6 research outputs found

    A combinatorial approximation algorithm for graph balancing with light hyper edges

    Get PDF
    Makespan minimization in restricted assignment (R|pij ϵ {pj, ∞}|Cmax) is a classical problem in the field of machine scheduling. In a landmark paper in 1990 [9], Lenstra, Shmoys, and Tardos gave a 2-approximation algorithm and proved that the problem cannot be approximated within 1.5 unless P=NP. The upper and lower bounds of the problem have been essentially unimproved in the intervening 25 years, despite several remarkable successful attempts in some special cases of the problem [2, 3, 13] recently. In this paper, we consider a special case called graph-balancing with light hyper edges, where heavy jobs can be assigned to at most two machines while light jobs can be assigned to any number of machines. For this case, we present algorithms with approximation ratios strictly better than 2. Specifically, • Two job sizes: Suppose that light jobs have weight w and heavy jobs have weight W, and

    Santa Claus, Machine Scheduling and Bipartite Hypergraphs

    Get PDF
    Here we discuss two related discrete optimization problems, a prominent problem in scheduling theory, makespan minimization on unrelated parallel machines, and the other a fair allocation problem, the Santa Claus problem. In each case the objective is to make the least well off participant as well off as possible, and in each case we have complexity results that bound how close we may estimate optimal values of worst-case instances in polytime. We explore some of the techniques that have been used in obtaining approximation algorithms or optimal value guarantees for these problems, as well as those involved in getting hardness results, emphasizing the relationships between the problems. A framework for decisional variants of approximation and optimal value estimation for optimization problems is introduced to clarify the discussion. Also discussed are bipartite hypergraphs, which correspond naturally to these problems, including a discussion of Haxell's Theorem for bipartite hypergraphs. Conditions for edge covering in bipartite hypergraphs are introduced and their implications investigated. The conditions are motivated by analogy to Haxell's Theorem and from generalizing conditions that arose from bipartite hypergraphs associated with machine scheduling

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    15th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2016, June 22-24, 2016, Reykjavik, Iceland

    Get PDF
    corecore