8,047 research outputs found

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Designing algorithms to aid discovery by chemical robots

    Get PDF
    Recently, automated robotic systems have become very efficient, thanks to improved coupling between sensor systems and algorithms, of which the latter have been gaining significance thanks to the increase in computing power over the past few decades. However, intelligent automated chemistry platforms for discovery orientated tasks need to be able to cope with the unknown, which is a profoundly hard problem. In this Outlook, we describe how recent advances in the design and application of algorithms, coupled with the increased amount of chemical data available, and automation and control systems may allow more productive chemical research and the development of chemical robots able to target discovery. This is shown through examples of workflow and data processing with automation and control, and through the use of both well-used and cutting-edge algorithms illustrated using recent studies in chemistry. Finally, several algorithms are presented in relation to chemical robots and chemical intelligence for knowledge discovery

    Improved approaches to ligand growing through fragment docking and fragment-based library design

    Get PDF
    Die Fragment-basierte Wirkstoffforschung (“fragment-based drug discovery“ – FBDD) hat in den vergangenen zwei Jahrzehnten kontinuierlich an Beliebtheit gewonnen und sich zu einem dominanten Instrument der Erforschung neuer chemischer Moleküle als potentielle bioaktive Modulatoren entwickelt. FBDD ist eng mit Ansätzen zur Fragment-Erweiterung, wie etwa dem Fragment-„growing“, „merging“ oder dem „linking“, verknüpft. Diese Entwicklungsansätze können mit Hilfe von Computerprogrammen oder teilautomatischen Prozessen der „de novo“ Wirkstoffentwicklung beschleunigt werden. Obwohl Computer mühelos Millionen von Vorschlägen generieren können, geschieht dies allerdings oft auf Kosten unsicherer synthetischer Realisierbarkeit der Verbindungen mit einer potentiellen Sackgasse im Optimierungsprozess. Dieses Manuskript beschreibt die Entwicklung zweier computerbasierter Instrumente, PINGUI und SCUBIDOO, mit dem Ziel den FBDD Ausarbeitungs-Zyklus zu fördern. PINGUI ist ein halbautomatischer Arbeitsablauf zur Fragment-Erweiterung basierend auf der Proteinstruktur unter Berücksichtigung der synthetischen Umsetzbarkeit. SCUBIDOO ist eine freizugängliche Datenbank mit aktuell 21 Millionen verfügbaren virtuellen Produkten, entwickelt durch die Kombination kommerziell verfügbarer Bausteine („building blocks“) mit bewährten organischen Reaktionen. Zu jedem erzeugten virtuellen Produkt wird somit eine Synthesevorschrift geliefert. Die entscheidenden Funktionen von PINGUI, wie die Erzeugung abgeleiteter Bibliotheken oder das Anwenden organischer Reaktionen, wurden daraufhin in die SCUBIDOO Webseite integriert. PINGUI als auch SCUBIDOO wurden des Weiteren zur Erforschung Fragment-basierter Liganden („fragment-based ligand discovery“) mit dem β-2 adrenergen Rezeptor (β-2-AR) und der PIM1 Kinase als Zielproteine („targets“) eingesetzt. Im Rahmen einer ersten Studie zum β-2-AR wurden mit PINGUI acht unterschiedliche Erweiterungen für verschiedene Fragment-Treffer („hits“) vorhergesagt (ausgewählt?). Alle acht Verbindungen konnten dabei erfolgreich synthetisiert werden und vier der acht Produkte zeigten im Vergleich zu den Ausgangsfragmenten eine erhöhte Affinität zum target. Eine zweite Studie umfasste die Anwendung von SCUBIDOO zur schnellen Identifikation von Fragmenten und deren möglichen Erweiterungen mit potentieller Bindungsaktivität zur PIM-1 Kinase. Als Ergebnis ergab sich ein Fragment-Treffer mit der dazugehörigen Kristallstruktur. Weitere Folgeprodukte befinden sich derzeit in Synthese. Abschließend wurde SCUBIDOO an eine automatische Roboter- Synthese gekoppelt, wodurch hunderte von Verbindungen effizient parallel synthetisiert werden können. 127 der 240 vorhergesagten Produkte (53%) wurden mit dem Ziel an den β-2-AR zu binden bereits synthetisiert und werden in Kürze weitergehend getestet. Die beiden vorgestellten Computer-Tools könnten zur Verbesserung im Anfangsstadium befindlicher Projekte zur Fragment-basierten Wirkstoffentwicklung, vor allem hinsichtlich der Strategien im Bereich der Fragment Erweiterung, eingesetzt werden. PINGUI zum Beispiel generiert Vorschläge zur Fragment- Erweiterung, die sich mit hoher Wahrscheinlichkeit an die Zielstruktur anlagern, und stellt somit ein nützliches und kreatives Werkzeug zur Untersuchung von Struktur-Wirkungsbeziehungen („structure-activity relationship“ – SAR) dar. SCUBIDOO zeigte sich mit einem bisherigen 53-prozentigen Synthese-Erfolg als zugänglich für die Integration an die effiziente automatisierte Roboter-Synthese. Jede zukünftige Synthese liefert neue Kenntnisse innerhalb der Datenbank und wird somit nach und nach den Synthese-Erfolg erhöhen. Des Weiteren stellen alle synthetisierten Produkte neuartige Verbindungen dar, was umso mehr den möglichen Einfluss SCUBIDOOs bei der Entdeckung neuer chemischer Strukturen hervorhebt

    Predicting drug metabolism: experiment and/or computation?

    Get PDF
    Drug metabolism can produce metabolites with physicochemical and pharmacological properties that differ substantially from those of the parent drug, and consequently has important implications for both drug safety and efficacy. To reduce the risk of costly clinical-stage attrition due to the metabolic characteristics of drug candidates, there is a need for efficient and reliable ways to predict drug metabolism in vitro, in silico and in vivo. In this Perspective, we provide an overview of the state of the art of experimental and computational approaches for investigating drug metabolism. We highlight the scope and limitations of these methods, and indicate strategies to harvest the synergies that result from combining measurement and prediction of drug metabolism.This is the accepted manuscript of a paper published in Nature Reviews Drug Discovery (Kirchmair J, Göller AH, Lang D, Kunze J, Testa B, Wilson ID, Glen RC, Schneider G, Nature Reviews Drug Discovery, 2015, 14, 387–404, doi:10.1038/nrd4581). The final version is available at http://dx.doi.org/10.1038/nrd458
    corecore