈∆z, z〉H1 = −2

tRˆ

0

‖z‖2
H2ds+ 2

tRˆ

0

‖z‖2
H1ds.

For the second term, we find by using Young’s inequality, gN(r) ≤ Cr, Hölder’s inequality
(with p = 3, q = 3/2) and the Sobolev embedding H1 ⊂ L6 that for some θ ∈ R

〈gN(|y|2)y − gN(|ỹ|2)ỹ, z〉H1 = 〈gN(|y|2)z, z〉H1 +
〈(
gN(|y|2)− gN(|ỹ|2)

)
ỹ, z
〉
H1

= 〈gN(|y|2)z, (I −∆)z〉H0 +
〈
g′N(θ)

(
|y|2 − |ỹ|2

)
ỹ, (I −∆)z

〉
H0

≤
∥∥gN(|y|2)|z|

∥∥
L2 ‖z‖H2 + ‖|g′N(θ)| · |z|(|y|+ |ỹ|)|ỹ|‖L2 ‖z‖H2

≤ 2ε ‖z‖2
H2 + Cε,N

(∥∥gN(|y|2)|z|
∥∥2

L2 +
∥∥|z|(|y|2 + |ỹ|2)

∥∥2

L2

)
≤ 2ε ‖z‖2

H2 + Cε,N
∥∥|z|(|y|2 + |ỹ|2)

∥∥2

L2

≤ 2ε ‖z‖2
H2 + Cε,N‖z‖2

L6

(
‖y‖4

L6 + ‖ỹ‖4
L6

)
≤ 2ε ‖z‖2

H2 + Cε,N‖z‖2
H1

(
‖y‖4

H1 + ‖ỹ‖4
H1

)
≤ 2ε ‖z‖2

H2 + Cε,N,R‖z‖2
H1 .
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The third term consists of four sub-terms, all of which are very similar. We thus only
estimate one of them: Young’s inequality, the Sobolev embedding H1 ⊂ L6 as well as

the Gagliardo-Nirenberg-Sobolev inequalities ‖u‖L∞ ≤ C‖u‖3/4

H2 ‖u‖1/4

L2 and ‖∇u‖L3 ≤
C‖u‖3/4

H2 ‖u‖1/4

L2 , combined with another application of Young’s inequality (with p = 4/3,
q = 4) yield

〈(v · ∇)v − (ṽ · ∇)ṽ, zv〉H1 = 〈(zv · ∇)v, zv〉H1 + 〈(ṽ · ∇)zv, zv〉H1

= 〈(zv · ∇)v, (I −∆)zv〉H0 + 〈(ṽ · ∇)zv, (I −∆)zv〉H0

≤ 2ε‖zv‖2
H2 + Cε

(
‖(zv · ∇)v‖2

L2 + ‖(ṽ · ∇)zv‖2
L2

)
≤ 2ε‖zv‖2

H2 + Cε
(
‖zv‖2

L∞‖∇v‖2
L2 + ‖ṽ‖2

L6‖∇zv‖2
L3

)
≤ 2ε‖zv‖2

H2 + Cε

(
‖zv‖3/2

H2 ‖zv‖1/2

L2 ‖v‖2
H1 + ‖ṽ‖2

H1‖zv‖3/2

H2 ‖zv‖1/2

L2

)
≤ 4ε‖zv‖2

H2 + Cε,R‖zv‖2
L2 ≤ 4ε‖zv‖2

H2 + Cε,R‖zv‖2
H1 .

Analysing the other sub-terms in the same way and putting everything together, we find

(4.1) I1(tR) ≤ −2

tRˆ

0

‖z(s)‖2
H2ds+ Cε,N,R

tRˆ

0

‖z(s)‖2
H1ds+ 10ε

tRˆ

0

‖z(s)‖2
H2ds.

I2(tR) is analysed using Young’s inequality and Assumption (H1)

I2(tR) = 2

tRˆ

0

〈f(y(s))− f(ỹ(s)), z(s)〉H1ds

≤ ε

tRˆ

0

‖z(s)‖2
H2ds+ Cε

tRˆ

0

‖f(y(s))− f(ỹ(s))‖2
H0ds

≤ ε

tRˆ

0

‖z(s)‖2
H2ds+ Cε,f

tRˆ

0

‖z(s)‖2
H0ds.

The term I3(tR) is a martingale and thus vanishes after taking expectations.
For I4(tR), we use the following considerations, similar to the ones in the proof of

Lemma 2.5:

‖B(y)− B(ỹ)‖2
L2(`2×`2;H1) = ‖B(y)− B(ỹ)‖2

L2(`2×`2;H0) + ‖∇ (B(y)− B(ỹ))‖2
L2(`2×`2;H0) ,

and the latter term consists (by using the chain rule) of terms of the following form:

∂xj (Bk(y)− Bk(ỹ)) = ∂xj (P (Σk(x) · ∇) z + P (Hk(x, y)−Hk(x, ỹ)))

= P
{

((∂xjΣk(x)) · ∇) z + (Σk(x) · ∇) ∂xjz + (∂xjHk)(x, y)− (∂xjHk)(x, ỹ)

+
6∑
i=1

[(
∂yiHk(x, y)

)
∂xjy

i −
(
∂ỹiHk(x, ỹ)

)
∂xj ỹ

i
] }

= P
{

((∂xjΣk(x)) · ∇) z + (Σk(x) · ∇) ∂xjz + (∂xjHk)(x, y)− (∂xjHk)(x, ỹ)

+
6∑
i=1

[(
∂yiHk(x, y)

)
∂xjz

i −
{(
∂yiHk(x, y)

)
−
(
∂ỹiHk(x, ỹ)

)}
∂xj ỹ

i
] }
.
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Thus we find, using Assumptions (H2) and (H3)’, as well as Equation (2.1), the Gagliardo-
Nirenberg inequality and Young’s inequality, that

‖B(y)− B(ỹ)‖2
L2(`2×`2;H1)

= ‖(Σ · ∇) z +H(y)−H(ỹ)‖2
L2(`2×`2;H0) +

∞∑
k=1

‖∇ (Bk(y)− Bk(ỹ))‖2
H0

≤ 2
∞∑
k=1

‖(Σk · ∇) z‖2
H0 + ‖Hk(y)−Hk(ỹ)‖2

H0

+
∞∑
k=1

ˆ
D

3∑
j=1

∣∣∣ ((∂xjΣk(x)) · ∇) z + (Σk(x) · ∇) ∂xjz + (∂xjHk)(x, y)− (∂xjHk)(x, ỹ)

+
6∑
i=1

[(
∂yiHk(x, y)

)
∂xjz

i −
{(
∂yiHk(x, y)

)
−
(
∂ỹiHk(x, ỹ)

)}
∂xj ỹ

i
] ∣∣∣2dx

≤ 2 sup
x∈D
‖Σk(x)‖2

`2 ‖∇z‖
2
H0 + CH‖z‖2

H0 + 2
∞∑
k=1

ˆ
D

3∑
j=1

∣∣∣ (Σk(x) · ∇) ∂xjz
∣∣∣2dx

+ 2
∞∑
k=1

ˆ
D

3∑
j=1

∣∣∣ ((∂xjΣk(x)) · ∇) z + (∂xjHk)(x, y)− (∂xjHk)(x, ỹ)

+
6∑
i=1

(
∂yiHk(x, y)

)
∂xjz

i −
6∑
i=1

{(
∂yiHk(x, y)

)
−
(
∂ỹiHk(x, ỹ)

)}
∂xj ỹ

i
∣∣∣2dx

≤ 2 sup
x∈D
‖Σk(x)‖2

`2 ‖z‖
2
H1 + CH‖z‖2

H0 + 2 sup
x∈D
‖Σk(x)‖2

`2

3∑
j,l=1

‖∂xl∂xjz‖2
L2

+ 8 sup
x∈D
‖∇Σk(x)‖2

`2‖∇z‖2
H0 + CH‖z‖2

H1 + CH

ˆ
D

3∑
j=1

6∑
i=1

|z|2|∂xj ỹi|2dx

≤ 2d2 sup
x∈D
‖Σk(x)‖2

`2 ‖z‖
2
H2 + CΣ,H‖z‖2

H1 + CH‖z‖2
L∞‖ỹ‖2

H1

≤ (
1

2
+ ε)‖z‖2

H2 + CΣ,H‖z‖2
H1 + CH‖z‖2

H0‖ỹ‖8
H1 .

Integrating over time we finally get

I4(tR) =

tRˆ

0

‖B(y(s))− B(ỹ(s))‖2
L2(`2×`2;H1)ds

≤
tRˆ

0

(
1

2
+ ε)‖z‖2

H2 + CH,R‖z‖2
H0 + CΣ‖z‖2

H1ds,

and thus, adding all the contributions together,

E
[
‖z(tR)‖2

H1

]
≤ ‖z(0)‖2

H1 − (3/2− 12ε)E

 tRˆ

0

‖z(s)‖2
H2ds

+ Cε,R,N,f,H,ΣE

 tRˆ

0

‖z(s)‖2
H1ds

 .
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Choosing ε = 1
8
, we find

E
[
‖z(t ∧ τR)‖2

H1

]
≤ ‖z(0)‖2

H1 + CR,N,f,H,Σ

tˆ

0

E
[
‖z(s ∧ τR)‖2

H1ds
]
.

An application of Gronwall’s Lemma then yields the desired result. �

Let BCloc(H1) denote the set of bounded, locally uniformly continuous functions on
H1. The supremum norm

‖φ‖∞ := sup
y∈H1

|φ(y)|

turns this space into a Banach space.
For t ≥ 0, define the semigroup Tt associated with the Markov process {y(t; y0) | y0 ∈

H1, t ≥ 0} by

Ttφ(y0) := E [φ(y(t; y0))] , φ ∈ BCloc(H1).

Using the previous lemma, we show that this is a Feller semigroup.

Theorem 4.2 (Feller property). Under the Assumptions (H1), (H2) and (H3)’, for
every t ≥ 0, Tt maps BCloc(H1) into itself, i.e. it is a Feller semigroup on BCloc(H1).

Proof. Let φ ∈ BCloc(H1) be arbitrary. We need to show that for every t > 0,
m ∈ N

lim
δ→0

sup
y0,y′0∈Bm,‖y0−y′0‖H1≤δ

|Ttφ(y0)− Ttφ(y′0)| = 0,

where Bm := {y ∈ H1 | ‖y‖H1 ≤ m} denotes the H1-ball of radius m.
As before, we define the stopping times

τ y0

R := inf{t ≥ 0 | ‖y(t; y0)‖H1 > R},

τR := τ
y0,y′0
R := τ y0

R ∧ τ
y′0
R .

Let ε > 0. We estimate using the definition of the semigroup and the triangle inequality

|Ttφ(y0)− Ttφ(y′0)| ≤ E [|φ(y(t; y0))− φ(y(t ∧ τR; y0))|]
+ E [|φ(y(t ∧ τR; y0))− φ(y(t ∧ τR; y′0))|](4.2)

+ E [|φ(y(t ∧ τR; y′0))− φ(y(t; y′0))|] .

The first term can be estimated by

E [|φ(y(t; y0))− φ(y(t ∧ τR; y0))|] = E
[
1{τR<t}|φ(y(t; y0))− φ(y(t ∧ τR; y0))|

]
≤ 2‖φ‖∞P{τR < t} ≤ 2‖φ‖∞P

(
{τ y0

R < t} ∪ {τ y
′
0
R < t}

)
≤ 2‖φ‖∞

1

R2
E

[
sup
s∈[0,t]

‖y(s; y0)‖2
H1 + sup

s∈[0,t]

‖y(s; y′0)‖2
H1

]

≤ 4‖φ‖∞
1

R2
sup
y0∈Bm

E

[
sup
s∈[0,t]

‖y(s; y0)‖2
H1

]
≤ 4‖φ‖∞

Ct,N,f,H,m
R2

,

where we have used the a priori estimates of (1.3).
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The same estimate applies to the third term, so we can find R > m sufficiently large
such that for y0, y

′
0 ∈ Bm we have

E [|φ(y(t; y0))− φ(y(t ∧ τR; y0))|] ≤ ε,(4.3)

E [|φ(y(t ∧ τR; y′0))− φ(y(t; y′0))|] ≤ ε.(4.4)

For the remaining term, we note that since φ is uniformly continuous on BR ⊃ Bm, we
can choose η > 0 sufficiently small such that for all y, y′ ∈ BR satisfying ‖y − y′‖H1 ≤ η,
we find

|φ(y)− φ(y′)| ≤ ε.

Thus, for every y0, y
′
0 ∈ Bm with ‖y0 − y′0‖H1 ≤ δ :=

√
εη√

2‖φ‖∞Ct,R,N,f,H,Σ
– here, Ct,R,N,f,H,Σ

denotes the constant from Lemma 4.1 – by applying said lemma, we have

E [|φ(y(t ∧ τR; y0))− φ(y(t ∧ τR; y′0))|]
= E

[
1{‖y(t∧τR;y0)−y(t∧τR;y′0)‖H1≤η}|φ(y(t ∧ τR; y0))− φ(y(t ∧ τR; y′0))|

]
+ E

[
1{‖y(t∧τR;y0)−y(t∧τR;y′0)‖H1>η}|φ(y(t ∧ τR; y0))− φ(y(t ∧ τR; y′0))|

]
≤ ε+ 2‖φ‖∞P {‖y(t ∧ τR; y0)− y(t ∧ τR; y′0)‖H1 > η}

≤ ε+
2‖φ‖∞
η2

E
[
‖y(t ∧ τR; y0)− y(t ∧ τR; y′0)‖2

H1

]
≤ ε+

2‖φ‖∞Ct,R,N,f,H,Σ
η2

‖y0 − y′0‖2
H1 ≤ 2ε.

(4.5)

The claim now follows from combining Equations (4.2)–(4.5). �

In the periodic case, we can show existence of an invariant measure for our equations:

Theorem 4.3 (Invariant measures in the periodic case). Under the hypotheses (H1),
(H2), (H3)’, in the periodic case D = T3, there exists an invariant measure µ ∈ P(H1)
associated to (Tt)t≥0 such that for every t ≥ 0, φ ∈ BCloc(H1)

ˆ
H1

Ttφ(y0)dµ(y0) =

ˆ
H1

φ(y0)dµ(y0).

Proof. By Itô’s formula in H0, we have

E
[
‖y(t)‖2

H0

]
= ‖y(0)‖2

H0 + 2

tˆ

0

E [〈A(y(s)), y(s)〉H0 ] ds

+ 2

tˆ

0

E [〈f(y(s)), y(s)〉H0 ] ds+

tˆ

0

E
[
‖B(y(s))‖2

L2(`2×`2;H0)

]
ds.
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By Equation (2.7), Young’s inequality, Equation (2.12) as well as Assumption (H1), this
can be estimated as

E
[
‖y(t)‖2

H0

]
≤ ‖y(0)‖2

H0 − 2

tˆ

0

E
[
‖∇y(s)‖2

H0 + ‖y(s)‖4
L4 − CN‖y(s)‖2

H0

]
ds

+

tˆ

0

E
[
‖f(s, y(s))‖2

H0 + ‖y(s)‖2
H0

]
ds

+

tˆ

0

E
[

1

2
‖y(s)‖2

H1 + CH‖y‖2
H0 + ‖FH‖L1(D)

]
ds

≤ ‖y(0)‖2
H0 −

3

2

tˆ

0

E
[
‖y(s)‖2

H1

]
ds− 2

tˆ

0

E
[
‖y(s)‖4

L4

]
ds

+ Cf,H,N

tˆ

0

E
[
‖y(s)‖2

H0

]
ds+ Cf,H · t.

Since we are in the case of bounded domains, we have by the embedding L4(T3) ⊂ L2(T3)
and Young’s inequality

‖y‖2
H0 ≤ CD‖y‖2

L4 ≤ ε‖y‖4
L4 + Cε,D.

and hence for sufficiently small ε = εf,N,H > 0, after rearranging

E
[
‖y(t)‖2

H0

]
+

tˆ

0

E
[
‖y(s)‖2

H1

]
ds+

tˆ

0

E
[
‖y(s)‖4

L4

]
ds

≤ Cf,H,N,D
(
‖y(0)‖2

H0 + t
)
.

(4.6)

Now using the H1-Itô formula and the corresponding higher-order estimates (2.8), (2.13),
we find by proceeding in the same way as in the above calculations and additionally using
(4.6) that

E
[
‖y(t)‖2

H1

]
= ‖y(0)‖2

H1 + 2

tˆ

0

E [〈A(y(s)), y(s)〉H1 ] ds

+ 2

tˆ

0

E [〈f(y(s)), y(s)〉H1 ] ds+

tˆ

0

E
[
‖B(y(s))‖2

L2(`2×`2;H1)

]
ds

≤ −1

2

tˆ

0

E
[
‖y(s)‖2

H2

]
ds+ Cf,H,N

tˆ

0

E
[
‖y(s)‖2

H1

]
ds+ Cf,H,N · t

≤ −1

2

tˆ

0

E
[
‖y(s)‖2

H2

]
ds+ Cf,H,N,D · t,
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which implies that

(4.7)
1

t

tˆ

0

E
[
‖y(s)‖2

H2

]
ds ≤ Cf,H,N,D.

Note that this inequality is uniform in t and in the initial condition y0.
We now conclude as follows: following the notation of G. Da Prato and J. Zabczyk [49],

we define the kernels

RT (y0,Γ) :=
1

T

T̂

0

(Ts1Γ)(y0)dt, y0 ∈ H1,Γ ∈ B(H1).

Set E = H1 and let ν ∈ P(H1) be an arbitrary probability measure. Define the associated
measure

R∗Tν(Γ) =

ˆ
E

RT (y0,Γ)ν(dy0).

We will show that these measures are tight. To this end, consider the sets Γr :=
{y0 ∈ H2 | ‖y0‖H2 ≤ r} ⊂ H2 ⊂ H1. Since they are bounded subsets of H2 and the
embedding H2 ⊂ H1 is compact, they are compact subsets of H1. Now, using (4.7), we
show that the measures R∗Tν are concentrated on Γr for sufficiently large r > 0, hence
tight: denoting the complement of a set A ⊂ E by Ac and using Chebychev’s inequality,
we find

R∗Tν(Γcr) =

ˆ

E

RT (y0,Γ
c
r)ν(dy0) =

ˆ
E

1

T

T̂

0

E
[
1Γcr(y(t; y0))

]
dt ν(dy0)

≤
ˆ
E

1

T

T̂

0

E
[
‖y(t; y0)‖2

H2

r2

]
dt ν(dy0) =

1

r2

ˆ
E

1

T

T̂

0

E
[
‖y(t; y0)‖2

H2

]
dt ν(dy0)

≤ 1

r2

ˆ
E

Cf,H,N,D ν(dy0) =
Cf,H,N,D
r2

.

Therefore, the Krylov-Bogoliubov theorem [49, Corollary 3.1.2, p. 22] ensures the exis-
tence of an invariant measure. �

Remark 4.4. Note that Z. Brzeźniak and G. Dhariwal [23] prove existence of an
invariant measure for a similar system even in the case of the full space, so there might
be hope to extend this theorem also in our case.



CHAPTER IV

Dynamical Systems and Random Attractors

Abstract. In this chapter, we prove the existence of random dynamical systems and
random attractors for a large class of locally monotone stochastic partial differential
equations perturbed by additive Lévy noise. The main result is applicable to various
types of SPDEs such as stochastic Burgers-type equations, stochastic 2D Navier-Stokes
equations, the stochastic 3D Leray-α model, stochastic power law fluids, the stochastic
Ladyzhenskaya model, stochastic Cahn-Hilliard-type equations, stochastic Kuramoto-
Sivashinsky-type equations, stochastic porous media equations and stochastic p-Laplace
equations.

1. Introduction

Since the foundational work in [45, 47, 200] the long-time behaviour of SPDEs in
terms of the existence of random attractors has been extensively investigated (cf. e.g.
[17,31,71,80,94–97,99,105,106,138,156,158,202,221,245,255,256,263]), resulting
in an ever increasing list of specific SPDEs for which the existence of a random attractor
has been verified. While the proofs rely on common ideas, the field yet lacks a general,
unifying framework overcoming the case-by-case verification. The main aim of this work
is to further push in the direction of such a unifying framework by providing a general,
abstract result on the existence of random attractors for locally monotone SPDEs.

More precisely, we prove the existence of random dynamical systems and random
attractors for SPDEs of the form

(1.1) dXt = A(Xt)dt+ dNt,

where Nt is a Lévy type noise satisfying a moment condition (N) and A is locally mono-
tone (cf. (A2) below) with respect to a Gelfand triple V ⊆ H ⊆ V ∗. The abstract
framework introduced here relies on the concept of locally monotone operators. This
extends previously available results, which were restricted to monotone operators, and
constitutes important progress in so far that, in contrast to the monotone framework, it
includes SPDEs arising in fluid dynamics as particular examples. Inded, the generality
of this framework is demonstrated by application to a large class of SPDEs, including,
stochastic reaction-diffusion equations, stochastic Burgers-type equations, stochastic 2D
Navier-Stokes equations, the stochastic Leray-α model, stochastic power law fluids, the
stochastic Ladyzhenskaya model, stochastic Cahn-Hilliard-type equations as well as sto-
chastic Kuramoto-Sivashinsky-type equations. This recovers results from the literature
as simple applications of the abstract framework introduced here and generalises many
known results. In particular, we generalise the results given in [17, 94, 97]. We refer to
Section 6 for more details.

The first main result, stated in detail in Theorem 4.1 below, addresses the existence
of random dynamical systems associated to (1.1).
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Theorem 1.1 (Theorem 4.1 below). Assume that A is hemicontinuous, locally mono-
tone, coercive and satisfies a growth condition. Further assume that V ⊆ H is compact
and that there exists a hemicontinuous, strictly monotone operator M : V → V ∗ satisfying
a growth condition. Then there is a continuous random dynamical system S generated by
solutions to (1.1).

Under a slightly stronger coercivity condition we then prove the existence of a random
attractor, leading to the second main result.

Theorem 1.2 (Theorem 5.1 below). Assume that A is hemicontinuous, locally mono-
tone, coercive and satisfies a growth condition. Further assume that V ⊆ H is compact
and that there exists a hemicontinuous, strictly monotone operator M : V → V ∗ satisfy-
ing a growth condition. Then the random dynamical system S is compact and there is a
random attractor for S.

Notably, the Lévy process Nt in (1.1) is only assumed to take values in H which is
the natural choice of noise as far as trace-class noise is considered. This is in contrast
to a number of works where the noise was assumed to take values in the domain of the
operator A, in order to make sense of the transformed equation for Z̃t := Xt −Nt which
has the form

dZ̃t = A(Z̃t +Nt)dt.

It was later noticed in [94] that this assumption can be relaxed to Nt ∈ H by not
subtracting the noise directly, but a form of nonlinear Ornstein-Uhlenbeck process instead.
More precisely, if the operator A possesses a strongly monotone part M , we construct in
Theorem 3.1 a strictly stationary solution ut of the equation (for sufficiently large σ > 0)

dut = σM(ut)dt+ dNt.

Here, the smoothing properties of the operator M guarantee that ut takes values in the
space V . This allows us to prove the existence of a random dynamical system, assuming
only trace-class noise in H.

The existence of a random attractor is typically proven in two steps: In the first
step, uniform bounds on the H-norm of the flow are established, which means that there
exists a bounded attracting set. In the second step, the existence of a compact attracting
set is shown. In this work, we use the compactness of the embedding V ⊆ H to prove
that the cocycle S is compact, which together with the first step implies the existence
of a compact attracting set. Notably, the approach introduced here only relies on the
standard coercivity assumption of the variational approach to SPDE. This avoids further
assumptions typically required in the literature in order to prove higher regularity of
solutions. In particular, this avoids to pose stronger regularity assumptions on the noise.

From a technical perspective, we provide general, by now standard and relatively easy
to check conditions that guarantee that a given SPDE generates a random dynamical sys-
tem with an associated random attractor. We allow for additive, trace-class Lévy noise
which results in more involved estimates, e.g. when checking exponential integrability
properties of the strictly stationary Ornstein-Uhlenbeck process. The step of transform-
ing the SPDE into a random PDE compared to that step of [94] employs a more general
deterministic result, namely the well-posedness of deterministic PDE with locally mono-
tone coefficients as proved by W. Liu and M. Röckner in [165]. In the examples, we tried
to find optimal conditions on the parameters within the limitations of the framework,
especially the condition β(α− 1) ≤ 2 using interpolation inequalities, which was not nec-
essary in the monotone case, as there β = 0. This requires a more careful analysis of
these examples.
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1.1. Literature. We now give a brief account on the available literature on random
attractors for SPDE. Since this is a very active research field, this attempt has to remain
incomplete and we restrict ourselves to those works which appear most relevant to the
results of this work.

Randoms attractor were first studied in [45, 47, 200]. They are a very important
concept of capturing the long-time behaviour of random dynamical systems (RDS) and
there are many results on existence and properties of random attractors for various SPDEs
[31,71,80,96,99,105,106,138,156,158,202,221,245,255,256,263].

Equivalent conditions for the existence of random attractors were given in [46]. Fur-
ther properties of random attractors that have been studied include measurability [45,
47, 48], upper-semicontinuity [35, 36, 154, 220, 242], regularity [104, 155, 157], and di-
mension estimates [55, 143, 259]. The problem of unbounded domains has also been
addressed, e.g. in [12, 25, 136, 168, 219]. Furthermore, the concept of a weak random
attractor has been introduced recently in [222,223]. Further references are given in the
discussion of the examples in Section 6.

Stochastic (partial) differential equations driven by Lévy noise have been studied
widely, motivated among other things by applications in finance, statistical mechanics,
fluid dynamics. For an overview we refer to [189]. For results on random attractors,
cf.. [97] and the references therein. Well-posedness for locally monotone SPDEs driven
by Lévy noise was first studied by Z. Brzeźniak, W. Liu and J.H. Zhu [26].

1.2. Overview. In Section 2 we state the assumptions on the coefficients and the
noise N . In Section 3 we study strictly stationary solutions for strongly monotone SPDEs.
The following section, Section 4, is devoted to constructing a stochastic flow via transfor-
mation of equation (2.1) into a random PDE. This stochastic flow is then proven to be
compact in Section 5. Combining this with the existence of a random bounded absorbing
set then immediately imply the existence of a random attractor. Applications to various
SPDEs are given in Section 6. Appendix 7 gathers the necessary results on random PDEs
with locally monotone coefficients. In Appendix C we recall the basic notions and results
concerning stochastic flows, random dynamical systems and random attractors.

Within the project, the authors role was to apply the theory to examples, i.e. write
Section 6, as well as the introduction and to simplify the proofs wherever possible. I have
also provided a proof of the perfection theorem in Appendix C, Theorem C.12, which was
needed for proving the existence of the nonlinear Ornstein-Uhlenbeck process.

2. Main Framework

Let (H, 〈·, ·〉H) be a real separable Hilbert space, identified with its dual space H∗ by
the Riesz isomorphism. Let V be a real reflexive Banach space continuously and densely
embedded into H. In particular, there is a constant λ > 0 such that λ‖v‖2

H ≤ ‖v‖2
V for

all v ∈ V . Then we have the following Gelfand triple

V ⊆ H ≡ H∗ ⊆ V ∗.

If V ∗〈·, ·〉V denotes the dualization between V and its dual space V ∗, then

V ∗〈u, v〉V = 〈u, v〉H , ∀u ∈ H, v ∈ V.
As mentioned in the introduction, we consider SPDEs of the form

(2.1) dXt = A(Xt)dt+ dNt,

where A : V → V ∗ is B(V )/B(V ∗)-measurable (we extend A by 0 to H) and N : R×Ω→
H is a centered, two-sided Lévy process on H.
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We assume that N is given by its canonical realization on Ω := D(R;H), the space of all
càdlàg paths in H endowed with the canonical filtration

F ts = σ(ω(u)− ω(v)|ω ∈ Ω, s ≤ u, v ≤ t)

and Wiener shifts {θt}t∈R (cf. e.g. [7, Appendix A.3], [6, Section 1.4.1]). We impose
some moment condition on N which will be specified below. Let P be the law of N on
Ω. Then (Ω,F , {F ts}t∈[s,∞), {θt}t∈R,P) is an ergodic metric dynamical system. We denote
the augmented filtration by {F̄ ts}t∈[s,∞) and note that {F̄ ts}t∈[s,∞) is right-continuous. The

extension of P to F̄ is denoted by P̄ and we define F̄ t−∞ := σ
(⋃
−∞<s≤t F̄ ts

)
.

Suppose that for some α ≥ 2 and β ≥ 0 with β(α − 1) ≤ 2, there exist constants
C,K ≥ 0 and γ > 0 such that the following conditions hold for all v, v1, v2 ∈ V :

(A1) (Hemicontinuity) The map s 7→ V ∗〈A(v1 + sv2), v〉V is continuous on R.
(A2) (Local monotonicity)

2V ∗〈A(v1)− A(v2), v1 − v2〉V ≤ (C + η(v1) + ρ(v2)) ‖v1 − v2‖2
H ,

where η, ρ : V → R+ are locally bounded measurable functions.
(A3) (Coercivity)

2V ∗〈A(v), v〉V ≤ −γ‖v‖αV +K‖v‖2
H + C.

(A4) (Growth)

‖A(v)‖
α
α−1

V ∗ ≤ C(1 + ‖v‖αV )(1 + ‖v‖βH).

In order to be able to deduce the existence and uniqueness of solutions from the results
derived in [26], we note that due to the Lévy-Itô decomposition (cf. e.g. [1, Theorem
4.1]), and since ν is assumed to have first moment, we have P-a.s.

(2.2) Nt = mt+Wt +

ˆ
H

zÑ(t, dz), ∀t ∈ R,

where m ∈ H, Wt is a trace-class Q-Wiener process on H and Ñ is a compensated Poisson
random measure on H with intensity measure ν (cf. [1] for Definitions). Now we state
the assumptions on the Lévy noise as follows:

(N) The process (Nt)t∈R is a two-sided Lévy process with values in H and the corre-
sponding Lévy measure has finite moments up to order 4. Furthermore, without loss of
generality, we assume m = 0.

Throughout this chapter we work with the convention that C, C̃ ≥ 0 and c, c̃ > 0
are generic constants, each of which is not important for its specific value and allowed to
change from line to line.

Let us now define what we mean by a solution to (2.1).

Definition 2.1. A càdlàg, H-valued, {F̄ ts}t∈[s,∞)-adapted process {S(t, s;ω)x}t∈[s,∞)

is a solution to (2.1) with initial condition x at time s if for P-a.a. ω ∈ Ω, S(·, s;ω)x ∈
Lαloc([s,∞);V ) and

S(t, s;ω)x = x+

ˆ t

s

A(S(r, s;ω)x)dr +Nt(ω)−Ns(ω), ∀t ≥ s.
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3. Strictly Stationary Solutions for Monotone SPDE

The construction of stochastic flows for locally monotone SPDEs driven by Lévy noise
(presented in Section 4 below) is based on strictly stationary solutions for strongly mono-
tone SPDE driven by Lévy noise. The existence and uniqueness of such strictly stationary
solutions is proven in this section, which might be of independent interest. This generalises
a similar construction presented in [94] for the case of trace-class Wiener noise.

More precisely, in this section we consider strongly monotone SPDE of the form

(3.1) dXt = σM(Xt)dt+ dNt,

where σ > 0, Nt is a two-sided Lévy process (as above) and M : V → V ∗ is measurable.
Instead of the local monotonicity condition (A2), we assume that M is strongly monotone,
i.e.

(A2′) (Strong monotonicity) There exists a constant c > 0 such that

2V ∗〈M(v1)−M(v2), v1 − v2〉V ≤ −c‖v1 − v2‖αV , ∀v1, v2 ∈ V,

where α is the same constant as in (A3).

It is easy to see that (A2′) implies that (A3) also holds for M .
By the above Lévy-Itô decomposition (2.2), we may rewrite (3.1) as

(3.2) dXt = σM(Xt)dt+ dWt +

ˆ
H

zθdN(dt, dz)

and [26, Theorem 1.2] implies the existence and uniqueness of an F̄ ts-adapted variational
solution X(t, s;ω)x for each x ∈ H. Strictly stationary solutions to (3.1) are constructed
by letting s→ −∞ in X(t, s;ω)x and then selecting a strictly stationary version u from
the resulting stationary limit process using Proposition C.12 in Appendix B.

Theorem 3.1 (Strictly stationary solutions). Suppose that M satisfies (A1), (A2′),
(A4) with β = 0 and let X(·, s;ω)x be the solution to (3.2) starting in x ∈ H at time s.
Then

(i) There exists an F̄ t−∞-adapted, F-measurable process

u ∈ L2(Ω;D(R;H)) ∩ Lα(Ω;Lαloc(R;V ))

such that

lim
s→−∞

X(t, s; ·)x = ut

in L2(Ω;H) for all t ∈ R, x ∈ H.
(ii) u solves (3.1) in the following sense:

(3.3) ut = us + σ

ˆ t

s

M(ur)dr +Nt −Ns, P-a.s., t ≥ s.

(iii) u can be chosen to be strictly stationary with càdlàg paths and satisfying u·(ω) ∈
Lαloc(R;V ), for all ω ∈ Ω.

(iv) Let 2 ≤ p ≤ 4, then for each δ ≥ 0, t ∈ R and large enough σ > 8δ
pcλ

, there is a

constant C(δ, σ) > 0 such that

(3.4) E
ˆ t

−∞
eδr‖ur‖αV ‖ur‖

p−2
H dr ≤ C(δ, σ)eδt,

where C(δ, σ)→ 0 for σ →∞.
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(v) There exists a θ-invariant set Ω0 ⊆ Ω of full P-measure such that for ω ∈ Ω0 and
s, t ∈ R, s < t,

1

t− s

ˆ t

s

‖ur(ω)‖αV dr → E‖u0‖αV ≤ C(σ), s→ −∞,

where C(σ)→ 0 for σ →∞.

Let p ∈ N, p ≥ 2, then

(vi) There exists a θ-invariant set Ω0 ⊆ Ω of full P-measure such that for ω ∈ Ω0

(3.5)
1

t

ˆ t

0

‖ur(ω)‖pHdr → E‖u0‖pH , t→ ±∞.

(vii) ‖ut(ω)‖pH has sublinear growth, i.e.

lim
t→±∞

‖ut(ω)‖pH
|t|

= 0.

Proof. As the operator in (3.2) is strongly monotone, some parts of the proof here
are similar to the associated statements in [94]. So here we only highlight the differences
arising from allowing Lévy noise and otherwise refer to [94].

Let X(t, s;ω)x denote the variational solution to (3.1) starting at time s in x ∈ H
(cf. [26]).

(i) First we show that there is an F̄ t−∞-adapted, F -measurable process u : R×Ω→ H
such that

lim
s→−∞

X(t, s; ·)x = ut,

in L2(Ω;H) for each t ∈ R, independent of x ∈ H.
Following the same line of argument as in [94, p. 143], using the coercivity, Itô’s

formula and the comparison lemma [94, Lemma 5.1] for α > 2 or Gronwall’s lemma for
α = 2, respectively, we obtain that for all t ∧ 0 ≥ s2

E sup
r∈[t,∞)

‖X(r, s2; ·)x−X(r, s1; ·)y‖2
H

≤


(
(α

2
− 1)cσλ

α
2 (t− s2)

)− 2
α−2 , if α > 2;

2
(
e
cσλ

2
s1‖y‖2

H + e
cσλ

2
s2‖x‖2

H + C
)
e
cσλ

2
s2e−cσλt, if α = 2.

Hence, X(·, s; ·)x is a Cauchy sequence in L2(Ω;D([t,∞);H)) and

ut := lim
s→−∞

X(t, s; ·)x

exists as a limit in L2(Ω;H) for all t ∈ R and u is F̄ t−∞-adapted.
Since X(·, s; ·)x also converges in L2(Ω;D([t,∞);H)), u is càdlàg P-almost surely.

Since u is F̄ -measurable, we can choose an indistinguishable F -measurable version of u.
(ii) The next step consists of showing that u solves (3.3).
This is achieved using Itô’s formula for ‖ · ‖2

H (with the only difference being an addi-
tional term of

´
H
‖z‖2

Hν(dz) on the right-hand side), the compactness of the embedding
as well as the monotonicity trick and the hemicontinuity (A1). For details, cf. [94, p.144].

(iii) Now we prove the crude stationarity for u. Let us first show X(t, s;ω)x =
X(0, s− t; θtω)x for all t ≥ s, P-almost surely.
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Let h > 0, t ≥ s and define X̄h(t)(ω) := X(t− h, s− h; θhω)x. Then for P-a.a. ω ∈ Ω
(with zero set possibly depending on s, h, x)

X̄h(t)(ω) = X(t− h, s− h; θhω)x

= x+ σ

ˆ t−h

s−h
M(X(r, s− h; θhω)x)dr +Nt−h(θhω)−Ns−h(θhω)

= x+ σ

ˆ t−h

s−h
M(X(r, s− h; θhω)x)dr +Nt(ω)−Ns(ω)

= x+ σ

ˆ t

s

M(X̄h(r)(ω))dr +Nt(ω)−Ns(ω).

Hence, by uniqueness, X(t− h, s− h; θhω)x = X(t, s;ω)x, P-almost surely. In particular

(3.6) X(0, s− t; θtω)x = X(t, s;ω)x,

P-almost surely (with zero set possibly depending on t, s, x).
Now for an arbitrary sequence sn → −∞ there exists a subsequence (again denoted

by sn) such that X(t, sn; ·)x→ ut and X(0, sn− t; ·)x→ u0 P-almost surely. Thus passing
to the limit in (3.6) gives

u0(θtω) = ut(ω),

P-almost surely (with zero set possibly depending on t).
Since u· ∈ Lα(Ω;Lαloc(R;V )), in particular u·(ω) ∈ Lαloc(R;V ) for almost all ω ∈ Ω

and since u is F -measurable, we now use Proposition C.12 in Appendix B to deduce the
existence of an indistinguishable, F -measurable, F̄ t−∞-adapted, strictly stationary, càdlàg
process ũ such that ũ·(ω) ∈ Lαloc(R;V ) for all ω ∈ Ω, i.e. crude stationarity.

(iv) Next we proceed to prove (3.4). Let δ ≥ 0 and note that by (A2′) and (A4)

2σ V ∗〈M(v), v〉V +trQ ≤ −cσ
2
‖v‖αV + C, ∀v ∈ V.

An application of Itô’s formula and the product rule yields that

eδt2‖ut2‖
p
H = eδt1‖ut1‖

p
H

+
p

2

ˆ t2

t1

eδr‖ur‖p−2
H (2σ V ∗〈M(ur), ur〉V + trQ) dr

+ p

ˆ t2

t1

eδr‖ur‖p−2
H 〈ur, dWr〉H + p(

p

2
− 1)

ˆ t2

t1

eδr‖ur‖p−4
H ‖Q

1
2ur‖2

Hdr

+ p

ˆ t2

t1

ˆ
H

eδr‖ur‖p−2
H 〈ur, z〉HÑ(dr, dz)

+

ˆ t2

t1

ˆ
H

eδr
(
‖ur + z‖pH − ‖ur‖

p
H − p‖ur‖

p−2
H 〈ur, z〉H

)
N(dr, dz)

+ δ

ˆ t2

t1

eδr‖ur‖pHdr.
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Therefore, by (A3)

Eeδt2‖ut2‖
p
H ≤ Eeδt1‖ut1‖

p
H

+
p

2
E
ˆ t2

t1

eδr‖ur‖p−2
H

(
−cσ

2
‖ur‖αV + C

)
dr

+ p(
p

2
− 1)E

ˆ t2

t1

eδr‖ur‖p−4
H ‖Q

1
2ur‖2

Hdr

+ E
ˆ t2

t1

ˆ
H

eδr
(
‖ur + z‖pH − ‖ur‖

p
H − p‖ur‖

p−2
H 〈ur, z〉H

)
N(dr, dz)

+ δE
ˆ t2

t1

eδr‖ur‖pHdr.

Noting that

|‖x+ h‖pH − ‖x‖
p
H − p‖x‖

p−2
H 〈x, h〉H | ≤ Cp(‖x‖p−2

H ‖h‖
2
H + ‖h‖p),

we obtain by using the moment Assumption (N) that

E
ˆ t2

t1

ˆ
H

eδr
(
‖ur + z‖pH − ‖ur‖

p
H − p‖ur‖

p−2
H 〈ur, z〉H

)
N(dr, dz)

= E
ˆ t2

t1

ˆ
H

eδr
(
‖ur + z‖pH − ‖ur‖

p
H − p‖ur‖

p−2
H 〈ur, z〉H

)
ν(dz)dr

≤ CE
ˆ t2

t1

ˆ
H

eδr
(
‖ur‖p−2

H ‖z‖
2
H + ‖z‖pH

)
ν(dz)dr

≤ C

(
E
ˆ t2

t1

eδr
(
‖ur‖p−2

H + 1
)

dr

)
,

and thus

Eeδt2‖ut2‖
p
H ≤ Eeδt1‖ut1‖

p
H −

pcσ

4
E
ˆ t2

t1

eδr‖ur‖p−2
H ‖ur‖

α
V dr

+
(
p(
p

2
− 1)trQ+ C

)
E
ˆ t2

t1

eδr‖ur‖p−2
H dr

+ δE
ˆ t2

t1

eδr‖ur‖pHdr + C

ˆ t2

t1

eδrdr.

Applying Young’s inequality and the embedding V ⊂ H, we get

eδt2E‖ut2‖
p
H ≤ eδt1E‖ut1‖

p
H −

(pcσ
4
− 2δλ−1

)
E
ˆ t2

t1

eδr‖ur‖p−2
H ‖ur‖

α
V dr

+ C

ˆ t2

t1

eδrdr.

Stationarity of ut implies(pcσ
4
− 2δλ−1

)
E
ˆ t2

t1

eδr‖ur‖p−2
H ‖ur‖

α
V dr ≤ C

ˆ t2

t1

eδrdr(3.7)

and thus (3.4) holds, provided σ is sufficiently large that pcσ
4
− 2δλ−1 > 0.
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(v) Applying (3.7) for δ = 0 and p = 2 yields

E
ˆ t2

t1

‖ur‖αV dr ≤ C(t2 − t1).

Since ut is stationary, we have E‖ur‖αV = E‖u0‖αV . Hence,

E‖u0‖αV ≤ C <∞,
and Birkhoff’s ergodic theorem implies the claimed convergence.

(vi) The convergence (3.5) follows exactly as in [94, Proof of Theorem 3.3 (i), 146
f.] from the stationarity and Birkhoff’s ergodic theorem as well as an application of Itô’s
formula and the a priori bounds arising from [94, Lemma 5.2] in the case α > 2 and
Gronwall’s lemma for α = 2, respectively.

(vii) This is proven by invoking the dichotomy of linear growth (cf. [7, Proposition
4.1.3]) in the same way as in [94, Proof of Theorem 3.3 (ii), p. 147]. �

4. Generation of Random Dynamical Systems

In order to construct a stochastic flow associated to (2.1), we aim to transform (2.1)
into a random PDE. However, since we only assume that Nt takes values in H we cannot
directly subtract the noise. Motivated by [94] we use the transformation based on a
strongly stationary solution to the strictly monotone part of (2.1). More precisely, we
impose the following assumption:

(V ) There exists an operator M : V → V ∗ satisfying (A1), (A2′) and (A4) with β = 0.

The motivation behind the Assumption (V ) is that M is the strongly monotone part of
A in (2.1). For example, for many semilinear SPDE such as stochastic reaction-diffusion
equations, stochastic Burgers equations and stochastic 2D Navier-Stokes equations, one
can take M = ∆ (standard Laplace operator). For quasilinear SPDE like stochastic
porous media equations, stochastic p-Laplace equations or stochastic Cahn-Hilliard type
equations one can take M(v) = ∆(|v|r−1v), M(v) = div(|∇v|p−2∇v) and M(v) = −∆2v,
respectively (see Section 6 for more concrete examples).

Following the arguments given in [94], for σ > 0 we may consider the F -measurable,
strictly stationary solution ut (given by Theorem 3.1) to

dut = σM(ut)dt+ dNt.

The key point is that u takes values in V , while N takes values in H. The operator M is
used to construct Ornstein-Uhlenbeck type process corresponding to dXt = σM(Xt)dt+
dNt. If Nt takes values in V (cf. [97]), then this regularizing property is not needed and
we can just choose M = −IdH . The condition (V ) can be removed in this case.

Let X(t, s;ω)x denote a variational solution to (2.1) starting in x at time s (the
existence and uniqueness of this solution is proved in Theorem 4.1).

Defining X̄(t, s;ω)x := X(t, s;ω)x− ut(ω) we get

〈X̄(t, s;ω)x, v〉H = 〈x− us, v〉H +

ˆ t

s
V ∗〈A(X̄(r, s;ω)x+ ur), v〉V dr

− σ
ˆ t

s
V ∗〈M(ur), v〉V dr, v ∈ V, P-a.s.



104 IV. DYNAMICAL SYSTEMS AND RANDOM ATTRACTORS

We have used the following stationary conjugation mapping

(4.1) T (t, ω)y := y − ut(ω),

and the conjugated process Z(t, s;ω)x := T (t, ω)X(t, s;ω)T−1(s, ω)x satisfies

(4.2) Z(t, s;ω)x = x+

ˆ t

s

(A(Z(r, s;ω)x+ ur)− σM(ur)) dr

as an equation in V ∗. Let

Aω(r, v) :=

{
A (v + ur)− σM(ur), if ur ∈ V ;

A (v) , else,

where for the simplicity of notations we suppressed the ω-dependency of ur.
Since ur(ω) ∈ V for all ω ∈ Ω and a.a. r ∈ R, from (4.2) we obtain

Z(t, s;ω)x = x+

ˆ t

s

Aω(r, Z(r, s;ω)x) dr.(4.3)

In order to define the associated stochastic flow to (2.1), we first solve (4.3) for each ω ∈ Ω
and then set

(4.4) S(t, s;ω)x := T (t, ω)−1Z(t, s;ω)T (s, ω)x.

This is done in detail in the proof of Theorem 4.1 below. For this purpose and also in
order to subsequently prove the compactness of the stochastic flow, we need to impose
the following additional assumption:

(A5) The embedding V ⊆ H is compact.

Theorem 4.1 (Generation of stochastic flows). Suppose that (A1)–(A5), (V ) are sat-
isfied and there exist non-negative constants C and κ such that

η(v1 + v2) ≤ C(η(v1) + η(v2)),

ρ(v1 + v2) ≤ C(ρ(v1) + ρ(v2)),

η(v) + ρ(v) ≤ C(1 + ‖v‖αV )(1 + ‖v‖κH), ∀v1, v2, v ∈ V.
(4.5)

Then we have the following:

(i) There is a unique solution Z(t, s;ω) to (4.3). Z(t, s;ω) and S(t, s;ω) (defined in
(4.4)) are stationary conjugated continuous RDS in H and S(t, s;ω)x is a solution
of (2.1) in the sense of Definition 2.1.

(ii) The maps t 7→ Z(t, s;ω)x, S(t, s;ω)x are càdlàg, x 7→ Z(t, s;ω)x, S(t, s;ω)x
are continuous locally uniformly in s, t and s 7→ Z(t, s;ω)x, S(t, s;ω)x are right-
continuous.

Proof. (i) We consider (4.3) as an ω-wise random PDE. We use this point of view
to define the associated stochastic flow.

In order to obtain the existence and uniqueness of solutions to (4.3) for each fixed
(ω, s) ∈ Ω × R, we need to verify the Assumptions (H1)–(H4) (see Appendix 7) for
(t, v) 7→ Aω(t, v). We check (H1)–(H4) for Aω(t, v) on each bounded interval [S, T ] ⊂ R
and for each fixed ω ∈ Ω. For ease of notations we suppress the ω-dependency of the
coefficients in the following calculations.

(H1): Follows immediately from (A1) for A.
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(H2): Let v1, v2 ∈ V , ω ∈ Ω and t ∈ R such that ut(ω) ∈ V . Then by (A2) and (4.5)
we find

2V ∗〈Aω(t, v1)− Aω(t, v2), v1 − v2〉V
= 2V ∗〈A (v1 + ut)− A (v2 + ut) , (v1 + ut)− (v2 + ut)〉V
≤ (C + η(v1 + ut) + ρ(v2 + ut)) ‖v1 − v2‖2

H

≤ (C + Cη(ut) + Cρ(ut) + Cη(v1) + Cρ(v2)) ‖v1 − v2‖2
H .

Note that by (4.5)
η(ut) + ρ(ut) ≤ C (1 + ‖ut‖αV ) (1 + ‖ut‖κH) .

Since u·(ω) ∈ Lαloc(R;V ) ∩ L∞loc(R;H), we have

f(t) := C + Cη(ut) + Cρ(ut) ∈ L1
loc(R),

i.e. (H2) holds for Aω. For t ∈ R such that ut(ω) 6∈ V a similar calculation holds.
(H3): For v ∈ V , ω ∈ Ω and t ∈ R such that ut(ω) ∈ V , by (A3) we can estimate

2V ∗〈Aω(t, v), v〉V = 2V ∗〈A (v + ut) , v + ut〉V(4.6)

− 2V ∗〈A (v + ut) , ut〉V − 2σV ∗〈M(ut), v〉V
≤ K‖v + ut‖2

H − γ‖v + ut‖αV + C

+ 2‖A (v + ut) ‖V ∗‖ut‖V − 2σV ∗〈M(ut), v〉V .
For any ε1, ε2 > 0, by (A4), the condition (α−1)β ≤ 2 and Young’s inequality there exist
constants Cε1 , Cε2 such that

2‖A (v + ut) ‖V ∗‖ut‖V

≤ C
(
1 + ‖v + ut‖α−1

V

) (
1 + ‖v + ut‖

β α−1
α

H

)
‖ut‖V

≤ ε1 (1 + ‖v + ut‖αV ) + Cε1

(
1 + ‖v + ut‖β(α−1)

H

)
‖ut‖αV

≤ ε1‖v + ut‖αV + Cε1‖ut‖αV ‖v + ut‖2
H + 2Cε1‖ut‖αV + ε1

and

2σV ∗〈M(ut), v〉V ≤ Cε2‖M(ut)‖
α
α−1

V ∗ + ε2‖v‖αV
≤ Cε2

(
C‖ut‖αV + C

)
+ ε2‖v‖αV ,

where we recall that M satisfies (A4) with β = 0.
Combining the above estimates with (4.6) we have

2V ∗〈Aω(t, v), v〉V ≤ (K + Cε1‖ut‖αV )‖v + ut‖2
H − (γ − ε1)‖v + ut‖αV

+ 2Cε1‖ut‖αV + C + ε1 + Cε2
(
C‖ut‖αV + C

)
+ ε2‖v‖αV .

Using
‖v + ut‖αV ≥ 21−α‖v‖αV − ‖ut‖αV

we obtain (for ε1 small enough):

2V ∗〈Aω(t, v), v〉V
≤ −(γ − ε1 − 2α−1ε2)21−α‖v‖αV + 2(K + Cε1‖ut‖αV )‖v‖2

H

+ (γ − ε1 + 2Cε1 + CCε2)‖ut‖αV + 2(K + Cε1‖ut‖αV )‖ut‖2
H + CCε2 + C + ε1.
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Now choosing ε1, ε2 small enough yields

2V ∗〈Aω(t, v), v〉V ≤ −γ̃‖v‖αV + g(t)‖v‖2
H + f̃(t),(4.7)

where

γ̃ := (γ − ε1 − 2α−1ε2)21−α > 0;

g(t) := 2(K + Cε1‖ut‖αV ) ∈ L1
loc(R);

f̃(t) := (γ − ε1 + 2Cε1 + CCε2)‖ut‖αV
+ 2(C + Cε1‖ut‖αV )‖ut‖2

H + CCε2 + C + ε1 ∈ L1
loc(R).

Here the local integrability of g and f̃ follows from the local Lα-integrability of u in V
and local boundedness of u in H. For t ∈ R such that ut(ω) 6∈ V we can use the same
calculation to prove (H3).

(H4): For v ∈ V , ω ∈ Ω and t ∈ R such that ut(ω) ∈ V :

‖Aω(t, v)‖
α
α−1

V ∗ = ‖A (v + ut)− σM(ut)‖
α
α−1

V ∗

≤ C
(
‖A (v + ut) ‖

α
α−1

V ∗ + ‖M(ut)‖
α
α−1

V ∗

)
≤ C (1 + ‖v + ut‖αV )

(
1 + ‖v + ut‖βH

)
+ C‖M(ut)‖

α
α−1

V ∗

≤ C
(

1 + ‖v‖αV + ‖ut‖αV + ‖v‖βH + ‖ut‖βH + ‖v‖αV ‖v‖
β
H

+ ‖v‖αV ‖ut‖
β
H + ‖ut‖αV ‖v‖

β
H + ‖ut‖αV ‖ut‖

β
H

)
≤ C

(
1 + ‖ut‖βH

)
‖v‖αV + C(1 + ‖ut‖αV )‖v‖βH + C‖v‖αV ‖v‖

β
H

+ C
(

1 + ‖ut‖αV + ‖ut‖βH + ‖ut‖αV ‖ut‖
β
H

)
≤ (C1(t) + C2(t)‖v‖αV )

(
1 + ‖v‖βH

)
,

where

C1(t) := C
(

1 + ‖ut‖αV + ‖ut‖βH + ‖ut‖αV ‖ut‖
β
H

)
∈ L1

loc(R);

C2(t) := C
(

1 + ‖ut‖βH
)
∈ L∞loc(R).

This yields (H4) on any bounded interval [S, T ] ⊆ R.
For t ∈ R such that ut 6∈ V one can show (H4) by a similar calculation.
Hence, (H1)–(H4) are satisfied for Aω for each ω ∈ Ω and on each bounded interval

[S, T ] ⊆ R. By Theorem 7.1 there thus exists a unique solution

Z(·, s;ω)x ∈ Lαloc([s,∞);V ) ∩ L∞loc([s,∞);H)

to (4.3) for every (s, ω, x) ∈ R× Ω×H.
By the uniqueness of solutions for (4.3) we have the flow property

Z(t, s;ω)x = Z(t, r;ω)Z(r, s;ω)x.

Therefore, by Proposition C.9 the family of maps given by

(4.8) S(t, s;ω) := T (t, ω) ◦ Z(t, s;ω) ◦ T−1(s, ω)

defines a stochastic flow.
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Strict stationarity of ut implies that Aω(t, v) = Aθtω(0, v). By the uniqueness of
solutions for (4.3) we deduce that

Z(t, s;ω)x = Z(t− s, 0; θsω)x

and thus Z(t, s;ω)x is a cocycle. Since T (t, ω) is a stationary conjugation, the same holds
for S(t, s;ω)x.

Measurability of ω 7→ Z(t, s;ω)x follows as in the proof of [97, Theorem 1.4]. In fact,
the same argument proves F̄ ts-adaptedness of ω 7→ Z(t, s;ω)x. Due to (4.8), in order
to deduce measurability and F̄ ts-adaptedness of S(t, s;ω)x we only need to prove local
uniform continuity of x 7→ Z(t, s;ω)x which is done in (ii) below. Then it is simple to
show that S(t, s;ω)x is a solution to (2.1).

(ii) Since T (t, ω)y is càdlàg in t locally uniformly in y, t 7→ S(t, s;ω)x is càdlàg. Since
(H2) holds for Aω, by Gronwall’s lemma (cf. [167, Theorem 5.2.4 (i), Eq. (5.32)]) we
have for s ≤ t,

‖Z(t, s;ω)x− Z(t, s;ω)y‖2
H

≤ exp

[ˆ t

s

(f(r) + η(Z(r, s;ω)x) + ρ(Z(r, s;ω)y)) dr

]
‖x− y‖2

H .

By (4.5) for y ∈ B(x, r) := {y ∈ H| ‖x− y‖H ≤ r} we haveˆ t

s

(f(r) + η(Z(r, s;ω)x) + ρ(Z(r, s;ω)y))dr ≤ C.

Thus x 7→ Z(t, s;ω)x is continuous locally uniformly in s, t. Moreover, for s1 < s2 we
have

‖Z(t, s1;ω)x− Z(t, s2;ω)x‖2
H

=‖Z(t, s2;ω)Z(s2, s1;ω)x− Z(t, s2;ω)x‖2
H

≤ exp

[ˆ t

s2

(f(r) + η(Z(r, s1;ω)x) + ρ(Z(r, s2;ω)x)) dr

]
‖Z(s2, s1;ω)x− x‖2

H ,

which implies right-continuity of s 7→ Z(t, s;ω)x.
Right continuity of s 7→ S(t, s;ω)x and continuity of x 7→ S(t, s;ω)x locally uniformly

in s, t follow from the corresponding properties of Z(t, s;ω). �
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5. Existence of a Random Attractor

In the following let D be the system of all tempered sets. Now we are in a position to
state the main result of this chapter.

Theorem 5.1. Suppose that (A1)–(A5), (V ) and (4.5) hold and let S(t, s;ω) be the
continuous cocycle constructed in Theorem 4.1. Then

(i) S(t, s;ω) is a compact cocycle.
For α = 2 additionally assume K < γλ

4
in (A3). Then

(ii) there is a random D-attractor A for S(t, s;ω).

As a first step of the proof of Theorem 5.1 we shall prove bounded absorption. Let
B(x, r) := {y ∈ H| ‖x− y‖H ≤ r}.

Proposition 5.2 (Bounded absorption). Assume (A1)–(A5), (V ) and (4.5). If α = 2,
additionally assume K < γλ

4
in (A3). Then there is a random bounded D-absorbing set

{F (ω)}ω∈Ω for S(t, s;ω).
More precisely, there is a measurable function R : Ω→ R+ \ {0} such that for all D ∈ D
there is an absorption time s0 = s0(D;ω) such that

(5.1) S(0, s;ω)D(θsω) ⊆ B(0, R(ω)), ∀s ≤ s0, P-a.s.

Proof. By (4.7) we have

2V ∗〈Aω(t, v), v〉V ≤ −(γ − ε1 − 2α−1ε2)21−α‖v‖αV + 2(K + Cε1‖ut‖αV )‖v‖2
H + f̃(t).

Note that for α = 2 we also have K < γλ
4

, and choosing ε1, ε2 small enough, we conclude

2 V ∗〈Aω(t, v), v〉V ≤ c(t, ω)‖v‖2
H + f̃(t, ω), ∀v ∈ V,

where c(t, ω) := −c̃+ C‖ut(ω)‖αV and

f̃(t, ω) = C
(
1 + ‖ut‖αV + ‖ut‖2

H + ‖ut‖2
H‖ut‖αV

)
for some C, c̃ > 0.

Note that c̃ does not depend on σ. For a.e. t ≥ s we obtain

d

dt
‖Z(t, s;ω)x‖2

H = 2 V ∗〈Aω(t, Z(t, s;ω)x), Z(t, s;ω)x〉V

≤ c(t, ω)‖Z(t, s;ω)x‖2
H + f̃(t, ω).

By Theorem 3.1, for sufficiently large σ, there is a subset Ω0 ⊆ Ω of full P-measure such
that

1

−s

ˆ 0

s

‖uτ (ω)‖αV dτ → E‖u0‖αV <
c̃

2C
, for s→ −∞

and ‖ut(ω)‖2
H‖ut(ω)‖αV is exponentially integrable for all ω ∈ Ω0.

Hence, there is an s0(ω) ≤ 0 such that

1

−s

ˆ 0

s

(−c̃+ C‖uτ‖αV ) dτ ≤ − c̃
2
,

for all s ≤ s0(ω), ω ∈ Ω0 and some c̃ > 0.



6. EXAMPLES 109

Let D ∈ D, xs(ω) ∈ D(θsω). For some s̃0 = s̃0(D;ω), by Gronwall’s lemma we obtain

‖Z(0, s;ω)xs(ω)‖2
H

≤‖xs(ω)‖2
He

c̃s
2 +

ˆ s0

s

ẽ
c̃
2f(r, ω)dr +

ˆ 0

s0

e
´ 0
r (−c̃+C‖ur‖αV )dτ f̃(r, ω)dr

≤ 1 +

ˆ s0

−∞
e
c̃
2
rf̃(r, ω)dr +

ˆ 0

s0

e
´ 0
r (−c̃+C‖ur‖αV )dτ f̃(r, ω)dr

=:R(ω), ∀s ≤ s̃0, P− a.s.,

(5.2)

where the finiteness of the second term follows from the exponential integrability of f̃ .
Since T (t, ω) = T (θtω) is a bounded tempered map, we find bounded absorption for

S(t, s;ω). �

Proof of Theorem 5.1. (i) Compactness of the cocycles S(t, s;ω), Z(t, s;ω) fol-
lows as in [95, Theorem 3.1].

(ii) We prove that Z(t, s;ω)x is D-asymptotically compact. By Proposition 5.2 there
is a random, bounded D-absorbing set F . Let

K(ω) := Z(0,−1;ω)F (θ−1ω), ∀ω ∈ Ω.

Since F (θ−1ω) is a bounded set and Z(t, s;ω) is a compact flow, K(ω) is compact. Fur-
thermore, K(ω) is D-absorbing:

Z(0, s;ω)D(θsω) = Z(0,−1;ω)Z(−1, s;ω)D(θsω)

⊆ Z(0,−1;ω)F (θ−1ω) ⊆ K(ω),

for all s ≤ s0 P-almost surely. By Theorem C.7 this yields the existence of a random
D-attractor for Z(t, s;ω) and thus, by Theorem C.10 for S(t, s;ω). �

6. Examples

The main results of Theorems 4.1 and 5.1 are applicable to a large class of SPDE,
which not only generalises/improves many existing results but also can be used to obtain
the existence of random attractors for some new examples. In this section, we mostly
present those stochastic equations with a locally monotone operator in the drift, hence
the existing results of [94,95,97] concerning only monotone operators are not applicable
to those examples. We gather the examples considered in these papers at the end of this
section.

Here is an overview of the examples considered: In Section 6.1 we study general
Burgers-type equations. Sections 6.2 and 6.3 are devoted to Newtonian fluids, in par-
ticular we study the 2D Navier-Stokes equations and the 3D Leray-α model. More sim-
ilar examples where the framework can be applied are summarised in Remark 6.2. We
then move on to non-Newtonian fluids in Sections 6.4 and 6.5, where power law fluids
and the Ladyzhenskaya model are discussed. Sections 6.6 and 6.7 are concerned with
Cahn-Hilliard-type equations in the sense of [184] and general Kuramoto-Sivashinsky-
type equations. Finally, in Section 6.8 we show how the aforementioned equations with
monotone operators can be embedded into framework presented here.
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Notations In this section we use Di to denote the spatial derivative ∂
∂xi

and Λ ⊆ Rd is
supposed to be an open, bounded domain with smooth boundary and outward pointing
unit normal vector n on ∂Λ. For the Sobolev space W 1,p

0 (Λ,Rd) (p ≥ 2) we always use
the following (equivalent) Sobolev norm

‖u‖1,p :=

(ˆ
Λ

|∇u(x)|pdx
) 1

p

.

Most examples below deal with equations for vector-valued quantities. However, in some
examples like those of Sections 6.1, 6.6 and 6.7, we are in the scalar-valued case. We
use the same notation for Lp and Sobolev spaces in either case, as there is no risk of
confusion. Thus, for p ≥ 1, let Lp denote either the vector-valued Lp-space Lp(Λ,Rd) or
the scalar-valued Lp-space Lp(Λ,R), with norm ‖ · ‖Lp .

For an Rd-valued function u : Λ→ Rd we define

u · ∇ =
d∑
j=1

uj∂j

and for an Rd×d-valued function M : Λ→ Rd×d

div (M) =

(
d∑
j=1

∂jMi,j

)d

i=1

.

For the reader’s convenience, we recall the following Gagliardo-Nirenberg interpolation
inequality (cf. e.g. [210, Theorem 2.1.5]).

If m,n ∈ N and q ∈ [1,∞] such that

1

q
=

1

2
+
n

d
− mθ

d
,
n

m
≤ θ ≤ 1,

then there exists a constant C > 0 such that

(6.1) ‖u‖Wn,q ≤ C‖u‖θWm,2‖u‖1−θ
L2 , u ∈ Wm,2(Λ).

In particular, if d = 2, we have the following well-known estimate on R2 (cf. [165,214]):

(6.2) ‖u‖4
L4 ≤ C‖u‖2

L2‖∇u‖2
L2 , u ∈ W 1,2

0 (Λ).

6.1. Stochastic Burgers-type and Reaction-Diffusion Equations. We consider
the following semilinear stochastic equation

dXt =

(
∆Xt +

d∑
i=1

fi(Xt)DiXt + f0(Xt)

)
dt+ dNt,(6.3)

for the scalar quantity X on Λ. Let (Nt)t∈R be an L2(Λ)-valued two-sided Lévy process
satisfying (N). Suppose the coefficients satisfy the following conditions:

(i) fi is Lipschitz on R for all i = 1, . . . , d;
(ii) f0 ∈ C0(R) satisfies

|f0(x)| ≤ C(|x|r + 1), x ∈ R;

(f0(x)− f0(y))(x− y) ≤ C(1 + |y|s)(x− y)2, x, y ∈ R.
(6.4)

where C, r, s are some positive constants.
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Example 1. Assume
(1) If d = 1, r = 2, s = 2,
(2) If d = 2, r = 2, s = 2, and fi, i = 1, 2, 3 are bounded,
(3) If d = 3, r = 2, s = 4

3
and fi, i = 1, 2, 3 are bounded measurable functions which

are independent of Xt.
Furthermore assume that the constant K in the condition (A3) and the domain Λ

satisfy K < λ
8
.

Then there is a continuous cocycle and a random attractor associated to (6.3).

Proof. We consider the following Gelfand triple

V := W 1,2
0 (Λ) ⊆ H := L2(Λ) ⊆ V ∗ = (W 1,2

0 (Λ))∗

and define the operator

A(u) = Ã(u) + f0(u) = ∆u+
d∑
i=1

fi(u)Diu+ f0(u), u ∈ V.

One can show that A satisfies (A1)–(A3) with α = 2 and γ = 1
2

and a constant K
(see [165, Example 3.2]). For (A4) we note that

‖Ãu+ f0(u)‖2
V ∗ ≤ C

(
‖Ãu‖2

V ∗ + ‖f0(u)‖2
V ∗

)
.

The first term satisfies

‖Ãu‖2
V ∗ ≤ C(1 + ‖u‖2

V )(1 + ‖v‖νH),

where ν = 2 in case (1) and ν = 0 in case (2). For the second term we note that by
applying Hölder’s inequality and (6.1)

| V ∗〈f0(u), v〉V |2 ≤


‖v‖2

L∞

(
1 + ‖u‖4

L2

)
, d = 1

‖v‖2
L2

(
1 + ‖u‖4

L4

)
, d = 2

‖v‖2
L6

(
1 + ‖u‖4

L12/5

)
, d = 3

≤ ‖v‖2
V (1 + ‖u‖2

V ‖u‖2
H).

Therefore, (A4) holds with α = β = 2.
Note that (A5), (V ) and (4.5) hold obviously with M = ∆, therefore, the assertion

follows from Theorem 4.1 and Theorem 5.1. �

Remark 6.1. (1) If d = 1, one may take f1(x) = x such that Theorem 1 can be
applied to the classical stochastic Burgers equation (i.e. (6.3) with f0 ≡ 0). Note that
we may also allow a polynomial perturbation f0 in the drift of (6.3). Hence, Theorem
1 also covers stochastic reaction-diffusion-type equations. Due to the restrictions of the
variational approach to (S)PDE we can only consider reaction terms of at most quadratic
growth. However, as outlined in [94, Remark 4.6], the main ideas apply to SRDE with
higher-order reaction terms as well, e.g. using the mild approach to SPDE.

(2) The stochastic Burgers equation has been studied intensively over the last decades.
W. E, K.M. Khanin, A.E. Mazel and Y.G. Sinai [66] proved the existence of singleton
random attractors in 1D for periodic boundary conditions and noise of spatial regularity
C3. R. Iturriaga and Khanin in [120] generalised these periodic results to the multi-
dimensional case with spatial C4 noise. Y. Bakhtin [8] studied the case on [0, 1] with
random boundary conditions of Ornstein-Uhlenbeck-type. The case on the whole space
driven by a space-time homogeneous Poisson point field was studied by Bakhtin, E. Cator
and Khanin [9].
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In [51], G. Da Prato and A. Debussche study the stochastic Burgers equation on
an interval with Dirichlet boundary conditions and for cylindrical Wiener noise. They
note [51, Remark 2.4] that one can prove existence of a random attractor using essentially
the same techniques as [47]. The theorems proved in this chapter extend the above results
to the case of more general, rougher noise as well as to the more general class of equations
of the form (6.3).

6.2. Stochastic 2D Navier-Stokes Equation and Other Hydrodynamical
Models. The next example is stochastic 2D Navier-Stokes equation driven by additive
noise. The Navier-Stokes equation is an important model in fluid mechanics to describe
the time evolution of incompressible fluids. It can be formulated as follows

∂tu(t) = ν∆u(t)− (u(t) · ∇)u(t) +∇p(t) + f,

div(u) = 0, u|∂Λ = 0, u(0) = u0,
(6.5)

where u(t, x) = (u1(t, x), u2(t, x)) represents the velocity field of the fluid, ν is the viscosity
constant, p(t, x) is the pressure and f is a (known) external force field acting on the fluid.
The stochastic version was first considered by A. Bensoussan and R. Temam in [13] and
has since been studied intensively. Random attractors for additive (as well as linear
multiplicative) Wiener noise were first obtained by H. Crauel and F. Flandoli [47].

As usual we define (cf. [214, Theorems 1.4 and 1.6]):

H =
{
u ∈ L2(Λ;R2) : ∇ · u = 0 in Λ, u · n = 0 on ∂Λ

}
;

V =
{
u ∈ W 1,2

0 (Λ;R2) : ∇ · u = 0 in Λ
}
.

(6.6)

The Helmholtz-Leray projection PH and the Stokes operator L with viscosity constant ν
are defined by

PH : L2(Λ,R2)→ H, orthogonal projection;

L : H2,2(Λ,R2) ∩ V → H, Lu = νPH∆u.

We thus arrive at the following abstract formulation of the Navier-Stokes equation

(6.7) u′ = Lu+ F (u) + f, u(0) = u0 ∈ H,
where f ∈ H (for simplicity we write f for PHf again) and

F : V × V → V ∗, F (u, v) := −PH [(u · ∇) v] , F (u) := F (u, u).

It is well known that F : V × V → V ∗ is well-defined and continuous. Using the Gelfand
triple V ⊂ H ≡ H∗ ⊂ V ∗, one sees that L extends by continuity to a map L : V →
V ∗. Now we consider a random forcing and thus obtain the stochastic 2D Navier-Stokes
equation

(6.8) dXt = (LXt + F (Xt) + f) dt+ dNt,

where (Nt)t∈R is a two-sided trace-class Lévy process in H satisfying (N).

Example 2. (Stochastic 2D Navier-Stokes equation) There exists a continuous cocycle
and a random attractor associated to (6.8).

Proof. According to the result in [165, Example 3.3], (A1)–(A4) hold with α = β =
2, η ≡ 0 and ρ(v) = ‖v‖4

L4 and K = 0. (A5), (V ) and (4.5) hold obviously (with M := L).
Therefore, the assertion follows from Theorem 4.1 and Theorem 5.1. �

Remark 6.2. (1) The above result improves the classical results in [47, Theorem
7.4] and [45, Example 3.1] by allowing more general types of noise. Besides Lévy-type
noise being allowed here, even for Wiener-type noise, we don’t need impose any further
assumptions on the noise except those needed for the well-posedness of the equation.
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(2) As we mentioned in the introduction, many other hydrodynamical systems also
satisfy the local monotonicity (A2) and coercivity condition (A3). For example, I.D.
Chueshov and A. Millet [40] studied well-posedness and large deviation principles for
abstract stochastic semilinear equations (driven by Wiener noise), covering a wide class
of fluid dynamical models.

In fact, they consider abstract equations of the form

du(t) = (Lu(t) +B(u(t), u(t)) +Ru(t))dt+ σ(u(t))dW (t).

The operator L is a linear unbounded, self-adjoint and negative definite operator with V =
D((−L)1/2), H is a separable Hilbert space such that the Gelfand triple V ⊆ H ⊆ V ∗ holds.
In [40], the inclusions do not have to be compact, but we have to assume this. R : H →
H is a bounded linear operator. The bilinear operator B satisfies certain continuity,
symmetry and interpolation/growth conditions, cf. [40, (C1)]. These assumptions imply
the conditions of this article:

(A1) is clear by the continuity assumptions on the operators. (A2) has been shown
in [40, Eq. (2.8)] for the operator B. For the other two operators this follows immediately.
(A3) with α = 2, γ = 1 and K = ‖R‖ follows as by assumption V ∗〈B(v, v), v〉V = 0, and
(A4) with β = 2 is implied by

| V ∗〈B(v, v), u〉V | = | V ∗〈B(v, u), v〉V | ≤ C‖u‖V ‖v‖H‖v‖V .

As we assumed bounded domains, (A5) holds and finally (V ) holds for M = L. Since
α = 2, we get the additional constraint K = ‖R‖ < λ

4
.

Therefore, Theorem 4.1 and Theorem 5.1 can be applied to show the existence of a
continuous cocycle and of a random attractor for all the hydrodynamical models studied
in [40] driven by additive Lévy-type noise. These models include stochastic magneto-
hydrodynamic equations, the stochastic Boussinesq model for the Bénard convection, the
stochastic 2D magnetic Bénard problem and the stochastic 3D Leray-α model driven by
additive noise. For brevity we shall restrict our attention to one further example, namely
the stochastic 3D Leray-α model.

6.3. Stochastic 3D Leray-α Model. We now apply the main result to the 3D
Leray-α model of turbulence, which is a regularization of the 3D Navier-Stokes equation
and was first considered by J. Leray [148] in order to prove the existence of a solution to
the Navier-Stokes equation in R3. Here we use a special smoothing kernel, which goes back
to A. Cheskidov, D.D. Holm, E. Olson and E.S. Titi [39] (cf. [218] for more references). It
has been shown there that the 3D Leray-α model compares successfully with experimental
data from turbulent channel and pipe flows for a wide range of Reynolds numbers and
therefore has the potential to become a good sub-grid-scale large-eddy simulation model
for turbulence. The (deterministic) Leray-α model can be formulated as follows:

∂tu = ν∆u− (v · ∇)u−∇p+ f,

div(u) = 0, u|∂Λ = 0, u = v − ε2∆v,
(6.9)

where ν > 0 is the viscosity, u is the velocity, p is the pressure and f is a given body-
forcing term. Using the same divergence-free Hilbert spaces V and H as in (6.6) (but in
the 3D case), one can rewrite the stochastic Leray-α model in the following abstract form:

(6.10) dXt = (LXt + F (Xt, Xt) + f) dt+ dNt,

where f ∈ H, (Nt)t∈R is a trace-class Lévy process in H satisfying condition (N), and

Lu = νPH∆u, F (u, v) = −PH
[((

I − ε2∆
)−1

u · ∇
)
v
]
.
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The stochastic 3D Leray-α model was studied by G. Deugoue and M. Sango in [59]
and I.D. Chueshov and A. Millet in [40] for the case of Brownian motion noise. The
inviscid case ν = 0 was investigated by D. Barbato, H. Bessaih and B. Ferrario in [10].
The model has also been extended to the case of 3D MHD equations by Deugoué, P.A.
Razafimandimby and Sango in [57].

Example 3. (Stochastic 3D Leray-α model) There exists a continuous cocycle and a
random attractor associated to (6.10).

Proof. Conditions (A1)–(A4) have been checked above and in [164, Example 3.6]
with α = 2, K = 0, β = 2. Condition (V ) holds with M := L and (A5) is clear. The
assertion now follows from Theorem 4.1 and Theorem 5.1. �

Remark 6.3. To the best of our knowledge, the existence of a random attractor seems
to be new for this model.

6.4. Stochastic Power Law Fluids. The next example is an SPDE model which
describes the velocity field of a viscous and incompressible non-Newtonian fluid subject
to random forcing in dimension 2 ≤ d ≤ 4. The deterministic model has been studied
intensively in PDE theory (cf. [84, 121] and the references therein). For a vector field
u : Λ→ Rd, we define the rate-of-strain tensor by

e(u) : Λ→ Rd ⊗ Rd; ei,j(u) =
∂iuj + ∂jui

2
, i, j = 1, . . . , d

and we consider the case that the stress tensor has the following polynomial form:

τ(u) : Λ→ Rd ⊗ Rd; τ(u) = 2ν(1 + |e(u)|)p−2e(u),

where ν > 0 is the kinematic viscosity and p > 1 is a constant, and for U ∈ Rd ⊗ Rd we

define |U | =
(∑d

i,j=1 |Uij|2
)1/2

.

In the case of deterministic forcing, the dynamics of power law fluids can be modelled
by the following PDE (cf. [121, Chapter 5]):

∂tu = div (τ(u))− (u · ∇)u−∇p+ f,

div(u) = 0, u|∂Λ = 0, u(0) = u0,
(6.11)

where u = u(t, x) = (ui(t, x))di=1 is the velocity field, p is the pressure and f is an external
force.

Remark 6.4. For p = 2, (6.11) describes Newtonian fluids and (6.11) reduces to the
classical Navier-Stokes equation (6.5).

The cases p ∈ (1, 2) and p ∈ (2,∞) are called shear-thinning fluids and shear-
thickening fluids, respectively. They have been widely studied in different fields of science
and engineering (cf. e.g. [84,121] and the references therein).

In this section, we only consider the case p ≥ d+2
2
≥ 2, i.e. the shear-thickening case.

In the following we consider the Gelfand triple V ⊂ H ⊂ V ∗, where

V =
{
u ∈ W 1,p

0 (Λ;Rd) : ∇ · u = 0 in Λ
}

;

H =
{
u ∈ L2(Λ;Rd) : ∇ · u = 0 in Λ, u · n = 0 on ∂Λ

}
.
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Let PH be the orthogonal (Helmholtz-Leray) projection from L2(Λ,Rd) to H. As in
Example 6.2, the operators

N : W 2,p(Λ;Rd) ∩ V → H, N (u) := PH [div(τ(u))] ;

F :
(
W 2,p(Λ;Rd) ∩ V

)
×
(
W 2,p(Λ;Rd) ∩ V

)
→ H;

F (u, v) := −PH [(u · ∇)v] , F (u) := F (u, u)

can be extended to the well defined operators:

N : V → V ∗; F : V × V → V ∗.

In particular, one can show that

V ∗〈N (u), v〉V = −
ˆ

Λ

d∑
i,j=1

τi,j(u)ei,j(v)dx, u, v ∈ V ;

V ∗〈F (u, v), w〉V = −V ∗〈F (u,w), v〉V , V ∗〈F (u, v), v〉V = 0, u, v, w ∈ V.

Now (6.11) with random forcing can be reformulated in the following abstract form:

(6.12) dXt = (N (Xt) + F (Xt) + f)dt+ dNt,

with f ∈ H and Nt being a trace-class Lévy process in H satisfying the condition (N).

Example 4. (Stochastic power law fluids) Suppose that 2 ≤ d ≤ 4 and p ∈
[
d+2

2
, 3
]
,

then there exists a continuous cocycle and a random attractor associated to (6.12).

Proof. From [166, Example 3.5] we know that (A1) and (A2) hold with ρ(v) =

Cε‖v‖
2p

2p−d
V and η ≡ 0, and the operator M := N is in fact strongly monotone. (A3) holds

with α = p and K = 0. Furthermore, we have

‖F (v)‖V ∗ ≤ ‖v‖2

L
2p
p−1

, v ∈ V.

An application of the Gagliardo-Nirenberg interpolation inequality (6.1) yields

‖v‖
L

2p
p−1
≤ C‖v‖θV ‖v‖1−θ

H ,

with θ = d
(d+2)p−2d

. Note that 2θ ≤ p− 1 if p ≥ d+2
2

, hence the embedding V ⊆ H implies

‖F (v)‖V ∗ ≤ C‖v‖2θ
V ‖v‖

2(1−θ)
H ≤ C‖v‖2θ

V ‖v‖
(p−1)−2θ
H ‖v‖2(1−θ)−((p−1)−2θ)

H

≤ ‖v‖p−1
V ‖v‖

3−p
H ⇒ ‖F (v)‖

p
p−1

V ∗ ≤ C‖v‖pV ‖v‖
(3−p)p
p−1

H ,

which implies α = p, β = (3−p)p
p−1

. Since p ≤ 3, we get β ≥ 0. The condition β(α − 1) ≤ 2

is equivalent to (3− p)p ≤ 2, which is satisfied for p ≥ 2.
It is also easy to see that

‖N (v)‖V ∗ ≤ C(1 + ‖v‖p−1
V ), v ∈ V.

Hence the growth condition (A4) holds with the above α and β. (V ) and (A5) are clearly
satisfied. The assertion now follows from Theorem 4.1 and Theorem 5.1 . �
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6.5. Stochastic Ladyzhenskaya Model. The Ladyzhenskaya model is a higher
order variant of the power law fluid where the stress tensor has the form

τ(u) : Λ→ Rd ⊗ Rd, τ(u) = 2µ0(1 + |e(u)|2)
p−2

2 e(u)− 2µ1∆e(u) = τN (u) + τL(u).

The model was pioneered by O.A. Ladyzhenskaya [142] and further analyzed by various
authors (see [254] and the references therein). Compared to the power law fluids con-
sidered above, there is an additional fourth order term ∇ · (−2µ1∆e(u)) present in the
equation.

The existence of random attractors for this model has been studied for p ∈ (1, 2), i.e.
shear-thinning fluids, by J.Q. Duan and C.D. Zhao in [254] and for p > 2 by B.L. Guo
and C.X. Guo [108].

In this section we apply the general framework to this model in the case p ∈ (1, 3],
recovering the results of [254] and parts of the results of [108]. This restriction on
p allows us to understand the nonlinear term as a perturbation of the linear term. It is
necessary again due to the restriction β(α−1) ≤ 2 which restricts the homogeneity in (A4).
Furthermore, applying the Gagliardo-Nirenberg inequality (6.1), we find a “maximal”
range (1, pc] ⊂ (1, 3] of parameters p to which the method presented here applies.

In what follows, the exact form of the powers in the stress tensor does not play any
role, i.e. the results apply just as well to the case

τ̃N (u) = 2µ0(1 + |e(u)|)p−2e(u).

Consider the Gelfand triple V ⊂ H ⊂ V ∗, where

V =
{
u ∈ W 2,2

0 (Λ;Rd) : ∇ · u = 0 in Λ
}

;

H =
{
u ∈ L2(Λ;Rd) : ∇ · u = 0 in Λ, u · n = 0 on ∂Λ

}
.

Let PH be the orthogonal (Helmholtz-Leray) projection from L2(Λ,Rd) to H. Similar
to Examples 6.2 and 6.4, the operators

N : C∞c (Λ;Rd) ∩ V → H, N (u) := PH
[
div(τN (u))

]
;

L : C∞c (Λ;Rd) ∩ V → H, Lu := PH
[
div(τL(u))

]
;

F :
(
C∞c (Λ;Rd) ∩ V

)
×
(
C∞c (Λ;Rd) ∩ V

)
→ H;

F (u, v) := −PH [(u · ∇)v] , F (u) := F (u, u);

can be extended to the well defined operators:

N : V → V ∗; L : V → V ∗; F : V × V → V ∗.

With these preparations, we can write the model in the abstract form

(6.13) dXt = (N (Xt) + LXt + F (Xt) + f)dt+ dNt,

where Nt is a two-sided Lévy-process satisfying the condition (N). We then have the
following result:

Example 5. (Ladyzhenskaya model) Let d ≤ 6. Then there exists a pc = pc(d) > 2
such that for p ∈ (1, pc] there is a continuous cocycle and a random attractor associated
to (6.13).

Proof. We note the following properties of τN [121, pp. 198, Lemma 1.19]:

(τNij (e(u))− τNij (e(v)))(eij(u)− eij(v)) ≥ 0;(6.14)

τNij (e(u))eij(u) ≥ 0;(6.15)

|τNij (e(u))| ≤ C(1 + |e(u)|)p−1.(6.16)
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Furthermore, we need the following higher-order version of Korn’s inequality (a proof can
be found at the end of this section):

(6.17) ‖∇e(u)‖L2 ≥ C‖u‖H2,2 ∀u ∈ W 2,2
0 (Λ;Rd).

The condition (A1) is clear. For (A2) we have to estimate three terms:

(a) V ∗〈N (u)−N (v), u− v〉V = 〈τN (e(u))− τN (e(v)), e(u)− e(v)〉H ≤ 0 by (6.14).
(b) In this case we get by (6.17)

V ∗〈L(u− v), u− v〉V = −2µ1‖∇e(u− v)‖2
L2 ≤ −C‖u− v‖2

H2,2 .

(c) We estimate

V ∗〈F (u)− F (v), u− v〉V = V ∗〈F (u− v, v), u− v〉V
≤ C‖∇v‖Lq‖u− v‖2

L
2q
q−1
≤ C‖∇v‖Lq‖u− v‖2θ

V ‖u− v‖
2(1−θ)
H

≤ ε‖u− v‖2
V + Cε‖∇v‖νLq‖u− v‖2

H ,

where we applied the Gagliardo-Nirenberg interpolation inequality (6.1) as well
as Young’s inequality. Here the exponents θ and γ are defined by

θ =
d

4q
, ν =

1

1− θ
, ν ′ =

ν

ν − 1
=

1

θ
.

For the above calculations to work, we need to have

d

4q
= θ ∈ (0, 1) and q > 1⇔ q ∈

(
d

4
∨ 1,∞

)
,

On the other hand, for the term ‖∇v‖Lq to be bounded, we need the Sobolev
embedding H2,2 ⊂ H1,q which holds only if

2− d

2
≥ 1− d

q
⇔ q ≤ 2d

d− 2
.

Furthermore, to check (4.5), we have to interpolate once more:

‖∇v‖Lq ≤ ‖v‖θH2,2‖v‖1−θ
L2 ,

which implies

θ =
qd+ 2q − 2d

4q
.

The condition θ ∈ [1
2
, 1) from (6.1) implies q ≥ 2 and the condition νθ = 4q

4q−dθ ≤ 2

implies d ≤ 6.
Thus, in total we have to have

q ∈
(
d

4
∨ 2,

2d

d− 2

]
,

which is nonempty for 1 < d < 10.

Putting the three estimates together we find

V ∗〈N (u) + Lu+ F (u)−N (v)− Lv − F (v), u− v〉V

≤ −(C − ε)‖u− v‖2
H2,2 + Cε‖∇v‖

4q
4q−d
Lq ‖u− v‖

2
H ,

i.e. (A2) with ρ(v) = Cε‖∇v‖
4q

4q−d
Lq and η = 0. By the choice of q and the Sobolev

embedding theorem, ρ is locally bounded.
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For Assumption (A3) we proceed in a similar fashion (by the incompressibility condition,
the term involving F is zero):

(a) V ∗〈N (v), v〉V = −〈τN (e(v)), e(v)〉H ≤ 0 by (6.15).
(b) V ∗〈L(v), v〉V = −‖∇e(v)‖2

L2 ≤ −C1‖v‖2
H2,2 = −C1‖v‖2

V ,

and thus (A3) holds with α = 2. Here we have again the case that the constant K in
(A3) vanishes, thus the condition K < λC1

4
is trivially satisfied.

Note that up to this point, the parameter p did not appear in any of the calculations.
Assumption (A4) requires to calculate three terms again:

(a) For the term N , we distinguish two cases:
(i) Let 1 < p ≤ 2. By (6.16) we find

| V ∗〈N (v), u〉V | ≤
ˆ

Λ

|τN (e(v))||e(u)|dx ≤ C

ˆ
Λ

(1 + |e(v)|)p−1|e(u)|dx

≤ C(1 + ‖e(v)‖p−1
Lp )‖e(u)‖Lp ≤ C(1 + ‖v‖p−1

V )‖u‖V
≤ C(1 + ‖v‖V )‖u‖V .

(ii) Now let p > 2. Again, applying (6.16) we get

| V ∗〈N (v), u〉V | ≤
ˆ

Λ

|τN (e(v))||e(u)|dx ≤ C

ˆ
Λ

(1 + |e(v)|)p−1|e(u)|dx

≤ C(1 + ‖e(v)‖p−1
Lp )‖e(u)‖Lp ≤ C(1 + ‖v‖p−1

H1,p)‖u‖H1,p

≤ C
(

1 + ‖v‖θ(p−1)
V ‖v‖(1−θ)(p−1)

H

)
‖u‖V

where we used the Sobolev embedding V = H2,2 ⊂ H1,p which holds for p ≤ 2d
d−2

and the Gagliardo-Nirenberg inequality (6.1) with

θ =
dp+ 2p− 2d

4p
,

which has to be in
[

1
2
, 1
)
. However, since α = 2, we need that θ(p − 1) ≤ 1. As

long as p ≤ 2 this condition is always satisfied. For p > 2 this is more difficult.
We want to have

1 ≥ θ(p− 1)⇔ 0 ≥ p2 − 3p+
2d

d+ 2
.

We see that the latter condition is always strictly satisfied for p = 2 but never
satisfied for p = 3. The critical value of p can be calculated as

pc =
3

2
+

1

2

√
d+ 18

d+ 2
.

As d > 1 we find that pc < 2.618. As d ≤ 6 we find pc ≥ 3
2

+ 1
2

√
24
8
≈ 2.36.

This leaves us with two conditions for this range of p:

2 < p ≤ 2d

d− 2
∧ pc = pc.

(b) | V ∗〈Lv, u〉V | = |〈∇e(v),∇e(u)〉L2| ≤ ‖∇e(v)‖L2‖∇e(u)‖L2 ≤ ‖v‖V ‖u‖V .
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(c) For the last term we find

|〈F (v, v), u〉| = |〈F (v, u), v〉| ≤ C‖∇u‖Lq‖v‖2

L
2q
q−1
≤ C‖u‖V ‖v‖2θ

V ‖v‖
2(1−θ)
H ,

where we have taken the biggest possible q, q = 2d
d−2

, and where θ = d−2
8

and since
α = 2 we again need to have

2θ ≤ 1⇔ d ≤ 6.

The conditions (V ) and (A5) are easily seen to be satisfied. �

Proof of (6.17). The classical Korn inequality states that

(6.18)

ˆ
Λ

|e(u)|2dx ≥ C‖u‖2
H1,2 ∀u ∈ H1,2

0 (Λ;Rd).

We would like to set u = ∇v for v ∈ H2,2
0 (Λ;Rd). Note that

(∇e(v))k = (∂keij(v))di,j=1 =
1

2
(∂i(∂kv)j + ∂j(∂kv)i) = e(∂kv).

Now by applying (6.18) to the vector ∂kv for fixed k, we findˆ
Λ

|∇e(v)|2dx =
∑
k

ˆ
Λ

|∂ke(v)|2dx =
∑
k

ˆ
Λ

|e(∂kv)|2dx

≥ C
∑
k

‖∂kv‖2
H1,2 = C

∑
k

∑
i,j

‖∂i∂kvj‖2
L2

= C
∑
k

∑
i

‖∂i∂kv‖2
L2(Λ;Rd) = C‖v‖2

H2,2(Λ;Rd).

�

6.6. Stochastic Cahn-Hilliard-type Equations. The Cahn-Hilliard equation is a
classical model to describe phase separation in a binary alloy. The reader is referred to
A. Novick-Cohen [185] for a survey of the classical Cahn-Hilliard equation (see also G.
Da Prato, A. Debussche [50] and N. Elezović, A. Mikelić [67] for the stochastic case)
and to [184] for Cahn-Hilliard type equations. Let d ≤ 3. We want to study stochastic
Cahn-Hilliard type equations of the following form:

dX =
(
−∆2X + ∆ϕ(X)

)
dt+ dNt, X(0) = X0,

∇X · n = ∇(∆X) · n = 0 on ∂Λ,
(6.19)

where X is a scalar function, Nt is an L2(Λ)-valued, two-sided Lévy process satisfying
condition (N), and the nonlinearity ϕ is a function that is specified below. Let

V0 := {u ∈ H4,2(Λ) : ∇u · n = ∇(∆u) · n = 0 on ∂Λ},
where H4,2(Λ) denotes the standard Sobolev space on Λ (with values in R).

We consider the following Gelfand triple

V ⊂ H := L2(Λ) ⊂ V ∗,

where
V := completion of V0 w.r.t. ‖ · ‖H2,2 .

Recall that we use the following (equivalent) Sobolev norm on H2,2:

‖u‖H2,2 :=

(ˆ
Λ

|∆u|2dx
)1/2

.

Then we get the following result for (6.19).
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Example 6. (Stochastic Cahn-Hilliard type equations) Suppose that ϕ ∈ C1(R) and
there exist some positive constants C and p ≤ 2 such that

ϕ′(x) ≥ −Cϕ, |ϕ(x)| ≤ C(1 + |x|p), x ∈ R;

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|p−1 + |y|p−1)|x− y|, x, y ∈ R.
(6.20)

Let CGN be the constant from the Gagliardo-Nirenberg interpolation inequality (6.1) for
H1,2(Λ) ⊂ H2,2(Λ) ∩ L2(Λ) and λ the constant from the embedding V ⊂ H. Assume that

Cϕ <
√
λ

2C2
GN

.

Then there exists a continuous cocycle and a random attractor associated to (6.19).

Proof. We denote

A(u) := −∆2u+ ∆ϕ(u), u ∈ H4,2(Λ).

Note that for u ∈ V0 by Sobolev’s inequality (the embedding V ⊂ W d,1 ⊂ L∞ holds by
our assumption on the dimension d) we have

|V ∗〈A(u), v〉V | = |〈−∆u+ ϕ(u),∆v〉L2| ≤ ‖v‖V (‖u‖V + ‖ϕ(u)‖L2)

≤ C‖v‖V (1 + ‖u‖V + ‖u‖pL∞) ≤ C‖v‖V (1 + ‖u‖V + ‖u‖pV ) , v ∈ V.

Therefore, by continuity A can be extended to a map from V to V ∗. Moreover, this also
implies that A is hemicontinuous, i.e. (A1) holds.

The other conditions (A2)–(A4) as well as (4.5) were shown in [166, Example 3.3]
with α = 2, β = 2(p − 1). As we need the exact form of the coercivity condition (A3)
to check the condition K < γλ

4
, we repeat its proof. By the interpolation inequality (6.1)

and Young’s inequality we have for any v ∈ V ,

V ∗〈∆ϕ(v), v〉V = −
ˆ

Λ

ϕ′(v)|∇v|2dx ≤ Cϕ‖v‖2
H1,2 ≤ CϕC

2
GN‖v‖V ‖v‖H

≤ 1

2
‖v‖2

V +
1

2
C2
ϕC

4
GN‖v‖2

H ,

i.e. (A3) holds with α = 2 and K = 1
2
C2
ϕC

4
GN and γ = 1

2
. Thus by our assumption on

Cϕ, the inequality K < γλ
4

= λ
8

holds. The condition (V ) is satisfied as the operator
M := −∆2 is strongly monotone. (A5) and (4.5) are clearly satisfied as well. �

Remark 6.5. (1) Note that the technical constraint β(α − 1) = 2(p − 1) ≤ 2 forces
p ≤ 2, so the method does not cover the “classical” Cahn-Hilliard equation for which ϕ is
a double-well potential, ϕ(u) = u3 − u, i.e. p = 3.

(2) The results of this article on existence of a random attractor for stochastic Cahn-
Hilliard type equations seem not have been established in the literature before.

6.7. Stochastic Kuramoto-Sivashinsky Equation. The Kuramoto-Sivashinsky
equation combines features of the Burgers equation with the Cahn-Hilliard type equations
studied in the previous section. It was introduced in the works of Y. Kuramoto [139] and
D.M. Michelson and G.I. Sivashinsky [177, 204] as a model for flame propagation. The
equation in one spatial dimension has the form

(6.21) ∂tu = −∂4
xu− ∂2

xu− u∂xu.

The first two terms on the right-hand side are of Cahn-Hilliard type (with ϕ(x) = x), the
last term is of Burgers type. We briefly show the existence of a continuous cocycle as well
as a random attractor in the periodic case for a slightly generalised model.
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Example 7 (Stochastic Kuramoto-Sivashinsky equation). Let Λ = (−L,L), L > 0

and p ≤ 2. Let ϕ ∈ C1(R) satisfy the conditions (6.20) as well as Cϕ <
√
λ

2C2
GN

, where CGN
is as in Section 6.6. Furthermore, let Nt be an H-valued two-sided Lévy process satisfying
condition (N). The space H is defined below.

Then the equation

(6.22) du =
(
−∂4

xu− ∂2
xϕ(u)− u∂xu

)
dt+ dNt

with boundary conditions

∂ixu(−L, t) = ∂ixu(L, t), i = 0, . . . , 3

and initial condition u(x, 0) = u0(x), x ∈ Λ generates a continuous cocycle and has a
random attractor.

Proof. Let

H =

{
u ∈ L2(Λ) :

ˆ
Λ

u(x)dx = 0

}
, V = H2

per ∩H.

We write

A(u) := Lu+N (u) + B(u) := −∂4
xu+ ∂2

xϕ(u)− u∂xu, u ∈ H4,2(Λ).

L, N have been extended to operators from V to V ∗ in Section 6.6, where the conditions
(A1)–(A4) were checked for them as well. That B is well-defined can be seen from the
following calculations: by (6.1) we find

| V ∗〈u∂xu, v〉V | =
1

2

∣∣〈∂x(u2), v〉L2

∣∣ ≤ 1

2
‖u‖2

L4‖∂xv‖L2 ≤ C‖u‖V ‖u‖H‖v‖V .

This not only implies the extendability but also gives the remaining contribution to (A1)
as well as to (A4) with α = 2, β = 2. For the local monotonicity we note that by the
embeddings H2,2 ⊆ H1,2 ⊆ W 1,1 ⊆ L∞, we find

2 V ∗〈u∂xu− v∂xv, u− v〉V = 2

ˆ
Λ

(u− v)2∂xvdx ≤ C‖∂xv‖L∞‖u− v‖2
H

which gives (A2) with another locally bounded contribution ρB(v) = ‖∂xv‖L∞ . For (A3)
we note that V ∗〈B(v), v〉V = 0. Thus the conditions (A1)–(A4) are satisfied with α = β =
2. The conditions (A5), (V ) and (4.5) are again clearly satisfied. �

Remark 6.6. D.S. Yang [238] has studied stochastic Kuramoto-Sivashinsky equation
in the case d = 1, ϕ(x) = −x with periodic boundary conditions and proved the existence
of a random attractor for H-valued trace-class Wiener noise. The above result extends
this to a more general class of equations and also to the case of Lévy noise.

6.8. SPDE with Monotone Coefficients. In [94], the stochastic evolution equa-
tion

dXt = A(t,Xt)dt+ dWt + µXt ◦ dβt

is considered on a Gelfand triple V ⊆ H ⊆ V ∗, where the Wiener process takes values in
H, µ ∈ R, βt is a real-valued Brownian motion and ◦ denotes Stratonovich integration.
The operator A in this context satisfies (A1), (A2) with ρ = η = 0, (A3), and (A4) with
β = 0 and coefficients C, γ,K depending on (t, ω). This case of a “globally” monotone
operator (typically just called monotone operator) is covered by the theorems in this work,
if µ = 0 and the coefficients C, γ,K are independent of (t, ω) and satisfy K < γλ

4
. Note

that β(α− 1) = 0 ≤ 2 is satisfied in this case, and so is (4.5).
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Accordingly, all examples considered in [94] under these assumptions are covered by
the results of this chapter. These examples include the stochastic generalised p-Laplace
equations on a Riemannian manifold, stochastic reaction diffusion equations, the stochas-
tic porous media equation as well as the stochastic p-Laplace type equations studied by
W.Q. Zhao and Y.R. Li [258] and the degenerate semilinear parabolic equation consid-
ered by M.H. Yang and P.E. Kloeden in [239]. For more details the reader is referred
to [94] and the references therein.

7. Existence and Uniqueness of Solutions to Locally Monotone PDE

In this section we recall an existence and uniqueness result for locally monotone PDE
(cf. [164, 166, 167]). As before, let V ⊆ H ⊆ V ∗ be a Gelfand triple. We consider the
following general nonlinear evolution equation

u′(t) = A(t, u(t)), ∀0 < t < T,(7.1)

u(0) = u0 ∈ H,
where T > 0, u′ is the generalised derivative of u on (0, T ) and A : [0, T ] × V → V ∗

is restrictedly measurable, i.e. for each dt-version of u ∈ L1([0, T ];V ), t 7→ A(·, u(·)) is
V ∗-measurable on [0, T ].

Suppose that for some α > 1, β ≥ 0 there exist constants c > 0, C ≥ 0 and functions
f, g ∈ L1([0, T ];R) such that the following conditions hold for all t ∈ [0, T ] and v, v1, v2 ∈
V :

(H1) (Hemicontinuity) The map s 7→ V ∗〈A(t, v1 + sv2), v〉V is continuous on R.
(H2) (Local monotonicity)

2V ∗〈A(t, v1)− A(t, v2), v1 − v2〉V ≤ (f(t) + η(v1) + ρ(v2)) ‖v1 − v2‖2
H ,

where η, ρ : V → [0,+∞) are measurable and locally bounded functions.
(H3) (Coercivity)

2V ∗〈A(t, v), v〉V ≤ −c‖v‖αV + g(t)‖v‖2
H + f(t).

(H4) (Growth)

‖A(t, v)‖
α
α−1

V ∗ ≤
(
f(t) + C‖v‖αV

)(
1 + ‖v‖βH

)
.

Theorem 7.1. Suppose that V ⊆ H is compact and (H1)–(H4) hold. Then for any
u0 ∈ H, (7.1) has a solution u on [0, T ], i.e.

u ∈ Lα([0, T ];V ) ∩ C([0, T ];H), u′ ∈ L
α
α−1 ([0, T ];V ∗),

and

〈u(t), v〉H = 〈u0, v〉H +

ˆ t

0
V ∗〈A(s, u(s)), v〉V ds, ∀t ∈ [0, T ], v ∈ V.

Moreover, if there exist non-negative constants C, γ such that

(7.2) η(v) + ρ(v) ≤ C(1 + ‖v‖αV )(1 + ‖v‖γH), v ∈ V,
then the solution of (7.1) is unique.

Proof. The conclusions follow from a more general result in [166] (see Theorem 1.1
and Remark 1.1(3)) or [167, Theorem 5.2.2]. �
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A. Lp Solutions and Integral Equations

In [69] E.B. Fabes, B.F. Jones and N.M. Riviere proved that the weak formulation
for the Navier-Stokes equations on the whole space is equivalent to solving a nonlinear
integral equation of the form

(A.1) u(x, t) + B(u, u)(x, t) =

ˆ
Rd

Γ(x− y, t)u0(y)dy.

They used this formulation to prove regularity estimates in mixed space-time Lp spaces.
Their results play an important role in showing smoothness for smooth initial data for
the weak solution of the tamed Navier-Stokes equations in [197] and in this section we
attempt to derive analogous results for the MHD equations.

The main idea of [69] is threefold:

1. Find a divergence-free solution to the heat equation with the initial data of the
Navier- Stokes problem via Fourier analysis.

2. Use this solution as a test function in the weak formulation to derive the integral
equation.

3. Prove regularity of the solution to the integral equation (which amounts to esti-
mating the nonlinear term B(u, u).

We follow their steps with the necessary modifications of the MHD case. Fabes, Jones and
Riviere consider mixed space-time Lp,q-norms on ST := Rd× [0, T ] for p, q ≥ 2, defined by

‖u‖Lp,q(ST ) :=
d∑
j=1

 T̂

0

(ˆ
Rd
|uj(x, t)|pdx

)q/p
dt

1/q

,

where d
p

+ 2
q
≤ 1, d < p <∞. The space of functions that have finite Lp,q-norm is denoted

by Lp,q(ST ). As we are only interested in the case p = q, we will occasionally assume this
for simplicity in the following. All the results that follow, however, are true also in the
more general case.

A.1. A Divergence-Free Solution to the Heat Equation on the Whole Space.
The first step consists in constructing a symmetric d× d matrix-valued function (t, x) 7→
(Eij(x, t))

d
i,j=1 with the following properties:

(i) ∆Eij(x, t)− ∂tEij(x, t) = 0 for all t > 0, x ∈ Rd.
(ii) ∇ · Ei(x, t) = 0 for all x ∈ Rd, t > 0 where Ei is the i-th row of Eij, i.e.

Ei = (Ei1, . . . , Eid)
(iii) For g ∈ Lp(Rd), 1 ≤ p < ∞ (i.e. g ∈ Lp(Rd) and ∇ · g = 0 in the sense of

distributions), the following convergence holds:ˆ
Rd
E(x− y, t)(g(y))dy → g(x) in Lp(Rd) as t ↓ 0.

The function is given by

(A.2) Eij(x, t) = δijΓ(x, t)−RiRjΓ(x, t),

where

Γ(x, t) :=
1

(4πt)n/2
e−|x|

2/4t

denotes the Weierstraß kernel and Rj denotes the Riesz transformation,

Rj(f)(x) := Lp − lim
ε→0

cj

ˆ
|x−y|>ε

xj − yj
|x− y|n+1

f(y)dy.
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Then one can show that Eij(x, t) ∈ C∞(Rd× (0,∞)), and for 1 ≤ p <∞ and g ∈ Lp(Rd),

(A.3) Eij(x, t)(gi)(x) =

ˆ
Rd

Γ(x− y, t)gi(y)dy, a.e.

We now want to define the nonlinear operator B. Recall that Ei denotes the i-th row of
Eij. We denote by 〈u(y, s),∇E(x− y, t− s)〉 the d× d-matrix1

(〈u(y, s), DxkEi(x− y, t− s)〉)
d
i,k=1 =

(
d∑
j=1

uj(y, s)DxkEij(x− y, t− s)

)d

i,k=1

,

and define the operator B̄(u,w) by

(A.4) B̄(u,w)(x, t) :=

ˆ t

0

ˆ
Rd
〈u(y, s),∇E(x− y, t− s)〉 · w(y, s)dyds.

Note that even though Eij(·, 1) /∈ L1(Rd), since its Fourier transform is not continuous at
the origin, and L1 functions have uniformly continuous Fourier transform, cf. [230, Satz
V.2.2, p. 212], we still have DxkEij ∈ L1(ST ). This implies the following:

Lemma A.1. Let u,w ∈ Lp(ST ), p ≥ 2. Then B̄(u,w) ∈ Lp/2(ST ).

Proof. As this statement is not entirely obvious and we will need it below, we prove
it here for the reader’s convenience. We want to estimate

∑
i

[ˆ T

0

ˆ
Rd
|B̄i(u,w)|p/2dxdt

]2/p

=
∑
i

ˆ T

0

ˆ
Rd

∣∣∣∣∣∑
j,k

ˆ t

0

ˆ
Rd
DxkEij(x− y, t− s)uj(y, s)vk(y, s)dyds

∣∣∣∣∣
p/2

dxdt

2/p

.

To simplify notations, we let

Fijk(y, s) := |DxkEij(y, s)|1[0,T ](s) and Gjk(y, s) := 1[0,T ](s)|uj(y, s)vk(y, s)|.

We denote by f ~ g the convolution in space and time, i.e.

f ~ g(x, t) :=

ˆ ∞
−∞

ˆ
Rd
f(x− y, t− s)g(y, s)dyds.

1Note that E is a d× d-matrix, so taking its gradient we get a tensor of rank 3. By multiplying with
the vector u, we obtain a tensor of rank 2, i.e. a matrix.
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Then, using that s ∈ [0, t] if and only if t− s ∈ [0, t], the inner integral of the expression
we want to estimate can be written and estimated as

T̂

0

ˆ

Rd

∣∣∣∣∣∣
∑
j,k

tˆ

0

ˆ

Rd

DxkEij(x− y, t− s)uj(y, s)vk(y, s)dyds

∣∣∣∣∣∣
p/2

dxdt

=

T̂

0

ˆ

Rd

∣∣∣∣∣∣
∑
j,k

∞̂

−∞

ˆ

Rd

1[0,t](t− s)DxkEij(x− y, t− s)1[0,t](s)uj(y, s)vk(y, s)dyds

∣∣∣∣∣∣
p/2

dxdt

≤
T̂

0

ˆ

Rd

∑
j,k

∞̂

−∞

ˆ

Rd

1[0,T ](t− s)
∣∣DxkEij(x− y, t− s)1[0,T ](s)

∣∣ |uj(y, s)vk(y, s)| dyds

p/2

dxdt

=

T̂

0

ˆ

Rd

(∑
j,k

(Fijk ~Gjk)(x, t)

)p/2

dxdt.

Thus by Young’s convolution inequality and the Cauchy-Schwarz-Buniakowski inequality∑
i

[ˆ T

0

ˆ
Rd
|B̄i(u,w)|p/2dxdt

]2/p

≤
∑
i

ˆ T

0

ˆ
Rd

(∑
j,k

(Fijk ~Gjk)(x, t)

)p/2

dxdt

2/p

=
∑
i

‖
∑
j,k

1[0,T ](Fijk ~Gjk)‖Lp/2(Rd+1)

≤
∑
i,j,k

‖(Fijk ~Gjk)‖Lp/2(Rd+1)

≤
∑
i,j,k

‖Fijk‖L1(Rd+1)‖Gjk‖Lp/2(Rd+1)

=
∑
i,j,k

‖DxkEij‖L1(ST )‖ujvk‖Lp/2(ST )

=
∑
i,j,k

‖DxkEij‖L1(ST )‖uj‖Lp(ST )‖vk‖Lp(ST )

≤

(∑
i,j,k

‖DxkEij‖L1(ST )

)(∑
j,k

‖uj‖Lp(ST )‖vk‖Lp(ST )

)

=

(∑
i,j,k

‖DxkEij‖L1(ST )

)
‖u‖Lp(ST )‖v‖Lp(ST ),

where we used Hölder’s inequality for p = 1, p′ =∞ for the sum
∑

j,k and the embedding

`∞(d) ⊂ `1(d). The proof is complete. �

Given this operator, we define the operator B(y1, y2) by

(A.5) B(y1, y2) :=

(
B̄(v1, v2)− B̄(B1, B2)
B̄(v1, B2)− B̄(B1, v2)

)
.
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The operator B occurs naturally when we (formally) use the function Ei as a test function
in the weak formulation. This will be the subject of the next section.

Before moving on with the theory, let us give a useful Sobolev version of the classical
Schauder estimates (for lack of a better name) for the heat equation. To this end, we
introduce another short-hand notation for the convolution appearing in the definition of
B̄, Equation (A.4):

(f~̄g)(x, t) :=

ˆ t

−∞

ˆ
Rd
f(x− y, t− s)g(y, s)dyds.

Lemma A.2. Let γ ∈ R, p, q ∈ (1,∞), and f ∈ Lq((0, T );W γ,p) be a function. Then
the convolution of f with the heat kernel Γ lies in the space Lq((0, T );W γ+2,p). More
precisely,

‖Γ~̄f‖Lq((0,T );W γ+2,p) ≤ c‖f‖Lq((0,T );W γ,p).

These can also be rewritten into estimates with respect to temporal derivatives.

Proof. In the case p = q, the result is classical, cf. e.g. the book of O.A. Ladyzhen-
skaya, V.A. Solonnikov, N.N. Ural’ceva [140, Chapter IV, Equation (3.1), p. 288]. For
p 6= q, it was proven by N.V. Krylov in [137, Theorem 1.1] using a Banach space version
of the Calderón-Zygmund theorem. �

A.2. Equivalence of Weak Solutions to the MHD Equations and Solutions
to the Integral Equation. By S(Rd+1) we denote the Schwartz space of rapidly de-
creasing functions, and by S ′(Rd+1) we denote its dual space, the space of tempered
distributions. Our space of test functions for the weak formulation of the MHD equations
is

DT := {φ(x, t) ∈ Rd | φi ∈ S(Rd+1), φi ≡ 0 for t ≥ T,∇ · φ(x, t) = 0 ∀x, t}.

Definition A.3 (Weak solution). A function y(x, t) = (v(x, t), B(x, t)) ∈ R2d is
a weak solution of the MHD equations with initial value y0 = (v0, B0) if the following
conditions hold:

(i) v,B ∈ Lp,q(ST ), p, q ≥ 2.
(ii) For all test functions ỹ = (ṽ, B̃) ∈ DT we have the following equality:

ˆ T

0

ˆ
Rd
〈y, ∂tỹ + ∆ỹ〉dx+

ˆ T

0

ˆ
Rd
〈v, (∇ṽ)(v)− (∇B̃)(B)〉dxdt

+

ˆ T

0

ˆ
Rd
〈B, (∇B̃)(v)− (∇ṽ)(B)〉dxdt

= −
ˆ
Rd
〈y0(x), ỹ(x, 0)〉dx−

ˆ T

0

ˆ
Rd
〈f, ỹ〉dxdt.

(A.6)

(iii) For dt-a.e. t ∈ [0, T ], ∇ · u(·, t) = 0 in the sense of distributions.

Note that this definition of weak solution does not directly correspond to the notion
of weak solution given in Chapter II, Section 2.2. But we have the following:

Lemma A.4. Let d = 3, T > 0 be arbitrary and let y = (v,B) be a weak solution in
the sense of Chapter II, Definition 2.5. Then y is also a weak solution in the sense of
Definition A.3.
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Proof. We first prove that v,B lie in Lp,q(ST ) for appropriate p, q. By definition,
we have

v,B ∈ L∞([0, T ];L4(R3;R3)) ⊂ Lq([0, T ];L4(R3;R3)).

Since we need to have 3
p

+ 2
q
≤ 1, and p = 4, this implies v,B ∈ L4,q(ST ) for any q ≥ 4.

Next we need to prove that the weak formulation of the equation follows for the differ-
ent set of test functions DT . This follows directly from Proposition 2.6. The divergence-
freeness is then clear as well. �

The weak solution satisfies a scalar equation. We cast this scalar equation, by choosing
suitable test functions, into an equivalent vector-valued equation. More precisely, we have
the following result, corresponding to Theorem (2.1) in [69] for f = 0 and Theorem (4.4)
for f 6= 0.

Theorem A.5 (Integral Equation). Let y0 ∈ Lr(Rd), 1 ≤ r <∞, p, q ≥ 2, p <∞. If
y ∈ Lp,q(ST ) is a weak solution of the MHD equations with initial value y0, then y solves
the integral equation

(A.7) y + B(y, y) =

ˆ
Rd

Γ(x− z, t)y0(z)dz +

ˆ t

0

ˆ
Rd
E(x− z, t− s)(f(z, s))dzds.

Proof. The idea is to use Ei (the i-th row of the matrix Eij) as a test function in
the weak formulation. The problem is that this function is not in DT , so it needs to be
regularised first.

To this end, take functions a ∈ C∞(Rd,R+), ψ ∈ C∞(R,R+) with

a(x) =

{
1, |x| ≥ 2,

0, |x| ≤ 1,
ψ(t) =

{
1, t ≥ 2,

0, t ≤ 1.

Let aλ(x) := a(λx), ψε(t) := ψ(t/ε). We first regularise in space by defining

(A.8) E
(λ)
ij := F−1

x (aλFx(Eij)) .

Then E
(λ)
ij (·, t) ∈ S(Rd) for all t > 0 and is divergence-free:

∑
j ∂xjE

(λ)
ij (x, t) = 0 for all

t > 0, x ∈ Rd which can be seen by taking Fourier transforms. We fix (x, t) and let Eλ
i be

the i-th row of Eλ
ij. The space-time regularised i-th row is then defined by

(A.9) φε,λ(z, s) := ψ(s+ 2)ψε(t− s)E(λ)
i (x− z, t− s).

This function is defined on all of Rd+1 and moreover (φε,λ, 0), (0, φε,λ) ∈ DT . We can thus
plug these test functions ỹε,λ into (A.6) to findˆ T

0

ˆ
Rd
〈v, (∂s + ∆z)φε,λ〉dzds+

ˆ T

0

ˆ
Rd
〈v, (∇zφε,λ)(v)〉 − 〈B, (∇zφε,λ)(B)〉dzds

= −
ˆ
Rd
〈v0(x), φε,λ(x, 0)〉dz −

ˆ T

0

ˆ
Rd
〈f1, φε,λ〉dzds

and ˆ T

0

ˆ
Rd
〈B, (∂s + ∆z)φε,λ〉dzds+

ˆ T

0

ˆ
Rd
〈B, (∇zφε,λ)(v)〉 − 〈v, (∇zφε,λ)(B)〉dzds

= −
ˆ
Rd
〈B0(x), φε,λ(x, 0)〉dz −

ˆ T

0

ˆ
Rd
〈f2, φε,λ〉dzds,

respectively. These two equations can be treated in the same way, so we focus on the first
one – the equation for the velocity. The first factor in the definition of φε,λ is identically
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one for s ≥ 0, so we can omit it in the following calculations. To calculate the first term
on the left-hand side, note that for s ≥ 0 by applying the product rule and the chain rule

(∆z + ∂s)φε,λ = (∆z + ∂s)ψε(t− s)E(λ)
i (x− z, t− s)

= (∆z − ∂s)
(
ψεE

(λ)
i

)
(x− z, t− s)

= ψε(t− s)(∆z − ∂s)
(
E

(λ)
i

)
(x− z, t− s)

− 1

ε
ψ′ε(t− s)E

(λ)
i (x− z, t− s)

= −1

ε
ψ′ε(t− s)E

(λ)
i (x− z, t− s),

where we used the definition of Eij in the last line. The function ψε(t− s) is constant for
s /∈ [t− 2ε, t− ε], and thus ψ′ε(t− s) ≡ 0 for s /∈ [t− 2ε, t− ε]. Furthermore, ψε(t− s) = 0
for s /∈ [0, t− ε]. Thus we find that the left-hand-side of the tested equation equals

− 1

ε

ˆ t−ε

t−2ε

ˆ
Rd
〈v, E(λ)

i (x− z, t− s)〉ψ′
(
t− s
ε

)
dzds

+

ˆ t−ε

0

ˆ
Rd
ψε(t− s)

(
〈v, (∇E(λ)

i )(x− z, t− s)(v)〉 − 〈B, (∇E(λ)
i )(x− z, t− s)(B)〉

)
dzds.

Next we would like to let λ → ∞. Since E
(λ)
i → Ei in Lp, 1 < p < ∞, in particular for

p = 2 and p = 4, we find that the above converges in2 Lp,q(ST ) to

− 1

ε

ˆ t−ε

t−2ε

ˆ
Rd
〈v, Ei(x− z, t− s)〉ψ′

(
t− s
ε

)
dzds

+

ˆ t−ε

0

ˆ
Rd
ψε(t− s) (〈v, (∇Ei)(x− z, t− s)(v)〉 − 〈B, (∇Ei)(x− z, t− s)(B)〉) dzds

We first consider the first term. Since v(·, s) ∈ Lp(Rd) is weakly divergence-free for a.e.
s ∈ (0, T ) by definition, we find thatˆ

Rd
〈v(z, s), Ei(x− z, t− s)〉 dzds =

ˆ
Rd

Γ(x− z, t− s)vi(z, s)dzds.

Thus, by inserting suitable zeroes,

− 1

ε

ˆ t−ε

t−2ε

ψ′
(
t− s
ε

) ˆ
Rd

Γ(x− z, t− s)vi(z, s)dzds

= −1

ε

ˆ t−ε

t−2ε

ψ′
(
t− s
ε

) ˆ
Rd

Γ(x− z, t− s)vi(x, s)dzds

− 1

ε

ˆ t−ε

t−2ε

ψ′
(
t− s
ε

) ˆ
Rd

Γ(x− z, t− s)[vi(z, s)− vi(x, s)]dzds

= −vi(x, t)−
1

ε

ˆ t−ε

t−2ε

ψ′
(
t− s
ε

)
[vi(x, s)− vi(x, t)]ds

− 1

ε

ˆ t−ε

t−2ε

ψ′
(
t− s
ε

) ˆ
Rd

Γ(x− z, t− s)[vi(z, s)− vi(x, s)]dzds.

2These norms are with respect to the still variable and until this point fixed parameters x and t.
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We are left to prove that the last two terms converge to zero in Lp/2,q/2(ST ) as ε→ 0. The
idea is that, as ψε is a smooth cutoff function, ψ′ε := 1

ε
ψ′( ·

ε
) is a mollifier: it is compactly

supported on [ε, 2ε], has integral one and as we send ε towards zero, it converges to the
Dirac distribution, which can be seen as follows: for a Schwartz function ϕ ∈ S(R),
substitution and integration by parts shows that

(ψ′ε ∗ ϕ)(t) =
1

ε

ˆ
R
ψ′
(
t− s
ε

)
ϕ(s)ds =

1

ε

ˆ t−ε

t−2ε

ψ′
(
t− s
ε

)
ϕ(s)ds

=

ˆ 2

1

ψ′(z)ϕ(t− εz)dz = [ψ(z)ϕ(t− εz)]21 + ε

ˆ 2

1

ψ(z)ϕ(t− εz)dz

= ϕ(t− 2ε) + ε

ˆ 2

1

ψ(z)ϕ(t− εz)dz → ϕ(t).

This implies that, as ε→ 0,

−1

ε

ˆ t−ε

t−2ε

ψ′
(
t− s
ε

) ˆ
Rd

Γ(x− z, t− s)vi(z, s)dzds→ −vi(x, t) in Lp/2,q/2(ST ).

In a similar way the nonlinear terms converge to

B̄(v, v)(x, t)− B̄(B,B)(x, t) = B1(y, y)(x, t),

and by the (weak) divergence-freeness of the initial conditions, we find

lim
ε→0

ψ

(
t

ε

) ˆ
Rd
〈v0(x), E

(λ)
i (x− z, t)〉dz =

ˆ
Rd
v0,i(z)Γ(x− z, t)dz.

The forcing term converges in the same way (but without cancellations due to divergence-
freeness) to

−
ˆ t

0

ˆ
Rd
〈f1, Ei(x− z, t− s)〉dzds = −

ˆ t

0

ˆ
Rd
E(x− z, t− s)(f1)dzds.

Doing the same for the equation tested against (0, E
(λ)
i ) and putting all the terms together,

we arrive at the desired equation. �

Remark A.6. We have only shown that y being a weak solution to the MHD equations
implies that y solves an integral equation. In fact, one can prove, following the steps
in [69] that this is actually an equivalence, i.e. that solutions to the integral equation are
also weak solutions.
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A.3. Regularity of Solutions to the Integral Equation.

Theorem A.7 (Regularity). Let y be a solution to the equation y + B(y, y) = f and
y ∈ Lp,q(ST ), 2

q
+ d

p
≤ 1. Let k be a positive integer such that k + 1 < p, q <∞. If

Dα
xD

j
tf ∈ Lp/(|α|+2j+1),q/(|α|+2j+1)(ST ) whenever |α|+ 2j ≤ k,

then also

Dα
xD

j
ty ∈ Lp/(|α|+2j+1),q/(|α|+2j+1)(ST ) for |α|+ 2j ≤ k.

Proof. The proof proceeds along the same lines as that of Theorem 3.4 in [69], with
the necessary modifications to the MHD case. Since y = f − B(y, y), we only have to
show that Dα

xD
j
tB(y, y) ∈ Lp/(|α|+2j+1),q/(|α|+2j+1)(ST ).

For k = 1, our assumptions read f ∈ Lp,q(ST ) and Dxif ∈ Lp/2,q/2(ST ) for all i. We
split the argument into two parts: that for the v-part of the equation, i.e. for the equation
v + B1(y, y) = f1 and that for the B-part of the equation, i.e. B + B2(y, y) = f2. Since
the terms B̄i(u, v)(x, t) are of the form (with summation convention)

B̄i(u, v)(x, t) = (DxkΓ) ~̄ (ul [δilvk −RiRlvk]) (x, t),

and as our assumption on the coefficients p, q implies 1 < p
2
, q

2
<∞, we can apply Lemma

A.2 as well as the Lp,q-boundedness of the Riesz transform (cf. J.E. Lewis [149, Theorem
4, p. 226]) to find that

‖Dxj B̄i(u, v)‖Lp/2,q/2(ST ) ≤ C‖ul [δilvk −RiRlvk] ‖Lp/2,q/2(ST )

≤ C‖ul‖Lp,q(ST )

(
‖δilvk‖Lp,q(ST ) + ‖RiRlvk‖Lp,q(ST )

)
≤ C‖u‖Lp,q(ST )‖v‖Lp,q(ST ),

and therefore DxiB1(y, y) ∈ Lp/2,q/2(ST ). This in turn implies Dxiv ∈ Lp/2,q/2(ST ). The
same argument yields DxiB ∈ Lp/2,q/2(ST ).

For k > 1, we use induction over k, assuming that the theorem is true for k. Now
assume

Dα
xD

j
tf ∈ Lp/(|α|+2j+1),q/(|α|+2j+1)(ST ) for |α|+ 2j ≤ k + 1, p, q > k + 2.

Derivatives with respect to multi-indices (j, α) with 2j + |α| ≤ k are covered by the
induction hypothesis. We thus only need to consider the case 2j + |α| = k + 1.

Case 1: j = 0. In this case, we apply all but one derivative and see that Dα
xB1(y, y)

and Dα
xB2(y, y) each can be written as a sum of terms of the form DxmB̄(Dβ

xu1, D
γ
xu2),

u1, u2 ∈ {v,B} with |β| + |γ| = k. The same reasoning as above, since the (induction)
hypothesis implies 1 < p

k+2
, q
k+2

<∞, yields

‖DxmB̄(Dβ
xu1, D

γ
xu2)‖Lp/(k+2),q/(k+2)(ST ) ≤ C‖〈Dβ

xu1, D
γ
xu2〉Rd‖Lp/(k+2),q/(k+2)(ST ).

If we set p̄ := p
|β|+1

, q̄ := p
|γ|+1

, we can apply the generalised Hölder inequality with

r̄ := p
k+2

because

1

r̄
=
k + 2

p
=
|γ|+ 1

p
+
|β|+ 1

p
=

1

p̄
+

1

q̄
.

This implies that

‖DxmB̄(Dβ
xu1, D

γ
xu2)‖Lp/(k+2),q/(k+2)(ST ) ≤ C‖Dβ

xu1‖
L

p
|β|+1
‖Dγ

xu2‖
L

p
|γ|+1

,

which is finite by the induction hypothesis.
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Case 2: j > 0. In this case, we place all the spatial derivatives on the functions u1, u2,
so we can write

(A.10) Dj
tD

α
x B̄(u1, u2) =

∑
|β|+|γ|=|α|

Cβ,γD
j
t B̄(Dβ

xu1, D
γ
xu2).

Since by definition and integration by parts we have

B̄(u,w) =

ˆ t

0

ˆ
Rd
〈u(y, s),∇E(x− y, t− s)〉 · w(y, s)dyds

=

ˆ
R

ˆ
Rd

1[0,t](t− s)DxkEij(x− y, t− s)uj(y, s)wk(y, s)dyds

= −
ˆ
R

ˆ
Rd
Eij(x− y, s)1[0,t](t− s)Dxk [uj(y, t− s)wk(y, t− s)] dyds,

by applying Dt we get two kinds of terms from the product rule:

(i) If the derivative hits the indicator function, we (formally) get terms of the formˆ
R

ˆ
Rd
δ{0}(t− s)Eij(x− y, t− s)Dxk [uj(y, s)wk(y, s)] dyds

−
ˆ
R

ˆ
Rd
δ{t}(t− s)Eij(x− y, t− s)Dxk [uj(y, s)wk(y, s)] dyds

=

ˆ
Rd
Eij(x− y, 0)Dxk [uj(y, t)wk(y, t)] dy

−
ˆ
Rd
Eij(x− y, t)Dxk [uj(y, t)wk(y, t)] dy

= Dxk [uj(x, t)wk(x, t)]−
ˆ
Rd
Eij(x− y, t)Dxk [uj(y, t)wk(y, t)] dy,

i.e. in the first term both integrals shrink to a point due to the delta functions
and we are left with one spatial derivative of u and w. In the second term, we
are left with an unproblematic spatial integral.

(ii) If the derivative operator hits the function Eij, we use the definition of Eij to
find DtEij = ∆Eij. So each temporal derivative is transformed into two spatial
derivatives. We can then use integration by parts again to transfer all but one of
these (spatial) derivatives to u and w, so this term becomes proportional to

DxmB̄(Dβ′

x u,D
γ′

x w),

where |β′|+ |γ′| = 1.

Proceeding inductively, we see that if we apply Dt for j > 1 times, we have two cases:

(i) The time derivative hits the indicator function at least once. In this case we get
a term

Dr−s
t Dν

xu(x, t)(Ds
tD

η
xw)(x, t),

where s ≤ r and |ν| + |η| + 2r = 2(j − 1) + 1 = 2j − 1. Here we get the factor
j − 1 because we “lose” one time derivative to the δ-distribution, but we get one
more spatial derivative (with the scaling factor 1) due to the derivative from ∇E.

(ii) All the derivatives hit ∇E. In this case, by continuing as in case 2 above, trans-
ferring all but one derivative onto u and w, we get a term

DxmB̄(Dβ′

x u,D
γ′

x w),

where |β′|+ |γ′| = 2j − 1.
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With regard to (A.10), we replace u by Dβ
xu and w by Dγ

xw, |β| + |γ| = |α| and apply
Lemma A.2 to find

‖Dj
tD

α
x B̄(u,w)‖

L
p
k+2 (ST )

≤ C
∑

|β|+|γ|+2r=k

∑
s≤r

‖(Dr−s
t Dβ

xu)(Ds
tD

γ
xw)‖

L
p
k+2 (ST )

.

The summation runs over |β| + |γ| + 2r = k since in either case we “lose” one (spatial)
derivative. By the inductive hypothesis for the induction over k, we have

Dr−s
t Dβ

xu ∈ L
p

|β|+2r−2s+1 (ST ), Ds
tD

γ
xw ∈ L

p
|γ|+2s+1 (ST ).

Noting that
|β|+ 2r − 2s+ 1

p
+
|γ|+ 2s+ 1

p
=
k + 2

p
,

we apply the generalised Hölder inequality to find

‖Dj
tD

α
x B̄(u,w)‖

L
p
k+2 (ST )

≤ C
∑

|β|+|γ|+2r=k

∑
s≤r

‖Dr−s
t Dβ

xu‖
L

p
|β|+2r−2s+1 (ST )

‖Ds
tD

γ
xw‖

L
p

|γ|+2s+1 (ST )
,

which is finite. �
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B. A Note on Vector Calculus

The condensed notation employed for MHD equations can be confusing at times, so,
for the reader’s convenience, we would like to clarify some of the notation used throughout
this thesis.

B.1. Gradient of a Vector – Navier-Stokes Case. Let v =

v1

v2

v3

 : R3 → R3

be a sufficiently smooth vector field. Then its gradient is defined as the rank 2 tensor (i.e.
3× 3 matrix)

∇v :=

∂1v
1 ∂2v

1 ∂3v
1

∂1v
2 ∂2v

2 ∂3v
2

∂1v
3 ∂2v

3 ∂3v
3

 .

Formally, one can think of this as being “∇⊗v” (in the sense of the Kronecker product).
This then induces the usual Euclidean Hilbert-Schmidt scalar product:

〈∇u,∇v〉 = ∇u · (∇v)T =
3∑
i=1

〈∇ui,∇vi〉 =
3∑

i,j=1

∂ju
i∂jv

i.

B.2. Gradient of a Vector – MHD Case. In the MHD case we are dealing with
6-dimensional vector fields

y =

(
v
B

)
=


v1

v2

v3

B1

B2

B3

 : R3 → R6,

where R6 = R3 × R3 is endowed with the scalar product

〈y, ỹ〉 :=

〈(
v
B

)
,

(
ṽ

B̃

)〉
:= 〈v, ṽ〉+ S〈B, B̃〉.

The gradient is then defined as the rank 2 tensor (a 6× 3 matrix)

∇y := ∇
(
v
B

)
:=

(
∇v
∇B

)
:=


∂1v

1 ∂2v
1 ∂3v

1

∂1v
2 ∂2v

2 ∂3v
2

∂1v
3 ∂2v

3 ∂3v
3

∂1B
1 ∂2B

1 ∂3B
1

∂1B
2 ∂2B

2 ∂3B
2

∂1B
3 ∂2B

3 ∂3B
3

 (= “∇⊗ y”)

This in turn induces the Hilbert-Schmidt scalar product

〈∇y,∇ỹ〉 = ∇v · (∇ṽ)T + S∇B · (∇B̃)T =
3∑
i=1

(
〈∇vi,∇ṽi〉+ S〈∇Bi,∇B̃i〉

)
.
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C. Stochastic Flows and Random Dynamical Systems

We recall the framework of stochastic flows, random dynamical system (RDS) and
random attractors. For more details we refer to [7,45,47,200]. Let (H, d) be a complete
separable metric space and (Ω,F ,P, {θt}t∈R) be a metric dynamical system, i.e. (t, ω) 7→
θt(ω) is (B(R) ⊗ F ,F)-measurable, θ0 = id, θt+s = θt ◦ θs and θt is P-preserving for all
s, t ∈ R.

Definition C.1. A family of maps S(t, s;ω) : H → H, s ≤ t is said to be a stochastic
flow, if for every ω ∈ Ω

i. S(s, s;ω) = idH , for all s ∈ R.
ii. S(t, s;ω)x = S(t, r;ω)S(r, s;ω)x, for all t ≥ r ≥ s, x ∈ H.

A stochastic flow S(t, s;ω) is called

iii. measurable if (t, s, ω, x)→ S(t, s;ω)x is measurable.
iv. continuous if x 7→ S(t, s;ω)x is continuous for all s ≤ t, ω ∈ Ω.
v. a cocycle if S(t, s;ω)x = S(t− s, 0; θsω)x, for all x ∈ H, t ≥ s, ω ∈ Ω.

A measurable, cocycle stochastic flow is also called a random dynamical system (RDS).

For a cocycle stochastic flow the notation of the initial time s ∈ R is redundant.
Therefore, often the notation ϕ(t, ω) := S(t, 0;ω) is chosen for cocycles in the literature.
Since all the results may be extended to a time-inhomogeneous setup (where S(t, s;ω) is
not a cocycle in general) we prefer to use the notation S(t, s;ω).

Definition C.2. A function f : R→ R+ is said to be

i. tempered if lim
r→−∞

fre
ηr = 0 for all η > 0;

ii. exponentially integrable if f ∈ L1
loc(R;R+) and

´ t
−∞ fre

ηrdr < ∞ for all t ∈ R,
η > 0.

Let us note that the product of two tempered functions is tempered and that the
product of a tempered and an exponentially integrable function is exponentially integrable
if it is locally integrable.

In the following, let S(t, s;ω) be a cocycle.

Definition C.3. A family {D(ω)}ω∈Ω of subsets of H is said to be

i. a random closed set if it is P-a.s. closed and ω → d(x,D(ω)) is measurable for
each x ∈ H. In this case we also call D measurable.

ii. tempered if t 7→ ‖D(θtω)‖H is a tempered function for all ω ∈ Ω (assuming H to
be a normed space).

iii. strictly stationary if D(t, ω) = D(0, θtω) for all ω ∈ Ω, t ∈ R.

From now on let D be a system of families {D(ω)}ω∈Ω of subsets of H. For two subsets
A,B ⊆ H we define

d(A,B) :=

sup
a∈A

inf
b∈B

d(a, b), if A 6= ∅;

∞, otherwise.
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Definition C.4. A family {K(ω)}ω∈Ω of subsets of H is said to be

i. D-absorbing, if there exists an absorption time s0 = s0(ω,D) such that

S(0, s;ω)D(θsω) ⊆ K(ω), ∀s ≤ s0

for all D ∈ D and ω ∈ Ω0, where Ω0 ⊆ Ω is a subset of full P-measure.
ii. D-attracting, if

d(S(0, s;ω)D(θsω), K(ω))→ 0, s→ −∞
for all D ∈ D and ω ∈ Ω0, where Ω0 ⊆ Ω is a subset of full P-measure.

Definition C.5. A cocycle S(t, s;ω) is called

i. D-asymptotically compact if there exists a random, compact, D-attracting set
{K(ω)}ω∈Ω .

ii. compact if for all t > s, ω ∈ Ω and B ⊆ H bounded, S(t, s;ω)B is precompact in
H.

We define the Ω-limit set by

Ω(D;ω) :=
⋂
r<0

⋃
τ<r

S(0, τ ;ω)D(θτω),

and one can show that (cf. [47])

Ω(D;ω) = {x ∈ H| ∃sn → −∞, xn ∈ D(θsnω) such that S(0, sn;ω)xn → x}.

Definition C.6. Let S(t, s;ω) be a cocycle. A random closed set {A(ω)}ω∈Ω is called
a D-random attractor for S(t, s;ω) if it satisfies P-a.s.

i. A(ω) is nonempty and compact.
ii. A is D-attracting.

iii. A(ω) is invariant under S(t, s;ω), i.e. for each s ≤ t

S(t, s;ω)A(θsω) = A(θtω).

The following theorem gives a sufficient condition for the existence of a random at-
tractor (cf. e.g. [47]). Let o ∈ H be an arbitrary point in H.

Theorem C.7. Let S(t, s;ω) be a continuous, D-asymptotically compact cocycle and
let K be a corresponding random, compact, D-attracting set. Then

A(ω) :=

{⋃
D∈D Ω(D;ω) , if ω ∈ Ω0;

{o} , otherwise.

defines a random D-attractor for S(t, s;ω) and A(ω) ⊆ K(ω) ∩ Ω(K;ω) for all ω ∈ Ω0

(where Ω0 is as in Definition C.4).

Now we introduce the notion of (stationary) conjugation mappings and conjugated
stochastic flows (cf. [119,131]).

Definition C.8. Let (H, d) and (H̃, d̃) be two metric spaces.

i. A family of homeomorphisms T = {T (ω) : H → H̃}ω∈Ω such that the maps
ω 7→ T (ω)x and ω 7→ T−1(ω)y are measurable for all x ∈ H, y ∈ H̃, is called a
stationary conjugation mapping. We set T (t, ω) := T (θtω).

ii. Let Z(t, s;ω), S(t, s;ω) be cocycles. Z(t, s;ω) and S(t, s;ω) are said to be station-
ary conjugated, if there is a stationary conjugation mapping T such that

S(t, s;ω) = T (t, ω) ◦ Z(t, s;ω) ◦ T−1(s, ω).
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It is easy to show that stationary conjugation mappings preserve the stochastic flow
and cocycle property.

Proposition C.9. Let T be a stationary conjugation mapping and Z(t, s;ω) be a
continuous cocycle. Then

S(t, s;ω) := T (t, ω) ◦ Z(t, s;ω) ◦ T−1(s, ω)

defines a conjugated continuous cocycle.

The existence of a random attractor is preserved under conjugation.

Theorem C.10. Let S(t, s;ω) and Z(t, s;ω) be cocycles conjugated by a stationary
conjugation mapping T consisting of uniformly continuous mappings T (ω) : H → H.
Assume that there is a D̃-attractor Ã for Z(t, s;ω) and let

D :=
{
{T (ω)D̃(ω)}ω∈Ω| D̃ ∈ D̃

}
.

Then A(ω) := T (ω)Ã(ω) is a random D-attractor for S(t, s;ω).

We will require the following strong notion of stationarity:

Definition C.11. A map X : R×Ω→ H is said to satisfy (crude) strict stationarity,
if

X(t, ω) = X(0, θtω)

for all ω ∈ Ω and t ∈ R (for all t ∈ R, P-a.s., where the zero-set may depend on t resp.).

As P is θ-invariant, crude strict stationarity implies stationarity of the law. Objects
obtained as limits in L2(Ω) or limits in probability usually only satisfy crude strict station-
arity. Thus one needs the existence of selections of indistinguishable strictly stationary
versions. The following Proposition provides these.

Proposition C.12. Let V ⊆ H and X : R × Ω → H be a process satisfying crude
stationarity. Assume that X· ∈ D(R;H) ∩ Lαloc(R;V ) for some α ≥ 1, P-a.s. Then there

exists a process X̃ : R× Ω→ H such that

i. X̃·(ω) ∈ D(R;H) ∩ Lαloc(R;V ) for all ω ∈ Ω.

ii. X, X̃ are indistinguishable, i.e.

P[Xt 6= X̃t for some t ∈ R] = 0,

with a θ-invariant exceptional set.
iii. X̃ is strictly stationary.

Proof. The proof is based on [147, Proposition 2.8], which in turn is based on [7,
Theorem 1.3.2]. Throughout the proof, we denote the Lebesgue measure on R by λ.

We first note that we may change X on a set of measure zero, so that X·(ω) ∈
D(R;H) ∩ Lαloc(R;V ) for all ω ∈ Ω. Let

Ω0 = {ω ∈ Ω|Xt(ω) = X0(θtω) for a.a. t},
Ω1 = {ω ∈ Ω|θtω ∈ Ω0 for a.a t}.

Step 1: Show Ω0 ∈ F and P(Ω0) = 1. Since X has càdlàg paths, by [127, Remark
1.1.14, p. 5], X : R × Ω → H is product-measurable. As (t, ω) 7→ θtω is measurable by
the definition of a metric dynamical system, we find that

A := {(t, ω) ∈ R× Ω | Xt(ω) 6= X0(θtω)}
= (X,X0 ◦ θ)−1 ((H ×H)\∆) ∈ B(R)⊗F ,
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where ∆ := {(x, x) | x ∈ H} is the diagonal. By [125, Lemma 1.26], for every ω ∈ Ω,
the ω-section Aω := {t ∈ R | (t, ω) ∈ A} is Lebesgue-measurable. Thus, since the maps
I : f 7→

´
fdλ and J : ω 7→ 1Aω are measurable, we find

Ω\Ω0 = {ω ∈ Ω | λ(Aω) > 0} = (I ◦ J)−1((0,∞)) ∈ F .

Now, by Fubini’s theorem we findˆ
Ω

λ(Aω)dP(ω) =

ˆ
Ω

ˆ
R

1A(t, ω)dλ(t)dP(ω)

=

ˆ
R

ˆ
Ω

1A(t, ω)dP(ω)dλ(t) =

ˆ
R
P [Xt 6= X0 ◦ θt] dλ(t) = 0,

where we used the crude stationarity assumption in the last step. Hence λ(Aω) = 0 for
a.a. ω ∈ Ω, i.e. there exists an N ′ ⊂ Ω with P(N ′) = 0 such that λ(Aω) for all ω ∈ (N ′)c.
This means that Ω\Ω0 ⊂ N ′ and therefore P(Ω\Ω0) = 0.

Step 2: In a similar way, we establish Ω1 ∈ F and P(Ω1) = 1.
Since by the first step,

B := {(t, ω) ∈ R× Ω | θtω /∈ Ω0} = θ−1(Ωc
0) ∈ B(R)⊗F ,

we can again consider the measurable ω-sections Bω := {t ∈ R | (t, ω) ∈ B} ∈ B(R) and

Ω\Ω1 = {ω ∈ Ω | λ(Bω) > 0} ∈ F .

Therefore, applying Fubini’s theorem as well as the θ-invariance of P givesˆ
Ω

λ(Bω)dP(ω) =

ˆ
Ω

ˆ
R

1B(t, ω)dλ(t)dP(ω)

=

ˆ
R

ˆ
Ω

1B(t, ω)dP(ω)dλ(t) =

ˆ
R
P [θtω /∈ Ω0] dλ(t)

=

ˆ
R
P ◦ θ−1

t (Ωc
0)dλ(t) =

ˆ
R
P(Ωc

0)dλ(t) = 0.

Furthermore, Ω1 is (θt)t-invariant, which can be seen as follows: let t ∈ R be arbitrary.
By definition we have

ω ∈ Ω1 ⇔ θsω ∈ Ω0 ∀s ∈ Λ(ω)c, λ(Λ(ω)) = 0.

Now for any s ∈ Λ(ω)c − t (which is still a Lebesgue-nullset by translation invariance of
the Lebesgue measure), there is an s̃ ∈ Λ(ω)c such that s+ t = s̃ and hence

θsθtω = θt+sω = θs̃ω ∈ Ω0,

which implies that θtω ∈ Ω1.
Step 3: Definition and well-definedness of X̃.
Let x0 ∈ H be an arbitrary point. Set

(C.1) X̃t(ω) :=

{
Xt−s(θsω), ω ∈ Ω1, s ∈ R arbitrary such that θsω ∈ Ω0,

x0, ω ∈ Ω\Ω1.

We show that X̃ is well-defined. To this end, let ω ∈ Ω1, t ∈ R and si ∈ R such that
θsiω ∈ Ω0, i = 1, 2. Then there exist Λ(θsiω) ⊂ R with λ(Λ(θsiω)) = 0 and

Xu(θsiω) = X0(θu ◦ θsiω) = X0(θu+si(ω)) ∀u ∈ Λ(θsiω)c.
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The set si+Λ(θsiω), i = 1, 2 is still a nullset and hence so is (s1 + Λ(θs1ω))∩(s2 + Λ(θs2ω)).
Now we let un ∈ (s1 + Λ(θs1ω))c ∪ (s2 + Λ(θs2ω))c with un ↓ t. Then

Xt−s1(θs1ω) = lim
n→

Xun−s1(θs1ω) (X is right− continuous)

= lim
n→

X0(θunω) (un − s1 ∈ Λ(θs1ω))

= lim
n→

Xun−s2(θs2ω) (un − s2 ∈ Λ(θs2ω))

= Xt−s2(θs2ω) (X is right− continuous).

Step 4: X̃ is strictly stationary.
If ω /∈ Ω1, then θtω /∈ Ω1 since otherwise by the θ-invariance of Ω1, ω = θ−t ◦θtω ∈ Ω1.

Thus, we have for such ω that

X̃t(ω) = x0 = X0(θtω).

Now let ω ∈ Ω1 and t ∈ R. Then there are λ-nullsets Λ(θtω),Λ(ω) such that

X̃t(ω) = Xt−s(θsω), ∀s ∈ Λ(θtω)c,

X̃0(θtω) = X−r(θt+rω), ∀s ∈ Λ(ω)c.

Therefore, for s ∈ (Λ(θtω) ∪ (t+ Λ(ω)))c we have

X̃t(ω) = Xt−s(θsω) (s ∈ Λ(θtω)c)

= X−(s−t)(θ(s−t)+tω)

= X̃0(θtω) (s− t ∈ Λ(ω)c),

i.e. the strict stationarity of X̃.
Step 5: Regularity of X̃.
The regularity properties X̃·(ω) ∈ D(R;H) ∩ Lαloc(R;V ) for all ω ∈ Ω follow immedi-

ately from the ones for X.
Step 6: X̃ is measurable and X̃, X are indistinguishable.
We have

(C.2) ω ∈ Ω1 ∩ Ω0 ⇒ X̃t(ω) = Xt(ω)

for all t ∈ R by letting s = 0 in the definition (C.1). The space (Ω, F̃ ,P) is complete
and since P(Ωc

0 ∪ Ωc
1) = 0, we deduce the measurability of X̃ as follows: let t ∈ R and

A ∈ B(H). Then

X̃−1
t (A) =

(
X̃−1
t (A) ∩ (Ω0 ∩ Ω1)

)
t
(
X̃−1
t (A) ∩ (Ω0 ∩ Ω1)c

)
=
(
X−1
t (A) ∩ (Ω0 ∩ Ω1)

)
t
(
X̃−1
t (A) ∩ (Ω0 ∩ Ω1)c

)
=: B t C.

The first term satisfies B ∈ F̄ since X is measurable and Ω0,Ω1 ∈ F by Step 1 and 2.
The second term C is contained in the set Ωc

0 ∪ Ωc
1, which is a P-nullset by Step 1 and 2

and hence C ∈ F̄ by completeness. Both imply X̃−1
t (A) ∈ F̄ and thus X̃ is measurable.

Moreover, by (C.2), we have

P[Xt 6= X̃t for some t] ≤ P(Ωc
0 ∪ Ωc

1) = 0.

Therefore, X and X̃ are indistinguishable, which concludes the proof. �

Remark C.13. From Step 6 of this proof we see that X̃ is
(
F̄ t−∞

)
t∈R-adapted if X is(

F̄ t−∞
)
t∈R-adapted.
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[58] Gabriel Deugoué and Mamadou Sango. On the stochastic 3D Navier-Stokes-α model of fluids tur-
bulence. Abstr. Appl. Anal., pages Art. ID 723236, 27, 2009.
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[60] Gabriel Deugoué and Mamadou Sango. Weak solutions to stochastic 3D Navier-Stokes-α model of
turbulence: α-asymptotic behavior. J. Math. Anal. Appl., 384(1):49–62, 2011.
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Dunod; Gauthier-Villars, Paris, 1969.

[161] Hui Liu and Hongjun Gao. Ergodicity and dynamics for the stochastic 3D Navier-Stokes equations
with damping. Commun. Math. Sci., 16(1):97–122, 2018.

[162] Hui Liu, Lin Lin, Chengfeng Sun, and Qingkun Xiao. The exponential behavior and stabilizability
of the stochastic 3D Navier-Stokes equations with damping. Rev. Math. Phys., 31(7):1950023, 15,
2019.

[163] Hui Liu and Chengfeng Sun. Large deviations for the 3D stochastic Navier-Stokes-Voight equations.
Appl. Anal., 97(6):919–937, 2018.

[164] Wei Liu. Existence and uniqueness of solutions to nonlinear evolution equations with locally mono-
tone operators. Nonlinear Anal., 74:7543–7561, 2011.
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[172] Carlo Marinelli and Michael Röckner. On the maximal inequalities of Burkholder, Davis and Gundy.
Expo. Math., 34(1):1–26, 2016.

[173] Peter A. Markowich, Edriss Saleh Titi, and Saber Trabelsi. Continuous data assimilation for the
three-dimensional Brinkman-Forchheimer-extended Darcy model. Nonlinearity, 29(4):1292–1328,
2016.

https://arxiv.org/abs/1703.05538


148 BIBLIOGRAPHY

[174] Jonathan Christopher Mattingly and Yakov Grigorevich Sinai. An elementary proof of the existence
and uniqueness theorem for the Navier-Stokes equations. Commun. Contemp. Math., 1(4):497–516,
1999.

[175] Jonathan Christopher Mattingly and Toufic Mubadda Suidan. The small scales of the stochastic
Navier-Stokes equations under rough forcing. J. Stat. Phys., 118(1-2):343–364, 2005.

[176] Michel Métivier. Stochastic partial differential equations in infinite-dimensional spaces. Scuola Nor-
male Superiore di Pisa. Quaderni. [Publications of the Scuola Normale Superiore of Pisa]. Scuola
Normale Superiore, Pisa, 1988. With a preface by G. Da Prato.

[177] Daniel M. Michelson and Gregory I. Sivashinsky. Nonlinear analysis of hydrodynamic instability in
laminar flames. II. Numerical experiments. Acta Astronaut., 4(11-12):1207–1221, 1977.

[178] Remigijus Mikulevicius and Boris L. Rozovskii. On equations of stochastic fluid mechanics. In
Stochastics in finite and infinite dimensions, Trends Math., pages 285–302. Birkhäuser Boston,
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