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Abstract

Here we discuss two related discrete optimization problems, a prominent problem in
scheduling theory, makespan minimization on unrelated parallel machines, and the other a
fair allocation problem, the Santa Claus problem. In each case the objective is to make the
least well off participant as well off as possible, and in each case we have complexity results
that bound how close we may estimate optimal values of worst-case instances in polytime.
We explore some of the techniques that have been used in obtaining approximation algo-
rithms or optimal value guarantees for these problems, as well as those involved in getting
hardness results, emphasizing the relationships between the problems. A framework for de-
cisional variants of approximation and optimal value estimation for optimization problems
is introduced to clarify the discussion.

Also discussed are bipartite hypergraphs, which correspond naturally to these problems,
including a discussion of Haxell’s Theorem for bipartite hypergraphs. Conditions for edge
covering in bipartite hypergraphs are introduced and their implications investigated. The
conditions are motivated by analogy to Haxell’s Theorem and from generalizing conditions
that arose from bipartite hypergraphs associated with machine scheduling.

iii



Acknowledgements

I am grateful to the University of Waterloo for providing a stimulating experience during
my Master’s studies and for supporting my research.

Special thanks goes to my advisor Penny Haxell, whose guidance and commentary has
been of immeasurable benefit to this work.

iv



Dedication

I dedicate this work to the entire Jay family (and most especially my parents), whose
support and enthusiasm for my mathematical endeavours has been overwhelming, and in
the memory of my maternal grandparents.

v



Table of Contents

List of Figures viii

1 Introduction 1

1.1 Outlining the Thesis and its Contributions . . . . . . . . . . . . . . . . . . 1

1.2 Introducing the Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Some Notes on Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Relaxed Decision Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Early Work on Machine Scheduling 11

3 Santa Claus CLP 17

4 Bipartite Hypergraphs and Independent Transversals 24

4.1 A Bipartite Hypergraph Framework . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Independent Transversals and Estimation for Restricted Santa Claus . . . 26

5 Restricted Machine Scheduling Estimation 31

5.1 A Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 The General Case for 11/6 Estimation . . . . . . . . . . . . . . . . . . . . 38

6 Matroid Generalization 51

6.1 Matroid Version for Santa Claus and 4+ε Approximation . . . . . . . . . . 52

6.2 A Matroid Version of Machine Scheduling . . . . . . . . . . . . . . . . . . 54

7 Graph Balancing 56

7.1 Finding Balanced Orientations for Graphs with Weighted Directed Edges . 56

7.2 Optimal Factor Approximation for Santa Claus Graph Balancing . . . . . 61

7.3 Graph Balancing for Machine Scheduling . . . . . . . . . . . . . . . . . . . 66

vi



8 Bipartite Hypergraph Covering 75

8.1 Conditions for Covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2 A Greedy Algorithm for Covering and Some Negative Results . . . . . . . 79

9 Conclusion 84

References 86

vii



List of Figures

2.1 Rounding in a Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 A Perfect Matching for a Triple System . . . . . . . . . . . . . . . . . . . . 15

4.1 Bipartite Hypergraph Formulations . . . . . . . . . . . . . . . . . . . . . . 25

4.2 A Constellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.1 D and the cycle constructed . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Extending the tree with a single path . . . . . . . . . . . . . . . . . . . . . 72

viii



Chapter 1

Introduction

1.1 Outlining the Thesis and its Contributions

This thesis discusses two closely related problems in discrete optimization, the min makespan
scheduling problem on unrelated machines and the max-min allocation problem. These
problems are each computationally complex, indeed NP-hard, to solve exactly. So at issue
here is how accurately they may be efficiently approximated. Improving the long-standing
current best factor for approximation of this min makespan scheduling problem is one of
the most prominent open problems in scheduling theory (see for instance, a discussion of
some open problems by Schuurman and Woeginger [27]). The max-min allocation problem
is closely related and there has been much overlap in the techniques applied to the study of
each problem. In this work we aim to summarize some of the major results concerning the
polytime approximability for these problems and to give a sense of some of the techniques
involved in the proofs, by going over a selection of the results in detail. A linear program
relaxation, known as the Configuration LP (CLP), will be a central tool for much of the
work discussed here, and we present a section (in Chapter 3) which elaborates on the de-
tails of its application to these problems (the essentials of which were briefly sketched in
the original paper by Bansal and Sviridenko introducing the CLP [5]).

Many of the proofs given in this thesis for results in the literature are given in a
somewhat different setting, being reworked or expanded upon for clarity and unity with the
rest of the presentation. There is an emphasis on examining the similarity and differences
between the two problems, showing common methods and discussing when results obtained
for one fail to fruitfully carry over to the other. Another aim of this work is to explore
some of the underlying ideas in these problems as they relate to bipartite hypergraphs.

Original Contributions:

A general framework for discussing decisional variants of approximation and optimal
value estimation for optimization problems is introduced in this introductory chapter,
to clarify the distinction between polytime estimation and approximability (a distinction
discussed in an article by Feige [13]). The framework introduced will expand on the notion
of a relaxed decision procedure already present in the literature [23] and relies upon the
basic application of binary search to approximation and estimation problems.
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In Chapter 4, we give an original proof for polytime estimation in a case of the max-
min allocation problem, based on a result (due to Haxell [15]) concerning independent
transversals in vertex partitioned graphs. An analogue to a matroid version of the allocation
problem (introduced by Davies, Rothvoss and Zhang [11]) is introduced for the scheduling
problem in Chapter 6.

The main original contribution of this thesis is in the final Chapter 8, where novel
conditions on bipartite hypergraphs are introduced and explored, which we relate to a
condition arising from a relaxation of the min makespan scheduling problem. We determine
some consequences of these conditions, while more questions are raised to perhaps spur
future research along these lines, and to close the gaps presented.

Other Contents of this Thesis:

Chapter 2 delves into the min makespan machine scheduling problem by discussing
the seminal work of Lenstra, Shmoys and Tardos [23], which provides the first (and best
known) constant factor approximation algorithm. In this chapter we also introduce the
hardness results for our two problems.

Chapter 3 introduces the CLP relaxation for the Santa Claus problem (from the work
of Bansal and Sviridenko [5]), and develops the needed results for application of the CLP
to the Santa Claus and machine scheduling problems throughout this work.

Chapter 4 formulates our problems in terms of bipartite hypergraphs and discusses
versions of Haxell’s Theorem [15].

Chapter 5 goes over the best known result for the restricted case of estimation for the
min makespan machine scheduling problem. First we give an introduction to the ideas in
a special case that we flesh out to prepare for the main result.

Chapter 6 discusses a matroid variant of the Santa Claus problem and its application
to the approximation of the usual form of the problem.

Chapter 7 deals with the graph balancing cases of these problems and some of the
provably optimal approximation factors known in the literature.

Chapter 8 deals entirely with the new material mentioned, motivating it from consid-
eration of some linear programs associated to our problems.

1.2 Introducing the Problems

We begin by formally introducing the two optimization problems that we are concerned
with. The min makespan scheduling problem is frequently viewed in the context of optimal
job scheduling on unrelated parallel machines as follows [23]. Suppose we have a set M
of machines and a set J of jobs we wish to perform. Given times pij ∈ R>0 ∪ {∞} for
machine i to perform job j we seek a job assignment function σ : J → M that minimizes
objective MakeSpan(σ) := maxi∈M

∑
j∈σ−1(i) pij. The makespan here is the maximum time

taken by any machine to process all assigned jobs. Jobs and machines are then a natural
use of terminology, since in those terms this optimization problem is the task of scheduling
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jobs on machines so that the total time from start to finish of all jobs is minimized, clearly
a practical quantity to optimize. From this point on the phrases job scheduling problem or
alternatively machine scheduling problem, will both refer to this min makespan problem
setup. Also all problem instances will be assumed to be feasible for a finite makespan,
by insisting that each job can be performed in finite time by some machine, and job
assignments with an infinite makespan will be considered infeasible.

The restricted assignment version of this problem occurs when we have jobs with fixed
performance time pj ∈ R>0 for each j ∈ J , but where each job is only assignable to some
subset Γ(j) ⊂M of the machines. This can be seen as a special case of the general problem
taking each pij ∈ {pj,∞}. In this case performance times pj are also referred to as job sizes.

The max-min allocation problem has become to be known as the Santa Claus problem
[5]. The Santa Claus fair allocation problem gets it name from thinking of it as the task
of distributing presents among children so as to make the least happy child as happy as
possible, so in some sense to distribute as fairly as possible. To distinguish the two problems
we are considering, the terminology used here is allocating bundles of resources to players,
instead of assigning jobs to machines.

Let R be the set of resources and P the set of players, where resource j has value
to player i of vij ∈ R≥0. The Santa Claus problem is to find disjoint sets/bundles of
resources {Si : i ∈ P} to assign players so that objective mini∈P

∑
j∈Si

vij is maximized.
The indexed set of bundles {Si : i ∈ P} for a feasible solution forms a partition for a subset
of the resources R. The optimal objective value for this problem is called the max-min. In a
more general formulation [6] players are allowed to value sets of resources arbitrarily, rather
than linearly based on valuations of the individual resources, but we shall not consider this
here.

The restricted version of the problem occurs when resources have inherent values vj ∈
R>0 for all j ∈ R and are assignable to some subset Γ(j) ⊂ P of the players. We are then
restricted to choosing bundles for each player consisting entirely of resources assignable to
the given player. This again may be viewed as a special case taking vij := 0 if and only if
i /∈ Γ(j) and otherwise setting vij := vj to the inherent value for all i ∈ P and j ∈ R.

The performance times or resource values for these problems are assumed to be given
as input in binary with a finite length binary string for numerator and denominator (so a
0 in denominator can indicate infinite job performance time). The input size of these two
problems is then the total bit-length of the matrix storing all pij’s/vij’s. So this assumes
that all (non-infinite) values are rational, and hence integer up to some scaling factor.

We can also alternatively formulate the machine scheduling problem in terms of allo-
cating bundles of jobs {Si : i ∈ M} to machines, instead of finding a function assigning
individual jobs to machines. In this setting we are required to have all jobs contained in
the union of the bundles, as we must schedule all jobs, and the objective is to minimize
the makespan, the greatest time any machine takes to complete all the jobs in its assigned
bundle. We may relax the requirement of disjointness, as there is no harm in a job being
done multiple times and this will not affect the optimal makespan.
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These problems are then quite similar in that they each seek a way to allocate bundles
of items that produces an outcome which is least bad for the worst off participant, the only
difference being whether the items in the bundles are goods to be distributed or onerous
tasks that must be completed. Put more colourfully, it is a matter of whether we are Santa
handing out presents, or Scrooge assigning overtime work.

Given the similarity, it is perhaps unsurprising that many of the ideas and techniques
developed in studying one problem have carried over successfully to the other, however
there are fundamental differences which make some techniques and results not translate
automatically between them. In particular one notable difference to the restricted cases is
that being off of optimal by misallocating a single job (changing from an optimal solution
by putting one job in a different bundle) cannot be too bad for the machine scheduling,
where it at most doubles the makespan, since the job was already being done by some
machine. Meanwhile, in the Santa Claus problem a single resource may be in a bundle
for an optimal solution, so taking it away completely ruins the solution’s min allocation.
This and issues related to it, have made it useful in the Santa Claus problem to separate
out the resources by whether they are large in value or small, and this has consequently
constrained much of the work to the restricted case, wherein this division of resources can
be made independent of the player.

1.3 Some Notes on Complexity

We briefly describe some basic concepts in complexity theory needed to understand the
results we will discuss. An algorithm runs in polytime with respect to n (a function of
input most frequently taken as the input size) when there exists a polynomial in n which
bounds the number of elementary operations (as modelled on a Turing machine) performed
to execute the algorithm on any input. We say an algorithm runs in polytime when it runs
in polytime with respect to the size of input (i.e. the number bits needed to encode it).

The notion of a polynomial time algorithm is understood to be a useful theoretical tool
to help capture the practical notion of the efficiency or feasibility of running an algorithm
(see a reference text on complexity by Arora and Barak [3]). A decision problem is one
which has possible input strings each with a “Yes” or “No” answer. A decision problem
is solved by an algorithm which always accurately outputs “Yes” or “No” to match the
answer on all input. The complexity class of polytime solvable decision problems is denoted
by P.

The complexity class NP consists of those decision problems that have a polytime
algorithm A and a polynomial bound p which satisfy the following rule: for every input x
(with size |x|) of the decision problem, there exists a witness w with size at most p(|x|) so
that A running on (x,w) outputs “Yes” if and only if x has (correct) answer “Yes” [3] (so
when x has answer “No”, there is no w of size at most p(|x|) where A running on (x,w)
will output “Yes”). The idea is that the algorithm A is able to verify some proof w for x
being a “Yes” answer input in polytime.

Intuitively the class P consists of those decision problems that can be solved efficiently,
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while NP consists of the decision problems whose solutions can be verified efficiently. Prob-
lems with complexity P are also NP, while the question of whether NP problems need be
in P (the P=NP or P 6=NP question) is the central open problem of complexity theory [3].
NP-hard problems are those problems P , which if a solver for P is given as a polytime
operation oracle (in addition to standard elementary operations), it may be used to solve
any problem in the complexity class NP in polytime [3]. So NP-hard problems are at least
as hard to solve in polytime as any in NP, indeed if any NP-hard problem is polytime solv-
able then P=NP. NP-complete decision problems are those in both NP and NP-hard, thus
constituting the class of the equally “hardest” NP problems. The first decision problems
to be verified NP-complete were versions of the boolean satisfiability problem by Cook [10]
and Levin [24] independently. Later Karp produced a list of 21 NP-complete problems [21]
and there are now thousands of different decision problems known to be NP-complete [30].
All of these NP-complete problems have resisted any attempt to be solved in polytime.
Indeed it seems natural that it ought to be harder in some cases to produce a solution than
to verify one, so it is widely assumed that P6=NP. For practical purposes the assumption
need not even hold, it is enough to say that we have no (and will not soon have) such
algorithms for solving NP-complete problems. So in terms of the practical difficulty of
computation, showing a problem to be NP-hard amounts to showing its infeasibility (on
large input).

Finding the optimal value of a solution to either of these two optimization problems
for a general instance of the problem (in even the restricted cases) is NP-hard, as we shall
see from much stronger results than this discussed later. Given the (presumed on the basis
of P 6=NP) barrier to efficient solutions presented by the NP-hardness of these problems,
expectations for algorithmic progress must be tempered in some way. One natural aspect
of the problem’s complexity to study then, is determining how well in polytime we can
produce approximate solutions to the problem, or even just estimate the optimal value
(without producing a solution). From this point on, an approximation algorithm will
refer only to polytime algorithms, we shall not focus on positive results concerning other
complexity classes.

We shall pay particular focus to constant factor p-approximation algorithms, meaning
an algorithm running in polytime which produces a solution within a multiplicative factor
p of optimal (see this text [30] by Williamson and Shmoys for a reference on approximation
algorithms). For minimization p-approximation involves finding a solution with objective
at most p∗OPT and for maximization finding a solution with objective at least 1

p
OPT . We

will also consider estimation algorithms running in polytime to determine within a constant
factor p the optimal value for a problem instance, that is an algorithm determining upper
and lower bounds within a factor p between which the optimal value is guaranteed to lie.

Also of interest shall be hardness results which bound how well in polytime we may
estimate the optimal value of a problem instance, by showing estimating within some
factor to be NP-hard (hardness results obtained by known methods always apply to es-
timating the optimal value in addition to the approximation factor [13]). The hardness
results explored here are obtained by reduction from known NP-complete problems. A
measure of theoretical progress in approximation algorithms for these types of problems is
how close the hardness bounds can be made to the best known approximation algorithms
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(and estimates for optimal value), and in an ideal case giving us a provably best factor
approximation algorithm, provisional on P6=NP. These ideal cases have only been realized
in very special cases of these two problems [17, 7], with jobs/resources assignable to at
most 2 machines/players, that relate to graph balancing problems where one attempts to
orient weighted edges so as to in some sense balance the total incoming weight to each
of the vertices. A discussion of these ideal cases will be included in Chapter 7 on graph
balancing, while exploring the current best results for more general cases will occupy much
of this work.

1.4 Relaxed Decision Procedures

The notion of a relaxed decision procedure was used, in a 1990 paper due to Lenstra, Shmoys
and Tardos [23], to obtain an approximation algorithm for the unrelated machine scheduling
problem. Related ideas about dual approximation were introduced by Hochbaum and
Shmoys in a 1987 paper on approximation algorithms and identical machine scheduling
[16]. We shall adapt this notion to our purposes by drawing a distinction between two
different types of relaxed decision procedures, one of which will correspond to producing
approximate solutions and the other estimates for the optimal value. Firstly we clarify our
meaning of an optimization problem for the purposes of this thesis, which should match
the informal notion. We then introduce a definition for searchable optimization problems,
which restricts objective values to be non-negative integers and adds a few other technical
restrictions.

Definition 1.1. An optimization problem O consists of a class of problem instances and a
Boolean variable indicating whether it is a minimization or maximization problem. Prob-
lem instances have an associated set of feasible solutions and each feasible solution has a
real objective value.

The optimal value for P an instance of a minimization/maximization problem is the
least/greatest (or infimum/supremum) objective value among the feasible solutions for
P, and is undefined for problem instances without any feasible solutions. We say that
minimization/maximization problem instance P is feasible for target T when there exists
a feasible solution with objective value at most/least T .

Definition 1.2. A searchable optimization problem O is an optimization problem, which
satisfies the following conditions:
1. Objective values are all non-negative integers.
2. For every problem instance P of O, the set of feasible solutions is non-empty, and the
optimal value is finite.
3. There exists a polynomial q such that for every problem instance P of O with in-
put size n, we have that q(n) bounds the bit-length of the optimal value of P in binary
representation.

These assumptions are put here so that a polytime algorithm can search through po-
tential optimal values and the feasibility condition is here for it to be meaningful to ap-
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proximate the optimal solution. Also note that the polynomial q in the above definition
may be assumed to have integer coefficients.

We now introduce our two different notions of relaxed decision procedures for optimiza-
tion problems. We define them separately for minimization and maximization problems.

Definition 1.3. Let O be a minimization problem and p > 1. A type A p-relaxed decision
procedure for O is any algorithm A which takes as input an instance P of O together with
a target T > 0, and has output satisfying the following rules:
1. A outputs either “No”, or “Almost” together with a feasible solution for P with objective
value at most pT .
2. If A outputs “No” then every feasible solution to P has objective value greater than T .

A type B p-relaxed decision procedure for O is an algorithm B, which takes the same
input (P, T ) and has output satisfying the following rules:
1. B outputs either “No”, or “Almost”.
2. If B outputs “No” then every feasible solution to P has objective value greater than T .
3. If B outputs “Almost” then there exists a feasible solution to P with objective value at
most pT .

Definition 1.4. Let O be a maximization problem and p > 1. A type A p-relaxed decision
procedure for O is any algorithm A which takes as input an instance P of O together with
a target T > 0, and has output satisfying the following rules:
1. A outputs either “No”, or “Almost” together with a feasible solution for P with objective
value at least T

p
.

2. If A outputs “No” then every feasible solution to P has objective value less than T .

A type B p-relaxed decision procedure for O is an algorithm B, which takes the same
input (P, T ) and has output satisfying the following rules:
1. B outputs either “No”, or “Almost”.
2. If B outputs “No” then every feasible solution to P has objective value less than T .
3. If B outputs “Almost” then there exists a feasible solution to P with objective value at
least T

p
.

Note that a type A p-relaxed decision procedure can also be made to act as a type B
p-relaxed decision procedure, by omitting its output of solutions and just having it return
“Almost” in those cases.

For subsequent proofs concerning the implications of a searchable optimization problem
having a p-relaxed decision procedure (of type A or B), in order to avoid repetition we will
assume that O is a maximization problem when convenient. Firstly, we show that being
able to efficiently produce solutions approximately meeting a feasible target, is enough to
yield a polytime type A relaxed decision procedure.

Proposition 1.5. Let O be an optimization problem such that the feasibility and objective
value of a candidate solution to any problem instance may be checked in polytime. Suppose
A is an algorithm which takes as input a problem instance P of O and T > 0, such that
when P is feasible for target T , it outputs a feasible solution with objective value within a
factor of p of T and runs in polytime. Then O has a polytime type A p-relaxed decision
procedure.
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Proof. Let t(n) be the polynomial bound on runtime/operations of A running on input
feasible for the target. Consider the following algorithm A′ based on A, which runs as
follows on input (P,T ):
1. Run A on (P,T ) until its termination or until runtime t(n) has been exceeded (for n
the size of input (P,T)).
2. If A has outputted a candidate solution x, we check its feasibility and objective value
in polytime. If x is feasible and has objective value within a factor of p of T , we output
(x,“Almost”).
3. Otherwise, when A has failed to produce a feasible solution x with objective within a
factor of p of T , we output “No”.

Clearly this algorithm A′ runs in polytime. A “No” answer from A′ shows that A fails
on the same input to produce a solution x as desired, and therefore certifies that T was not
a feasible target for P. The “Almost” response is accompanied by a feasible solution with
objective within a factor of p of the target. Therefore A′ is a polytime type A p-relaxed
decision procedure for O.

A version of the following result for obtaining an approximation algorithm from a type
A relaxed decision procedure was given for machine scheduling by Lenstra, Shmoys and
Tardos [23].

Theorem 1.6. Let O be a searchable optimization problem and suppose that O has a
polytime type A p-relaxed decision procedure A. Then O has a p-approximation algorithm.

Proof. We assume that O is a maximization problem satisfying the conditions. Let P be
an instance of O with input size n, so we have an integer polynomial q(n) bounding the
number of bits in the binary representation of the optimal value for P.

Let f(x, y) := dx+y
2
e be the function which takes the ceiling of the average of a pair of

integers. Consider the following algorithm A′ based on A, which runs as follows on input
a problem instance P for O with size n:
1. Initialize lower:= 0 and upper:= 2q(n)+1.
2. While lower6=upper

3. Run A on (P, f(lower,upper)).
4. If A returns “No” update upper:= f(lower,upper)-1.
5. Else update lower:= f(lower,upper).

6. End While.
7. Run A on (P, lower).
8. If A returned “Almost” and a solution x for P then return x.
9. Else return “Error”.

A′ runs a binary search for the maximum integer T for which algorithm A returns
“Almost” and outputs the corresponding feasible solution for P with objective value at
least T

p
. Indeed the lower bound is initialized at 0, which is by non-negativity of objectives

below the maximum T , and is adjusted up to values A is known not to give response “No”
to. On the other hand the upper bound is set initially to a bound on the best possible
objective value, and is only decreased to one below T for which A is known to return
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“No”. Therefore as claimed A′ finds this maximum T and gives a feasible solution with
objective at least T

p
. From optimal objective integer and Definition 1.4 ensuring that a

“No” response indicates infeasibility for the target, this implies that this maximum T is
at least the optimal value for P, so the obtained feasible solution is within a factor of p of
optimal.

Since the upper bound for the binary search had a polynomially bounded number of bits,
the search runs in a polynomially bounded number of steps, thus running in polytime (since
the steps have polytime runtime by assumption on A). Therefore A′ is a p-approximation
algorithm for O as desired.

We now introduce the analogous result for the type B relaxed decision procedure.

Theorem 1.7. Let O be a searchable optimization problem and suppose that O has a
polytime type B p-relaxed decision procedure B. Then O has a polytime algorithm which
takes problem instances P of O as input and finds a value b such that the optimal value
for P is guaranteed to lie in the interval [b, pb].

Proof. We can assume O is a maximization problem and proceed exactly as in the previous
proof, by considering problem instance P with optimal value an integer of bitlength at most
q(n).

Let f(x, y) := dx+y
2
e be as before. Consider the following algorithm B′ based on B,

which runs as follows on input a problem instance P for O with size n:
1. Initialize lower:= 0 and upper:= 2q(n)+1.
2. While lower6=upper

3. Run B on (P, f(lower,upper)).
4. If B returns “No” update upper:= f(lower,upper)-1.
5. Else update lower:= f(lower,upper).

6. End While.
7. Return 1

p
(upper).

B′ runs a binary search for the maximum integer T for which algorithm B returns
“Almost” and outputs value T

p
. The justification for this is the same as in the previous

result. As before this maximum T bounds the optimal value for P. Since B running on (P,
T ) gives “Almost”, by Definition 1.4 this guarantees us that there exists a feasible solution
to P with objective at least T

p
. Therefore the optimal value for P lies in the range [T

p
, T ]

the bounds of which are within a factor of p of each other.

Also as in the prior result, the runtime for this is polytime and therefore the algorithm
B′ is as desired.

We say that an optimization problem has an optimal value that can be estimated within
a factor of p in polytime, when an interval of form [b, pb] can be constructed in polytime,
within which the optimal value is known to reside.

The difference between the two types of p-relaxed decision procedures, is that the A-
type provides a way to get from a problem instance with a feasible target to a solution
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within p of the target, while the B-type accurately reports that there exists a feasible
solution within p of the target. This corresponds to the difference in being able to provide
an algorithm for getting approximately optimal solutions and merely being able to estimate
the optimum.

By restricting ourselves to rational input for (non-infinite) vij/pij values, and scaling,
we may insist upon integer values for the machine scheduling and Santa Claus problems.
This will result in integer objective values of polynomially bounded bitlength for all fea-
sible solutions to any problem instance (in particular

∑
i∈P,j∈R vij and

∑
i∈M,j∈J :pij 6=∞ pij

are trivial bounds with polynomial bitlength). Thus integer valued machine scheduling
and Santa Claus problems are searchable optimization problems. Therefore the preceding
Theorems 1.6 and 1.7 apply to our problems.

These facts have been well understood by those involved in the analysis of approxima-
tion for optimization problems, but in writing this thesis it was found useful to introduce
this terminology and these basic results. In particular it is helpful to unify the techniques
involved in, and to sharpen the distinction between, being able to get approximate solutions
and being able to get estimates for the optimal value. These relaxed decision procedures
will be the method by which results for approximation and estimation are obtained for
these problems. While the results concerning them are basic applications of binary search,
it is hoped that it will be worthwhile and beneficial to understanding to have outlined these
two notions of relaxed decision procedures explicitly, and in a general form applicable to a
wide variety of optimization problems.
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Chapter 2

Early Work on Machine Scheduling

We now discuss a 1990 paper by Lenstra, Shmoys and Tardos [23] which concerns the
machine scheduling problem with integer valued performance times and provides many of
the best known results to date. By scaling, we assume all job performance times to be
integer (or infinite). Having integer performance times assures us the optimal makespan is
integer and makes the machine scheduling problem a searchable optimization problem (see
Definition 1.2).

The most notable positive result from the paper is a 2-approximation algorithm pro-
duced for the machine scheduling problem, which was the first to establish that the problem
is approximable within a constant factor. Rather remarkably, in general this still gives the
best factor of approximation among any known algorithm to date. Accompanying this is
a 3

2
factor NP-hardness result for estimating the optimal value of the machine scheduling

problem within a factor of 3
2

and this hardness result holds even in the restricted assign-
ment case. This leaves a, still standing, 1

2
difference in the gap between the factors 2 and

3
2

in which the problem is neither known to be polytime approximable or inapproximable.

The approach of the paper was to produce a type A 2-relaxed decision procedure (in this
paper [23] it is simply called a 2-relaxed decision procedure) for the machine scheduling
problem and then justify that this is enough to yield the corresponding approximation
result. We have already developed a general version of a statement to that effect (see
Theorem 1.6), so we proceed to examine how the type A 2-relaxed decision procedure is
constructed.

We consider the following pair of linear programs defined for a problem instance P ,
and two parameters we introduce as the target deadline d ∈ Z+ and the time threshold
t ∈ Z+ for a single job. We will seek to round feasible solutions of the one linear program
to integer solutions to the other.

Given machine i ∈ M and time threshold t, we define Ji(t) to be the set of jobs
performable on machine i within the threshold t. That is Ji(t) consists of those jobs j ∈ J
with pij ≤ t. Similarly given time t and job j we define Mj(t) to be the set of machines
capable of performing job j within the threshold t, those machines i ∈M with pij ≤ t.

11



LP(P ,d,t)∑
i∈Mj(t)

xij = 1 ∀j ∈ J (2.1)

∑
j∈Ji(t)

pijxij ≤ d ∀i ∈M (2.2)

R 3 xij ≥ 0 ∀i ∈M, j ∈ Ji(t). (2.3)

The above linear program (2.1)-(2.3) is a relaxation of the task of creating a job assign-
ment that has all machines meeting the deadline d, while only processing jobs on machines
that will perform them in time at most t. It has variables xij for each pair i ∈ M and
j ∈ J so that job j is performable on machine i within time t, which are representing
weights of a fractional job assignment. The constraints insist that each job is given total
weight 1 in the assignment and that the weighted (by xij) sum of performance times for
each machine is at most the deadline time d. So xij ∈ {0, 1} solutions correspond to job
assignments meeting the target deadline, by viewing xij = 1 as an assignment of job j to
machine i. Note that finding a feasible solution, or certifying infeasibility, to this linear
program is achievable in polytime since this is a linear program with number of variables
and constraints each polynomial in |M | and |J |.

IP(P ,d,t)∑
i∈Mj(t)

xij = 1 ∀j ∈ J (2.4)

∑
j∈Ji(t)

pijxij ≤ d+ t ∀i ∈M (2.5)

xi,j ∈ {0, 1} ∀i ∈M, j ∈ Ji(d). (2.6)

This integer program (2.4)-(2.6) corresponds to the task of creating a job assignment
that has all machines meeting deadline d + t with the restriction that all jobs must be
assigned to a machine capable of performing it in time t, by viewing xij = 1 as assignment
of job j to machine i. The first set of constraints captures the requirement that every job
gets assigned, and the second set of constraints ensures that the set of jobs assigned to
each machine has total time at most the deadline d+ t.

Proposition 2.1. [23] Given problem instance P , deadline d ∈ Z+ and time threshold t so
that LP(P ,d,t) is feasible, we can obtain a feasible solution to integer program IP(P ,d,t)
in polytime.

At this juncture insisting on integer performance times is needed for this rounding.
We omit the proof of this result, but shall briefly sketch some aspects of the argument.
An extreme point x of LP(P ,d,t) is found in polytime and an associated bipartite graph
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(M ∪ J,E) is considered, which has edges between machine i and job j if and only if j
is assigned with fractional weight to i. By exploiting properties of extreme points it is
concluded that the resulting graph has components which are either trees, or have exactly
one cycle (a tree plus an edge). By rooting the tree components and assigning each job
to a machine that is one of its children, we can create an assignment of jobs that at most
assigns the additional load of one job to each machine. Job vertices will not be leaves, since
to appear in this graph by definition it must be fractionally assigned to (hence adjacent to)
multiple machines. So a choice of a child machine is always available for the assignment
described above.

The single cycle components are also reduced to this case by assigning jobs in the cycle
according to an arbitrary choice of orientation for the cycle. The components created by
deleting cycle edges may then be rooted at each of the cycle vertices and we can assign
jobs in each resulting tree by choosing a child machine as before. We note that t bounds
performance times among the options for fractional assignment used in LP(P,d, t). Our
described rounding to a pure assignment gives at most one of these fractionally assigned
(by x) jobs to a given machine, hence adding load at most t on any machine. So a pure
integer assignment of jobs is created that has makespan at most d + t, thus creating a
feasible solution to IP(P ,d,t) in polytime.

Figure 2.1: (Proposition 2.1) The rounding to a solution of IP(P,d, t) that occurs in a cycle
component of the bipartite graph constructed from an extreme point of LP(P,d, t). In black are
machine vertices, in red job vertices, with arcs indicating assignment of jobs to machines, and
dashed edges indicating the remaining edges of the component.

Somewhat similar ideas (see work by Ebenlendr, Krčál and Sgall [12]) of assigning
jobs by rooting a tree of fractional assignments will be seen in the graph balancing case of
the machine scheduling problem where jobs are assignable to at most 2 machines and the
problem is naturally interpretable as orienting the edges, which correspond to jobs, into
vertices for the machines.

Given this we can now describe an algorithm given input problem instance P and
deadline d, which outputs as follows: If LP(P ,d,d) is infeasible output “No.” Otherwise we
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proceed as in Proposition 2.1, by finding an extreme point solution to LP(P ,d,d) and we
round it in polytime to a feasible solution to IP(P ,d,d). The corresponding job assignment
to this feasible solution is returned as output along with a response “Almost”.

Lemma 2.2. [23] The above algorithm is a polytime type A 2-relaxed decision procedure
for the machine scheduling problem.

Proof. LP(P ,d,d) can have feasibility tested in polytime and by Proposition 2.1, the round-
ing to a feasible solution of IP(P ,d,d) (with direct correspondence to a job assignment)
may also be achieved in polytime. Therefore the algorithm runs in polytime.

To meet deadline d, no job may be assigned to a machine which performs it in time
greater than d. Therefore LP(P ,d,d) is a relaxation of the task of finding a job assign-
ment meeting deadline d, and its infeasibility tells us that there is no job assignment with
makespan at most d. So a “No” output indeed certifies infeasibility of finding a job assign-
ment. Otherwise the job assignment produced by the algorithm corresponds to a feasible
solution to IP(P ,d,d) and is therefore a job assignment with makespan at most 2d.

Theorem 2.3. [23] There is a 2-approximation algorithm for the machine scheduling prob-
lem.

Proof. This is an immediate consequence of the preceding Lemma and Theorem 1.6 for
relaxed decision procedures.

Let m = maxi∈M,j∈Jpij. Note that we can use the rounding from Proposition 2.1 to
obtain a type A (1+m)-relaxed decision procedure for machine scheduling as well [23], and
hence a 1 +m approximation algorithm. In general this is worse, as some job performance
times on given machines may be greater than the optimal makespan, but for the restricted
case with job sizes fixed it yields the same result. In cases where job sizes are known to be
small relative to the optimal makespan this yields superior results, and demonstrates (given
the 3

2
hardness result discussed below) that the difficulty of the approximation problem

comes from the large jobs.

Complementing the approximation algorithm above was a 3
2

approximation hardness
result that applies even for the restricted case.

Theorem 2.4. Estimating the optimal makespan for the restricted machine scheduling
problem strictly within a factor of 3

2
is NP-hard.

The result shows that not only is a 3
2
− ε approximation algorithm in polytime not

possible for any ε > 0 (given P 6= NP ), but it is not even possible to in polytime produce
bounds strictly within a 3

2
factor in which the optimal makespan can be guaranteed to

lie. The hardness result is based on the well-known NP-completeness of the 3-dimensional
perfect matching problem [23] which we describe below.
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Definition 2.5. Suppose we are given a triple system consisting of disjoint sets A,B,C of
size n and set of triples T with one entry in each set. The 3-d matching problem is the task
of determining whether T contains a disjoint set of n triples whose union is all of A∪B∪C
(such a set of triples is called called a perfect matching for the system, see Figure 2.2 for
an example).

This problem is well known to be NP-complete, being one of Karp’s 21 NP-complete
problems [21].

To obtain a reduction from this 3-d matching problem, we proceed from an arbitrary in-
stance of this 3-d matching problem and construct a restricted assignment machine schedul-
ing problem which has an assignment with makespan 2 when there is a perfect matching in
the triple system, and otherwise has makespan at least 3. Thus to determine the optimal
makespan strictly within a factor of 3

2
amounts to solving the 3-d matching problem, giving

the desired hardness result. This remains the best hardness result obtained for even the
general case of polynomial time approximations to the optimal makespan.

Similarly for the restricted case of the Santa Claus Problem we can also get a hardness
result for estimating the optimal value strictly within a factor of 2 (as given by Bezáková
and Dani [6]) by reduction to 3-d matching. We exhibit the reduction for the Santa Claus
problem as follows, which uses the same ideas [23] as for machine scheduling.

Defining a correspondence to Santa Claus problem: Suppose we are given an
instance of the 3-d matching problem with sets A,B,C and triples T , with number of
triples hitting each a ∈ A given by na (we assume na ≥ 1 as determining there is no
perfect matching is trivial in that case). We proceed to construct a corresponding instance
of the restricted Santa Claus problem. Players are identified with triples by P := T . The
set of resources R consists of the elements of B∪C together with na−1 resources identified
with each a ∈ A:

R := B ∪ C ∪ {ak : a ∈ A and k ∈ {1, . . . , na − 1}}.

The resources ak identified with each a ∈ A have value 2 and are restricted to be
assigned to those players/triples which contain a. The other resources each have value 1
and are restricted to assignment to exactly those players/triples containing it.

Figure 2.2: A perfect matching for a triple system is illustrated with columns corresponding to
sets A,B and C, with chosen triples in yellow. Unused triples of T are marked by dashed borders.
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Lemma 2.6. T contains a perfect matching for A,B,C exactly when we have an allocation
of resources that allocates at least value 2 to each player in the corresponding Santa Claus
problem instance.

Proof. If T contains a perfect 3-d matching M ⊂ T then we may assign all resources j in
B or C to the player given by the unique triple of M containing j. This allocates value
2 to all of the players in M , and for every player in T \ M containing a ∈ A we can
assign one of the resources ak identified with a giving value 2. Since M hits every a ∈ A
uniquely, we have that T \M has na − 1 triples containing a, so we have enough copies of
resources identified with a so that all the copies can be assigned uniquely. Thus we have
an allocation of resources giving at least 2 value to all players.

Suppose now that we have an allocation of resources giving value at least 2 to all
players. For each a ∈ A we have only na− 1 copies of resources identified with a. So there
exists some player/triple containing a which is not allocated a resource of form ak and we
pick one, say pa. Player pa only values the resources from B and C it contains, in addition
to those of form ak (none of which it is allocated). Since pa is given value at least 2, it
must then be allocated both of the resources from B and C that it contains. Resources
are assigned to at most one player, therefore {pa : a ∈ A} is a disjoint set of triples and
hence a perfect matching for the triple system.

Furthermore, because all resources have integer value this Lemma says that T does
not contain a perfect matching exactly when any allocation must allocate 1 or less to
some player. So estimating (strictly) within a factor of 2 the max-min of this instance of
the Santa Claus Problem tells us whether our original instance of a 3-d matching problem
admits a perfect matching. Hence from the NP-completeness of determining whether or not
we have a perfect 3-d matching, we obtain the following hardness result for the restricted
case of the Santa Claus problem.

Theorem 2.7. Estimating the max-min for the restricted case of the Santa Claus problem
strictly within a factor of 2 is NP-hard.

Thus given P 6= NP we have that we cannot in polytime estimate the max-min for the
restricted case of the Santa Claus problem within a factor of 2. So we obtain an estimation
hardness result for the Santa Claus problem using the same techniques as used for machine
scheduling.

Bezáková and Dani considered [6] an approximation algorithm for the Santa Claus
problem based on the techniques in the 2-approximation algorithm for machine scheduling
seen here. Let vmax = maxi∈P,j∈Rvij be the max valuation given to any resource by a
player and let OPT be the (optimal value) max-min for the problem instance. A polytime
approximation algorithm [6] is given that produces an allocation with min value bundle at
least value OPT − vmax. In general this guarantee says nothing, as even in the restricted
case OPT−vmax may be 0 or negative. So we examine a different linear program relaxation
to study the Santa Claus problem in the following chapter.
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Chapter 3

Santa Claus CLP

The corresponding linear program relaxations that were used for machine scheduling behave
poorly for the Santa Claus problem when there are single resources that are valued close to
the max-min. So a new LP relaxation called the Configuration LP (CLP) was introduced by
Bansal and Sviridenko [5] whose integral solutions (for CLP with parameter T ) correspond
to allocations that give value at least T to all players. In the restricted case, where all
resources/jobs have inherent sizes, the CLP has been useful in obtaining a constant factor
of estimation for the max-min [4, 18].

The results discussed in this section for the Santa Claus CLP will also be applicable,
with trivial alteration, to the machine scheduling version as well. The corresponding ma-
chine scheduling CLP has also been used [28, 19] in the restricted case to improve upon
the estimation factor of 2 for the optimal makespan that comes from the 2-approximation
algorithm previously discussed [23].

Definition 3.1. For i ∈ P let C(i, T ) := {S ⊂ R :
∑

j∈S vij ≥ T} be the set of bundles
of resources with total value to player i at least T . We call such bundles configurations for
player i and target T . For the restricted version, we omit resources not assignable to each
player i (0-valued) from its corresponding configurations.

The CLP and its dual are then given as follows for an instance of the Santa Claus
problem and parameter T > 0 representing our target allocation.

Santa Claus CLP

min 0 (3.1)∑
S∈C(i,T )

xi,S ≥ 1 ∀i ∈ P (3.2)

∑
i,S:j∈S,S∈C(i,T )

xi,S ≤ 1 ∀j ∈ R (3.3)

xi,S ≥ 0 ∀i ∈ P, S ∈ C(i, T ). (3.4)

The CLP has non-negative variables, for every pair (i, S) with S a bundle satisfying
target T for player i, representing weights of a fractional allocation of bundles. It has
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constraints requiring that every player be given a total weighting at least 1 on the bundles
it is allocated and is constrained to have no resource allocated with total weight exceeding
1. That is we are required to not under-serve any player, nor to over-assign any resource.
We also give it a trivial linear minimization objective of 0, so this is a linear program with
a corresponding dual.

Santa Claus Dual CLP

max
∑
i∈P

yi −
∑
j∈R

zj (3.5)∑
j∈S

zj ≥ yi ∀i ∈ P, S ∈ C(i, T ) (3.6)

yi, zj ≥ 0 ∀i ∈ P, ∀j ∈ R. (3.7)

The dual has non-negative variables for each player and for every resource, together
with constraints for every pair (i, S) with S a bundle satisfying target T for player i.
Note that by weak duality, a feasible dual solution with positive objective certifies the
infeasibility of the primal CLP. The constraints of the dual are insensitive to a scaling of
(y, z) to λ(y, z), while the objective scales with λ. Therefore a positive objective solution
for the dual also implies the unboundedness of the dual program. Also taking all variables
0 is feasible with objective 0. So by strong duality the primal CLP is feasible if and only
if the dual has optimal objective value 0.

An allocation of resources {Si}i∈P satisfying target T corresponds to an integral solution
of the CLP x where xi,S = 1 if and only if S = Si and xi,S = 0 otherwise. To obtain an
allocation distributing at least T to all players from a feasible integral solution to the CLP
for target T we do the following: for each player i we arbitrarily pick one bundle S such
that xi,S is non-zero in the feasible solution, and allocate this S to player i. From the
constraints on weighting for each player, there is at least one such bundle to pick for each
player and from the constraints on weighting for each resource, the resulting bundles in
our allocation are also disjoint. So in this way we obtain an allocation of satisfying (for
target T ) bundles for all players. So the CLP (3.1)-(3.4) is indeed a relaxation the Santa
Claus problem.

Note that in relation to the size of the information which specifies the problem (the val-
uations of the resources by the players) there are potentially exponentially many variables
in the CLP, however the program and its dual have nice properties that can be exploited
[5] to make it more tractable.

Definition 3.2. [30] A separation oracle for a linear program (LP) is an algorithm which
given a candidate solution either certifies its feasibility for (LP), or returns a violated
constraint of (LP).

Using the ellipsoid method, a linear program with a polynomially bounded number
of variables and a polytime separation oracle may be solved in polytime (this result is
a consequence of work by Khachiyan in 1979 on the ellipsoid method applied to linear
programming [22]). We can also assume input to the separation oracle (as called by the
ellipsoid method) is rational.
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Definition 3.3. The regular minimum knapsack problem is the following linear program
optimization problem with positive integer data k, M and (aj, cj)j∈{1,...,k}

Regular Min Knapsack Problem

min
∑

j∈{1,...,k}

cjxj (3.8)

∑
j∈{1,...,k}

ajxj ≥M (3.9)

xj ∈ {0, 1} ∀j ∈ {1, . . . , k}. (3.10)

While this knapsack problem is NP-Complete [21], it is known to be solvable in pseudo-
polytime [30], meaning in particular that it is solvable in polytime with respect to nM ,
where n is the input size of the integer data, by applying dynamic programming techniques
[30].

Proposition 3.4. [5] The Santa Claus Dual CLP (3.5)-(3.7) with integer valuations and
integer target T has a polytime in nT separation oracle, where n is the input size specifying
the problem instance and the candidate solution given to the oracle.

Proof. Fix an instance of the Santa Claus problem with integer valuations and an integer
target T . Let (y, z) be a candidate solution to (3.5)-(3.7) with rational entries given in
binary. Scaling does not affect feasibility of a candidate solutions to the dual, so we may
assume that (y, z) is integer valued.

We label our resources as R = {1, . . . , k} and for each player i ∈ P we consider a
corresponding regular min knapsack problem on data using the same k, M := T , aj := vij
and cj := zj. Note that S is a configuration for player i if and only if its indicator function
x = (xj)j∈R satisfies

∑
j∈R vijxj ≥ T the constraint for feasibility in the corresponding

regular min knapsack problem. Furthermore, a configuration S for i has its corresponding
dual constraint (3.6) violated if and only if its indicator function x satisfies

∑
j∈R zjxj < yi.

Therefore (i, S) corresponds to a violated dual constraint if and only if its indicator function
is a feasible solution to the corresponding regular min knapsack problem with objective
value less than yi. For each player i ∈ P we solve the corresponding regular min knapsack
problem, determining optimal value wi and optimal solution xi with corresponding set of
resources Si := {j ∈ {1, . . . , k} : xij = 1}. Therefore determining that wi ≥ yi for all
i ∈ P certifies feasibility of (y, z) for the dual CLP on target T , and finding wi < yi gives
us a violated dual constraint corresponding to (i, Si) that we return. Note that the input
data for each knapsack problem considered is contained in the given data to the separation
oracle and in each case the target M agrees with T . Thus by solving these knapsack
problems corresponding to each player, we have produced a polytime separation oracle in
nT as desired.

As sketched in the paper introducing the Santa Claus CLP [5], the previous result gives
a way to solve the primal problem with the same runtime guarantee.
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Theorem 3.5. [5] The Santa Claus CLP (3.1)-(3.4) for any problem instance with integer
valuations and integer target T is solvable in polytime with respect to T and the input size
n, producing either a feasible solution or a verification of infeasibility.

Proof. Using the ellipsoid method and the described separation oracle for the dual CLP
(3.5)-(3.7), we can in polytime (in T and n) solve the dual program after consideration of
a polynomially bounded number of inequality constraints (since the ellipsoid method runs
in polytime) labelled by U ⊂

⋃
i∈P{(i, S) : S ∈ C(i, t)}.

Either we conclude that the dual CLP is unbounded, thus verifying infeasibility for the
primal CLP, or we have produced an optimal solution (y∗, z∗). As discussed earlier this
must have objective value 0 and certify the feasibility of the primal. Moreover, as U consists
of the constraints that were needed to verify optimality for (y∗, z∗) in the ellipsoid method,
the primal must have a feasible solution x such that xi,S = 0 for all (i, S) /∈ U . This holds
by applying strong duality to the primal-dual pair consisting of this CLP keeping only
U variables and the dual to the CLP with only constraints from U . So we can solve the
primal CLP by setting all variables not indexed by U to 0, and then solve the resulting
linear program with a polynomially bounded number of variables and constraints. Thus
in polytime in n and T we have solved the Santa Claus CLP.

The integrality gap of the CLP (3.1)-(3.4) refers to the factor between the optimal sizes
of T for which the CLP admits feasible real solutions and feasible integral solutions. Given
the correspondence discussed above between integral solutions and satisfying allocations,
this is also the gap between the optimal T for which the CLP relaxation is feasible and the
max-min for the Santa Claus problem.

Theorem 3.6. Suppose a class of instances of the Santa Claus problem have corresponding
CLPs (3.1)-(3.4) with integrality gap at most p, then there exists a type B (p + ε)-relaxed
decision procedure for this class of instances for any ε > 0.

Proof. Let ε > 0 and we choose δ = ε
p+ε

, so that 1
p+ε

= 1−δ
p

. Suppose we are given problem
P from this class of instances of the Santa Claus problem and a target T > 0 as input, we
describe an algorithm B which produces “No” or “Almost” as follows.

The idea of the algorithm will be to scale our problem and round the target allocation
T to some integer of polynomially bounded size, so that we can apply the previous results
to determine feasibility of the corresponding CLP for the new instance P’ in polytime. By
relating the feasibility of P and P’ on different targets, and using the known bound on
integrality gap for P, this will allow the polytime test of feasibility to suffice as a type B
relaxed decision procedure.

Let k be the number of resources in P and let f = δT
k

. We consider Santa Claus instance
P’ determined from P with same players and resources, with new valuations v′ij := dvij

f
e

for all i ∈ P and j ∈ R scaled by 1
f

and rounded up.

Let T ′ = dT
f
e be the ceiling of T

f
= k

δ
. All valuations for P’ are integer and T ′ is

polynomial in input size, therefore by Theorem 3.5 we may determine whether the CLP
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(3.1)-(3.4) for P’ with target T ′ is feasible in polytime. If it is not feasible B outputs “No”,
otherwise B outputs “Almost”.

Note that algorithm B runs in polytime. Suppose B outputs “No” and hence that the
CLP for P’ with target T ′ is infeasible. Firstly note that from the valuations being integer,
the CLP for P’ being infeasible with target T ′ implies it is infeasible for target T

f
. Since

values were scaled and rounded up, we have that a bundle of resources being satisfying for
a player with target T in instance P implies the same bundle of resources satisfies that
player with target T

f
in instance P’. Thus infeasibility of the CLP for P’ with target T

f

implies infeasibility of the CLP relaxation for P with target T . Therefore B outputting
“No” implies that no solution to the Santa Claus problem P has objective value at least
T .

Now suppose that B outputs “Almost”. This implies that P’ has its CLP feasible for
target T ′ ≥ T

f
. Let vij and v′ij be the valuations of resource j by player i for P and P’

respectively. We note that v′ij < 1 +
vij
f

and therefore vij > fv′ij − f . So a bundle of

(at most k) resources satisfying target T
f

for some player in instance P’, implies the same
bundle is satisfying for that player with target T − kf for P. Therefore P is feasible for
T − kf = T (1− δ). Since the integrality gap for P is at most p, this shows that P has an

allocation satisfying target T (1−δ)
p

= T
p+ε

.

Therefore B is a type B (p+ ε)-relaxed decision procedure for this class of instances as
desired.

So by Theorem 1.7, this shows that we can estimate the max-min arbitrarily close to
within the integrality gap factor for the CLP. This does not suffice for finding approximately
optimal solutions, as it may be difficult to round solutions to the CLP with target T to
integral solutions for a target within the same factor.

Theorem 3.7. Let O be a class of instances of the Santa Claus problem such that there is
a polytime algorithm A, which given a problem instance and a solution to the CLP (3.1)-
(3.4) for target T , finds an allocation of resources meeting target T

p
for all players. Then

there exists a type A (p+ ε)-relaxed decision procedure for O and any ε > 0.

We omit the proof, it follows in essentially the same way as the prior result, where
we pair the “Almost” with an allocation determined by A. Again, combining with our
discussion of relaxed decision procedures (see Theorem 1.6) this yields a p+ε approximation
for any such cases of the Santa Claus problem.

The proof of Theorem 3.6 may also be modified to show that the optimal T for which the
CLP is feasible may be determined to arbitrary precision in polytime, as argued originally
by Bansal and Sviridenko [5]. This fact can also be seen to imply the previous results on
max-min estimation and approximation.
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The CLP can be equivalently formulated using equality constraints as follows.

Santa Claus Equality CLP

min 0 (3.11)∑
S∈C(i,T )

xi,S = 1 ∀i ∈ P (3.12)

∑
i,S:j∈S,S∈C(i,T )

xi,S = 1 ∀j ∈ R (3.13)

xi,S ≥ 0 ∀i ∈ P, S ∈ C(i, T ). (3.14)

Note that this is also a relaxation of the Santa Claus problem, with feasible integral
solutions existing if and only if there exists an allocation satisfying target T . The corre-
spondence of an integral solution to a satisfying allocation is exactly as in the inequality
version. Also, given a satisfying allocation for target T , we can assume that all resources
are put in some bundle of the allocation (by assigning unused resources arbitrarily to play-
ers), thus giving equality for resource constraints when setting xi,S 1 or 0 based on whether
S is the bundle allocated to player i. Since bundles are purely allocated to players with
weight 1 this also satisfies the equality constraints for players. The corresponding dual
program is as follows:

Dual Santa Claus Equality CLP

max
∑
i∈P

yi −
∑
j∈R

zj (3.15)∑
j∈S

zj ≥ yi ∀i ∈ P, S ∈ C(i, T ) (3.16)

yi, zj free in R ∀i ∈ P, ∀j ∈ R. (3.17)

Equality versions of the CLP will be used in our later Chapter 7 on graph balancing
versions for the Santa Claus and machine scheduling problems. The results discussed for
the inequality version (3.1)-(3.4) apply here as well, where the corresponding knapsack
problem for the dual separation oracle is allowed negative integer data.

The CLP and its dual have proved fruitful in the analysis of the Santa Claus prob-
lem, especially in the restricted case. Bansal and Sviridenko showed [5] for the general
case, that the CLP still has unbounded integrality gap, so for constant factor estima-
tion/approximation it is generally unsuitable (and indeed the general Santa Claus problem
has not been shown to even have a constant factor estimation algorithm). In the restricted
case it was shown, in a paper due to Asadpour, Feige and Saberi [4], that the Santa Claus
CLP always has an integrality gap of at most 4, implying that the max-min to any re-
stricted Santa Claus problem may be estimated in polytime to within a factor arbitrarily
close to 4. The proof [4] draws from alternating path-like techniques seen in a proof [15] of
Haxell’s Theorem, which is a generalized version of Hall’s Theorem applicable to bipartite
hypergraphs.
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In Chapter 4 we shall give a novel proof which obtains this result from the Santa
Claus CLP using a version of Haxell’s Theorem directly to produce a positive solution to
the dual in order to certify infeasibility of the primal. Constructing dual solutions with
objective value to certify infeasibility of the primal is a technique, which was also applied
(by Svensson [28]) to the analogous linear program relaxations of the restricted machine
scheduling problem to obtain improved estimation results, as we shall later discuss. This
factor of 4 for estimation and integrality gap of the Santa Claus CLP has also been more
recently improved to 4− 1

6
in work due to Jansen and Rohwedder [18], and then to (4− 5

26
)

by Cheng and Mao in 2019 [9].
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Chapter 4

Bipartite Hypergraphs and
Independent Transversals

4.1 A Bipartite Hypergraph Framework

We introduce the notion of bipartite hypergraphs here as they provide another natural
way to formulate our two optimization problems. We will also discuss a result (Haxell’s
Theorem [15]) pertaining to bipartite hypergraphs, which was obtained using techniques
similar to some of those later applied to the study of these two optimization problems. A
version of Haxell’s Theorem is also applied directly in this section to obtain an estimation
result for the restricted Santa Claus problem in a novel way.

Definition 4.1. A hypergraph is a pair H = (V, E) of vertices V , together with a set of
(hyper)edges E each of which is a subset of V .

Just as in graphs, a matching in a hypergraph is a set of vertex disjoint edges. A set
of edges U is said to cover or saturate any set of vertices which is contained in the union
over the set of edges in U .

Definition 4.2. A transversal of a hypergraph is a set of vertices that intersects every
edge.

Definition 4.3. [4] Let H = (V, E) be a hypergraph. When V = A∪X is a disjoint union
of A and X such that every edge has exactly one vertex from A, then the hypergraph H
is said to be bipartite with bipartition (A,X). We also write H = (A ∪X, E) to denote a
bipartite hypergraph with bipartition (A,X).

To see how bipartite hypergraphs relate to our two problems, we consider the decisional
variant of trying to allocate bundles of items that meet a given target requirement T , for
either a target makespan we should not exceed in any bundle, or a target value for allocation
we must at least meet in bundles given to each player.
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Recall Definition 3.1 for C(i, T ) on an instance of the Santa Claus problem for player
i and target T . We analogously define C(i, T ) for machine scheduling by setting:

C(i, T ) := {S ⊂ J :
∑
j∈S

pij ≤ T} (4.1)

to be the set of all bundles of jobs which can be performed by machine i within target
performance time T . The bundles in C(i, T ) will determine the edges in the following
bipartite hypergraphs associated to problem instances with a given target T .

Definition 4.4. Given an instance of the Santa Claus problem and target allocation T we
define a hypergraph HT := (P ∪R, ET ) where ET := {{i} ∪ S : i ∈ P and S ∈ C(i, T )}.

Definition 4.5. Given an instance of the machine scheduling problem and target makespan
T we define a hypergraphH′T := (M∪J, E ′T ) where E ′T := {{i}∪S : i ∈M and S ∈ C(i, T )}.

For the Santa Claus problem, finding bundles Si ∈ C(i, T ) to allocate to each player to
meet our target T corresponds to the problem of finding a P -saturating matching in the
bipartite hypergraph HT .

To meet a target makespan T , the machine scheduling problem is the task of allocating a
bundle of jobs Si to each machine i so that each machine can perform the jobs in its bundle
within time T and with

⋃
i∈M Si = J ensuring all jobs get assigned. This corresponds to

the problem of finding an edge cover for J in the bipartite hypergraph H′T such that no
two edges intersect in M (vertices of M unsaturated by such a cover get an empty bundle
of jobs).

P R M J

Figure 4.1: Edges are indicated by yellow regions marked with solid line borders. On the left is
a selection of edges which is a matching saturating P , as desired among edges of hypergraph HT
to meet target allocation T . On the right is a selection of edges that cover J and are disjoint in
M , as desired among edges of H′T to satisfy target makespan T .

So far it has been results and ideas related to A-saturating (A,X) bipartite hypergraph
matchings that have applied naturally to the Santa Claus problem (see [4] for example). It
is hoped that interesting results, perhaps related to edge covers, on bipartite hypergraphs
may be underlying for the machine scheduling problem also. We attempt to investigate
some of these related notions to edge covers on bipartite hypergraphs in Chapter 8.
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Definition 4.6. Given a bipartite hypergraph H = (A ∪X, E), for B ⊂ A we define HB

to be the hypergraph with vertices X and edges F := {E ∩ X : E ∈ E and E ∩ B 6= ∅}.
It is the hypergraph formed on X by taking the edges which hit B and deleting from each
edge that single vertex hitting B.

A ubiquitous result on maximum matchings in bipartite graphs is Hall’s Theorem.

Theorem 4.7 (Hall’s Theorem). Suppose G is a bipartite graph with bipartition (U, V ).
There exists a matching in G saturating U if and only if for every S ⊂ U we have the set
of neighbours to vertices in S denoted by N(S) satisfying |N(S)| ≥ |S|.

A sufficient condition for saturating the A-side of a bipartite hypergraph is given by
the following result that generalizes Hall’s Theorem 4.7.

Theorem 4.8 (Haxell’s Theorem [15]). Let H = (A∪X, E) be a bipartite hypergraph with
edges containing at most r vertices, such that for every B ⊂ A, every transversal of HB

has size greater than (2r − 3)(|B| − 1). Then H admits an A-saturating matching.

Taking r = 1 yields a statement equivalent to the non-trivial direction of Hall’s The-
orem. The proof [15] of this result inspired the ideas in the original proof showing the
integrality gap of the restricted Santa Claus CLP (3.1)-(3.4) is at most 4 [4].

The proof of Haxell’s Theorem, proceeds by the contrapositive to show that having a
max-matching not saturating A implies the existence of a small transversal for some HB.
The proof uses a local search starting with an A-vertex unsaturated by a max-matching
and proceeds to build up a tree of adding edges and blocking edges which come from
the current max matching. The max matching is made to update upon addition of each
adding edge, but to retain all blocking edges that appear previously in the tree. When
the procedure for building the tree is finished, the transversal on HB, for B the set of
A-vertices appearing among edges in the tree, is then formed by the set of X-vertices in
(edges of) the tree. In fact this proof shows a particular structure for the transversal it
produces. This structure shall be made evident in another version of Haxell’s Theorem we
shall describe shortly.

4.2 Independent Transversals and Estimation for Restricted Santa
Claus

In this section we will give an alternative proof that the CLP has integrality gap at most
4 based on a version of Haxell’s Theorem 4.8 which concerns independent transversals in
vertex partitioned graphs. First we introduce the relevant definitions (as laid out in a
paper by Graf and Haxell [14]).

For a partition of vertices of a graph G = (V,E) into {Vi : i ∈ I} and a set of some of
these vertex classes B, we use GB to denote the subgraph of G induced on the union of
the vertex classes in B.
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Definition 4.9. For a graph G = (V,E) and a set of vertices D ⊂ V , we say D (totally)
dominates G provided that for every vertex in V there exists an edge incident with it and
some vertex of D.

Note that there is another weaker notion of domination, which we do not discuss here.

Definition 4.10. An independent transversal of a graph G = (V,E) with respect to a
vertex partition {Vi : i ∈ I}, is an independent set (or coclique) of vertices {vi : i ∈ I} in
G, with vi ∈ Vi for all i.

Definition 4.11. A constellation K, for a set of vertex classes B in a vertex partitioned
graph G = (V,E), is an induced subgraph of GB that satisfies the following properties.
Its components are stars K1,n for some n ≥ 1, with one vertex designated as the centre
(the central vertex for n ≥ 2 and one of the vertices is chosen as the centre for K1,1 = K2)
and the rest as leaves. Finally, the set of leaves in K form an independent transversal for
|B| − 1 of the vertex classes.

Note that there are |B| − 1 leaves of a constellation K, each in a different vertex class
of B. It follows that |V (K)| ≤ 2(|B|−1) since each component has at least as many leaves
as the one central vertex. An example constellation is pictured below in Figure 4.2. Note
that a constellation induces a rooted tree structure on vertex classes of B with the unique
vertex class not containing a leaf serving as the root.

Figure 4.2: A constellation K for the set B of vertex classes contained within the dotted border.
Vertex classes are indicated by circles. The centres of the stars appear in black and the leaves
appear in red. The rest of the graph G is omitted.

We have the following result which follows from the proof of Haxell’s Theorem [15]
and was explicitly given in a similar form in a paper by Aharoni, Berger and Ziv [1]. An
algorithmic version of this result was given in a paper by Graf and Haxell [14].

Theorem 4.12. Let G = (V,E) be a graph partitioned into vertex classes. If there does
not exist an independent transversal in G with respect to this partition then there exists a
subset of vertex classes B and a constellation K for B such that V (K) dominates GB.

We omit the proof and use this result combined with the dual of the CLP to provide
a novel proof that the CLP for an instance of the restricted Santa Claus problem has an
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integrality gap of at most 4. Let Ea denote the hyperedges in E hitting vertex a ∈ A. This
Theorem 4.12 relates to the original statement of Haxell’s Theorem 4.8, by considering a
vertex partitioned graph G associated to a bipartite hypergraph H = (A ∪ X, E), where
vertices of G correspond to hyperedges E which are partitioned into classes Ea for each
a ∈ A, with two hyperedges adjacent in G if and only if they intersect in X.

Theorem 4.13. The integrality gap of the restricted Santa Claus CLP is at most 4.

Proof. We recall the CLP (3.1)-(3.4) and its dual (3.5)-(3.7) for the Santa Claus problem.
By scaling of resource values it suffices to show given that the CLP has no integral solution
for T = 1, that the CLP is infeasible for T = 4. To certify this we exhibit a solution to the
dual of the CLP for T = 4 with positive objective value (hence by primal minimization
problem with constant objective of 0 this certifies infeasibility by weak duality).

Let G = (V,E) have vertices {i, S} for every player i and every minimal (by inclusion)
bundle S of resources that provides value at least 1 to player i. Edges are put between
any vertices that share a resource in their bundles. Vertices are partitioned into V = {Vi :
i ∈ P} by the player they correspond to. An independent transversal of G with respect
to this partition corresponds to choosing disjoint bundles of resources of value at least 1
for all players, hence finding an integral solution to the Santa Claus CLP for T = 1. So
by assumption no such independent transversal exists in G with respect to this partition.
Applying Theorem 4.12 we obtain a subset of the vertex classes B and a constellation K
for B whose vertices dominate GB. We identify B with the corresponding set of players we
are partitioning by. We note that since K is induced, any two of its non-adjacent vertices
share no resource. Let U be the set of all resources that appear among the vertices in K.
We define the dual variables, see (3.5)-(3.7), based on B and U as follows:

yi := 0 ∀i ∈ P \B
yi := 3 ∀i ∈ B
zj := 0 ∀j ∈ R \ U
zj := 3 ∀j ∈ U with pj ≥ 1

zj := pj ∀j ∈ U with pj < 1.

Note that (y, z) clearly satisfies the non-negativity constraints and we shall proceed to
verify that it satisfies the other constraints and gives positive objective value.

Let S be a bundle assignable to a player i ∈ B of value at least 1 such that U ∩ S = ∅,
then {i, S} would be a vertex in GB not adjacent to any vertex of K, contradicting K
dominating GB. Therefore when S is a bundle assignable to player i ∈ B of value at least
1 we have U ∩ S 6= ∅. Thus for any i ∈ B and S ∈ C(i, 4) we have that the total value of
resources in the intersection of S and U is at least 3, as if it were less than 3 deleting the
intersection from S would produce a disjoint bundle from U of value at least 1 assignable
to player i. Because all resources in U are assigned either a dual variable entry of 3 or at
least its inherent value, we have that for all i ∈ B and S ∈ C(i, 4): yi = 3 ≤

∑
j∈S zj. By

our setting y to be 0 outside of B, the other feasibility constraints hold also. So it remains
to verify that the objective is positive.
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We have
∑

i∈P yi = 3|B|. Now
∑

j∈R zj is equal, by resource disjointness of components
in K and z zero outside of U , to the sum of the total z-value on resources in each of the
components/stars of K. Consider any star of our constellation K and let its centre be
given by v = (i0, S0).

Case 1: S0 contains a resource of value at least 1.
Due to the minimality of S0, S0 must consist of a single resource. Any of the neighbours
of v in K must also share, and hence by minimality entirely consist of, this one resource.
Thus the total z-value of resources over all of this component of K is 3. Components in
K consist of at least 2 vertices (in fact here it must be exactly 2) so the z-value of this
component per vertex is at most 3

2
.

Case 2: S0 contains only resources of value less than 1.
Since S0 is minimal, the inherent value of resources in S0 is less than 2 as otherwise dropping
any resource would keep it satisfying with value at least 1. Let v′ = (i′, S ′) be a neighbour
to v in its component of K. From minimality of S ′, the value of S ′ \S0 must be less than 1,
as otherwise we could drop from S ′ its non-empty (by adjacency of v and v′) intersection
with S0. Note this tells us that all resources appearing in this star have value less than
1, hence all having value equal to their corresponding dual variable z-values. Let n be
the number of vertices in this star, so the star consists of v and its n− 1 neighbours. We
conclude that the total z-value of resources in this component is at most 2+(n−1) = n+1.
So by n at least 2, this gives us that the z-value of this component per vertex is at most 3

2
.

Therefore the total z-value over all of R, which is the total taken over all components
of K, is at most 3

2
|V (K)|. Now |V (K)| ≤ 2(|B| − 1) < 2|B|, so we have:∑

j∈R

zj <
3

2
(2|B|) = 3|B| =

∑
i∈P

yi.

Therefore
∑

i∈P yi −
∑

j∈R zj > 0 so the feasible dual solution attains a positive objective
value. This certifies the infeasibility of the CLP for T = 4, thus showing that the integrality
gap for the CLP is at most 4.

This result shows that (see Theorem 3.6) using the CLP we have a polytime method
for estimating the optimal max-min of the restricted Santa Claus problem within any
factor greater than 4, leaving a gap between this approximation ratio of 4 (which has been
improved somewhat [9] to a best known factor of 4 − 5

26
) and 2 where we have an NP-

hard complexity result for estimation of the max-min. A constant factor approximation
algorithm for the restricted Santa Claus has also been obtained in work by Annamalai [2].
This has been later improved, in a paper by Davies, Rothvoss and Zhang to 4 + ε [11], the
factor of estimation shown here. This paper [11], which we discuss in Chapter 6, generalizes
the Santa Claus problem to a setting where one wants an allocation satisfying some basis
of a matroid rather than a fixed set of players, and applies an algorithm developed in that
more general setting to the Santa Claus problem. The CLP itself is not known to have
integrality gap worse than 2, so it is hoped that the CLP fully captures the difficulty of
approximation for the restricted Santa Claus problem.
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A concrete example in which the restricted Santa Claus CLP has integrality gap of
2 is as follows. Consider the following problem instance for the restricted Santa Claus
problem: We are given P = {1, 2, 3, 4} and R = {A,B,C,D,E, F} with resource values
vA = vB = 2 and vC = vD = vE = vF = 1. We also have allowable assignments determined
by the following:

Player 1 may be assigned resources A,C,D

Player 2 may be assigned resources A,E, F

Player 3 may be assigned resources B,C, F

Player 4 may be assigned resources B,D,E.

We claim the max-min for any allocation of bundles to the above problem is at most
1. Suppose for contradiction there was an allocation giving value at least 2 to all players.
Since only one of players 1 and 2 may be assigned resource A, one of them must receive
both of the resources it gives value 1. Thus either {C,D} or {E,F} must be resources
allocated to players among 1 and 2. By identical reasoning we conclude either {C,F} or
{D,E} must be resources allocated to players among 3 and 4. Since any choice among
{C,F} or {D,E} intersects both {C,D} and {E,F}, this tells us a resource is allocated
both to a player among {1, 2} and {3, 4} contradicting disjointness of bundles. So by the
max-min integer given this integer data, we have that the max-min is at most 1.

On the other hand we have a fractional allocation for the Santa Claus CLP for T = 2,
given by for each player half-allocating a bundle consisting of the 2-value resource it may
be assigned, and half-allocating a bundle consisting of both of the 1-value resources it may
be assigned. So this is a concrete example in which the Santa Claus CLP has integrality
gap of 2. With essentially no alteration, this gives an example for the corresponding
machine scheduling CLP with largest known integrality gap 3

2
. We next introduce this

machine scheduling CLP and discuss its applications to the restricted machine scheduling
problem.
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Chapter 5

Restricted Machine Scheduling
Estimation

Here we give the CLP and its dual for the machine scheduling problem with target
makespan T . Recall that C(i, T ) denotes the set of configurations for machine i and
target T , where a configuration is a set of jobs S with

∑
j∈S pij ≤ T .

Machine Scheduling CLP for target T

max 0 (5.1)∑
S∈C(i,T )

xi,S ≤ 1 ∀i ∈M (5.2)

∑
i,S:j∈S,S∈C(i,T )

xi,S ≥ 1 ∀j ∈ J (5.3)

xi,S ≥ 0 ∀i ∈M,∀S ∈ C(i, T ). (5.4)

Machine Scheduling Dual CLP for target T

min
∑
i∈M

yi −
∑
j∈J

zj (5.5)

yi ≥
∑
j∈S

zj ∀i ∈M,S ∈ C(i, T ) (5.6)

yi, zj ≥ 0 ∀i ∈M,∀j ∈ J. (5.7)

The primal CLP is a relaxation of the task of assigning bundles of jobs to machines
that do not have total completion time exceeding the target makespan T . Note that by
similar reasoning as in the Santa Claus CLP we have that a negative objective solution
to the dual certifies the infeasibility of the primal for the same target T . Also, as in the
Santa Claus CLP (see Theorem 3.6), determining the integrality gap of the CLP for a class
of problem instances shows that the optimal makespan may be estimated in polytime for
those instances within any factor greater than the corresponding integrality gap. There
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is also an equality version of this CLP, which we will later apply to the analysis of graph
balancing variants of the machine scheduling problem.

The CLP and its dual have also been useful in the analysis of machine scheduling
problem for the restricted case. In a paper due to Svensson [28], by analysing the integrality
gap of the CLP it was shown that the makespan may be estimated in polytime up to a
factor arbitrarily close to 33

17
. This result was improved to a factor of 11

6
with a simplified

argument in a paper by Jansen and Rohwedder [19] which we shall discuss in more detail
below.

These results have yet to be made into a polytime algorithm for finding an assignment
with that same approximation ratio for the optimal makespan, so the general case 2-
approximation algorithm discussed earlier [23] remains the best known for the restricted
case.

We shall proceed, in the current and following sections, to describe in detail the paper
of Jansen and Rohwedder [19], which gives the 11

6
estimation result by analysis of the

integrality gap of the restricted machine scheduling CLP.

Note that in the restricted case we are now considering, we have fixed job sizes pj for
each job. Recall that Γ(j) denotes the set of machines capable of performing job j. The
set of configurations for player i, C(i, T ), is now given by the set of all bundles of jobs
assignable to machine i of total size at most T . Otherwise, the CLP and its dual (5.1)-(5.7)
are the same as written above.

Suppose we are given an instance of the restricted machine scheduling problem. By
scaling job sizes we can set T = 1 as the optimal (least) value of T for which the CLP is
feasible. Note that all job sizes pj are then at most 1. To show the integrality gap is at
most 1 + r for some r ∈ (0, 1], it suffices to produce a job assignment of makespan at most
1 + r.

5.1 A Preliminary Analysis

To illustrate some of the basic ideas in the general restricted case, we shall first assume
that all job sizes are small, that is pj ≤ r for all jobs j and some fixed r ∈ (0, 1]. It will be
convenient to use notation f(U) to represent the sum

∑
j∈U f(j) for U ⊂ J and f a real

valued function on the jobs (such as the function p giving job times). We will introduce
some relevant definitions (closely related to those provided in [28, 19]) and describe an
algorithm which produces a desired job assignment of makespan at most 1 + r. To show
that our algorithm doesn’t get stuck, a negative objective dual solution is constructed
based on the progress of our algorithm that certifies the infeasibility of the primal CLP
for T = 1, giving a contradiction. The dual solution is constructed based on a blocking
tree T that prevents the assignment of an additional job jnew to a partial schedule σ. The
variables T , jnew and σ are the variables updated during the running of the algorithm.

Definition 5.1. A partial schedule is a function φ : J →M ∪ {⊥} such that for all j ∈ J
we have φ(j) ∈ Γ(j) or φ(j) =⊥. Here ⊥ is a special symbol indicating unassigned jobs,
jobs not taking that value are said to be assigned by φ.
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A partial schedule φ is valid when for all i ∈M we have p(φ−1(i)) ≤ 1+r. This captures
the notion of not having already, in the partial assignment, overworked any machine to
violate the target makespan 1 + r. Throughout the algorithm the partial schedule σ will
be kept valid and this is the only partial schedule that the algorithm will consider.

Definition 5.2. A move is a pair (j, i) for job j and machine i where i 6= σ(j) and i ∈ Γ(j).
A move (j, i) is said to be valid when p(σ−1(i)) + pj ≤ 1 + r and invalid otherwise.

When a move (j, i) is valid updating σ by σ(j) ← i maintains σ as a valid partial
schedule, so only executing valid moves to update σ during our algorithm ensures σ remains
a valid partial schedule.

Definition 5.3. A blocking tree U is a pair consisting of: (1) a rooted tree on a set of
vertices having a special root vertex designated as ROOT, with other vertices being moves
and (2) a list which orders the moves that appear as vertices in U .

In an abuse of notation we will frequently identify U with its corresponding list of moves,
leaving the tree structure implicit. We let M(U) denote the set of machines appearing
among the moves in U .

The blocking tree that will be updated during our algorithm is T , which along with
the current partial assignment σ, determines which potential moves we are interested in
considering adding to our blocking tree. We call elements of M(T ) blocking machines and
say other machines are not blocking. Blocking machines will be made to appear uniquely
in the blocking tree T , while the same job can appear in many of the moves of T .

Definition 5.4. We define a set of jobs J(T ) associated to our blocking tree T by

J(T ) := {jnew} ∪
⋃

i∈M(T )

σ−1(i).

Note that J(T ) is also dependent on other variables jnew and σ. Here J(T ) will be
the set of jobs that the blocking tree T indicates we should try to move to make room for
assignment of the new job jnew.

Definition 5.5. A potential move is a move (j, i) such that j ∈ J(T ) and i ∈M \M(T ).

Potential moves are trying to move a job, which is either the new job to be assigned, jnew,
or a job currently assigned to a blocking machine, towards a machine that is not blocking.
Potential moves also have an associated value and corresponding priority, determining
which potential moves our algorithm should consider. Note that as soon as a potential
move (j, i) is added to T it ceases to be a potential move, as subsequently i ∈M(T ).

Definition 5.6. The value of a potential move (j, i) is Val(j, i) := |σ−1(i)|, the number of
jobs currently assigned to the machine i we are trying to move j into.
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Potential moves are then given priority so that a move (j, i) has higher priority for
lesser Val(j, i). Potential moves of same value have the same priority. In the general case
there will be different types of potential moves, and the value of a move will then be a
pair of integers (the first of which denotes the type) to be prioritized in lexicographically
decreasing order.

Description of T : We will update a blocking tree T during our algorithm, building
it up from its initialization as the trivial tree on ROOT whenever we try to assign a new
job jnew. Newly added moves to T are appended to the end of the list of moves, so the list
of moves is ordered by the order in which the algorithm adds them to T . We let ` ∈ N be
the number of moves appearing as vertices in T , so T = (m1, . . . ,m`), where mk is the kth

move that was added to T (among those remaining as vertices in T ).

Definition 5.7. Let k be such that 0 ≤ k ≤ `, we define T k := (m1, . . . ,mk) to be the
blocking tree which inherits the tree structure from T on its first k moves and ROOT, with
moves listed in same order as they appear in T .

Updating T , σ and jnew: We initially set σ as the empty assignment which leaves all
jobs unassigned, that is σ(j) =⊥ for all jobs j. We initially set jnew to be any job and
T as the trivial blocking tree on ROOT with empty list of moves. When there is not a
valid move in T , we extend the blocking tree by finding a potential move (j0, i0) of highest
priority.

1. If j0 = jnew we give this move (j0, i0) parent ROOT in the tree structure and append
it to the list of moves for T .

2. Otherwise i = σ(j0) for some i ∈ M(T ). Let mk be the first (and only) move in T
with machine i = σ(j0). We then give move (j0, i0) parent mk in the tree structure
and append it to the list of moves for T .

When there is a valid move among the moves in T , we pick one (j0, i0) and update σ
by setting σ(j0)← i0. We update T by deleting some moves as follows:

1. If j0 = jnew we have assigned jnew, so we reset T to the trivial blocking tree on
ROOT (with empty list), and update jnew to some other unassigned job. If there is
no unassigned job remaining the algorithm terminates, outputting σ.

2. Otherwise (j0, i0) has parent move mk in T . We then update T by T ← T k−1,
deleting all moves from parent mk onwards. The parent mk will be such that its
corresponding machine i had i = σ(j0) prior this update of σ.

We then describe the algorithm for producing an assignment of jobs with makespan at
most 1 + r in pseudocode as follows:
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1: function Special Case Build Job Assignment
2: σ is set to the empty assignment, a constant map to ⊥
3: while there is job unassigned by σ do
4: jnew is set to an unassigned job
5: T is set to trivial blocking tree on single node ROOT
6: The list of moves associated with T is set to be empty
7: while σ(jnew) =⊥ do
8: if there exists a move (j, i) in T which is valid then
9: if j = jnew then

10: σ(jnew)← i
11: else
12: σ(j)← i
13: T ← T k−1 and delete moves from mk and beyond in list of moves,

where mk is the parent of (j, i)
14: end if
15: else if there exists a potential move then
16: Find (j, i) a highest priority potential move
17: if j = jnew then
18: Update T by adding (j, i) with parent ROOT and append (j, i) to

the list of moves
19: else
20: Find (first) move mk on machine σ(j) in T
21: Update T by adding (j, i) with parent mk and append (j, i) to the

list of moves
22: end if
23: else
24: return “FAIL” and end function
25: end if
26: end while
27: end while
28: return σ
29: end function

A machine i cannot appear twice among the moves of T , since after its introduction into
T subsequent potential moves considered for addition to T cannot use machine i. Also
note that for as long as machine i continuously remains a blocking machine in M(T ),
σ−1(i) is unchanging. This follows from: (a) performing a valid move which moves away a
job from σ−1(i) deletes from T moves containing i and (b) moves added into T after the
introduction of i into M(T ) cannot use machine i, so when executed do not add jobs to
σ−1(i). So in particular we have that pairs (j, i) in T indeed remain moves.

We shall proceed to argue that this algorithm terminates and that it produces a
valid partial job assignment σ with no jobs left unassigned, hence a job assignment with
makespan at most 1 + r as desired.

Only valid moves are made to σ and the outer loop runs until we return “FAIL” or
have assigned all jobs. So provided the algorithm returns σ it produces a job assignment
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with makespan at most 1 + r. To show correctness of the algorithm we need to verify
termination and that “FAIL” is never output.

Theorem 5.8. The algorithm does not output “FAIL” and thus when terminating produces
a job assignment of makespan at most 1 + r.

Proof. Suppose for contradiction that we return “FAIL” and let jnew, T and σ be the
variables at the start of the inner loop iteration where this occurs. We must have no
valid moves in T and no potential moves. We construct dual variables for the Dual CLP
(5.5)-(5.7) with T = 1 as follows:

zj := pj ∀j ∈ J(T ) (5.8)

zj := 0 otherwise. (5.9)

yi := z(σ−1(i)) ∀i ∈M. (5.10)

Claim 1: (y, z) is feasible for the machine scheduling Dual CLP (5.5)-(5.7) with T = 1.
Clearly this candidate dual solution (y, z) satisfies non-negativity constraints. To check
other constraints, we let i ∈M and C ∈ C(i, 1), and the corresponding inequality to verify
is yi ≥ z(C).

Case 1: i ∈M(T ).
Since C is a configuration for target T = 1, we have p(C) ≤ 1. We also have zj ≤ pj for
all jobs, so z(C) ≤ p(C). Therefore it suffices to verify yi ≥ 1.

Since i ∈ M(T ) there is a move (j, i) in T , which must not be valid. Therefore
p(σ−1(i)) + pj > 1 + r. From assumption pj ≤ r, so combining yields p(σ−1(i)) > 1. Note
that σ−1(i) ⊂ J(T ), therefore yi = z(σ−1(i)) = p(σ−1(i)) > 1. Thus inequality yi ≥ z(C)
is satisfied.

Case 2: i ∈M \M(T ).
If j ∈ C ∩ J(T ) then j is assignable to i and (j, i) is thus a potential move, giving a
contradiction. Therefore C ∩ J(T ) = ∅ and z(C) = 0. So the constraint holds as yi is
non-negative (in fact it is 0 in this case).

Thus in all cases for constraints, we have verified that (y, z) is satisfying. So (y, z) is a
feasible Dual CLP solution, verifying our claim.

Claim 2: (y, z) has negative objective
∑

i∈M yi −
∑

j∈J zj.

Note that jnew /∈ σ−1(i) for any i ∈M , and therefore:∑
j∈J

zj ≥ zjnew +
∑
i∈M

z(σ−1(i)). (5.11)

Since jnew ∈ J(T ) we have zjnew > 0, and by definition
∑

i∈M z(σ−1(i)) =
∑

i∈M yi.
Applying this to (5.11) yields

∑
i∈M yi −

∑
j∈J zj ≤ −zjnew < 0 as desired.
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Combining claims, we have that (y, z) is a feasible solution with negative objective to
the Dual CLP for T = 1, contradicting feasibility of the CLP for T = 1. Therefore our
algorithm does not output “FAIL” and when terminating produces a job assignment of
makespan at most 1 + r.

Theorem 5.9. The Special Case Build Job Assignment algorithm terminates.

Proof. To demonstrate the termination of the algorithm we associate at each stage a sig-
nature vector Sig(T ) := (s1, . . . , s`,∞) to our blocking tree T = (m1, . . . ,m`). Here for
each k, sk is the value Val(mk) that mk had as a potential move just prior to the addition
of mk to T .

The number of moves in T is bounded by |M | since every machine can appear at most
once in the moves of T . So signature vectors have bounded length. Furthermore, since
any set of jobs has size at most |J | = n, we have a bounded number of possible values for
any potential move. Therefore we have a bounded (but exponential) number of possible
signature vector values that can be taken during our algorithm.

Note that any line of algorithm can be executed by exhaustive search in finite time, and
that the outer loop is entered at most n times. Therefore to show termination it suffices
to show we can only update T and σ finitely many times in trying to assign fixed job jnew.
Each valid move executed reduces the size of the current list of moves for T . So between
the addition of any two consecutively added moves to T during the algorithm, only finitely
many valid moves can be made. Combining this with the bounded number of possible
signature vectors that can occur, it suffices to show that the signature vector after adding
a move to T is (strictly) less lexicographically than the signature vector after adding the
previous move.

Let T0 = (m0
1, . . . ,m

0
`) be the blocking tree T after addition of the previous move m0

`

and let T1 = (m0
1, . . . ,m

0
k,madd) for some k ≤ ` be the blocking tree T after addition of next

move madd. Let sadd be the value of potential move madd when it was added to T . Then
we have associated signature vectors V0 = (s0

1, . . . , s
0
` ,∞) and V1 = (s0

1, . . . , s
0
k, sadd,∞) for

T0 and T1 respectively.

Case 1: k = `.
Then no valid moves were performed between addition of these moves, and signature vectors
V0 and V1 are identical on first ` entries. The `+ 1st entry is ∞ for V0 and is sadd <∞ for
V1, therefore V1 is less than V0 lexicographically.

Case 2: k < `.
Let m0

k+1 = (j, i). Let mf = (jf , if ) be the final valid move made between addition of moves
m0
` and madd to T . Updating T after executing mf deleted moves from m0

k+1 onwards.
So m0

k+1 was the parent of mf , which implies that jf was in σ−1(i) while m0
k+1 = (j, i)

remained in T . So executing mf reduces |σ−1(i)|. Since σ−1(i) was unchanging while
m0
k+1 = (j, i) remained in T , we have that |σ−1(i)| is smaller after making this final valid

move mf than s0
k+1, the size of σ−1(i) just prior to the introduction of move m0

k+1 to T .

Consider our algorithm at stage with T = (m0
1, . . . ,m

0
k) after making this last valid

move mf . Now, upon discovering no remaining valid moves in T , our algorithm seeks the
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highest priority potential move. When m0
k+1 = (j, i) was introduced earlier, (j, i) was a

potential move on the same T . We have that σ−1 has remained unchanged for machines in
M(T ) since (m0

1, . . . ,m
0
k) have not been deleted. Therefore (j, i) is once again a potential

move, and its new value Val(j, i) = |σ−1(i)| has decreased from its earlier value s0
k+1.

Therefore the value of a highest priority potential move sadd is strictly less than s0
k+1. So

V0 and V1 are identical on first k entries and V1 is less than V0 on k + 1th entry, therefore
the signature decreases lexicographically.

Thus in any case we see a decrease in the signature vector with V1 less than V0. Therefore
the algorithm terminates.

Combining our results on output and termination of the algorithm, we obtain the
following results.

Theorem 5.10. Suppose we are given restricted machine scheduling problem with T = 1
the optimal T for which the CLP is feasible, and all job sizes pj ≤ r. Then the algorithm
Special Case Build Job Assignment produces a job assignment with makespan at most
1 + r.

Theorem 5.11. Suppose we are given restricted machine scheduling problem with T = 1
the optimal T for which the CLP is feasible, and all job sizes pj ≤ r. The integrality gap
for the corresponding CLP is at most 1 + r.

Theorem 5.12. We may estimate in polytime the optimal makespan within any factor
greater than 1 + r, for the class of instances of the restricted machine scheduling problem
which have all job sizes at most r times the optimal T for which the corresponding CLP is
feasible.

Note that any job size is at most the optimal T for which the CLP is feasible, so
taking r = 1 above gives an alternative proof (as opposed to applying the 2-approximation
algorithm) that the optimal makespan may be estimated to within any factor greater than
2. It does not yield the same approximation factor as the construction of the job assignment
in this algorithm was not shown to be polytime.

This 1+r estimation result for the restricted case is not novel in of itself and does not in
general improve on the 2-approximation algorithm guarantee provided by Lenstra et al. [23].
Indeed, under the weaker assumption that the maximum (non-infinite) performance time
of any job on any machine is at most r times the optimal makespan, the much earlier work
of Lenstra et al. [23] gives a 1 + r approximation algorithm. However the techniques here
can, with some care and technical complications, be made to give an improved estimation
result in general [28, 19], as we shall see in the following section.

5.2 The General Case for 11/6 Estimation

Here we give the general 11
6

estimation result for the restricted machine scheduling problem.
Let r = 5

6
so that 11

6
= 1 + r. The choice of r = 5

6
will be the least possible for this analysis
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to go through as we shall require the inequality (1 + r)− 1
2
− 2(1− r) ≥ 1 to be satisfied

(it is the underlying inequality in the analysis of the first case for feasibility in the proof of
Theorem 5.25). As before, it suffices to show that given that the CLP is feasible for T = 1
that there exists a job assignment of makespan at most 1 + r. So we assume that the CLP
is feasible for T = 1 and proceed to describe an algorithm which builds a job assignment
of makespan at most the target 1 + r. Again, note that the CLP being feasible for T = 1
ensures that all job sizes are at most 1.

As in the previous algorithm, the variables for our algorithm will be partial schedule
σ, blocking tree T and job jnew. It will be convenient to label jobs as J := {1, . . . , n},
providing a total order on jobs, and we will choose our labelling so that jobs have sizes
coming in weakly increasing order. The definitions and results presented will follow closely
the paper of Jansen and Rohwedder [19], which itself adapts many similar notions from
the earlier paper [28] due to Svensson.

Partial schedules and the condition for validity are defined exactly as before (see Def-
inition 5.1), taking r = 5

6
. Moves and valid moves are also defined as before in Definition

5.2, taking r = 5
6
.

Since we have no assumption on the sizes of jobs, we make a division of job sizes into
big jobs and small jobs. This division will result in differing types of potential moves and
consequently different types of vertices in our blocking tree.

Definition 5.13. A job is said to be small when pj ≤ 1
2

and big otherwise, when pj >
1
2
.

The set of small jobs is denoted by JS and the set of big jobs JB. Note that configura-
tions, for T = 1 and any machine, may contain at most one big job, while they may contain
many small jobs. We denote by Bi := σ−1(i) ∩ JB the set of big jobs currently assigned
by partial schedule σ to machine i, which when non-empty has big job of smallest label
min(Bi). We define Bmin

i as the singleton set containing min(Bi) when Bi is non-empty
and set it to be the empty set otherwise. Note that, since σ will be a valid partial schedule
during the algorithm, Bi consists always of at most 3 big jobs.

Our previous analysis would suffice if no jobs had size greater than r = 5
6
, which are

all big jobs here. We have some slack between our dividing line of job sizes 1
2

and 5
6
, which

allows us to compensate for problems caused by jobs of size greater than 5
6
. We proceed

to outline some of the differences between the algorithm to be introduced and that of the
previous section, briefly describing the purpose of these alterations.

Changes to the algorithm are made necessary, since an invalid move (j, i) in T only
guarantees p(σ−1(i)) > 1 + r − pj. For a big job with pj > r this may yield a value
less than 1, hence insufficient to guarantee satisfaction of dual inequality constraints (5.7)
when assigning dual variables as before. Two things that could be done to try and fix this
problem are: (1) allow some jobs to still be allowed as potential moves into i, so z(C) > yi
for C ∈ C(i, 1) may indicate our algorithm is unfinished examining potential moves and
(2) increase some of the yi’s up from p(σ−1(i)) to exceed 1.

Addressing things in the first way leads to a notion of undesirability of jobs for vertices
of T and for machines. When a vertex arising from a move (j, i) is introduced into T , some
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of the jobs are made undesirable for this vertex and set as undesirable for the machine i.
Jobs still desirable (not undesirable) for i are allowed as possible potential moves, so σ−1(i)
may change while (j, i) remains in T , unlike before. The value of a given type of potential
move (j, i) will now be made to only depend on jobs assigned to i which are undesirable for
the corresponding vertex in T , so that the value has only improved when an undesirable
(for the vertex) job assigned to i is removed. This is needed for the termination argument
to work as before.

We will also modify the assignment of dual variables in the analysis of the algorithm
from before to accommodate the second method of trying to satisfy dual inequalities. In
particular z-values will be 0 outside of a set of active jobs (based on the blocking tree and
the notion of undesirability), and on active jobs given value zj = max(pj, r) corresponding
to their size, possibly rounded down to r. This assignment of dual job variables essentially
combines the idea of using of job sizes from earlier, together with merely counting jobs of
problematic size, by having equal assignment of the dual variables for jobs of size greater
than r. For each machine i ∈ M , yi will be similar to the z(σ−1(i)) from before, but here
possibly adjusted up or down by 1− r. For machines appearing in a certain class of moves
in T , we will adjust up yi by 1 − r so that we have yi ≥ 1. To get negative objective∑

i∈M yi−
∑

j∈J zj (5.5) as before, those increments must be compensated for by adjusting
down yi by 1− r elsewhere at least as frequently. Machines i appearing in a move (j, i) of
T with j small will have all jobs assigned to i active and correspond to the variables yi we
adjust down by 1− r. The invalidity of such (j, i) gives p(σ−1(i)) > 1 + r− 1

2
= 8

6
, allowing

us the room to reduce yi while keeping it at least 1.

We proceed to describe the algorithm (and its associated definitions) in detail, which
uses the ideas described above to get around the issues arising from jobs of size exceeding
r = 5

6
.

Definition 5.14. A blocker is a triple (j, i, θ) with (j, i) a move and θ ∈ {SA,BA,BL,BB},
such that j is small if and only if θ = SA.

Blockers here play the same role in T that moves did previously. The special symbol in
the third entry of a blocker denotes the blocker type: SA “small-to-any,” BA “big-to-any,”
BL “big-to-least,” and BB “big-to-big.” The blocker types correspond to the different
types of potential moves which our algorithm considers to grow T . The first two entries
(j, i) will as before be equal to the considered potential move. We now give a new definition
for a blocking tree in the general case.

Definition 5.15. A blocking tree U is a pair consisting of: (1) a rooted tree on a set
of vertices having a special root vertex designated as ROOT, with other vertices being
blockers and (2) a list which orders the blockers that appear as vertices in U .

We will, as before, frequently identify U with its corresponding list of blockers, leaving
the tree structure implicit. We let M(U) denote the set of machines appearing in the
second entry among the blockers in U .

We let MSA(U), MBA(U), MBL(U) and MBB(U) denote the sets of machines in M(U)
present in U with the corresponding type of blocker SA, BA, BL and BB respectively
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(there may be overlap between these sets of machines). When U = T these sets of machines
are called blocking machines of the corresponding type.

We say a move (j, i) appears in U when some blocker of U has first two entries (j, i).
Moves will be made to appear uniquely in T , so we can identify blockers with their cor-
responding move. However, it will no longer be the case that machines can appear only
once as entries to blockers of T . It will follow from our description of the algorithm that a
machine can appear in at most 3 blockers of T , this occurring only when it is first added
as a blocking machine of type BL, followed by BB and then SA.

As before we will let our blocking tree have list of blockers T := (B1, . . . ,B`) listed in the
order of introduction of the blockers to T . We let T k := (B1, . . . ,Bk) denote the blocking
tree, on the first k blockers of T together with ROOT, with the same tree structure and
ordering of blockers as T .

In the definitions that follow, blocking trees U may be replaced with T k for any k
(possibly equal to T ) without causing trouble for the analysis.

Definition 5.16. Let B = (j, i, θ) be a blocker. We say a job is undesirable for B according
to the following list of cases by blocker-type θ:

1. If θ = SA all jobs are undesirable for B.

2. If θ = BA all jobs are undesirable for B.

3. If θ = BL all big jobs of label at most min(Bi) are undesirable for B.

4. If θ = BB all big jobs are undesirable for B.

We also have a related notion of a job being undesirable for a machine (relative to a
blocking tree).

Definition 5.17. Let U be a blocking tree, we say a job j is undesirable for machine i
relative to U if and only if there exists a blocker in U on machine i for which j is undesirable.
Otherwise, we say j is desirable for machine i relative to U .

When U = T we simply refer to jobs as being desirable or undesirable for machines,
omitting the phrase “relative to U .” Our algorithm shall want to move undesirable jobs
away from blocking machines of T and avoid moving jobs into machines for which they are
undesirable.

Definition 5.18. We associate a set of jobs J(T ) to our blocking tree T as follows:

J(T ) := {jnew} ∪
⋃

i∈M(T )

{j ∈ J : j is undesirable for i and σ(j) = i}.

J(T ) is the set of jobs which are undesirable for a machine in M(T ) they are currently
assigned to by σ, together with the new job jnew. The set of jobs J(T ) plays the analogous
role in determining potential moves as it did in the prior section.
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Definition 5.19. A small job j is said to be immovable relative to blocking tree U when
j is currently assigned by σ and any move (j, i) is such that j is undesirable for i relative
to U . Otherwise a small job j is said to be movable relative to U .

When U = T we simply say small jobs are movable or immovable. The set of immovable
small jobs relative to U is denoted by S(U), and is given explicitly by the following equation:

S(U) = {j small and σ(j) 6=⊥ : Γ(j) \ {σ(j)} ⊂MSA(U) ∪MBA(U)}.

We define Si(U) := S(U) ∩ σ−1(i) to be those small jobs immovable relative to U that
are currently assigned to machine i.

We say S(T ) is the set of immovable small jobs, and Si(T ) is the set of immovable
small jobs assigned to i. These sets of immovable small jobs shall play an important role
in defining the types of potential moves.

Definition 5.20. A job j ∈ J is said to be active when j ∈ J(T ) or j ∈ S(T ). The set of
active jobs is denoted by A(T ) := J(T )∪ S(T ), and Ai(T ) := A(T )∩ σ−1(i) is defined to
be the set of active jobs currently assigned to i.

Whether a job is active or not will be important in deciding how to assign its cor-
responding dual value in the analysis of the algorithm. We say a job j is active for (or
activated by) machine i when j ∈ Ai(T ).

Definition 5.21. A potential move (j, i) is a move with job j ∈ J(T ) desirable for machine
i, that does not already appear in T , which satisfies either (a) j is small, or (b) j is big
and p(Si(T )) + pj ≤ 1 + r.

It follows from case analysis that potential moves come in one of the following mutually
exclusive types, which will correspond to the blocker type θ of (j, i, θ), the blocker to be
introduced to T after our algorithm considers potential move (j, i).

Type Undesirable Conditions Val(j, i)
SA All jobs j small (1, |σ−1(i)|)
BA All jobs j big and p(Si(T ) ∪Bi) + pj ≤ 1 + r (2, |σ−1(i)|)

BL
Big jobs j with
j ≤ min(Bi)

j big with p(Si(T )∪Bmin
i ) + pj > 1 + r and

p(Si(T )) + pj ≤ 1 + r
(3,−min(Bi))

BB Big jobs
j big with p(Si(T ) ∪ Bi) + pj > 1 + r and
p(Si(T ) ∪Bmin

i ) + pj ≤ 1 + r
(4, |Bi|)

The associated value Val(j, i) to potential move (j, i) is given in the final column of
the above table. Potential moves are then given priority based on their values in lexico-
graphically decreasing order. Note that for a potential move of type BL, the greater the
minimum job, the less value and higher priority the move has. Also note that as soon as
the corresponding blocker to move (j, i) is added to T , (j, i) ceases to be potential from
the condition that a potential move not appear in T . The extra condition that (j, i) not
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appear in T is only needed for the BL case, as in other cases the blocker (j, i, θ) introduced
always has j undesirable. Finally, note that small job j ∈ J(T ) has a potential move (j, i)
available, for some machine i, if and only if j is movable.

Updating T , σ and jnew: We initially set σ as the empty assignment which leaves all
jobs unassigned, that is σ(j) =⊥ for all jobs j. We initially set jnew to be any job and
T as the trivial blocking tree on ROOT with empty list of blockers. When there is not a
valid move in T , we extend the blocking tree by finding a potential move (j0, i0) of type θ
which has highest priority. Let Badd = (j0, i0, θ) be the corresponding blocker we wish to
introduce.

1. If j0 = jnew we give this blocker Badd parent ROOT in the tree structure and append
it to the list of blockers for T .

2. Otherwise i = σ(j0) for some i ∈M(T ) with j0 undesirable for i. Let Bk be the first
blocker in T with its machine i = σ(j0) and j0 undesirable for i. We then give move
(j0, i0) parent Bk in the tree structure and append it to the list of moves for T .

When there is a valid move, among the moves in T , we pick one (j0, i0) and update σ
by setting σ(j0)← i0. We update T by deleting some blockers as follows.

1. If j0 = jnew we have assigned jnew, so we reset T to the trivial blocking tree on
ROOT (with empty list), and update jnew to some other unassigned job. If there is
no unassigned job remaining the algorithm terminates, outputting σ.

2. Otherwise the blocker with move (j0, i0) has parent blocker Bk in T . We then update
T by T ← T k−1, deleting all blockers from parent Bk onwards. The parent Bk will
be such that its corresponding machine i had i = σ(j0) prior this update of σ.

We then describe the algorithm for producing an assignment of jobs with makespan at
most 1 + r in pseudocode as follows:

1: function Build Job Assignment
2: σ is set to the empty assignment, a constant map to ⊥
3: while there is job unassigned by σ do
4: jnew is set to an unassigned job
5: T is set to trivial tree on single node ROOT, with empty blocker list
6: while σ(jnew) =⊥ do
7: if there exists a move (j, i) in T which is valid then
8: if j = jnew then
9: σ(jnew)← i

10: else
11: σ(j)← i
12: T ← T k−1 where Bk is the parent of blocker with move (j, i), deleting

from Bk onwards in list of blockers
13: end if
14: else if there exists a potential move then
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15: Find (j, i) a highest priority potential move and determine its type θ ∈
{SA,BA,BL,BB}

16: Set Badd as (j, i, θ)
17: if j = jnew then
18: Update T by adding Badd with parent ROOT and append Badd to the

blocker list
19: else
20: Find first blocker Bk on machine σ(j) in T for which j is undesirable
21: Update T by adding Badd with parent Bk and append Badd to the

blocker list
22: end if
23: else
24: return “FAIL” and end function
25: end if
26: end while
27: end while
28: return σ
29: end function

We shall proceed to argue that this algorithm terminates and that it produces a
valid partial job assignment σ with no jobs left unassigned, hence a job assignment with
makespan at most 1 + r as desired.

Only valid moves are made to σ and the outer loop runs until we return “FAIL” or
have assigned all jobs. So provided the algorithm returns σ, it produces a job assignment
with makespan at most 1 + r. So to show correctness of the algorithm we need to verify
termination and that “FAIL” is never output.

Proposition 5.22. While a blocker B = (j, i, θ) continuously remains in T we have that
σ−1(i) is unchanging (at the start of each inner loop) on jobs undesirable for this blocker.

Proof. Suppose blocker B is added to T . Subsequently considered potential moves, while
B remains, cannot try to move an undesirable job of this blocker to i. So no undesirable
jobs of B may be re-assigned into i by executing a valid move in T without deleting B.
Removing an undesirable job in this blocker from i deletes the blocker B, since the parent
of a blocker using a job currently assigned to i which is undesirable for B must precede (or
be equal to) B. Therefore σ−1(i) has constant intersection with the set of jobs undesirable
for B.

Proposition 5.23. Let Bk+1 = (j, i, θ) be a blocker added in the k+1st position to T . For
as long as this blocker continuously remains in T , we have the following invariants at the
start of every inner loop.

1. Si(T k) is invariant.

2. If θ 6= BL then Bi (and consequently Bmin
i ) is invariant.
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3. If θ = BL then Bmin
i is invariant.

Proof. We proceed to verify each invariant.

1. For as long as the blocker Bk+1 continuously remains T k is constant, as otherwise this
blocker would be deleted. SoMSA(T k)∪MBA(T k) is a constant set of machines during
this time. Since MSA(T k) ∪MBA(T k) is constant, S(T k) = {j′ small and σ(j′) 6=⊥:
Γ(j′) \ {σ(j′)} ⊂ MSA(T k) ∪MBA(T k)} can only change when σ either (a) changes
on a job currently assigned to a machine in MSA(T k) ∪ MBA(T k) or (b) changes
on a job currently in S(T k). This follows, as otherwise σ can only change on small
jobs by shuffling assignment among multiple machines outside MSA(T k)∪MBA(T k)
capable of performing it. We have that (a) cannot occur by executing valid move
(j′, i′), as this would delete blockers starting from the SA or BA type blocker in T k
on machine i′, hence deleting Bk+1. Assuming S(T k) has been constant so far after
additon of Bk+1, we have that S(T k) ⊂ S(T ) has been a set of immovable small
jobs, so no subsequent potential moves have been introduced on job j′ ∈ S(T k).
Therefore (b) cannot occur as σ can only change, with Bk+1 remaining, by executing
a potential move introduced after Bk+1. Therefore S(T k) is constant and σ has only
been changing on jobs outside S(T k). So Si(T k) = S(T k) ∩ σ−1(i) is invariant.

2. If θ 6= BL then all big jobs are undesirable for blocker Bk+1. Therefore applying
Proposition 5.22, we have that Bi = JB ∩σ−1(i) is invariant, as σ−1(i) is unchanging
on jobs undesirable for Bk+1, including all big jobs.

3. If θ = BL then any job (of label) at most min(Bi) is undesirable for Bk+1. Applying
Proposition 5.22, we have σ−1(i) unchanging on those jobs, so no lesser job is assigned
into machine i and the current minimum (label) job remains. Therefore min(Bi) is
invariant.

So we have verified all invariants.

Corollary 5.24. At the start of the inner loop for current tree of blockers T = (B1, . . . ,B`)
and k integer with 1 ≤ k ≤ `− 1, we have that the following inequalities for Bk+1 = (j, i, θ)
hold:

1. If θ = BA: p(Si(T k) ∪Bi) + pj ≤ 1 + r.

2. If θ = BL: p(Si(T k) ∪Bmin
i ) + pj > 1 + r and p(Si(T k)) + pj ≤ 1 + r.

3. If θ = BB: p(Si(T k) ∪Bi) + pj > 1 + r and p(Si(T k) ∪Bmin
i ) + pj ≤ 1 + r.

This follows immediately from the invariants established in above proposition and con-
ditions on potential moves ensuring that these inequalities hold to begin the iteration
immediately after introduction of each blocker.

45



Theorem 5.25. The algorithm does not output “FAIL” and thus when terminating pro-
duces a job assignment of makespan at most 1 + r.

Proof. Suppose for contradiction that we return “FAIL” and let jnew, T and σ be the
variables at the start of the inner loop iteration where this occurs. We must have no valid
moves in T and no potential moves. We construct dual variables for the Dual CLP with
T = 1 as follows:

zj := min(r, pj) ∀j ∈ A(T ) (5.12)

zj := 0 otherwise. (5.13)

yi := z(Ai(T ))− (1− r) ∀i ∈MSA(T ) (5.14)

yi := z(Ai(T )) + (1− r) ∀i ∈MBA(T ) (5.15)

yi := z(Ai(T )) otherwise. (5.16)

All active small jobs are given same value by z and p, as well as all active big jobs up to
performance time r. The z-value of any job is also at most the corresponding performance
time. Note also that z(Ai(T )) = z(σ−1(i)) for each machine i, since inactive jobs are given
0 z-values.

Claim 1: (y, z) is feasible for machine scheduling Dual CLP with T = 1.

Recall the constraints for the machine scheduling Dual CLP (5.5)-(5.7). Clearly non-
negativity constraints are satisfied, so consider constraint corresponding to machine i and
C ∈ C(i, 1) given by yi ≥ z(C) (5.7). From the dual variable assignment (5.12)-(5.13) and
C a configuration for target T = 1 we have that z(C) ≤ p(C) ≤ 1.

For any job j ∈ C we have z(C \{j}) ≤ p(C \{j}) so z(C) ≤ p(C)−pj +zj. Combining
with p(C) ≤ 1 and zj ≤ r this yields z(C) ≤ 1 + r − pj.

So combining the above bounds on z(C) we observe that verifying either of the following
suffices to show that the constraint yi ≥ z(C) for machine i and configuration C is satisfied:

yi ≥ 1 (5.17)

yi ≥ 1 + r − pj for some job j in C. (5.18)

We have the following cases which exhaust all possibilities for i.

Case 1: i ∈MSA(T ).
Then there is a move (j, i) in T for j a small job, which is not valid. Thus p(σ−1(i)) +pj >
1 + r = 11

6
, so by pj ≤ 1

2
, we have p(σ−1(i)) > 8

6
. Any job is undesirable for i ∈MSA(T ) so

jobs in σ−1(i) are active. These jobs are either given same value by z and p, or are given
z-value r = 5

6
which is at most 1 − r = 1

6
less than given by p. Note if at least two jobs

in σ−1(i) are given z-value r, we have z(Ai(T )) ≥ 2r = 10
6

. We then conclude in any case
that z(Ai(T )) > 8

6
− 1

6
= 1 + (1 − r) and therefore yi = z(Ai(T )) − (1 − r) ≥ 1, so the

constraint holds by (5.17).

Case 2: i ∈MBA(T ).
We must have a move (j, i) in T for j a big job that is not valid. So from pj ≤ 1 and
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invalidity of move, we have p(σ−1(i)) > r. Either σ−1(i) has all jobs size at most r, in
which case z(σ−1(i)) = p(σ−1(i)), or a job in σ−1(i) is given z-value r. In any case we have
z(σ−1(i) ≥ r. So from all jobs assigned to i undesirable we have z(Ai(T )) ≥ r giving result
yi = z(Ai(T )) + (1− r) ≥ 1. Thus the constraint holds by (5.17).

Case 3: i ∈MBB(T ).
From combining inequalities of Corollary 5.24 for a BB-blocker on machine i, we have for
some k that p(Si(T k) ∪ Bi) > p(Si(T k) ∪ Bmin

i ). Therefore we have at least two big jobs
in σ−1(i), each of which is given z-value greater than 1

2
, since big jobs assigned to i are

active. We then have that yi = z(Ai(T )) > 1, so the constraint holds by (5.17).

Case 4: i /∈M(T ).
Since jobs in Si(T ) are given same p and z values and no other jobs are active for machine
i /∈ M(T ) we have yi = p(Si(T )). If all active jobs of C are assigned by σ to machine i
then yi = z(Ai(T )) ≥ z(C) so the constraint holds. Supposing instead that there is an
active job j in C not assigned to i we have that move (j, i) cannot be a potential move
(this is a move by j ∈ C implying it is assignable to i). Therefore from Definition 5.21 we
have that j is big and p(Si(T )) + pj > 1 + r. This yields yi = p(Si(T )) > 1 + r− pj so the
constraint holds by (5.18).

Case 5: i ∈MBL(T ) and i /∈M(T ) \MBL(T ).
As in the prior case we can assume there is an active job j in C not assigned to i. From
i /∈MSA(T )∪MBA(T ) we have that small jobs are desirable for i. Therefore if j were small
(j, i) would be a potential move a contradiction. Since configurations contain at most one
big job there is a unique big job j in C and it is the only job in C not assigned to i. From
i ∈MBL(T ) we have that min(Bi) is active, assigned to i and not in C.

Subcase 5.1 p(min(Bi)) ≥ r.
We have zmin(Bi)

= r ≥ zj and other active jobs of C are assigned to i. Therefore

yi = z(Ai(T )) ≥ z(C) so the constraint holds.

Subcase 5.2 j < min(Bi).
We have pmin(Bi)

≥ pj and consequently zmin(Bi)
≥ zj. Thus by other active jobs of C

assigned to i, we have constraint holding yi = z(Ai(T )) ≥ z(C).

Subcase 5.3 p(min(Bi)) < r and j > min(Bi).
Note that j is then desirable for i by i ∈ MBL(T ), and also zmin(Bi)

= pmin(Bi)
. We now

proceed to further subcases.

Subcase 5.3.1 (j, i) already appears as a move for a BL blocker of T .
By Corollary 5.24 we have p(Si(T ) ∪ Bmin

i ) + pj > 1 + r. We have that z and p agree on
Si(T ) ∪Bmin

i so yi = z(Ai(T )) > 1 + r − pj, thus the constraint holds by (5.18).

Subcase 5.3.2 (j, i) does not appear as a move for a BL blocker of T .
By i /∈M(T ) \MBL(T ) we have that (j, i) cannot appear as a move in T . Because (j, i) is
not a potential move and j is desirable for i, we must have p(Si(T ))+pj > 1+r. Therefore
yi = z(Ai(T )) ≥ p(Si(T )) > 1 + r − pj, so the constraint holds by (5.18).

So in all subcases for this case we have the constraint holding.
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Therefore by examination of all cases for constraints we have that (y, z) is feasible, so
the first claim holds. We now check that it has negative objective.

Claim 2: (y, z) has negative objective value
∑

i∈M yi −
∑

j∈J zj (5.5).

Note the following: zjnew > 0 by the new job active, A(T ) is a disjoint union of jnew
together with Ai(T )’s the jobs activated by each machine i and z is zero outside of the
active jobs. So we can deduce the following:∑

j∈J

zj = zjnew +
∑
i∈M

z(Ai(T )) (5.19)∑
i∈M

yi = (1− r)(|MBA(T )| − |MSA(T )|) +
∑
i∈M

z(Ai(T )) (5.20)∑
i∈M

yi −
∑
j∈J

zj = (1− r)(|MBA(T )| − |MSA(T )|)− zjnew (5.21)∑
i∈M

yi −
∑
j∈J

zj < (1− r)(|MBA(T )| − |MSA(T )|) (5.22)

So to show the objective for this candidate solution (y, z) is negative it suffices to show
that |MSA(T )| is at least |MBA(T )|. Since there are no potential moves to i after the
introduction of a blocker on machine i with all jobs undesirable, we have that there are
no repeated machines among the blockers of type SA or BA in T . We have no remaining
potential moves and the algorithm adds SA blockers with highest priority, so it suffices to
show: whenever our algorithm has a BA blocker as the final blocker in list for T we have
a valid move in T or a potential move of type SA. This suffices as it would show that any
blocker succeeding a BA blocker must be of type SA, and that if the final blocker was BA
we would have a valid move in T or an SA potential move, a contradiction to the final
state of T . Thus it ensures at least as many SA blockers are in T as BA blockers, and
therefore at least as many SA blocking machines as BA blocking machines occur in T by
uniqueness. So we verify this sufficient condition in the following subclaim.

Sub-claim 2.1: Consider our algorithm at the start of any inner loop iteration (so
σ and T no longer represent their final state) and suppose T = (B1, . . . ,Bk+1) where
Bk+1 = (j, i, BA). If the algorithm at this point has no valid moves in T then it has a
potential move of type SA available.

By Corollary 5.24 we have p(Si(T k) ∪ Bi) + pj ≤ 1 + r, but move (j, i) is not valid so
p(σ−1(i)) + pj > 1 + r. Therefore p(σ−1(i)) + pj > p(Si(T k) ∪ Bi) + pj implying there is
some small job js assigned to machine i and not among the immovable small jobs Si(T k)
relative to T k. Therefore there is a move (js, i

′) with i′ 6= i and i′ /∈MSA(T k)∪MBA(T k) =
MSA(T )∪MBA(T )\{i}. Thus js ∈ J(T ) is desirable for machine i′ and (js, i

′) is therefore
a potential move of type SA. So the sub-claim holds.

Therefore (y, z) has negative objective value, establishing the second claim. Combining
claims, we have that (y, z) is a feasible solution to the Dual CLP for T = 1 with negative
objective value, which certifies the infeasibility of the primal, a contradiction. Therefore
the algorithm does not output “FAIL.”
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Theorem 5.26. The Build Job Assignment algorithm terminates.

Proof. As in the prior section, we associate at each stage a signature vector Sig(T ) :=
(s1, . . . , s`,∞) to our blocking tree T = (B1, . . . ,B`). Here for each k, sk is the value pair
(itself ordered lexicographically) that the move corresponding to Bk had as a potential
move just prior to its addition to T .

The number of blockers in T is bounded by |M ||J | since every move can appear at most
once in a blocker. So signature vectors have bounded length. Furthermore, any set of jobs
has size at most |J | = n, so we have a bounded number of possible values for any potential
move. Therefore we have a bounded (but exponential) number of possible signature vector
values that can be taken during our algorithm.

As previously argued (see Theorem 5.9) it then suffices to show that the signature
vector after adding a blocker to T is (strictly) less lexicographically than the signature
vector after adding the previous blocker.

Let T0 = (B0
1, . . . ,B0

` ) be the blocking tree T after addition of the previous blocker B0
`

and let T1 = (B0
1, . . . ,B0

k,Badd) for some k ≤ ` be the blocking tree T after addition of next
blocker Badd. Let sadd be the value of the potential move corresponding to Badd just prior
to addition of Badd to T . Then we have associated signature vectors V0 = (s0

1, . . . , s
0
` ,∞)

and V1 = (s0
1, . . . , s

0
k, sadd,∞) for T0 and T1 respectively.

Case 1: k = `.
Then no valid moves were performed between addition of these blockers, and signature
vectors V0 and V1 are identical on first ` entries. The ` + 1st entry is ∞ for V0 and is
sadd <∞ for V1, therefore V1 is less than V0 lexicographically.

Case 2: k < `.
Let B0

k+1 = (j, i, θ). Let mf = (jf , if ) be the final valid move made between addition of
blockers B0

` and Badd to T . Updating T , after executing mf , deleted blockers from B0
k+1

onwards, and returns T to the state it was in when (j, i) was a potential move causing
introduction of B0

k+1. So B0
k+1 was the parent of blocker with move mf , which implies that

jf in σ−1(i) was undesirable for blocker B0
k+1. By Proposition 5.22 we have that σ−1(i)

was unchanging on jobs undesirable for B0
k+1 while it remained in T . So in case all jobs

are undesirable for B0
k+1 (θ = SA,BA), we have that σ−1(i) was constant on all jobs for

the duration of B0
k+1. Executing move mf then reduces |σ−1(i)| from just prior to addition

of B0
k+1. So (j, i) is now (after executing mf ) a potential move of the same type and with

smaller value than its previous value sk+1.

If θ = BL, we have that σ−1(i) was constant on all big jobs (with label) at most
min(Bi), and executing mf removes min(Bi) from machine i. This either increases min(Bi)
or removes the only big job from σ−1(i), so that (j, i) is now a move of lesser type BA. In
any case (j, i) is now a potential move of smaller value than its previous value sk+1

If θ = BB, we have that σ−1(i) was constant on all big jobs and executing mf removes
a big job jf from i, reducing |Bi|. So (j, i) is now a potential move of smaller value than
its previous value sk+1 (either it is still a BB move with reduced |Bi| or it is now a move
with lesser type).
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So for any value of θ this gives us that the highest priority move Badd has smaller value
than sk+1, and therefore V1 is less than V0 lexicographically.

Thus in any case we see a decrease in the signature vector with V1 less than V0. Therefore
the algorithm terminates.

So combining our results on termination and correctness of output, we have the follow-
ing results.

Theorem 5.27. Given restricted machine scheduling problem with its CLP for T = 1
feasible, the algorithm Build Job Assignment produces a job assignment with makespan at
most 11

6
.

Theorem 5.28. The integrality gap for the restricted machine scheduling CLP is at most
11
6

.

Theorem 5.29. We may estimate in polytime the optimal makespan of an instance of the
restricted machine scheduling problem within any factor greater than 11

6
.

Note that the algorithm given for finding the job assignment was not shown to be
polytime [19]. Therefore this does not give a corresponding factor for approximating an
optimal job assignment and 2 remains the best known factor of approximation for the
restricted case. Improving on this factor of approximation (in either the restricted or fully
general case) remains a prominent open problem in scheduling theory [19].
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Chapter 6

Matroid Generalization

In a recent paper by Davies, Rothvoss and Zhang [11] a matroid generalization of the
restricted Santa Claus problem was introduced and used to obtain an improved polytime
approximation factor of 4+ε for the restricted Santa Claus problem, which matches earlier
work on the integrality gap of the associated CLP used for polytime estimation [4] (though
not the now slightly improved factors of estimation [18, 9]).

We begin by briefly introducing the notion of a matroid. Matroids may be defined
in many equivalent ways, one standard definition is as follows (see for instance a text on
matroid theory by Oxley [25] as a reference).

Definition 6.1. A matroid is a pair M = (X, I) with finite groundset X and I a family
of subsets of X, called the independent sets of the matroid, which satisfy the following
conditions:

1. I is non-empty.

2. If U ∈ I then for all V ⊂ U we have V ∈ I.

3. If U, V ∈ I and |V | < |U | then there exists u ∈ U \ V such that V ∪ {u} ∈ I.

A basis of a set A ⊂ X, for a matroid with groundset X, is any maximal independent
subset of A. Bases for a given set A in a matroid all have the same size, which is called
the rank of A. A basis of the entire groundset X is called a basis for the matroid.

Definition 6.2. The dual matroid to M = (X, I) is given by M∗ := (X, I∗) with I∗ :=
{Y ⊂ X : X \ Y contains a basis for M}.

The dual matroid M∗ to M = (X, I) is indeed itself a matroid and has bases on
precisely the complements to bases of M.
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6.1 Matroid Version for Santa Claus and 4+ε Approximation

In the matroid setting for the restricted Santa Claus problem we have a matroidM defined
on a groundset of players P . Instead of requiring a satisfying allocation of resources for
every player, here we only require an allocation of the resources R which is satisfying for
the players in some basis of the matroidM. Formally, we have inherent resource values vj
for j ∈ R and sets of players who can accept each resource given by Γ(j). An allocation of
resources is a collection of disjoint subsets of resources {Si}i∈P indexed to the players where
every player i ∈ P can accept all resources in Si. For target T ∈ R, an allocation {Si}i∈P
is satisfying if and only if there exists a basis B ⊂ P such that v(Si) =

∑
j∈Si

vj ≥ T for
all i ∈ B. For such a basis B we say that it is satisfied by the allocation. The following
LP relaxation for finding a satisfying allocation for target T and a corresponding basis of
players that it satisfies was introduced in this paper [11]:∑

j:i∈Γ(j)

vjyij ≥ Txi ∀i ∈ P (6.1)

∑
i∈Γ(j)

yij ≤ 1 ∀j ∈ R (6.2)

x ∈ Conv(B(M)) (6.3)

xi ≥ yij ≥ 0 ∀j ∈ R assignable to i ∈ P. (6.4)

Here Conv(B(M)) is the convex hull of B(M), when considering bases as indicator vectors
of 1’s (for present players) and 0’s in RP . A solution to this linear program with x a pure
basis of players and y a {0, 1} vector, corresponds to a satisfying allocation {Si}i∈P for the
basis x, with Si = {j ∈ R : yij = 1}.

The analogous linear program relaxation for the non-matroid variant of the restricted
Santa Claus problem (where each xi is 1), is a natural relaxation to consider, by permitting
fractional resource assignment. As explored by Bezáková and Dani [6], such a relaxation
performs poorly when large resources (close to or exceeding the max-min) are present. By
considering this matroid variant, we can circumvent this issue by allowing the matroid to
capture the sets of players that can get all assigned large resources, while leaving only
small resources to worry about fractionally assigning.

The following approximation result was obtained by algorithmic alternating tree tech-
niques that extended ideas present in work due to Haxell [15] and Annamalai’s work [2]
that gave a constant factor (about 12.33) approximation algorithm for the restricted Santa
Claus problem.

Theorem 6.3. [11] Suppose linear program (6.2)-(6.4) is feasible for some T > 0. Assume
that checking whether a set of players is independent in M can be determined in polytime.
Then for any ε > 0 there exists a polytime (in input size for the corresponding Santa Claus
problem) algorithm which finds an allocation {Si}i∈P and a basis for which it is a satisfying
allocation with target (1

3
− ε)T − 1

3
maxj∈Rvj.

The proof is rather complex and technical, so it is omitted from this discussion. We
remark that the proof [11] did not involve being able to actually find a feasible solution to
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the matroid relaxation (6.2)-(6.4). Instead an algorithm for finding the basis and allocation
was described, which when failing was shown to certify the infeasibility of the relaxation
for the target.

This result was used to obtain an improved polytime approximation factor of 4 + ε for
the restricted Santa Claus problem.

Proposition 6.4. [11] Suppose the restricted Santa Claus problem is feasible for target
allocation T . Then for any ε > 0 in polytime we may find an allocation that gives value at
least (1

4
− ε)T to all players.

Proof. We partition resources into the set of large resources RL with value at least T
4
,

and the set of small resources RS with value less than T
4
. Consider the graph G with

bipartition (P,RL) and edge set EG := {{i, j} : j ∈ RL, i ∈ Γ(j)}. Let M = (P, I) be the
matchable set matroid of P in graph G, which has A ⊂ P independent if and only if there
exists a matching in G saturating A. Now consider the dual matroidM∗ = (P, I∗) with I∗
consisting of the sets of players which are disjoint from some maximum matchable set in
G. That is A ⊂ P is independent inM∗ if and only if a maximum matching for P in G has
vertices contained in (P \A)∪RL. Independence of A ⊂ P inM∗ may then be checked in
polytime by using a max-matching algorithm for bipartite graphs on the induced subgraph
of G with vertices (P \A) ∪RL to determine whether the size of a max matching on that
induced subgraph is equal to the size of a max matching on G.

Consider some (unknown) allocation {Si}i∈P of resources that is satisfying for target
T . The set of players allocated at least one large resource is matchable in G and hence
contained in some basis B of M. We have that P \ B is a basis in the dual matroid M∗

and that {Si} must allocate value at least T on small resources RS to all elements of P \B.
Therefore the following program of form (6.2)-(6.4), using matroidM∗, is a relaxation for
the restricted Santa Claus problem and is feasible for target T (seen by taking xi to be 1
on P \B and 0 on B, while taking yij to be 1 if and only if j ∈ Si and otherwise 0):∑

j∈RS :i∈Γ(j)

vjyij ≥ Txi ∀i ∈ P (6.5)

∑
i∈Γ(j)

yij ≤ 1 ∀j ∈ RS (6.6)

x ∈ Conv(B(M∗)) (6.7)

xi ≥ yij ≥ 0 ∀j ∈ RS assignable to i ∈ P. (6.8)

Note that the maximum value of any resource in RS is bounded by T
4
. Therefore applying

Proposition 6.4 to the above program (using same ε as given), we obtain in polytime a
basis C for M∗ and an allocation of the small resources to P , which allocates value at
least (1

3
− ε)T − 1

3
(T

4
) = (1

4
− ε)T to each of the members of C. Since C is a basis for

M∗, P \ C is a basis for M, hence a matchable set of players in G. Thus by using a
max matching algorithm on the subgraph of G induced on (P \ C) ∪ RL, we can find in
polytime an assignment of large resources that gives a large resource to every player of
P \ C and therefore value at least T

4
to each of those players. Combining this assignment
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of large resources with the allocation of small resources previously obtained, we produce in
polytime an allocation of resources which allocates value at least (1

4
−ε)T to all players.

As an immediate consequence from our earlier remarks (see Theorem 1.6 and Proposi-
tion 1.5) on relaxed decision procedures, we have the following result for approximation.

Theorem 6.5. For any ε > 0, there exists a (4 + ε)-approximation algorithm for the
restricted Santa Claus problem.

This nearly matches the best known estimation factor of 4− 5
26

[9] obtained from analysis
of the CLP integrality gap. This is an encouraging sign that having an algorithm for the
restricted machine scheduling problem which beats the long-standing factor of 2 [23], and
comes close to the best known factor of estimation 11

6
obtained from the CLP [19], may

soon be achievable.

6.2 A Matroid Version of Machine Scheduling

A similar sort of matroid generalization may be introduced for the restricted job scheduling
problem, but seems to as of yet not have been stated in the literature.

Consider a setting in which we are given set of jobs J with inherent size/performance
time pj > 0 for all j ∈ J , and a set M of machines. We have a matroid M on the
groundset of jobs J and the task for a target T > 0 is to find a partial job assignment
σ : J →M ∪{⊥} so that the set of assigned jobs (those with value not equal to the special
symbol ⊥) is a basis for M and no machine is assigned jobs of total size exceeding T .
Recall that the machines assignable to job j are denoted by Γ(j). A similar relaxation to
that considered above is given as follows:∑

j:i∈Γ(j)

pjyij ≤ T ∀i ∈M (6.9)

∑
i∈Γ(j)

yij ≥ xj ∀j ∈ J (6.10)

x ∈ Conv(B(M)) (6.11)

yij ≥ 0 ∀j ∈ J assignable to i ∈M. (6.12)

Note that integer solutions to this program, where x corresponds to a basis of jobs in
M and yij ∈ {0, 1} for all i ∈M and j ∈ J , correspond to solutions for the matroid variant
of the job scheduling problem with basis corresponding to x and partial assignment σy:

σy(j) := i ∀j ∈ J such that there exists (a unique) i ∈M with yij = 1

:=⊥ otherwise.

Investigating to what extent the techniques employed for the matroid variant of the
Santa Claus problem may be applicable here to obtain an approximation result is an
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interesting avenue for potential research, though it is not clear how such results may help
obtain corresponding results for the non-matroid variant of the problem as achieved in
the Santa Claus case. It is also possible to consider similar matroid generalizations for the
non-restricted cases by relaxing assumption of inherent sizes and retaining the same notion
of satisfying allocations/assignments.
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Chapter 7

Graph Balancing

Graph balancing problems refer to the setting of having to orient weighted edges of a
graph so as to in some sense optimally balance the incoming weight to vertices. Approx-
imation algorithms for cases related to graph balancing have given provably (provisional
on P 6= NP ) best-factor approximation results for very special cases of the Santa Claus
and machine scheduling problems, which have resources/jobs assignable to at most two
players/machines. This was achieved for the Santa Claus problem in 2009 with work by
Chakrabarty, Chuzhoy and Khanna [7]. For the machine scheduling problem, further re-
strictions to the setting have been imposed to obtain this provably optimal approximation
factor, as achieved in 2016 due to work by Huang and Ott [17] and independently by Page
and Solis-Oba [26]. These special cases relate to graph balancing problems by noting that
deciding how to assign an item among two potential recipients can be viewed as orienting
an edge corresponding to the item with its endpoints the possible recipients. In the Santa
Claus problem the weight for directing an edge corresponding to resource j towards player
i is the valuation vij. The problem of orienting edges so as to have minimum incoming
weight to any vertex maximized then corresponds to the Santa Claus problem.

We proceed to describe a part of a paper due to Chakrabarty et. al [7] which shows
how we may obtain a 2 + ε approximation algorithm (for any ε > 0) for the case of the
Santa Claus problem where resources are restricted to be assigned to at most two players,
and demonstrates that a factor of 2 for approximation cannot be beaten.

7.1 Finding Balanced Orientations for Graphs with Weighted
Directed Edges

We start with an exposition of the corresponding result concerning graph balancing that
we apply to the Santa Claus problem. In the original paper of Chakrabarty et. al [7] the
result was not proved explicitly in the form we shall give, but rather tailored specifically
to the setting of the Santa Claus problem. It is hopefully instructive to see here the result
first given in a graph theory setting and to see how it gives as an application the desired
result for the Santa Claus problem. In the following definitions, graphs are taken to be
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undirected, with multiple-edges between same vertices and loops allowed (directed edges
corresponding to the graph will be considered, but not as part of its definition). We use
notation V (G) and E(G) to denote the vertices and edges of a graph G respectively. The
degree of a vertex is the number of undirected edges it is incident with (with loops counted
only once).

Definition 7.1. Let G be a graph and e ∈ E(G) be an edge incident to vertex v ∈ V (G).
We define ev to be a directed edge associated to e with the same incident vertices, but
directed into v.

We say e is the undirected edge of ev. So each non-loop edge of G has two corresponding
directed edges defined in this way, and each loop has one.

Definition 7.2. Given a graph G, we define D(G), the directed edges of G, by

D(G) := {ev : e ∈ E(G) and v is incident with e}.

We may also refer to the directed edges as arcs, but note that since G is a multi-graph,
directed edges are not uniquely determined by an ordered pair of vertices. For each vertex
v ∈ V (G) we define inG(v) and outG(v) to be the set of directed edges in D(G) directed
into and out of v respectively. Note that we consider a loop on vertex v ∈ V (G) to be both
directed into and out of v.

Definition 7.3. A (non-negative) weight function w on directed edges of a graph G is
a function w : D(G) → R+. Additionally, for each vertex v ∈ V (G), let wGmax(v) :=
max({w(d) : d ∈ inG(v)} ∪ {0}) be the maximum weight of any edge directed into v, or 0
if there are no such directed edges.

Definition 7.4. An orientation of edges for a graph G, is a function O : E(G) → D(G)
such that O(e) = ev for some vertex v ∈ V (G) incident to e, for all edges e ∈ E(G).

We say that O(e) is the orientation of edge e, the choice of directed edge made by O
on edge e. We also use O to denote the range of the function, the set of directed edges it
chooses.

Definition 7.5. Suppose G is a graph with orientation of edges O and weight function
on directed edges w. Let v ∈ V (G). The weight oriented into v by O is defined as∑

d∈inG(v)∩O w(d).

Theorem 7.6. Let G be a graph with a weight function on its directed edges w. Let
M : V (G) → R be a real valued function on vertices with M(v) denoted by Mv for all
v ∈ V (G). Suppose we have the total weight of all directed edges into each vertex v
satisfying: ∑

d∈D(G):d∈inG(v)

w(d) ≥Mv + wGmax(v) ∀v ∈ V (G). (7.1)

Then there exists an orientation of edges O such that the weight oriented into any vertex
v ∈ V (G) by O is at least Mv

2
, and moreover such an orientation may be found in polytime.
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Proof. Given input (G,w,M) we say O is a desired orientation if it is an orientation of
edges for G which orients weight at least Mv

2
into each vertex v ∈ V (G). To show an

algorithm A finds such an orientation in polytime, it is enough to show that A, when
given input (G,w,M) as above, finds a desired orientation and that the algorithm runs in
polytime when given access to A running on a graph with total number of vertices and
edges less than |E(G)| + |V (G)| as a single operation oracle. Such an algorithm will be
constructed in the following induction argument, and it will be clear from its recursive
construction that it possesses the desired properties.

We proceed by induction on |V (G)| + |E(G)| to show that given (G,w,M) satisfying
conditions of the theorem, there is an algorithm A that orients weight at least Mv

2
into

each vertex v. Note that in base case that G is the trivial empty graph with no vertices
the result holds with the empty orientation, produced by a trivial algorithm A0.

Let n ∈ Z+ and suppose for any natural k < n there exists an algorithm Ak, which
given input satisfying conditions of the theorem on a graph with total number of vertices
and edges equal to k, produces a desired orientation. We wish to produce an algorithm
An, which takes as input (G,w,M) satisfying the conditions of the theorem with graph G
having n = |V (G)|+ |E(G)|, and produces a desired orientation.

So let G be a graph having |V (G)| + |E(G)| = n total number of vertices and edges,
with weight function w and values associated to vertices M , satisfying condition (7.1).
G a graph with at least one vertex, so we can find by exhaustive search in polytime a
vertex u ∈ V (G) of minimum degree. We then consider the following cases, which cover
all possibilities:

Case 1: Vertex u has degree 0.
We have wGmax(u) = 0 and

∑
d∈D(G):d∈inG(u) w(d) = 0, so for the condition (7.1) to hold we

must have Mu ≤ 0. Note that the conditions of the theorem are also met for subgraph
H := G \ u, with same weight function w and using same values Mv. So by hypothesis
An−1 finds an orientation of edges for H given by O such that for all v ∈ V (G) \ {u} the
weight oriented into v by O is at least Mv

2
. Since E(G) = E(H) and Mu ≤ 0 we have that

O is an orientation for G which orients into each vertex v ∈ V (G) at least weight Mv

2
. We

set An to output this same O.

Case 2: Vertex u has degree 1.
We have

∑
d∈D(G):d∈inG(u) w(d) = wGmax(u), so for the condition (7.1) to hold we must have

Mu ≤ 0. Let e ∈ E(G) be the unique edge incident to u.

If e is a loop, then as before conditions of the theorem are met by the subgraph H :=
G \ u with same (restricted) weight function w and values Mv. Thus running An−2 on
input H produces an orientation for H which orients weight at least Mv

2
into each vertex

v of H. This, together with orienting loop e in only possible way, provides an orientation
for G which orients at least weight Mv

2
into each vertex v ∈ V (G) as desired. We set An

to output this resulting orientation.

Suppose e is not a loop and let z be the other vertex incident to e. Consider the graph H
formed from G by identifying vertex u with z, so e is now considered a loop on the vertex z.
H has vertices V (G)\{u} and edges E(G), where edge e is in H identifying a loop on z and
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all other edges have endpoints as before in G. From this identification we have that w gives
directed loop edge ez in D(H) same weight as w gives the directed edge ez from u to z in
D(G). For all v ∈ V (G) \ {u} we have that

∑
d∈D(G):d∈inG(v)w(d) =

∑
d∈D(H):d∈inH(v) w(d)

and wGmax(v) = wHmax(v), in particular this holds for z because of our choice of weight
on loop ez to match the previous weight from u to z. So with same weight function w
and values Mv we have H satisfying the conditions (7.1). Thus applying the inductive
hypothesis we have that An−1 produces an orientation O for the edges of H which orients
at least weight Mv

2
into each vertex v ∈ V (G) \ {u}. From the identification of edge e in G

between u and z with the loop on z in H, and the corresponding identification of directed
edge ez, we have that O is an orientation for the edges of G. This orientation O for G
orients weight at least Mv

2
into each vertex v ∈ V (G) \ {u} and 0 ≥ Mu

2
into u. So O is a

desired orientation of edges for G and we set it as the output for An.

Case 3: G has minimum degree at least 2.
Examining the set of directed edges of D(G), for each v ∈ V (G) we can find in polytime
dv,1 and dv,2 the directed edges of inG(v) which have highest and second-highest weights by
w respectively (breaking ties arbitrarily). Consider the directed graph D on V (G) with set
of arcs

⋃
v∈V (G){dv,1, dv,2}. Note that D has in-degree 2 for all vertices by definition. If D

is loopless, then we greedily try to construct a long directed path in D by choosing a new
start vertex from an in-neighbour to the previous start vertex to add to the path at each
stage. When all in-neighbours to the current start vertex s have been previously added
to the path, we pick a choice for directed edge d ∈ {ds,1, ds,2} so that its undirected edge
(job) is not the same as that of the first directed edge (out from s) of our current path.
Adding d to the path creates a unique directed cycle with all underlying edges unique.

a

b c

d

e f

Figure 7.1: (Theorem 7.6) An example directed graph D is shown with the path constructed
(together with final arc) drawn with solid lines and other directed edges of D with dashed lines.
Different colours (red and black) are used to distinguish different underlying edges (jobs) to di-
rected edges between the same vertices. This path was constructed starting from c then expanded
with new start vertices d, a, b respectively. Subsequently the path could no longer be extended as
the only in-neighbour to b is a, which previously appeared. So a final directed edge, differing on
underlying edge from that already present between a and b, is added to form a directed cycle C
on vertices {a, b}.

In any case, taking a loop or such a directed cycle described above, we can in polytime
find a directed cycle C in D which uses at most one directed edge for every (undirected)
edge of G. We define a graph H := G \ C from G and C, by deleting all undirected edges
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of C from G and retaining the same vertex set V (H) = V (G). We consider the same
(restricted) weight function w on the directed edges D(H) of H. Let v ∈ V (H).

1. If v is not a vertex of C, then v has the same weights of edges directed into it in
D(H) as in D(G). Therefore:∑
d∈D(H):d∈inH(v)

w(d) =
∑

d∈D(G):d∈inG(v)

w(d) ≥Mv + wGmax(v) = Mv + wHmax(v). (7.2)

2. If v is a vertex of C, we have a unique directed edge into v from the directed cycle
C, let this be cv. By definition w(dv,2) ≤ w(cv) ≤ w(dv,1) = wGmax(v). Suppose the
undirected edge to dv,1 is not present in C, then the directed edges from C into v
have weight at most dv,2 (so deleting C removes at most weight 2w(dv,2) on directed
edges into v) and wHmax(v) = wGmax(v). So, recalling inequality from condition (7.1),
we have the following:∑

d∈D(H):d∈inH(v)

w(d) ≥
∑

d∈D(G):d∈inG(v)

w(d)− 2w(dv,2) (7.3)

≥Mv + wGmax(v)− 2w(dv,2) (7.4)

≥ (Mv − 2w(cv)) + wHmax(v). (7.5)

Supposing instead that dv,1 is present in C, then we have removed weight at most
w(dv,1)+w(dv,2) on directed edges into v and wHmax(v) ≤ w(dv,2). So we have a similar
calculation, yielding the same inequality:∑

d∈D(H):d∈inH(v)

w(d) ≥
∑

d∈D(G):d∈inG(v)

w(d)− w(dv,1)− w(dv,2) (7.6)

≥Mv − w(dv,2) (7.7)

≥ (Mv − 2w(cv)) + wHmax(v). (7.8)

Let k = |V (H)| + |E(H)| < n. We run algorithm Ak on H, with same (restricted)
weight function w and vertex values determined from the above calculations, that is vertex
values Mv for v outside C (7.2) and Mv − 2w(cv) for a vertex of C (7.5). By the inductive
hypothesis this must produce an orientation O′ for H which satisfies the following:

1. If v is not a vertex of C then the weight oriented into v by O′ is at least Mv

2
.

2. If v is a vertex of C then the weight oriented into v by O′ is at least Mv

2
− w(cv),

where cv is the directed edge from C into vertex v.

We construct O an orientation of edges for G from O′ and C as follows. We make
the same choice of orientation for edges in E(H) as in O′ and we use the directed cycle
C to choose orientation for the edges appearing in the corresponding undirected cycle to
C. Since C does not use the same undirected edge twice, this produces a well-defined
orientation.

Let v ∈ V (G).
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1. If v is not incident to directed cycle C, then it follows that O orients at least weight
Mv

2
into v, the same as O′.

2. If v is a vertex of C then we have thatO′ orients weight at least Mv

2
−w(cv) into v. Now

O retains that orientation from O′ and also orients (the corresponding undirected
edge of) cv into v. So O orients weight at least (Mv

2
− w(cv)) + w(cv) = Mv

2
into v.

Therefore we have obtained a desired orientation of edges O which we set as the output
of An.

This covers all cases, so by induction we have algorithms An for each n ∈ N as desired.
This shows the existence of an orientation of edges, for any (G,w,M) satisfying conditions
of the theorem, which orients at least Mv

2
into each vertex v ∈ V (G). Let A be the

algorithm corresponding to {An : n ∈ N} the algorithms implicitly constructed in the
induction proof, which runs on input (G,w,M) by finding n = |V (G)|+ |E(G)| and gives
the same output as An (on same input). We note from our inductive construction that A
runs by calling itself on input with lesser |V (G)| + |E(G)| and performs other operations
taking polytime. Therefore A is a polytime algorithm for finding desired orientations.

7.2 Optimal Factor Approximation for Santa Claus Graph Bal-
ancing

Now we return to the Santa Claus problem with each resource assignable to at most two
players. For each resource j ∈ R we let aj and bj be the players j may be assigned to,
where aj = bj if and only if j is assignable to just one player. We do not confine ourselves
to the restricted case here, so we may have vaj ,j 6= vbj ,j. We say such instances of the Santa
Claus problem are in the directed graph balancing (or unrelated graph balancing) setting
and in the graph balancing setting when resources have inherent values vj = vaj ,j = vbj ,j.
This same terminology is also used for the machine scheduling problem, when replacing
values with job performance times.

Definition 7.7. Let graph G0 := (P,R) have vertex-set equal to set of players P and have
edge-set R corresponding to resources, where resource j ∈ R has incident vertices aj and
bj.

Note that this is an undirected graph, potentially having loops and multi-edges. We
have resource j assignable to player i if and only if edge j is incident to vertex i in G0.

We define a weight function w on directed edges of G0 by giving weight vij to a directed
edge into player i corresponding to resource j. So the weight of an edge/resource directed
into a vertex/player, is the value of the resource to that player.

Let T be a target allocation. Consider the associated equality version of the CLP
relaxation for the problem (3.11)-(3.14). Recall that C(i, T ) is the set of all bundles of
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resources assignable to player i with total value at least T .

Santa Claus Graph Balancing Equality CLP∑
S∈C(i,T )

xi,S = 1 ∀i ∈ P (7.9)

∑
i∈{aj ,bj}, S∈C(i,T ): j∈S

xi,S = 1 ∀j ∈ R (7.10)

xi,S ≥ 0 ∀i ∈ P and S ∈ C(i, T )). (7.11)

The above is a relaxation for the Santa Claus problem and is therefore feasible for
T = 0 (when everyone is satisfied to receive nothing). Moreover, in polytime we may
find to any desired accuracy the optimal T for which this is feasible and a corresponding
feasible solution. So to have a 2 + ε approximation algorithm for this class of instances, it
suffices (see Theorem 3.7) to in polytime produce an allocation giving value at least T

2
to

all players when given a feasible solution of the above linear program for target T .

Suppose linear program (7.9)-(7.11) is feasible for some T and let x = (xi,S) be a feasible
solution.

Definition 7.8. Let j ∈ R and i ∈ P , we define yij :=
∑

S∈C(i,T ): j∈S xi,S to be the weight
with which x assigns resource j to player i.

Note that yij = 0 for any i /∈ {aj, bj}. Also notice that inequality (7.10) can be rewritten
to give the following equality:∑

i∈P

yij = 1 ∀j ∈ R. (7.12)

Definition 7.9. We say resource j ∈ R is integrally allocated to player i (by x) when
yij = 1.

Definition 7.10. We say a resource is integrally allocated when it is integrally allocated
to some player and otherwise we say the resource is fractionally allocated.

Note that all resources having exactly one player that it can be assigned to are integrally
allocated. Also note that when a resource j is integrally allocated to some player then by
inequality (7.12) we have yij = 0 for all other players. For each player i let Ii be the set
of resources integrally allocated to i, and let I =

⋃
Ii be the set of all integrally allocated

resources. Let Ti := T −
∑

j∈Ii vij be the target remaining for each player i to receive
on fractionally allocated resources given that we allocate to i each of the resources it is
integrally allocated by x.

Definition 7.11. The graph G1 = (P,R \ I) is obtained from G0 by deleting all the
integrally allocated resources.
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We consider w as a weight function on directed edges of G1 by taking its restriction on
D(G1). To produce an allocation of resources satisfying target T

2
for each player it suffices

to produce an orientation of edges O for G1 so that the weight oriented into each vertex
i ∈ P by O is at least Ti

2
. Here the orientation of edges corresponds to an assignment of

the fractionally allocated resources, which we combine with assigning integrally allocated
resources to the corresponding player they are integrally allocated to. This suffices since
the weight oriented into each player i ∈ P by O makes up at least half the difference
between T and the value that was already integrally allocated to i by x.

Proposition 7.12. If i ∈ P then the total weight on directed edges D(G1) into i is at least
Ti + wG1

max(i).

Proof. Let i ∈ P . Suppose first that i is a degree 0 vertex of G1, so wG1
max(i) = 0. Then

any resource j with yij > 0 is integrally allocated to i. Let S ∈ C(i, T ) be some bundle
of resources allocated by x to player i with xi,S greater than 0. All the resources of
configuration S must therefore be integrally allocated to i, so Ti = T −

∑
j∈Ii vij ≤ 0.

Therefore the total weight on directed edges of G1 into i is 0 ≥ Ti + wG1
max(i).

Now suppose that i is not isolated, so wG1
max(i) = w(d) = vij0 for a directed edge

d ∈ D(G1) corresponding to some fractionally allocated resource j0 directed into player i.
Since j0 is fractionally allocated and equation (7.9) holds, we have some bundle of resources
S ∈ C(i, T ) not containing j0 with xi,S > 0. Since S is a configuration for player i with
target T , we must have the total value to player i of its resources at least T . So the total
value to player i of fractionally allocated resources in S is at least T −

∑
j∈Ii vij = Ti.

The total weight on directed edges D(G1) into i is the total value given by player i to the
fractionally allocated resources assignable to i, hence at least Ti + vij0 = Ti + wG1

max(i).

So in any case we have the desired result holding.

From Theorem 7.6 we can in polytime find an orientation O for G1, such that the weight
oriented into each player i ∈ P is at least Ti

2
. Combined with our earlier observation, this

shows we can in polytime find an allocation for this instance of the Santa Claus problem
satisfying target T

2
(an integral solution to the CLP for T

2
) as desired.

Theorem 7.13. Suppose we have an instance of the Santa Claus problem with all resources
assignable to at most two players. In polytime a solution to the equality CLP (7.9)-(7.11)
for target T may be rounded to an integral solution for target T

2
.

Theorem 7.14. For any ε > 0 there is a 2 + ε approximation algorithm for the class of
instances of Santa Claus problem with all resources assignable to at most two players.

We also have a 2-hardness result for estimation of max-min in this setting, for even the
(restricted case) graph balancing setting, based on reduction from a NP-complete 3CNF
variant of the 3SAT problem for Boolean satisfiability as shown by Chakrabarty et. al [7].

We will use the following terminology from propositional logic. A Boolean variable is
a variable taking possible values TRUE or FALSE. A literal is a Boolean variable x or its

63



negation ¬x. Given a formula in propositional logic of form (`1,1∨ . . .∨ `1,n1)∧ . . .∧ (`m,1∨
. . .∨ `m,nm) where `a,b are literals, then each bracketed portion (`a,1∨ . . .∨ `a,na) is a clause.
Note a clause is made TRUE by an assignment of Boolean variables if and only if (at least)
one of its literals is made TRUE, and that the entire formula is made TRUE if and only if
all clauses are made TRUE.

Definition 7.15. A formula φ in propositional logic is satisfiable when there exists an
assignment of TRUE or FALSE to the Boolean variables of φ which makes the formula
TRUE.

Definition 7.16. A 3CNF formula is a formula in propositional logic of form (`1,1 ∨ `1,2 ∨
`1,3) ∧ . . . ∧ (`m,1 ∨ `m,2 ∨ `m,3) with exactly 3 literals in each clause.

Here we insist on exactly 3 literals, frequently this condition is stated as there being at
most 3. We now introduce a variant of the satisfiability problem for 3CNF formulas.

Definition 7.17. The 3CNF Boolean satisfiability problem (or 3SAT) is the task of deter-
mining whether a given 3CNF formula φ with each literal appearing in at most 2 clauses
is satisfiable.

The 3CNF problem was one of the first problems known to be NP-complete (along
with other variants of Boolean satisfiability) due to pioneering work of Cook and Levin
[10, 24]. The minimal structure of the 3CNF problem makes it adaptable to deriving other
NP-hardness results by showing that determining satisfiability of a 3CNF formula can be
reduced to solving some other problem [3].

Given an instance of the 3CNF problem with formula φ we define an associated instance
of the restricted Santa Claus problem in the graph balancing setting S(φ) as follows:

1. Let the set of players P be given by the clauses and literals appearing in φ, we call
these clause players and literal players respectively.

2. For each variable x appearing in φ we have a variable resource corresponding to x
with value 2 assignable to exactly those literals corresponding to x in φ (any of x or
¬x in φ).

3. For each clause C appearing in φ we have a clause resource corresponding to C with
value 1 and the resource is assignable only to player C.

4. For each pair (`, C) with C a clause of φ and ` a literal appearing in C we have a pair
resource (`, C) assignable to exactly players ` and C. The value of this pair resource
will be 2 if the literal ` appears in only one clause, and 1 if it appears in two clauses.

Proposition 7.18. [7] Let φ be a 3CNF formula from an instance of the 3CNF problem.
The associated instance of Santa Claus problem S(φ) has max-min at least 2 if and only if
φ is satisfiable.
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Proof. Suppose that φ is satisfiable. Then there exists an assignment of truth values to
variables of φ such that each clause of φ has at least one TRUE literal, and we pick such a
variable assignment f . We assign clause resources to the corresponding clause. We assign
variable resource x to the corresponding literal, x or ¬x, of φ made TRUE by f , if no such
literal appears in φ we leave x unassigned (or assign it arbitrarily). For each pair resource
j = (`, C) with ` TRUE under f , assign j to clause C. Pair resources with ` FALSE are
assigned to literal `.

We check that the resulting allocation from this assignment of resources, allocates at
least value 2 to each player.

1. If player C is a clause, then it is allocated the corresponding clause resource and also
at least one pair resource (`, C) with ` TRUE under f . This allocates value at least
2 to C.

2. If player ` is a literal which is TRUE under f , then ` is allocated a variable resource
of value 2.

3. If player ` is a literal which is FALSE under f , then ` is assigned all pair resources
containing literal `. This either allocates one resource of value 2 to ` or two of value
1.

So indeed this allocation gives at least value 2 to all players, so the max-min for S(φ) is
at least 2.

Now suppose that the max-min of S(φ) is at least 2 and we consider some allocation
{Si}i∈P giving value at least 2 to all players. Suppose x is a variable resource which is
allocated to one of its literals, then we assign the variable x so that this literal is made
TRUE. This is possible as allocations consist of disjoint bundles, which implies variable
resources are allocated to at most one literal player. With other Boolean variables (left
unassigned by the allocation) we assign truth values arbitrarily. Call the resulting variable
assignment g. Let C be any clause appearing in φ. Since C is allocated value at least 2,
it must be allocated some pair resource (`, C). Now ` is also allocated value at least 2,
and as ` is not allocated all of its possible pair resources, it must have been allocated its
corresponding variable resource. Therefore ` is made TRUE by g, so the clause C is also
made TRUE. Therefore the entire formula φ is made TRUE by g. So φ is satisfiable.

Therefore the max-min of S(φ) is at least 2 if and only if φ is satisfiable.

Since the max-min of S(φ) is integer, when less than 2 the max-min is at most 1. This
shows that solving the 3CNF problem for formula φ is equivalent to estimating the max-
min of the associated instance of the Santa Claus problem to strictly within a factor of
2.

Theorem 7.19. For the Santa Claus problem in the graph balancing setting, it is NP-hard
to estimate the max-min strictly within a factor of 2.
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This shows that the 2 + ε-approximation result proved above is essentially the best
possible. So in the graph balancing and directed graph balancing settings, the problem
of producing approximately optimal solutions to the Santa Claus problem has been nicely
resolved. In fact further work by Verschae and Wiese [29] has been done to get a 2-
approximation algorithm for this same setting, that avoids using rounding from the CLP
(which introduces an ε difference to the factor of approximation).

7.3 Graph Balancing for Machine Scheduling

In the analogous class of instances for machine scheduling related to graph balancing, those
instances with jobs having inherent size and being performable on at most two machines,
we do not yet have a provably optimal 3

2
approximation algorithm. However, in a special

subclass of these instances a provably optimal approximation factor of 3
2

has been obtained
by Huang and Ott [17] and independently by Page and Solis-Oba [26]. This optimal case
for restricted machine scheduling has that in addition to a restriction on the number of
machines capable of doing each job, there are only two job sizes allowed. The setting in
which this optimal makespan approximation result is obtained, is in another respect slightly
more general than the graph balancing setting, as only the jobs of the larger size need be
restricted to having at most two machines capable of performing them [17]. With just the
restriction to two performance times (no longer in graph balancing setting at all), work by
Chakrabarty, Khanna and Li [8] has also beaten the general 2-approximation mark.

The general graph balancing and directed graph balancing settings for machine schedul-
ing still have unresolved polytime approximation factors and are the subject of some recent
research, including an improvement in the estimation factor for graph balancing, beating
the long-standing factor of 7

4
. This improvement in estimation comes out of a 2018 paper

due to Jansen and Rohwedder [20], which slightly improves upon the 7
4

factor from 2008
work due to Ebenlendr, Krčál and Sgall [12]. The improved factor of estimation arises
from bounding the integrality gap for the associated CLP, but does not yield the corre-
sponding approximation factor. The 7

4
factor does also apply to approximation, as we will

see from exploring the algorithm that obtains it [12]. Note that 7
4

compares favourably
to the best known factor for the general restricted case estimation of 11

6
discussed earlier.

These results for graph balancing have been obtained by using the machine scheduling
CLP [20], or some (as we shall argue) weaker relaxation [12]. Interestingly then, in the
directed graph balancing case for machine scheduling, where jobs take different amounts
of time to perform by the two players, it is known that the CLP has an integrality gap of
2 [29]. This makes the directed graph balancing case in some sense fundamentally harder
to approach than its graph balancing counterpart or even the general restricted case.

We proceed to discuss the algorithm by Ebenlendr, Krčál and Sgall [12] which achieves
the 7

4
+ ε approximation ratio for machine scheduling graph balancing. Their paper uses

a less restrictive relaxation than the CLP [12], but we shall present it here using the CLP
we have already discussed and shall show that it suffices.

Once again graphs will have loops and multiple-edges allowed, and we will recall Defi-
nition 7.2 for directed edges and Definition 7.4 for orientations of the edges of graphs.
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Definition 7.20. Let G = (V,E) be a graph. A fractional orientation of edges for G, is
a function f : D(G) → [0, 1] such that for all edges e ∈ E, the sum of f over all (one or
two) corresponding directed edges to e is equal to 1.

By interpreting f(d) = 1 as assigning edge e to d, for e the undirected edge for di-
rected edge d, a fractional orientation of edges with integer values corresponds to a (pure)
orientation of edges (see Definition 7.4). Given a graph G = (V,E) and a positive weight
function on edges w : E → (0,∞), for f a fractional orientation of edges, we say that f has
load

∑
d∈inG(v) w(d)f(d) on each vertex v ∈ V . The makespan for a fractional orientation

of edges f is the maximum load on any vertex in graph G.

Consider an instance of the machine scheduling problem in the graph balancing case
with machines M , jobs J having sizes pj for all j ∈ J and with job j assignable to machines
{aj, bj} (possibly not distinct). We define a corresponding graph G = (M,J) with edge
j ∈ J incident to vertices aj and bj, and a weight function on edges given by the job
sizes pj. Given a directed edge d corresponding to job j, we will also write pd := pj. Job
assignments with makespan at most T correspond exactly to the orientations of the edges
of G with makespan at most T .

It suffices to show (by a machine scheduling version of Theorem 3.7) that given a
solution x to the machine scheduling equality CLP for target T , we can produce a job
assignment with makespan at most 7

4
T . The equality version of the CLP (with objective

omitted) for this class of instances is given as follows:

∑
S∈C(i,T )

xi,S = 1 ∀i ∈ P (7.13)

∑
i∈{aj ,bj}, S∈C(i,T ): j∈S

xi,S = 1 ∀j ∈ R (7.14)

xi,S ≥ 0 ∀i ∈ P and S ∈ C(i, T )). (7.15)

By scaling we may suppose we are given x a solution to (7.13)-(7.15) for target T = 1.
This implies all jobs have size at most 1. We apply Definition 7.8 to the machine scheduling
CLP with solution x, where we define yij :=

∑
S∈C(i,1),j∈S xi,S to be the weight with which

x assigns job j to machine i.

Note that x determines a fractional orientation of edges f for G as follows: for directed
edge d of job j into machine i ∈ {aj, bj} we set f(d) := yij. Equality (7.14) ensures that
this satisfies the requirement of having the sum of f over possible orientations for j equal to
1. The makespan for f is also at most 1, from equality (7.13) and configurations having at
most total job size 1. We seek to transform fractional orientation f into a pure orientation
of edges with makespan at most 7

4
, yielding a desired job assignment. We will update a

fractional orientation g, initialized as f , to progress towards getting a pure orientation of
the edges.

We say an edge of G is integrally oriented (by g) when one of its corresponding directed
edges d has g(d) = 1, and otherwise the edge is fractionally oriented. Note that loop edges
are always integrally oriented.
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We distinguish between big jobs, with pj >
1
2

and call other jobs small, and make
the corresponding distinction between big edges and small edges. We define Hg to be the
spanning subgraph of G taking only the fractionally oriented edges. When this graph Hg

is empty, then g corresponds to a (pure) orientation of edges in G. We define Hg
B to be

the spanning subgraph of Hg taking only the big edges.

One of the crucial operations [12] to perform on g, will be to take a cycle of Hg and
circulate load on the cycle, until some job/edge in the cycle is now integrally oriented.

Rotate(Hg, C): For Hg as above and C a directed cycle of Hg we do the following:
1. Find m = mind∈Cpd(1− g(j)).
2. For all directed edges d in C increase g(d), with update g(d)← g(d) + m

pd
. Also reduce

g on the reverse arc to d by the same amount m
pd

so that g remains a fractional orientation.

This rotation operation pushes load m around the cycle, not affecting the load on any
vertex. By definition of m, g after the update will have values on C staying in range [0, 1],
thus staying a fractional orientation. Also there exists (at least one) directed edge d of C,
such that applying the rotation sets g(d) = 1, thus integrally orienting the corresponding
edge. So Hg after performing Rotate(Hg, C) has a reduced number of edges.

The other operation to define, will be on a rooted tree, where we integrally orient all
edges of the tree downwards from the root.

PushDown(Hg, T ): Let T be a rooted tree in Hg. For every directed edge d outwards
(or downwards) from root, we set g(d) = 1 and g(d′) = 0 for d′ the reverse arc inwards/up
to the root.

Suppose every edge in the tree T is small. We have that g orients edges downwards
from a root, thus it orients at most one of these (small) edges into each vertex v (and
orients others away) and therefore increases load by at most 1

2
on any vertex.

Note that these two operations defined on Hg may be performed in polytime. If no big
edges/jobs were present in the initial fractional graph Hf , we could simply do the following
to obtain a 3

2
approximation algorithm (matching the earlier work for such a case [23]):

update g by repeated rotation of cycles until Hg is a forest, then pick roots for the resulting
trees and orient them downwards.

To get around this issue of big jobs, we will show that f coming from the CLP ensures
some additional properties [12] on the fractional orientation, that we will maintain for g
throughout the algorithm. This was not shown in the paper giving this 7

4
-approximation

result [12], where these additional properties to impose on fractional orientations were
introduced as linear constraints, so we demonstrate this explicitly here.

Definition 7.21. For tree T we define L(T ) to be the set of directed edges into the leaf
(degree 1) vertices of T .

Then we produce this result (remarked to be true [20] by Jansen and Rohwedder) that
having f coming from the CLP guarantees one of the needed properties for the initial
fractional orientation.
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Proposition 7.22. Let T be a tree, which is a subgraph of initial Hg
B = Hf

B, then∑
d∈L(T ) pdf(d) ≥

∑
d∈L(T ) pd − 1.

Proof. The result is trivial for a 2 vertex tree. In such a case with unique edge e in T
with directed edges d1 and d2, we must have f(d1) + f(d2) = 1 and 1 ≥ pe >

1
2
. Thus

pef(d1) + pef(d2) > 1 ≥ 2pe − 1 = pd1 + pd2 − 1 as desired.

Let T be a tree on at least 3 vertices (so no edge goes between leaf vertices) that is a
subgraph of Hf

B. Any bundle of jobs that is a configuration for any player with target 1
may contain at most one big job.

From the CLP equalities (7.13)-(7.15) we have that |V (T )| =
∑

i∈V (T ),S∈C(i,1) xi,S. Let
T ′ be the tree formed from T with leaf edges removed.

Since jobs from E(T ) are in unique bundles, this also implies that |V (T ′)| is at least the
total weight over all jobs in E(T ) that get assigned by x into V (T ′). Recalling definition
for yij’s this yields:

|V (T ′)| ≥
∑

i∈V (T ′),j∈E(T )

yij (7.16)

=
∑

i∈V (T ′),j∈E(T ′)

yij +
∑

i∈V (T ′),j∈E(T )\E(T ′)

yij. (7.17)

Since jobs of E(T ′) can only be accepted by its two incident vertices in the tree E(T ′),
by equality (7.14), we have: ∑

i∈V (T ′),j∈E(T ′)

yij = |E(T ′)| = |V (T ′)| − 1. (7.18)

The edges of E(T )\E(T ′) are those corresponding to directed edges in L(T ). For d ∈ L(T )
with undirected edge e, CLP solution x gives weight f(d) to bundles allocating job/edge e
to a leaf vertex of T . Therefore a weight 1− f(d) is on bundles allocating e to a vertex of
T ′, so: ∑

i∈V (T ′),j∈E(T )\E(T ′)

yij =
∑

d∈L(T )

(1− f(d)) (7.19)

= |L(T )| −
∑

d∈L(T )

f(d). (7.20)

Combining (7.16, 7.17, 7.18, 7.20) yields inequality:

|V (T ′)| ≥ (|V (T ′)| − 1) + (|L(T )| −
∑

d∈L(T )

f(d)). (7.21)
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Rearranging we obtain
∑

d∈L(T ) f(d) ≥ |L(T )|−1. Using this fact in the following inequal-
ities we obtain: ∑

d∈L(T )

pdf(d) =
∑

d∈L(T )

pd −
∑

d∈L(T )

pd(1− f(d)) (7.22)

≥
∑

d∈L(T )

pd −
∑

d∈L(T )

(1− f(d)) (7.23)

=
∑

d∈L(T )

pd − |L(T )|+
∑

d∈L(T )

f(d) (7.24)

≥
∑

d∈L(T )

pd − |L(T )|+ (|L(T )| − 1) (7.25)

=
∑

d∈L(T )

pd − 1. (7.26)

Thus we obtain the desired inequality.

Proposition 7.23. Initially Hg
B = Hf

B is a disjoint union of trees and cycles.

Proof. Let X be a component of Hf
B. If X does not contain a cycle, it is a tree as desired.

So suppose that X has a cycle C. As noted previously, no two big jobs/edges of E(C) can
be contained in any configuration for the CLP. So from CLP equality (7.14) summed over
jobs of E(C) we have |E(C)| =

∑
i∈V (C),j∈E(C) yij. Since C is a cycle |E(C)| = |V (C)| and

from CLP equality 7.13 we have total weight given by x on bundles to a machine in V (C)
equal to |V (C)|. Thus no bundle S with xi,S > 0 for i ∈ V (C) exists without containing
exactly one job from E(C). Since any bundle containing a big job from E(X \ C) cannot
contain a big job from E(C), supposing f(d) =

∑
S∈C(i,1):j∈S xi,S > 0 for some directed

edge d from a vertex of V (X) \ V (C) to vertex i in C would be a contradiction. Thus C
is a component of X and therefore all of X. So components of Hf

B are trees or cycles as
desired.

We define our algorithm for updating g as follows [12]. When considering a particular
edge e between vertices u and v it will be convenient to write e = {u, v} with its directed
edges written as ev = uv and eu = vu. When we use this notation there will only be a
single edge between u and v, so no ambiguity is introduced.

1: function Graph Balancing Rounding
2: Initialize g ← f .
3: while Hg is non-empty graph do
4: if There exists a vertex of degree 1 in Hg then
5: Find one one such vertex v and find incident edge e = {u, v} for some vertex
u of Hg.

6: if peg(vu) ≥ 3
4

then
7: Find the maximal tree in Hg

B containing big edge e and root it at u to
form rooted tree T .

8: Update g by applying PushDown(Hg,T ).
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9: else
10: Set g(uv)← 1 and g(vu)← 0.
11: end if
12: else
13: Start at some vertex of non-zero degree and add edges of Hg to build a (non-

backtracking) walk outwards until a directed cycle C is formed as part of the walk.
When possible choose the new edge to be a big edge.

14: Update g by applying Rotate(Hg,C).
15: end if
16: end while
17: return g
18: end function

Note that the only operations performed on g are PushDown, Rotate and the taking of
one edge of degree 1 and reassigning it integrally. Each of these preserves g as a fractional
orientation, and Hg being empty means that all edges of G are integrally oriented by g.
So when terminating and returning g, an orientation of edges for G is produced.

Note that the algorithm does not get stuck by making an incorrect assumption on the
current state. Indeed e = uv being such that peg(vu) ≥ 3

4
for fractional orientation g

implies pe ≥ 3
4

is big. Also Hg having no vertex of degree 1 ensures that a directed cycle
C will be found in polytime by the described method.

All steps run in polytime and after each iteration of the loop, additional edges become
integrally oriented by g. Once an edge becomes integrally oriented by g, it remains inte-
grally oriented throughout. Therefore the Graph Balancing Rounding runs in polytime.

Hg
B is a subgraph of Hf

B at all points, so it remains a disjoint union of trees and cycles
throughout.

Proposition 7.24. [12] Throughout the algorithm g retains the property that for any tree
T a subgraph of Hg

B we have
∑

d∈L(T ) pdf(d) ≥
∑

d∈L(T ) pd − 1.

Proof. It holds initially from Proposition 7.22. Note that PushDown can only occur in
the algorithm on a rooted tree that is an entire component of Hg

B, since the tree is chosen
maximally and degree 1 vertices in Hg

B can only occur on tree components. Therefore
PushDown deletes a component of Hg

B, thus retaining this property.

When single leaf edges are integrally oriented, this either has no effect on Hg
B or deletes

one edge, leaving g with same values on other directed edges of Hg
B. Thus this property is

retained on all the remaining trees of Hg
B.

So it remains to verify that property
∑

d∈L(T ) pdf(d) ≥
∑

d∈L(T ) pd − 1 for any tree

T of Hg, is not lost by applying Rotate(Hg,C) on some directed cycle C chosen by our
algorithm. If C has an edge coming from a cycle component X of Hg

B, then it follows from
prescribed choices of edges in the walk that the constructed C is equal to the cycle X in
some orientation. So after applying this rotation, the cycle component X has become a
disjoint union of paths, where any sub-path has one directed edge into a leaf aligned with
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Figure 7.2: (Proposition 7.24) A directed cycle C is shown together with a component of Hg
B it

intersects. Big edges are in red, others in black. The tree T is shown with solid lines, other edges
are dashed. T is extended to T ′ by extending a single path, out from non-leaf endpoint b of the
intersecting path of T and C, to include as many consecutive big edges of the cycle as possible.
This extension is shown in a dotted border.

C and one opposed. Hence the sum of pdg(d) over directed edges into leaf vertices remains
unchanged for any tree of Hg

B with vertices in V (X).

Consider a tree T contained in a tree component Y of Hg
B and let C be a directed cycle

chosen to rotate by our algorithm. The intersection of the edges in C with T must be
a disjoint union of paths. Let P be such a path with exactly one endpoint a leaf vertex
of T and the other end a non-leaf vertex u such that the directed edge into u in T is
aligned with C. We extend the path P on one end beyond u maximally such that the
resulting path is contained in C with all edges big. This must extend P by at least one
edge, since otherwise the walk generating C should have chosen another big edge from
T incident to u, when extending out from u. Replace each such path P in T with its
extension (see Figure 7.2), to obtain a larger tree T ′, which is a subtree of Y . Pushing load
m through cycle C affects the load that L(T ′) ∩ E(C) edges put on leaf vertices by ±m
depending on the alignment with C. By extending those intersecting paths P , we ensured
that at least as many directed edges of L(T ′) are aligned with C as reverse aligned. So in
total

∑
d∈L(T ′) pdg(d) does not decrease and therefore

∑
d∈L(T ′) pdg(d) ≥

∑
d∈L(T ′) pd − 1 is

preserved. Note that L(T ) ⊂ L(T ′) as T ′ extends T only out from non-leaf vertices of T ,
and therefore by subtracting off all pd for d ∈ L(T ′) \ L(T ), we obtain (using g(d) ≤ 1)
result

∑
d∈L(T ) pdg(d) ≥

∑
d∈L(T ) pd − 1 as desired.

Therefore all performed operations on g preserve this inequality for all trees T of
Hg
B.

Theorem 7.25. The makespan of the g returned by Graph Balancing Rounding is at most
7
4
.

Proof. Applying Rotate does not effect the load on any vertex. Consider application of
PushDown to a maximal tree M in Hg

B with leaf vertex root v and edge e = {u, v} such
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that peg(vu) = pe(1− g(uv)) > 3
4
. So by Proposition 7.24, for any subtree T of M rooted

at v, we have
∑

d∈L(T )\{uv} pdg(d) ≥
∑

d∈L(T )\{uv} pd −
1
4
. So for any leaf vertex w 6= v of

subtree T , with directed edge d into w, we have pd(1 − g(d)) < 1
4
. Therefore PushDown

integrally orienting d to w, increases the load by less than 1
4
. Since every vertex ofM may

be viewed as a leaf to a subtree ofM (by deleting its children), this shows that PushDown
increases the load on any one vertex by at most 1

4
. After completion of PushDown, the

component M of Hg
B is deleted, and therefore PushDown is never applied twice on a tree

containing a given vertex.

In the remaining way that g updates, the directed edge uv is made to have g(uv) = 1,
such that previously puvg(vu) ≤ 3

4
. So g(uv) increases by at most 3

4
and hence the load on

v increases by at most 3
4
. Our algorithm chooses v to have degree 1 in Hg, therefore after

this operation, v is isolated in Hg and v’s load is fixed. If PushDown has not previously
been applied to a tree containing v, then v has increased from its original load by at most
3
4
.

Note that if PushDown has previously been used on a tree (of big edges) containing
v, then prior to integrally orienting {u, v}, we have that v was isolated in Hg

B. Thus
edge {u, v} is small and v’s load therefore increased by at most 1

2
from orienting {u, v}.

Combined with earlier observation that the load increases on a vertex by less than 1
4

from
applying PushDown, we also conclude that the load has increased by at most 3

4
throughout

the algorithm.

Originally g = f was a fractional orientation for G with makespan at most 1, so the g
returned as output, is a (pure) orientation with makespan at most 1 + 3

4
= 7

4
.

So by scaling of the problem for arbitrary target T this algorithm shows the following
results:

Theorem 7.26. Suppose we have an instance of the graph balancing version of the machine
scheduling problem. In polytime a solution to the equality CLP (7.13)-(7.15) for target T
may be rounded to an integral solution for target 7

4
T .

Theorem 7.27. For any ε > 0 there is a 7
4
-approximation algorithm for the machine

scheduling problem in the graph balancing case.

As discussed above, this work [12] gives the best known result for approximation in
the graph balancing case and near the best estimation result [20]. The algorithm exploits
the division between big jobs and small jobs, and the known integrality gap of 2 [29] for
the CLP in the directed graph balancing case indicates that the approach taken here is
fundamentally not generalizable to this case.

The Rotate algorithm however, can be adjusted for the directed graph balancing case,
as we shall demonstrate. Given a cycle to rotate, we will choose to orient the cycle so that
load can be pushed through along this orientation, without causing an increase in load to
any vertex of the cycle.

Rotate2(G,C,w,h): Given loopless multigraph G, cycle C of G, weight function on
directed edges w, and a fractional orientation h, which does not integrally orient any edge
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of C, we do the following:
1. Find the two directed cycles for C: C1 = (c1, . . . , cn) and reverse oriented C2 =
(c′n, . . . , c

′
1) with each c′i the reverse arc of ci.

2. If
∏n

k=1 w(ck)∏n
k=1 w(c′k)

≤ 1 pick orientation D := C1 with directed edges (d1, . . . , dn) = (c1, . . . , cn).

Otherwise, pick D := C2 with directed edges (d1, . . . , dn) = (c′n, . . . , c
′
1). Let d′i be the

reverse arc to each di.

3. Define a list α by α1 = 1 and αk =
∏k−1

i=1 w(di)∏k
i=2 w(d′i)

for all k ∈ {2, . . . , n}.
4. Find m = mink∈{1,...,n}

1
αk

(1− h(dk)).

5. Let h(dk)← h(dk)+mαk and decrease on reverse arc d′k by setting h(d′k)← h(d′k)−mαk
for all k ∈ {1, . . . , n}.

Note that αk was chosen so that for all k ≥ 2 the increase in load coming into a vertex
from dk−1 is balanced by the decrease in load coming from d′k. By the choice of orientation∏n

k=1 w(dk)∏n
k=1 w(d′k)

≤ 1, and this will ensure that increase in load coming into the starting vertex

from dn is at least balanced out by the decrease on d′1.

So this rotation algorithm does not increase the load on any vertex and adjusts h to
integrally orient some edge of the cycle. Combining this with orienting outwards from
trees yields the standard [23] 2-approximation factor when starting from any fractional
orientation meeting the target makespan.

It remains an open problem whether a factor better than 2 can be achieved for esti-
mation or approximation in the directed graph balancing case of the machine scheduling
problem.
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Chapter 8

Bipartite Hypergraph Covering

For H = (A ∪X, E) a bipartite hypergraph (see Definition 4.3) we say a set of edges that
hits each vertex in A at most once is an A-side matching. We will again use notation Ea to
denote the set of edges of E which use A-vertex a ∈ A. As seen in Chapter 4, the machine
scheduling problem may be framed as the task of finding an A-side matching which covers
all of X, whereas for the Santa Claus problem the related task on hypergraphs was to
find an A-saturating matching. Haxell’s Theorem [15] (Theorem 4.8) gives a condition,
in terms of the maximum edge size, on all subsets of A which guarantees an A-saturating
matching. Here we introduce and investigate what is a similar sort of condition on subsets
of X and what this guarantees on the portion of X that can be covered in some A-side
matching. We will also explore how the conditions introduced correspond to the CLP for
machine scheduling (5.1)-(5.4).

8.1 Conditions for Covering

First we investigate how the type of condition on transversals used in Haxell’s Theorem
[15] arises from the dual problem to max matchings, and in a similar way we shall find a
type of condition coming from a dual problem to trying to find A-side matchings covering
X.

An LP formulation for a max matching in a hypergraph H = (A ∪X, E) is as follows:

max
∑
E∈E

xE (8.1)∑
E∈E:v∈E

xE ≤ 1 ∀v ∈ A ∪X (8.2)

xE ≥ 0 ∀E ∈ E . (8.3)

Here feasible solutions x ∈ {0, 1}E with objective value m correspond exactly to the
matchings inH of size m (hence saturating m vertices of A). So verifying that the objective
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value for feasible solutions is bounded by some amount less than |A|, verifies that no A-
saturating matching is possible. Such bounds may be obtained by weak duality applied to
the following dual program:

min
∑

v∈A∪X

yv (8.4)∑
v∈E

yv ≥ 1 ∀E ∈ E (8.5)

yv ≥ 0 ∀v ∈ A ∪X. (8.6)

Any dual objective value to a feasible solution bounds the objective for the primal
matching LP. Consider a candidate solution y ∈ {0, 1}A∪X to the dual (8.4)-(8.6) which is
zero on exactly B ⊂ A vertices of A. Automatically y satisfies constraints for edges hitting
A outside of B, and for other edges with E ∩B 6= ∅ constraint 8.5 says that y satisfies the
corresponding constraint if and only if y is 1 for some X vertex of E. This is equivalent to
saying that y is a feasible dual solution if and only if Y := {x ∈ X : yx = 1} is a transversal
for HB (see definition 4.6). Note that the objective for candidate solution y is equal to
|Y | + (|A| − |B|) and recall that objective values less than |A| of feasible solutions to the
dual verify that no A-saturating matching exists in H.

So suppose there exists B ⊂ A such that HB has a transversal U ⊂ X of size less than
|B|, then we have a corresponding feasible dual solution y obtained by setting ya for a ∈ A
zero on B and 1 otherwise in A and setting yx for x ∈ X to be 1 on U and zero otherwise.
This has objective (|A| − |B|) + |U | < |A| thus certifying that no A-saturating matching
exists in H. So a necessary condition for an A-saturating matching that arises from this
associated linear program is that for any B ⊂ A we have any transversal of HB with size
at least |B|. This can also be seen to be a necessary condition, by noting that for any
matchingM saturating B ⊂ A, a transversal of HB must hit X-vertices in each of the |B|
edges from M intersecting B, and from disjointness of edges these are all unique, hence
any transversal has size at least |B|. Haxell’s Theorem 4.8 says that by strengthening
this necessary condition in a manner depending of the maximum edge size we obtain a
sufficient condition for having an A-saturating matching. The sufficient condition from
Haxell’s Theorem [15] is that, for r the size of the maximum edge in H, transversals of
HB for any B ⊂ A have size greater than (2r − 3)(|B| − 1), which essentially strengthens
the necessary condition inequality between transversal sizes of HB and |B| by a factor of
2r − 3.

Now we present a natural LP formulation for an A-side matching which covers X and
find a similar sort of necessary condition for having such a cover, which we shall consider
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attempting to strengthen into potentially a sufficient condition.

max 0 (8.7)∑
E∈E:v∈E

xE ≥ 1 ∀v ∈ X (8.8)∑
E∈Ea

xE ≤ 1 ∀a ∈ A (8.9)

xE ≥ 0 ∀E ∈ E . (8.10)

Here feasible solutions x ∈ {0, 1}E correspond exactly to the A-side matching covers
for X. The dual program, which we use to obtain a necessary condition for feasibility of
primal (8.7)-(8.10) is given below.

min
∑
a∈A

ya −
∑
v∈X

zv (8.11)

ya ≥
∑

v∈E\{a}

zv ∀a ∈ A,E ∈ Ea (8.12)

ya, zv ≥ 0 ∀a ∈ A, v ∈ X. (8.13)

Note that this primal dual pair corresponds closely to the pair of LPs seen for machine
scheduling (5.1)-(5.7). Indeed the machine scheduling CLP is a special case of the above
formulation with edges in the hypergraph arising from configurations. For an instance
of the machine scheduling problem on machines M and jobs J with target T , by taking
A = M , B = J and E =

⋃
i∈M{{i} ∪ S : S ∈ C(i, T )} we have that primal-dual pairs

(5.1)-(5.7) and (8.7)-(8.13) are identical.

So as discussed for the CLP, from linear programming duality and fact that the dual
(8.11)-(8.13) is feasible with all zeros, we have that the primal relaxation for A-side match-
ings covering X (8.7)-(8.10) is feasible if and only if the optimal/minimum objective for
the dual is 0.

Consider a candidate solution (y, z) ∈ ZA≥0 × {0, 1}X to the dual program (5.1)-(5.7)
which takes value 1 on Y ⊂ X and value 0 for X vertices outside Y . For any edge E
hitting a ∈ A, the corresponding constraint (8.12) is satisfied if and only if ya ≥ |E ∩ Y |.
So (y, z) is feasible if and only if for all a ∈ A we have ya ≥ maxE∈Ea |E ∩ Y |.

Definition 8.1. For bipartite hypergraph H = (A ∪ X, E) we define a function f :
{0, 1}X → Z≥0 on subsets of X by f(Y ) :=

∑
a∈A maxE∈Ea|E ∩ Y | for all Y ⊂ X.

Given Y ⊂ X, we have a feasible solution (y, z) ∈ ZA≥0 × {0, 1}X given by taking zv for
v ∈ X to be 1 on Y and zero otherwise on X, with ya set to be maxE∈Ea |E ∩ Y | for all
a ∈ A. This feasible solution has objective value f(Y ) − |Y | which is less than 0 if and
only if f(Y ) < |Y |.

Therefore a necessary condition for the feasibility of the primal (8.7)-(8.10), and hence
the existence of an A-side matching covering X, is the following:

f(Y ) ≥ |Y | ∀Y ⊂ X. (8.14)
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The above shows how the condition can be seen to arise from associated linear programs,
but the condition is also easily seen to be necessary by noting that f(Y ) bounds how many
vertices of Y counted with multiplicity can appear among the edges of an A-side matching.

As before we can consider a similar strengthening of this condition on bipartite hyper-
graph H = (A∪X, E) by some factor which may depend on the maximum edge size of our
hypergraph. Firstly we consider a strengthening (*) of this necessary condition by some
absolute constant c ≥ 1 independent of edge size:

f(Y ) ≥ c|Y | ∀Y ⊂ X. (∗) (8.15)

We shall show that this condition guarantees the existence of an A-side matching which
covers some constant fraction (depending on c, but at least 1

3
) of the vertices in X, but in

general cannot guarantee the existence of an A-side matching which covers X.

We shall generalize this condition (*) somewhat to situations with weighted X-vertices.

Definition 8.2. Let w : X → R≥0 be a non-negative weight function on X. We set
w(X ′) :=

∑
x∈X′ w(x) on subsets X ′ ⊂ X accordingly, and define a function fw : 2X → R

by fw(Y ) :=
∑

a∈A maxE∈Eaw(Y ∩ E) for all Y ⊂ X.

The weighted analogue of condition (*) with constant c and weighting w is as follows:

fw(Y ) ≥ cw(Y ) ∀Y ⊂ X. (8.16)

Suppose this condition 8.16 holds with constant c = 1 for all non-negative weightings
and let (y, z) be a feasible solution for the dual (8.11)-(8.13). Note that z is a non-negative
weighting and that ya ≥ z(E \ {a}) for all E ∈ Ea. Therefore the objective value is at
least fz(X) − z(X) ≥ 0. So the dual has optimal objective 0 and therefore the primal
(8.7)-(8.10) is feasible.

Conversely, suppose the weighted condition 8.16 is violated for weight function w with
c = 1 on the set Y ⊂ X. Define zv := w(v) for all v ∈ Y and zv = 0 for v ∈ X \ Y , and set
ya := maxE∈Ea w(E∩Y ). Note that w(S∩Y ) = z(S) for any S ⊂ X. Thus ya ≥ z(E \{a})
for all a ∈ A and E ∈ Ea, giving feasibility for (y, z) in dual (8.11)-(8.13). The objective
value of this solution is

∑
a∈A ya −

∑
v∈X zv = fw(Y ) − w(Y ), which is less than 0 since

we supposed Y to be violating 8.16 for w with c = 1. This certifies the infeasibility of the
primal (8.7)-(8.10).

Therefore feasibility of the relaxation for A-side matchings covering X (8.7)-(8.10) is
equivalent to condition 8.16 holding for c = 1 with any non-negative weighting. In earlier
chapters we have reviewed some of the implications (for obtaining integral solutions) of
feasibility for the machine scheduling (5.1)-(5.4), which is an LP we have seen to be a special
case of (8.7)-(8.10). So a discussion of the sorts of conditions on bipartite hypergraphs
introduced here is also a natural generalization of such work.
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8.2 A Greedy Algorithm for Covering and Some Negative Re-
sults

Let H = (A ∪ X, E) with w a non-negative weight function on X and set m := |A|. We
proceed to describe a “greedy” method for constructing an A-side matching which covers
a large portion of the weight of X, provided conditions of form equation 8.16 are met.

1: function Greedy A-side matching
2: Initialize variables B ← A, Y ← X and U ← ∅
3: Initialize index i← 1
4: while i ≤ m do
5: Find an edge Ei with w(Ei ∩ Y ) max such that Ei ∩B 6= ∅
6: B ← B \ Ei
7: Y ← Y \ Ei
8: U ← U ∪ {Ei}
9: i← i+ 1

10: end while
11: return U
12: end function

This algorithm returns the set of edges U , which was built up in stages by adding edges
which covered as much weight on currently uncovered vertices of X (given by Y ) as possible
without using an already used A vertex (used A vertices are those outside B).

Theorem 8.3. Let H = (A∪X, E) be a bipartite hypergraph with w a non-negative weight
function on X-vertices. Suppose that for some c > 0 we have fw(Y ) ≥ cw(Y ) for all
Y ⊂ X. Then the set of edges obtained from the above greedy method is an A-side matching
for H which covers X-vertices with total weight at least c

2+c
w(X).

Proof. Edges are added to U so as to have A vertices coming from B, and since we delete
from B previously added edges to U , this results in U having unique A vertices for each
of its edges. So U is at every stage in the algorithm an A-side matching. Also note that
U grows throughout, so it suffices to show that at some point in the algorithm U covers a
set of X-vertices with total weight at least c

2+c
w(X).

Consider the beginning of the ith loop of the greedy algorithm. Let the set of vertices
in X covered so far by U be equal to C := X ∩ (∪E∈UE). We have that Y was formed
from X by deleting the X vertices from each of the edges in U , so X is the disjoint union
of Y with C and w(X) = w(Y ) + w(C). Let w(C) = αw(X) for some α ∈ [0, 1], then
w(Y ) = (1− α)w(X). For j < i let vj := w(Ej ∩ Yj) where Yj ⊃ Y was Y at the start of
the jth loop. Since w(Ej ∩Yj) was maximum we have, for any edge E hitting the A vertex
of Ej, that w(E ∩ Y ) ≤ w(E ∩ Yj) ≤ vj. From construction we have Ej ∩ Yj’s disjoint
and other X vertices of Ej are already appearing in C at each stage, so w(C) =

∑
j<i vj.

Note that A \B consists of all A vertices that appear in Ej for some j < i, so we have the
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following:

fw(Y ) =
∑
a∈A

maxE∈Eaw(E ∩ Y ) (8.17)

≤
∑
j<i

vj +
∑
a∈B

maxE∈Eaw(E ∩ Y ) (8.18)

= w(C) +
∑
a∈B

maxE∈Eaw(E ∩ Y ) (8.19)

= αw(X) +
∑
a∈B

maxE∈Eaw(E ∩ Y ). (8.20)

From hypothesis we have fw(Y ) ≥ cw(Y ) = c(1−α)w(X), so combining yields inequalities:

αw(X) +
∑
a∈B

maxE∈Eaw(E ∩ Y ) ≥ c(1− α)w(X) (8.21)∑
a∈B

maxE∈Eaw(E ∩ Y ) ≥ (c− (c+ 1)α)w(X). (8.22)

Therefore there exists an edge E hitting a vertex of B such that:

w(E ∩ Y ) ≥ (c− (c+ 1)α)

|B|
w(X) ≥ (c− (c+ 1)α)

|A|
w(X). (8.23)

So by Ei having maximum w(E ∩ Y ) over all edges E intersecting B, we will have:

w(Ei ∩ Y ) ≥ (c− (c+ 1)α)

|A|
w(X). (8.24)

If w(C) = αw(X) ≥ c
2+c

w(X) the set of edges U already covers enough weight of X vertices
so that the result holds. Otherwise we have that α < c

2+c
and therefore:

c− (c+ 1)α > c− (c+ 1)
c

2 + c
=

c

2 + c
. (8.25)

So combining equations 8.24 and 8.25 we have that vi = w(Ei ∩ Y ) > c
(2+c)|A|w(X) addi-

tional weight of X vertices is added to U when we conclude the ith loop. If this relationship
holds for each of the m = |A| iterations then we have that the final weight on the X-vertices
covered is: ∑

i∈{1,...,m}

vi > |A|(
c

(2 + c)|A|
w(X)) =

c

2 + c
w(X). (8.26)

So the result holds in this case. On the other hand we have seen that if vi >
c

(2+c)|A|w(X)

fails to hold at any iteration then w(C) = αw(X) ≥ c
2+c

w(X) which also gives the re-
sult. Therefore the greedy algorithm indeed produces an A-side matching which covers
X-vertices of total weight at least c

2+c
w(X).
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Corollary 8.4. Let H = (A ∪ X, E) be a bipartite hypergraph satisfying (*) with c > 0.
Set w to be a weight function on X that is uniformly 1. The set of edges obtained from
the greedy algorithm applied to H and w is an A-side matching for H which covers at least
c

2+c
|X| vertices of X.

Proof. Note that for all Y ⊂ X we have w(Y ) = |Y |, so (*) is equivalent to fw(Y ) ≥ cw(Y )
for all Y ⊂ X. Therefore the greedy algorithm yields an A-side matching covering X-
vertices with total weight at least c

2+c
w(X), hence covering at least c

2+c
|X| vertices of

X.

So in particular when the necessary condition 8.14 holds, that is (*) holds with c = 1,
we have that there exists an A-side matching which covers at least 1

3
of the vertices of X.

Note that as c approaches ∞ this condition (*) guarantees that a fraction of X vertices
arbitrarily close to 100 percent may be covered by an A-side matching.

To show condition 8.16 for any c and any weight function w does not suffice to have an
A-side matching covering X we consider for m,n ∈ Z≥1 the following hypergraph Hm,n:

Definition 8.5. Let m,n ∈ Z≥1. We define A := {1, . . . , n} and X := {1, . . . ,m}n to be a
set of lists with n entries each taking m possible values. For each a ∈ A and k ∈ {1, . . . ,m}
we set Ea,k to be the set of lists in X which have ath entry taking value k. Consider the
set of hyperedges E := {{a} ∪ Ea,k : a ∈ A, k ∈ {1, . . . ,m}}, then we define the bipartite
hypergraph Hm,n := (A ∪X, E).

Consider Hm,n = (A ∪ X, E) and notice that |X| = mn. Note that for all a ∈ A we
have m edges of Hm,n hitting a, each of form {a} ∪ Ea,k for some k ∈ {1, . . . ,m}. So
Ea = {{a} ∪ Ea,k : k ∈ {1, . . . ,m}} for all a ∈ A. Note also that for each a ∈ A we have
that {Ea,k : k ∈ {1, . . . ,m}} partitions lists in X by their ath entry into m sets of equal
size mn−1. So all edges of Hm,n have same size 1 +mn−1.

Proposition 8.6. Condition 8.16 holds for Hm,n with constant c = n
m

and any non-
negative weight function w on X. That is for any non-negative weight function w on X,
we have fw(Y ) ≥ n

m
w(Y ) for all Y ⊂ X.

Proof. Fix w as some non-negative weight function on X. Let Y ⊂ X and a ∈ A. We have
that {Ea,k ∩ Y : k ∈ {1, . . . ,m}} partitions Y into m sets.

So w(Y ) =
∑

k∈{1,...,m}w(Ea,k ∩ Y ) and thus we have some ka ∈ {1, . . . ,m} such that

w(Ea,ka ∩ Y ) ≥ w(Y )
m

.

So maxE∈Eaw(E ∩ Y ) ≥ w(Y )
m

for all a ∈ A and therefore:

fw(Y ) =
∑

a∈A={1,...,n}

maxE∈Eaw(E ∩ Y ) ≥ n

m
w(Y ). (8.27)
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Proposition 8.7. Let U be a set of edges of Hm,n = (A∪X, E) which contains exactly one
edge hitting each vertex of A, then U covers exactly mn − (m− 1)n vertices of X.

Proof. Let U satisfy the hypothesis with edge hitting each a ∈ A given by {a}∪Ea,ka . The
set of vertices in X covered by U is given by

⋃
a∈AEa,ka . Therefore x ∈ X is covered by U

if and only if x ∈ Ea,ka for some a ∈ A. So x ∈ X is covered by U if and only if for some
a ∈ A we have that x is a list with ath entry ka. Note that violating this condition for list
x ∈ X to be covered is equivalent to x ∈

∏
a∈A({1, . . . ,m} \ {ka}) being in the Cartesian

product over the sets of choices for ath entries disagreeing with ka, which is a set of size
(m− 1)n. Therefore U covers exactly mn − (m− 1)n vertices of X.

Corollary 8.8. Any A-side matching for Hm,n covers at most (1− (1− 1
m

)n)|X| vertices
of |X|.

Proof. Since |X| = mn, we have (1− (1− 1
m

)n)|X| = mn− (m− 1)n. So this result follows
immediately from the preceding proposition as any A-side matching may be enlarged to
have edges hitting each a ∈ A.

Theorem 8.9. For any integer c ≥ 1 and d < 1
ec

there exists a bipartite hypergraph
H = (A∪X, E), which satisfies condition 8.16 with constant c for any non-negative weight
function on X, such that no A-side matching can cover more than (1−d)|X| of the vertices
in X.

Proof. Suppose we have c, d as above. From fact that limt→∞(1− 1
t
)tc = 1

ec
we can pick a

positive integer m so that (1 − 1
m

)mc > d. Consider bipartite hypergraph H := Hm,mc =
(A ∪ X, E). From Proposition 8.6 we have that H satisfies condition 8.16 with constant
mc
m

= c for any non-negative weight function w on X.

From Corollary 8.8 any A-side matching forH covers at most (1−(1− 1
m

)mc)|X| vertices
in X. We have (1 − 1

m
)mc > d, so any A-side matching for H covers at most (1 − d)|X|

vertices in |X|. Therefore H is as desired.

This result shows that for any absolute constant c, having condition 8.16 hold for
H = (A∪X, E) with every non-negative weight function on X does not suffice to guarantee
having an A-side matching which covers more than the portion (1 − 1

ec
)|X| of the X

vertices. Between this and the Corollary 8.4 obtained for the greedy algorithm, we have
that condition (*) for value c provides a guarantee for the existence of an A-side matching
covering at least a c

2+c
fraction of the X vertices, but no better a guarantee than a 1− 1

ec

fraction. Tightening these bounds, and related weighted variants, provides an interesting
problem to study in bipartite hypergraph covers.

Also of considerable interest are possible strengthenings of condition 8.14 to a sufficient
condition for an A-side matching. We proceed to show by a simple application of Hall’s
Theorem that a strengthening of 8.14 by a linear factor of the maximum edge size does
suffice as a sufficient condition for having an A-side matching covering X.
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Theorem 8.10. Let H = (A ∪ X, E) be a bipartite hypergraph with maximum edge size
r which satisfies condition (*) with value c = r − 1. Then H admits an A-side matching
which covers X.

Proof. Consider an associated bipartite graph G = (A∪X,F ) with edge set F determined
by adjacency rule that for all a ∈ A and x ∈ X we have a adjacent to x if and only if there
exists hyperedge E ∈ E such that {a, x} ⊂ E. Let Y be a subset of X. Note that a vertex
a ∈ A is a neighbour to some vertex of Y in G if and only if there exists a hyperedge E ∈ E
such that a ∈ E and E ∩ Y 6= ∅. We have from (*) that:

f(Y ) ≥ (r − 1)|Y | (8.28)∑
a∈A

maxE∈Ea|E ∩ Y | ≥ (r − 1)|Y |. (8.29)

Since the maximum hyperedge size is r, we have that Y can intersect any edge on at
most r − 1 vertices, so each term in the summation on the left-hand side is at most
r − 1. Therefore there are at least r−1

r−1
|Y | = |Y | nonzero terms on the left-hand side of

equation 8.29. So there exist at least |Y | vertices of A with a hyperedge of H hitting a
and intersecting Y , hence at least |Y | neighbours to Y in bipartite graph G. Therefore
by Hall’s Theorem (Theorem 4.7) we have an X-saturating matching M in G. For each
edge between a ∈ A and x ∈ X in matching M we choose one hyperedge Ea of H (from
the adjacency definition of G) so that {a, x} ⊂ Ea. Since M is a matching this selects at
most one hyperedge, uniquely identified as Ea, for each a ∈ A. Thus we form a collection
of hyperedges M := {Ea : a ∈ A is saturated by M} with at most one edge hitting each
a ∈ A. Since the matching M saturates X the collection of hyperedges M covers X as
each edge of M is contained in the corresponding hyperedge of M. Therefore M is an
A-side matching covering X as desired.

Also note that unlike before, as in the condition from Haxell’s Theorem, strengthening
by a linear factor of maximum edge size restricts us to the setting where X has size at
most within a fixed factor of A. This is quite a restrictive setting, especially when one
thinks of X as representing a large number of jobs to be assigned among relatively few
machines A. So while an absolute constant factor alteration (*) fails to provide a sufficient
condition for having an A-side matching which covers X, we are interested in what sort of
sublinear function of maximum edge size can serve as a sufficient factor to strengthen the
necessary condition 8.14 to a sufficient one. Note that in our examples Hm,n that did not
admit A-side matchings covering X, we have edge sizes exponential in terms of the value
n
m

for which Hm,n satisfies (*), so it does not rule out hope for sublinear factor sufficient
conditions.
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Chapter 9

Conclusion

In this thesis we have surveyed many of the results concerning polytime approximation
and optimal value estimation for the Santa Claus problem and the machine scheduling
problem. In all but very special cases, gaps remain between the best known factors for
approximation or optimal value estimation and the NP hardness bounds of 2 [6] and 3

2

[23] for estimation of the Santa Claus and machine scheduling problems respectively. We
have seen considerable progress in recent years (see [28, 19] for machine scheduling and
[18, 9, 11] for the Santa Claus problem) in narrowing some of these gaps for the restricted
cases, but the initial approximation factor of 2 [23] for the machine scheduling problem
has been unimproved upon in the restricted case. Improving that approximation factor is
a major open problem for scheduling theory.

In some cases, in particular the restricted machine scheduling case [28, 19] we explore
at length in Chapter 5, we have seen the use of local search methods utilizing the CLP
that also give rise to gaps between best known factors of approximation and optimal value
estimation. The refinement of these methods to yield improved factors for approximation
remains a major task for research in this area. Even to bring the approximation factor for
the restricted machine scheduling problem closer to the best known estimation factor of
11
6

[19] would constitute a major breakthrough in progress. For the non-restricted case we
still lack any constant factor approximation or estimation algorithm for the Santa Claus
problem and the CLP is ill-equipped to deal with it, given its unbounded integrality gap
in this more general case.

While the approximation factor for the directed (or unrelated) graph balancing case
of the Santa Claus problem has been resolved [7, 29], the general approximation factor of
2 has not yet been bested in the directed graph balancing case for machine scheduling.
Having a directed graph structure to work with and the rotation algorithm for directed
cycles we discuss, may make this seem a more approachable special case, however the CLP
integrality gap of 2 [29] indicates that progress here may prove more difficult than for
the general restricted case. The graph balancing machine scheduling problem resides in
an intermediate state of progress for approximation, with a factor of 7

4
[12] besting the

general 2 approximation factor (and the 11
6

restricted estimation factor), but not matching
the 3

2
bound. It also has a slightly improved estimation factor [20] which suggests that
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algorithmic improvements may be within reach for graph balancing.

Ideas relating to a matroid generalization of the Santa Claus problem were seen here [11]
to be useful in application to approximation for the restricted case. In this thesis we have
suggested a related machine scheduling variant and propose its properties be investigated,
both as a curiosity in its own right and for any potential application to handling the
standard cases.

Given the successful application of ideas relating to Haxell’s Theorem 4.8 [15] to the
Santa Claus problem, we also wonder if thinking generally about one sided matching covers
for bipartite hypergraphs can relate to progress on the machine scheduling problem. Along
these lines this paper introduces conditions on bipartite hypergraphs (see equations 8.15
and 8.16) that connect to and generalize conditions arising from the machine scheduling
CLP. Some areas for further improvements related to these investigations are introduced
at the end of Chapter 8, including closing the bounds for the fraction of coverage that is
guaranteed by a condition of form (8.15).

There has been a good deal of activity on these two optimization problems over the
past 15 years, and indeed much activity in the past year, and there is good reason for
optimism with respect to future developments. It is my hope that this thesis has served
to introduce these problems and the techniques that have been applied to their study in
a manner accessible to a more general audience, and to advance some related ideas that
may be of interest to future research.
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