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”And why do we fall, Bruce ? So we can learn to pick ourselves up.”

Thomas Wayne, Batman begins (2005)



Abstract

In the past two decades, fragment-based drug discovery (FBDD) has continuously gained

popularity in drug discovery efforts and has become a dominant tool in order to explore

novel chemical entities that might act as bioactive modulators. FBDD is intimately con-

nected to fragment extension approaches, such as growing, merging or linking. These

approaches can be accelerated using computational programs or semi-automated work-

flows for de novo design. Although computers allow for the facile generation of millions

of suggestions, this often comes at a price: uncertain synthetic feasibility of the generated

compounds, potentially leading to a dead end in an optimization process.

In this manuscript we developed two computational tools which could support the FBDD

elaboration cycle: PINGUI and SCUBIDOO. PINGUI is a semi-automated workflow

for fragments growing guided by both the protein structure and synthetic feasibility.

SCUBIDOO is a freely accessible database which currently holds 21 M virtual products.

This database was created by combining commercially available building blocks with

robust organic reactions. Thus, every virtual product comes with synthetic instructions.

Most of the crucial functions of PINGUI (creation of derived libraries or applying organic

reaction) were then implemented in the SCUBIDOO website.

PINGUI and SCUBIDOO were then applied to fragment-based ligand discovery efforts

targeting the β2-adrenergic receptor (β2AR) and the PIM1 kinase. In a first study

focusing on the β2AR, we suggested a total of eight diverse extensions for different

fragment hits using PINGUI. The eight compounds were successfully synthesized and

further assays showed that four products had an improved affinity compared to their

respective initial fragment. In a second study, SCUBIDOO was applied in order to

quickly identify fragments and suggest extensions that could bind to PIM1. This study

yielded a fragment hit and its associated crystal structure. Synthesis of derived products

is in progress. Lastly, SCUBIDOO was coupled with automated robotic synthesis in

order to synthesize hundreds of compounds in parallel. 127 products among the 240

suggested were synthesized (53%). Those compounds were designed so they are likely

to bind to the β2AR and will be tested in the near future.

The aforementioned computational tools could improve early fragment-based drug dis-

covery projects, especially in the realm of fragment growing strategies. For instance,

PINGUI suggests extensions that are very likely to be attachable, making it a useful

creative tool for medicinal chemists during structure-activity relationship (SAR) stud-

ies. With so far 53% success synthesis rate, SCUBIDOO has shown that it is amenable

to be integrated to automated robotic synthesis. Every synthesis attempt is prone to
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improve the knowledge contained within the database and thus increase the synthesis

success rate over time. Furthermore, all synthesized product were novel compounds, thus

demonstrating how SCUBIDOO could explore new quadrants of the chemical space.
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Zusammenfassung

Die Fragment-basierte Wirkstoffforschung (“fragment-based drug discovery” – FBDD)

hat in den vergangenen zwei Jahrzehnten kontinuierlich an Beliebtheit gewonnen und

sich zu einem dominanten Instrument der Erforschung neuer chemischer Moleküle

als potentielle bioaktive Modulatoren entwickelt. FBDD ist eng mit Ansätzen zur

Fragment-Erweiterung, wie etwa dem Fragment-“growing“, ”merging“ oder dem ”link-

ing“, verknüpft. Diese Entwicklungsansätze können mit Hilfe von Computerprogram-

men oder teilautomatischen Prozessen der ”de novo“ Wirkstoffentwicklung beschleunigt

werden. Obwohl Computer mühelos Millionen von Vorschlägen generieren können,

geschieht dies allerdings oft auf Kosten unsicherer synthetischer Realisierbarkeit der

Verbindungen mit einer potentiellen Sackgasse im Optimierungsprozess.

Dieses Manuskript beschreibt die Entwicklung zweier computerbasierter Instrumente,

PINGUI und SCUBIDOO, mit dem Ziel den FBDD Ausarbeitungs-Zyklus zu fördern.

PINGUI ist ein halbautomatischer Arbeitsablauf zur Fragment-Erweiterung basierend

auf der Proteinstruktur unter Berücksichtigung der synthetischen Umsetzbarkeit. SCU-

BIDOO ist eine freizugängliche Datenbank mit aktuell 21 Millionen virtuellen Produk-

ten, entwickelt durch die Kombination kommerziell verfügbarer Bausteine (”building

blocks“) mit bewährten organischen Reaktionen. Zu jedem erzeugten virtuellen Pro-

dukt wird somit eine Synthesevorschrift geliefert. Die entscheidenden Funktionen von

PINGUI, wie die Erzeugung abgeleiteter Bibliotheken oder das Anwenden organischer

Reaktionen, wurden daraufhin in die SCUBIDOO Webseite integriert.

PINGUI als auch SCUBIDOO wurden des Weiteren zur Erforschung Fragment-basierter

Liganden (”fragment-based ligand discovery“) mit dem β2-adrenergen Rezeptor (β2AR)

und der PIM1 Kinase als Zielproteine eingesetzt. Im Rahmen einer ersten Studie

zum β2AR wurden mit PINGUI acht unterschiedliche Erweiterungen für verschiedene

Fragment-Treffer (”hits“) vorhergesagt. Alle acht Verbindungen konnten dabei erfol-

greich synthetisiert werden und vier der acht Produkte zeigten im Vergleich zu den

Ausgangsfragmenten eine erhöhte Affinität zum target. Eine zweite Studie umfasste die

Anwendung von SCUBIDOO zur schnellen Identifikation von Fragmenten und deren

möglichen Erweiterungen mit potentieller Bindungsaktivität zur PIM1 Kinase. Als

Ergebnis ergab sich ein Fragment-Treffer mit der dazugehärigen Kristallstruktur. Weit-

ere Folgeprodukte befinden sich derzeit in Synthese. Abschließend wurde SCUBIDOO

an eine automatische Roboter- Synthese gekoppelt, wodurch hunderte von Verbindun-

gen effizient parallel synthetisiert werden können. 127 der 240 vorhergesagten Produkte

(53%) wurden mit dem Ziel an den β2AR zu binden bereits synthetisiert und werden in

Kürze weitergehend getestet.
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Die beiden vorgestellten Computer-Tools könnten zur Verbesserung im Anfangssta-

dium befindlicher Projekte zur Fragment-basierten Wirkstoffentwicklung, vor allem hin-

sichtlich der Strategien im Bereich der Fragment Erweiterung, eingesetzt werden. PIN-

GUI zum Beispiel generiert Vorschläge zur Fragment- Erweiterung, die sich mit hoher

Wahrscheinlichkeit an die Zielstruktur anlagern, und stellt somit ein nützliches und

kreatives Werkzeug zur Untersuchung von Struktur-Wirkungsbeziehungen (”structure-

activity relationship“ – SAR) dar. SCUBIDOO zeigte sich mit einem bisherigen 53-

prozentigen Synthese-Erfolg als zugänglich für die Integration an die effiziente automa-

tisierte Roboter-Synthese. Jede zukünftige Synthese liefert neue Kenntnisse innerhalb

der Datenbank und wird somit nach und nach den Synthese-Erfolg erhöhen. Des Weit-

eren stellen alle synthetisierten Produkte neuartige Verbindungen dar, was umso mehr

den möglichen Einfluss SCUBIDOOs bei der Entdeckung neuer chemischer Strukturen

hervorhebt.
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”We’ve always defined ourselves by the ability to overcome the impossible. And we count

these moments. These moments when we dare to aim higher, to break barriers, to reach

for the stars, to make the unknown known. We count these moments as our proudest

achievements. But we lost all that. Or perhaps we’ve just forgotten that we are still

pioneers. And we’ve barely begun. And that our greatest accomplishments cannot be

behind us, because our destiny lies above us.”

Cooper, Interstellar (2014)



Chapter 1

Introduction

What are fragments? How can one utilize them in a drug discovery endeavor? How can

in silico approaches assist us with such efforts? How can one improve the reliability of

fragment docking?

Only a few questions, and yet so much that needs answering to... I pursue to deliver

responses to those questions in the following thesis.

This first chapter aims to walk you through the story of my PhD and hopefully give

you a taste of it within a few minutes. Every project, and thus chapter, relies on the

previous ones, making the results increasingly exciting (at least from my point of view).

The second chapter is the cutting edge of fragment-based drug discovery (FBDD). Thus,

I will highlight the limits of the current high-throughput screening technique (HTS), and

show how fragment-based efforts can go beyond those limits in order to provide novel and

potent chemical entities that could act as reliable starting points in any drug discovery

endeavors. I will cover experimental and in silico screening techniques that allow one to

identify fragments and discuss the different fragment extension strategies. This chapter

will be closed with the ongoing challenges, as well as the perspectives in the FBDD field.

Chapter 3 is made up of two part. First, I will introduce the GPCRs, which are critical

biological targets in the field of pharmaceutical research. The main target in my the-

sis was the β2AR, three chapters and thus projects are devoted to it. The second part

consists of a submitted manuscript where I had my first opportunity to work with exper-

imental collaborators. In this work, novel nanomolar ligands were synthesized and tested

and I used docking as a ’third’ technique in order to try to rationalize the experimental

results (SAR). The main message will be that docking cannot explain everything and

clearly shows limits when it comes to compare micromolar with nanomolar compounds

in a SAR study.
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Chapter 4 was my main project: Growing a fragment with favorable ligand efficiency

(LE) into more efficient ligands for the β2AR. This was my longest project (i.e. about

three years) and probably the one I learned the most from. Many reasons explain such a

duration, but the most significant one is probably my initial lack of pragmatism. Most

of my original work won’t appear in this manuscript, but can be briefly summarized.

De novo tools assisting fragment growing are great when it comes to generate millions

or even billions of virtual molecules, but they lack synthetic accessibility filters. It is

one thing to create a molecule using a computer, it is another thing to translate it

to real existing molecules (i.e. wet chemistry). My initial workflow took into account

synthetic accessibility, but only in the last stage. This simply meant that I had to spend

hours on retrosynthetic studies in order to provide a synthetic route (if any) for a single

compound. This was a giant time sink, and such procedure could not be applied to

a large set of molecules. To make a long story short, at some point, in any synthesis

project, you will have to sit down with your chemist and discuss about your molecules.

So why not make this step easier, and thus take synthetic feasibility into account right

from the start? I then found the work of Hartenfeller et al. [1, 2], where the authors

compiled a set of 58 organic reactions, based on the most popular reactions used in

the pharmaceutical field. At the moment, this is probably the most underestimated

paper I ever read. Maybe I overemphasize it because it brought an obvious solution

to my problem, but I have to say it was odd to me that this set was not applied in

many projects and only cited a few times. Anyway... this set allowed me to identify a

compatible reaction for my fragment (reductive amination) and we were able to suggest

reliable extensions to our chemist partners. All suggested products were successfully

synthesized (8 / 8) and half of the products exhibited a better affinity than the original

fragment. It was a successful project at two levels: synthesis and experimental assays. In

my humble opinion, the most critical one was the successful synthesis. Indeed, being able

to suggest novel molecules to chemists and see them endorse those after a quick glance,

somehow brings satisfaction. I then decided to make most of the tools I developed in

my workflow available online (PINGUI), so computational and experimental chemists

alike could freely utilize them. Drug discovery is built on three main pillars, namely

computational techniques, chemistry and biology. I like to think that PINGUI allows

one to bring closer the computational techniques and chemistry, and can be beneficial

in both fields. Indeed, computational chemists will have insights into organic reactions

early on, thus increasing their chance to come up with molecules that are likely to be

synthesizable. This will also make the synergy with the chemist more powerful, because

their feedback will be taken into account early on in the process. As for the chemists,

PINGUI could be used as a creative tool to bring more ideas on how to decorate chemical

scaffolds.

2



Chapter 5 was the consequent step following the PINGUI workflow. Since reductive

amination worked well in this project, we simply asked ourselves: ’why not expand the

concept?’. Indeed, we only used one reaction out of 58, so let’s take advantage of the

remaining ones. To do so, we decided to start from a small library of available building

blocks (about 8’000) and exhaustively combined them with each other using the 58

reactions. This procedure gave birth to SCUBIDOO, which currently holds 21 M virtual

products. Three representative samples of this database were created in order to give the

user entry points to this new virtual chemical space. Retrospective analysis showed that

known ligands were contained in the database and that the predicted synthetic route

was also correct. Only two weeks after its publication, SCUBIDOO was recommended

in F1000 and associated with the ’interesting hypothesis’ and ’technical advance’ flags.

One of the reviewers described it as ’a new welcome resource in the field’.

Chapter 6 was the first ’real’ application of SCUBIDOO and the biological target was

the kinase PIM1. This project initially had three main goals. First, showcase how to

use SCUBIDOO and provide to the scientific community a detailed guide of all possible

scenarios. Second, this project should be a proof of concept highlighting the synthesiz-

ability of the products. Third, identify fragments with favorable LE that we can quickly

optimize. Three fragments were identified for further optimization, each using a differ-

ent strategy. One was found using ligand-based approaches (similarity search), one was

identified using structure-based techniques (docking) and the last one was discovered

when trying to improve the hit from docking (analog search). Each fragment was asso-

ciated to a different chemical reaction. As of right now, no derivatives were synthesized,

but one of the initial fragments was tested in a thermal shift assay (TSA) and showed

a positive shift of + 1.8◦C, which can be taken as a first experimental hint that this

fragment could bind to PIM1. The first attempt to crystallize this complex was success-

ful, which could be taken as a second experimental hint. Crystals will be solved in the

near future in order to hopefully validate the predicted binding mode of this fragment.

Even though, so far, no derivatives were synthesized, this project offers a silver lining: a

fragment hit was identified through docking by making use of the ’bipartite philosophy’

(i.e. a product is the assembly of two building blocks). Indeed, a virtual product was

identified with one half making compelling interactions while the other half did not.

Deconstruction of this product yielded the identification of the ’promising’ fragment,

which was then selected for optimization. While this project is still ongoing, I hope it

will describe new in silico guidelines to identify fragments paired with favorable LE.

Chapter 7 was the second application of SCUBIDOO, but the first one at a large scale.

This project represents quite a leap forward in terms of means, in comparison to chap-

ter 6. We had the opportunity to work with an industry partner specialized in custom

synthesis (Taros, Dortmund). Taros has automated robots for synthesis and can process
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24 reactions in parallel. Hundreds of compounds can be synthesized and purified within

a day. As mentioned in chapter 5, we suggested that SCUBIDOO could be integrated

into such an automated synthetic workflow as an idea generator. Thus, this project was

a fantastic follow-up and we decided to apply it to the β2AR, because we have a lot of

experience with this target. The biggest challenge of this project was to define an initial

strategy, because none such studies were reported in the literature. In the end, it could

be summarized as ’tailored combinatorial synthesis guided by combinatorial growing’.

It could have been called the other way around, but in our case the synthetic constraints

guided the design of the compounds, hence synthesis was the first concern and then

we had to adapt in order to suggest potential ligands for the β2AR. Three main goals

with increasing difficulty were initially defined. First, validate the synthetic feasibility of

SCUBIDOO products. Second, identify ligands and fragments with favorable LE. Last,

design high affinity ligands. 127 out of 240 products were synthesized (53%) highlighting

the strong potential of SCUBIDOO to design novel compounds in an very short time

frame. Experimental assays will take place in the following weeks, and we aspire to have

the first results before the fall of 2016.

The last chapter can be seen as an extended discussion of chapters 5, 6 and 7. Those

three projects were probably the most exciting part of my thesis. Indeed, I developed two

scientific tools, then applied them to concrete scientific efforts, then learned from these

projects and made some unexpected discoveries. From this, new ideas logically came out

in order to improve SCUBIDOO. This quickly became an iterative process which evolved

into a virtuous loop. I wanted the last chapter to reflect that. Most of the discoveries

detailed here are still speculative, but should be experimentally validated (or not) in

the near future. This chapter also aims at describing SCUBIDOO future applications

and possible improvements. After all, SCUBIDOO is still young and showed a lot of

potential, so I like to think that I am only writing the beginning of a story.
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”Success consists of going from failure to failure without loss of enthusiasm.”

Winston Churchill



Chapter 2

Fragment Based Drug Discovery

2.1 Introduction

Efficacy and selectivity are two of the main challenges that the pharmaceutical research

field is facing with the need to design novel chemical entities (NCE) which are effective

drugs for many diseases, combined with as few side effects as possible [3]. In parallel,

the cost to deliver a drug to the market is now estimated at more than $2.5bn. Most

alarming about this observation is the fact that this price has more than doubled in

the past 10 years [4]. Two reasons may explain the ever so increasing cost: the time

required to develop a drug, which is estimated between 8 and 15 years, and the high

risk of failure in both pre-clinical development and clinical trials. The average clinical

approval success is estimated to be below 10%. This success rate will depend on the

therapeutic area, ranging from 8% for Central Nervous System (CNS) drugs to 24% for

systemic anti-infective drugs [5]. The further a drug goes through the drug discovery

pipeline, the more costly a failure will be, since the invested means increase over time.

One of the main reasons that could explain this high attrition rate resides in High

Throughput Screening (HTS) techniques, which have reached their limits. HTS consists

of screening thousands of drug-sized molecules against a therapeutic target of choice in

an automated fashion. Pharmaceutical companies have been using this approach for

decades. The main advantage of this method is that it allows one to deal with a large

number of existing drug-like molecules within a short time frame, with up to 100’000

compounds per day. However, screening 100’000 compounds is costly and not within

reach of academic institutions. Moreover, the screened molecules represent only a small

fraction of chemical space. This is due to the fact that those libraries contain a lot

of molecules which were optimized for historical targets, thus leading to low chemical

diversity [6]. Furthermore, most of those molecules are in principle drug-like, rooted in
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Lipinski’s rule of five (RO5) [7, 8]. This rule describes the likelihood of oral bioavailability

for any given compound, based on simple chemical descriptors: Molecular weight (MW)

≤ 500 Da, logP ≤ 5, number of H-bond donors (HBD)≤ 5 and number of H-bond

acceptors (HBA)≤ 10. A HBD is defined by an hydrogen atom attached to a heteroatom

(nitrogen or oxygen), while an HBA is defined by an heteroatom with at least one lone

pair available (sulfur is also considered as acceptor, but weaker than N or O). Once

a hit (i.e. a molecule exhibiting biological activity) is identified, optimization follows,

aiming at finding leads (i.e. a hit with an improved biological activity) which could

become potential drugs. But even though such molecules are in principle drug-like, they

will have likely unfavorable absorption, distribution, metabolism, excretion and toxicity

(ADMET) properties [9]. The problem with such hits is that they already feature a high

molecular weight, making the process of optimization harder since they are already close

to the Lipinski limit. Furthermore, in order to increase potency, medicinal chemists tend

to increase the liphophilic character of compounds. This problem is know as molecular

obesity [3], which leads to the failure of such compounds in the later stages of drug

development, often due to a lack of selectivity.

But why focus on big molecules and try to improve them with high attrition rates, when

one could start from smaller, yet still potent, molecules and try to extend them in order

to improve potency? This approach is known as fragment-based drug discovery (FBDD)

as illustrated in figure 2.1.

Figure 2.1: Typical workflow of the fragment-based approaches in drug discovery.
Reprinted with permission from Duncan E. Scott, Anthony G. Coyne, Sean A. Hudson,
and Chris Abell. Fragment-based approaches in drug discovery and chemical biology.
Biochemistry, 51(25): 4990–5003, 2012. Copyright 2016 American Chemical Society.

In the past two decades, FBDD has continuously gained popularity in drug discovery

efforts and has become a dominant tool in order to explore novel chemical entities that
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might act as bioactive modulators [6, 10]. Shuker et al. are among the pioneers in this

field with their SAR by NMR approach [11], where they identified nanomolar affinity

ligands for the FK506 protein by linking together two small ligands (fragments) with

micromolar affinity each.

But what exactly is a fragment? By its very own nature, a fragment is a small entity

part of a bigger puzzle. Applying this concept to molecules simply results in small

molecules prone to be extended. Same as for drug-like compounds, there soon appeared

a discussion on which chemical properties should define a fragment. Congreve et al.

came up with a simple rule of three (RO3) [12] (Molecular weight ≤ 300Da, logP ≤ 3,

H-bond donors ≤ 3 and H-bond acceptors ≤ 3), directly inherited from the RO5.

Fragments offer many advantages compared to most compounds in typical HTS collec-

tions. Due to their small size, fragments are more amenable to make specific interactions

compared to bigger molecules (figure 2.3), simply because of an increased likelihood that

all their (few) chemical features are complemented. Even though fragments usually bind

within the millimolar to micromolar range, the ligand efficiency (LE) is remarkably high

(figure 2.2). LE is defined as the contribution to free energy of binding by each heavy

atom [13–15] as defined in equation 2.1:

LE =
−2.303RT

HA
.logKd (2.1)

where R is the ideal gas constant, T is the temperature in Kelvin, HA is the number of

heavy atoms and Kd is the equilibrium dissociation constant (which is inversely related

to affinity). Fragments do not only offer optimized interactions, they also contain fewer

interfering moieties, making them more reliable in screening campaigns [6]. Moreover,

it is easier to cover chemical space with fragment-sized molecules: screening a diverse

set of 1’000 fragments is equivalent to probing the chemical space of 1’000’000 drug-like

molecules, yielding a higher hit rate [6, 16–18]. Thus, fragment screening is cheaper

than HTS, making it more affordable and also a good fit for academic institutions. An

example of the coverage of chemical space with fragments is the creation of SCUBIDOO

(chapter 5), where 7’805 building blocks were combined yielding 21M virtual products.

Finally, FBDD could be summarized by “start small and stay small”. Optimizing incre-

mentally very efficient fragments keeps molecular obesity at bay and yields leads offering

better ADMET profiles. Therefore, leads coming from an FBDD campaign are less likely

to fail compared to hits retrieved from HTS, since they offer better control over the de-

sign process [19]. This statement will require confirmation over the next couple of years,

but the first tendency already shows encouraging results. An example is Vemurafenib,
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Figure 2.2: Comparison of MW versus potency for fragment hits, HTS hits, leads and
drugs. Reprinted with permission from Duncan E. Scott, Anthony G. Coyne, Sean A.
Hudson, and Chris Abell. Fragment-based approaches in drug discovery and chemical
biology. Biochemistry, 51(25): 4990–5003, 2012. Copyright 2016 American Chemical

Society.

Figure 2.3: Typical binding mode of fragment hits versus HTS hits. Reprinted with
permission from Duncan E. Scott, Anthony G. Coyne, Sean A. Hudson, and Chris
Abell. Fragment-based approaches in drug discovery and chemical biology. Biochem-

istry, 51(25): 4990–5003, 2012. Copyright 2016 American Chemical Society.

the first FDA-approved drug [20] originating from a fragment-based screening. Vemu-

rafenib was approved for BRAF-mutated metastatic melanoma, was marketed in 2011

and it took only 6 years to bring this drug to the market.

While FBDD looks extremely appealing, some aspects remain challenging, especially in

the experimental field. Since fragments bind with low affinities, more sensitive detection

methods are required as well as screening the fragments at high concentrations. This

raises the concern of solubility: in order to be able to screen at high concentrations,

each fragment ought to be soluble enough. Also, at high concentration, compounds may

form aggregates which can pretend unspecific enzyme inhibition and yield false positive

hits [21, 22]. This is a known artifact from experimental screening [23]. Another limit is

that experimental assays need to be sensitive enough to detect fragments and thus often

require a large amount of purified proteins (from 10 mg to 1g), restraining the number

of targets that can be screened [6].

In this chapter, I will cover the vital steps that are needed for any fragment-based ligand

discovery effort. I will first describe how to create a fragment library. Next, I will review
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the methods in both the in silico and experimental fields, which are used to identify

fragments that can serve as starting points. I will then highlight the synergy that is

provided when using both methods in parallel. Then, once a fragment hit is identified, I

will describe the different ways to optimize it. Finally, I will conclude with the current

challenges that FBDD is facing and how my work might help in the current fragment

elaboration/optimization cycle.

2.2 Fragment libraries

Prior to any fragment screening is the conception of the fragment library. Fragments can

be filtered according to several chemical properties which can be predicted or calculated

by computer approaches. Fragment libraries have two main applications: screening (ex-

perimental or virtual) and exploration of chemical space using combinatorial techniques.

2.2.1 Important properties for experimental screening

2.2.1.1 Library size

The size of a fragment library depends on its application, and more precisely on which

kind of experimental assays will follow up. Recently, Keseru et al. [24] suggested that a

reasonable number could be between 500 and 3000 fragments. For instance, a smaller

library will be more appropriate for lower throughput screening techniques such as X-ray

crystallography. An illustration of such small library, is the in-house fragment library of

the Klebe group which currently holds 361 fragments and is extensively used for X-ray

screening [25–27]. On the other hand, bigger libraries are more appropriate for higher

throughput methods (e.g. SPR).

2.2.1.2 Chemical diversity

Creating a fragment libraries of chemically diverse compounds offers three main advan-

tages:

• Ensure to cover as much drug-like chemical space as possible.

• Ensure diversity among the chemical features. This will allows one to explore dif-

ferent binding modes but also ensure the application of different organic reactions,

which will facilitate the extension procedure.
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• Prevent the presence of close analogues, which could yield duplicates in binding

modes.

To do so, representative subsets can be extracted from existing libraries using dissim-

ilarity techniques or clustering [28], based on molecular fingerprints such as MACCS

keys [29] or ECFP [30]. The MACCS keys are particularly well suited for this task

since they encode the presence of 166 predefined chemical features. More sophisticated

approaches could be used based on more complex chemical descriptors (2D or even 3D)

or different algorithms, such as stratified balanced sampling [31–34], which will be fully

described in chapter 5.

2.2.1.3 Solubility

As mentioned above, fragments should exhibit high solubility (usually well above 1 mM)

in order to be screened at high concentrations [18, 35–37]. When solubility has not been

experimentally determined, one can predict it using in silico models. While prediction

of solubility remains challenging [7, 38–40], the accuracy of the models can be improved

by multimodel protocols, as I highlighted in a previous study [41].

2.2.1.4 Reactive functional groups

Since fragments are prone to be extended, establishing the presence of reactive chemical

features (i.e. functional groups that can be utilized to attach a chemical group to) is

important for later optimization. I implemented a tool in that regard (PINGUI chapter

4), aiming at suggesting which chemical reaction could be applied to a fragment in a

growing strategy context. Once compatible reactions have been identified, this tool

creates libraries of derivatives of the initial fragment. Therefore, the generated products

are optimized towards high likelihood of synthetic feasibility.

2.2.1.5 Rule of three compatibility

From a strict point of view, fragments could be defined using the RO3 and filtering the

library according to those chemical properties could also be done. However, the rule of

three might be considered a bit too rigorous and might discard potentially fragment-

sized binders. An example of this was the creation of a non-rule-of-three compatible

fragment library by the Klebe group [27]. The fragment library contains 361 entities

and was designed in a way that fragments are likely to be successful for crystallographic

screening and follow-up chemistry (i.e growing or merging). The biggest violation of
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the rule of three concerned the number of H-bond acceptors and rotatable bonds. Both

were allowed up to 7, and 223 fragments did not agree with the RO3. Yet, the library

was screened against endothiapepsin using a fluorescence-based competition assay and

yielded 55 hits, which is remarkably high. Those 55 entities were then soaked into native

endothiapepsin (ETP) crystals and yielded 11 crystal structures [27]. More recently, the

same group exhaustively soaked all the 361 fragments individually into ETP and they

were able to crystallize 71 structures (20% hit rate !). Those results suggest that the

composition of the initial library was efficiently done and, most importantly, highlight

that the RO3 is better be used as a general guideline rather than a strict rule.

2.2.1.6 Specialized application

Specific considerations in library design might have to be taken into account. For in-

stance, 19F-NMR screening is an experimental technique that require the presence of

fluorine containing fragments. This experimental method is relatively new and start to

be implemented in FBDD efforts quite successfully [42–45]. Chemical suppliers adapted

quickly to that new demand and often offer fluorinated fragments libraries ready to

be screened. For instance, Enamine proposes a RO3 library of 3’000 19F containing

fragments.

2.2.2 Important properties for virtual screening

In silico approaches can be utilized to screen more fragments more quickly than experi-

mental techniques and can also screen virtual fragments. However, one always need the

experimental techniques to ultimately validate a fragment hit. For these reasons, the

properties required for virtual screening libraries inherit from the experimental proper-

ties libraries. The only difference would be a lower emphasis on a preselection according

to high chemical diversity, since one can easily apply an exhaustive approach in virtual

screening. Indeed, screening millions of fragments can be done within a few hours on a

computer cluster.

Additional filters that deal with toxic features or pan assay interference compounds

(PAINS) [46] are also important when preparing a library of fragments. However, such

filters are better implemented downstream, since toxic or reactive features may vanish

or appear when a product is generated (i.e. a grown fragment).

There are no commonly agreed chemical rules on how to design a fragment library,

but a recent guideline was suggested by Keseru et al. [24] highlighting that it requires

the consideration of multiple parameters and thus one often has to find compromises.
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The design will mainly depend on the context as well as the subsequent application.

Factors such as purity, stability and storage conditions ought to be considered as well.

One also has to keep the big picture in mind: if one obtains a fragment hit, one will

very likely extend it. Therefore, most of the attention has to be focused on possible

synthetic extensions: where does one grow a fragment from ; how (i.e. reaction) ; is

there is enough space ? Those important questions are illustrated and answered with

the PINGUI workflow (chapter 4).

2.3 In Silico Approaches

Several scenarios are possible when starting a ligand discovery project (Table 2.1). In

all cases, in silico approaches provide valuable support all along the way.

Scenario Crystal structure ? Crystallized ligand ? Known active ?

1 7 7 7

2 7 7 3

3 3 7 7

4 3 7 3

5 3 3 3

Table 2.1: Summary of the different possible scenarii when starting a ligand discovery
project.

For scenario 1 and 2, when the crystal structure of the target has not yet been solved,

alternative approaches such as homology modeling are available [47]. This approach

allows one to create the three-dimensional structure of a protein based on the knowledge

of resolved structures with similar sequence. However, if it is impossible to construct a

reliable model of a protein target, we can still hope to identify bioactive fragments using

ligand-based methods.

Once the the structure of the target protein is known, or its modeling is reliable enough,

one can start structure-based approaches in order to identify potentially active com-

pounds. Robustness of the receptor or its model can be evaluated using computational

approaches such as the calculation of the enrichment of known ligands over decoys. This

procedure aims at estimating how well a receptor is able to discriminate known active

molecules against inactive ones (decoys).

In the context of fragment-based drug discovery projects, if the fragment of interest has

been solved in complex with its target, this represents the best-case scenario. Indeed,

by knowing the precise binding mode of a fragment combined with an understanding of

the binding site, one can quickly come up with extension suggestions.
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When no experimental data are available for the fragment interactions, its binding mode

within an active site can be predicted using in silico methods, most notably docking.

2.3.1 Structure-based methods

Docking aims at predicting the binding mode of a ligand within the binding site of

a protein, as well as the free energy of binding of the resulting complex. The latter

still remains extremely challenging [48]. The process of docking can be divided into

two major subprocesses: the sampling phase (or posing), where a given conformation

is placed into a binding site and the scoring phase, where the free energy of binding of

each pose has to be rapidly estimated. Prior to sampling, the binding site has to be

defined and different conformations ought to be generated for the ligand.

2.3.1.1 Defining the binding site

If the crystal structure of the target is available with a ligand, the definition of the

binding site is straightforward. The residues surrounding the ligand (usually within 5

Å) are used to define the binding site. This can be set by the user optionally. This

procedure can be automatized with tools such as DAIM [49].

If no information about the ligand is available, computational approaches can help to

predict the binding site. There is a plethora of software tools available, most of which

are freely accessible online, among them Q-site finder [50], Ligsite [51], F-pocket [52, 53]

or DogSiteScorer [54–56].

2.3.1.2 Exploring the conformational space of the ligand

Two classes of docking programs need to be distinguished when dealing with conformer

generation: Flexible ligand and rigid ligand. Programs for flexible docking usually

generate the conformers on-the-fly, while rigid docking programs need a second software

tool to generate them. Two main classes of algorithms are employed to generate ligand

conformers: Exhaustive and stochastic search algorithms.

Exhaustive search. This approach aims at exploring all the possible degrees of

freedom of the ligand. OMEGA [57] is an example of this method. OMEGA relies on

torsion and ring libraries to identify rotors and flexible rings [58]. A filter is applied to

remove internal clashes as well as energetically unfavorable conformers. Several custom

settings can be modified such as the number of generated conformers, the minimum
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root-mean-square deviation (RMSD) between each generated conformer or the strain

energy. Other approaches based on rotamer libraries consist of methods that assign the

most likely angle value to rotors based on atom types [59–63].

Stochastic search. Rotors are the key to exploring conformational space. Another

way to generate conformers is to randomly assign values to the rotors. This can be done

using evolutionary algorithms [64–71] or Monte Carlo simulations (MC) [72–74].

In a molecular context, genetic algorithms (GA) are an often used evolutionary ap-

proach [75]. They apply the principle of biological competition as criterion to extract

individuals from a population. The rotors are encoded as genes on a chromosome and are

then randomly varied. Thus, chromosomes yield possible conformers (solutions) that are

evaluated using a fitness function. Only the best solutions are selected for improvement

using crossover (exchange) or mutation operations in order to create the next generation.

This process reiterates for each new generation.

Monte Carlo simulations start with an initial conformation and aim at improving it by

random perturbations of the rotors in an iterative fashion. Perturbations are accepted

or rejected based on a Boltzmann probability [76]. MC simulations are rather slow,

which make them not really suited for large screening campaigns [60].

2.3.1.3 Orientational sampling

Sampling consists of determining whether the position and the orientation of a given

conformer will fit the binding site of a protein (the latter is most of the time considered

rigid). This procedure is rather fuzzy and will result in many poses that will be filtered

later on during the scoring phase. Several approaches exist to place the conformer within

a binding site, and most of them rely on trying to satisfy and improve the interactions

of key chemical features.

Systematic and random searches. As for the conformational space of the ligand,

the translational degrees of freedom defining the position and orientation of the ligand

can be explored exhaustively or randomly.

SEED [77, 78] (Solvation Energy for Exhaustive Docking) is classified as an exhaustive

search method for fragment docking. SEED uses polar and apolar vectors to describe

the fragment and the binding site. Polar vectors are defined as originating from a polar

atom. The length and the orientation of the vectors are then based on all the favorable

angles and distances to establish an H-bond based on the involved atom types. Vectors
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that point towards occupied regions of space (i.e. receptor) are discarded. The sampling

phase consists of matching the polar vectors of the fragment with the ones from the

binding site, so that the distance between the H-bond donor and the H-bond acceptor

is favorable with respect to the atom types. The fragment is then rotated around

the H-bond axis and the user has control over the number of rotations around each

axis. Apolar vectors are defined in a two-steps procedure. First, points are distributed

uniformly on the solvent-accessible surface (SAS) of the receptor binding site and the

ligand. Secondly, a low dielectric sphere (probe) is run over the aforementioned points

in order to evaluate the desolvation energy, and the van der Waals (vdW) interaction

with the receptor. Only the best points according to the two energetic terms are kept.

Apolar vectors for the fragment and the receptor are then defined by joining each point

on the SAS with its corresponding atom center. The sampling consists of matching

apolar vectors of the fragment with the ones of the binding site, so their van der Waals

distance is optimal. As in the case of polar vectors, the fragment is then rotated around

the axis defined by the fragment atom and its receptor counterpart.

GAs can also be used to perform random searches in this case. In this scenario, the

degrees of freedom defining the position and orientation of the ligand can be encoded

within the chromosomes [64, 79].

Shape complementarity methods. FRED [58, 80–82] belongs also to the sys-

tematic search approaches, but it complements it with a shape filter. In a first stage,

all rotations and translations of the ligand are exhaustively sampled. During a second

stage, a so-called ’negative image’ of the binding site is created. To do so, molecular

probes that represent common chemical features of known drugs (i.e. pharmacophores)

are placed within the binding site and scored according to the Gaussian Shape Scoring

Function [80]. The very best poses are converted into density fields and merged together

in order to form the final shape of the ’negative image’. Thus, when comparing the ligand

pose to the ’negative’ image, we expect high values of the potential field where ligand

atoms make favorable contacts with the receptor as well as very little steric overlap.

Point complementarity methods. DOCK 3.x relies on the representation of

spheres to encode potential atom placements [62, 83, 84]. The binding site is filled

with a set of spheres that smoothly interact with the surface of the receptor. The lig-

and representation is also based on a set of spheres that allows to depict its shape.

Thus, if the set of ligand spheres fits the set of receptor spheres, one could assume that

the protein-ligand interactions will be favorable. The pairing of the protein and lig-

and spheres is possible if the internal distances of all ligand spheres match the internal

distances of the receptor spheres (within a certain margin of error).
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Incremental methods. Incremental approaches [61, 62, 85] are distinct from all

the aforementioned ones, since the ligand, and thus its 3D conformer, is generated

on-the-fly. For instance, in FlexX[63, 86] the ligand to dock is first split into several

fragments. A first fragment, usually the one that can be assumed to make the most

compelling interactions, is placed within the binding site and meticulously optimized.

Each remaining fragment is attached in an iterative process. At each step, the ligand is

exhaustively optimized and only the best solutions are kept.

2.3.1.4 Scoring

Once poses have been sampled and the obvious clashes removed, one needs to evalu-

ate rapidly which ones are the most likely to bind favorably. Scoring functions were

developed for that purpose and aim at giving a rough measure of the fit of the lig-

and pose within the binding site. Typically three classes of scoring functions are used:

force-field-based, empirical and knowledge-based scoring functions.

Force-field-based. A force-field is a set of parametrized potential functions describ-

ing the mechanics of a molecular system. Force-fields are usually applied in the docking

context to estimate the energy of binding between the ligand and the receptor along

with the internal energy of the ligand. Usually, ligand-protein non-bonded interactions

and internal ligand energy are described using van-der-Waals and electrostatic energy

terms.

The van-der-Waals energy component is often modeled with a Lennard-Jones 12-6 po-

tential function, as described in equation 2.2:

EvdW (r) =
N∑
i=1

N∑
j=i+1

4ε

[(
σij
rij

)12

−
(
σij
rij

)6
]

(2.2)

In equation 2.2, ε represents the well depth of the potential as illustrated in figure 2.4 and

σ is the contact distance between the atoms i and j. The Lennard-Jones 12-6 potential

function is considered ’hard’ and will severely penalize close contacts between ligand and

receptor atoms. Some programs such as FRED [58], prefer a ’softer’ potential defined

by an 8-4 term. Softer potentials were shown to be less accurate than ’harder’ ones in

retrospective docking studies and often generate poses with steric clashes. However, for

hydrophobic binding sites, FRED was found to produce more accurate results because

hydrophobic interactions outweigh electrostatic and polar interactions [75]. We illustrate

this precise scenario in chapter 6, where we identified a fragment hit using FRED.
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Figure 2.4: Representation of the Lennard-Jones 12-6 function. The exp(12) term of
the equation represents small-distance repulsion (the part of the curve above the red
line), while the exp(6) term represents long-range attraction between two atoms (the

part of the curve under the red line).

Electrostatic potential energy is modeled through a pairwise summation of Coulombic

interactions, as described in equation 2.3:

Ecoul(r) =

NA∑
i=1

NB∑
j=1

qiqj
4πε0rijεm

(2.3)

In equation 2.3, NA and NB represent the number of atoms in molecules A and B

respectively, qiqj the partial charge on each atom, rij the distance between the point

charges, ε0 is the dielectric constant of the vacuum and εm is the dielectric constant of

the medium.

Additional terms accounting for conformational entropy and desolvation of the ligand

and the receptor are taken into account for the final score. However, their prediction is

often dilemma since one had to find a compromise between accuracy and speed. Since

docking is oriented towards virtual screening of millions of molecules, the speed is often

the priority and one had to rely on models with poor predictive power.

Since most of the docking programs are using rigid receptors, there is no internal protein

energy to compute. This is one of the main limitations of most docking approaches that

can be partially answered either by giving some flexibility to the residues of the binding

site [87], or by treating the protein as an ensemble of protein conformations extracted

from molecular dynamics (MD) [88].
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Empirical. These scoring functions intent to reproduce experimental values of bind-

ing free energies. The rationale behind empirical scoring functions is that the binding

free energy can be decomposed into a sum of uncorrelated variables [63, 89–93]. The

coefficients associated with each variable are computed using regression analysis tech-

niques, such as multiple linear regression (MLR). For instance, Rognan et al. developed

FRESNO [91] to predict the binding free energy of peptides to class I major histo-

compatibility (MHC) proteins. This model is based on several weighted (α, β, γ, δ, ε)

contributions: a constant (K ), H-bond (HB), liphophilic interactions (LIPO), torsional

entropy (ROT ), buried polar surface (BP), solvation and desolvation effects (DESOLV )

as illustrated in equation 2.4:

∆Gbind = K + α(HB) + β(LIPO) + γ(ROT ) + δ(BP ) + ε(DESOLV ) (2.4)

However, empirical scoring functions are strongly dependent on the training set used for

fitting the values, resulting often in one or more scoring functions developed for each

individual protein target.

Knowledge-based. These scoring functions strive to reproduce experimental struc-

tures rather than binding free energies. To do so, protein-ligand complexes are created

according to simple atomic interaction-pair potentials. Among well-known approaches

one can find the potential of mean force (PMF) [94–96] and DrugScore [97–99]. One of

the weaknesses of these approaches is that they are based on a limited set of protein-

ligand complexes, potentially making the applicability domain very narrow.

2.3.1.5 Rescoring

As mentioned above, mainly for speed efficiency reasons, the scoring functions of most

docking tools are poorly evaluated, which ultimately yield a low hit rate [100]. In order

to circumvent this problem, one can make use of rescoring. Usually rescoring is used as

a secondary screening technique (refining stage), and one applies it to the top ranked

molecules that were selected from a larger screening. This procedure evaluates more

rigorously, for a given pose, the interaction between the ligand and the receptor. The

estimation of the binding affinities are slower than standard scoring functions, but the

accuracy will be significantly improved. This is afforded by more robust prediction

models, such as the implementation of molecular mechanics–generalized Born surface

area (MM-GBSA) techniques [100]. Many softwares were developed in order to refine

the score, namely DrugScore [97–99], its improved version DSX [101] and HYDE [102].
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2.3.1.6 Docking of fragments

Most of the docking programs were parametrized and optimized for drug-like molecules,

making their utility dubious when it comes to evaluating smaller molecules such as

fragments [22]. Consequently, several softwares were developed more specifically for

fragment docking, including MCSS [103], SuperStar [104, 105] and SEED [77, 78].

Docking approaches combined with parallel computing allows one to virtually screen

millions of compounds in few hours. This is a fast and cheap method to identify fragment

that could act as starting points for ligand discovery efforts. However, fragments are

small chemical entities they are likely to bind in different spots of the binding site.

Therefore fragment docking can yield several poses per fragment. For instance, SEED

exhaustively docks rigid fragments into the binding site and this procedure often yields

more than a thousand poses per fragment. This number needs to be reduced to make

the evaluation of the poses more manageable. A straightforward filter is the score

associated with the pose. One usually only looks at the very best poses according to the

score. However, Verdonk et al. [106] showed in a vast retrospective docking study that

fragments were correctly docked only about 50% of the time. Interestingly, they also

showed that this number could be improved by taking several poses into account. Many

of the failed fragments were actually docked correctly but not scored high enough. This

illustrates pretty well the current limiting factor in molecular docking: the scoring stage,

which still poorly evaluates the free energy of a ligand binding to a protein. This can be

explained by a lack of robust models to correctly estimate components of the binding

free energy, such as desolvation terms for both ligand and receptor, water interactions,

conformational entropy penalties and protein conformational changes [107]. Thus one

often use docking as a tool to generate binding modes, rather than a binding affinities

predictor.

As described in the following chapters, I developed different strategies to improve the

results of fragment docking and make them more reliable. Chapter 4 illustrates how I

used all the poses generated by SEED to create a map of potentially favorable inter-

actions. Such maps were then filtered and applied to a fragment growing strategy in

order to create ligands for the β2-adrenergic receptor. Chapter 6 and 7 illustrate how

SCUBIDOO can be used to dock fragments disguised as drug-like compounds to make

better use of most current docking software tools.

2.3.2 Ligand-based methods

“Small molecules with similar chemical properties should exhibit similar biological activ-

ities.” This is the famous pillar of medicinal chemistry which can simply summarize the
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ligand-based approaches in the chemoinformatics field. These approaches require the

knowledge of biologically active molecules in order to identify similar ones. A ligand-

based screen usually compares two molecule libraries against each other. The chemical

information contained in each molecule is numerically encoded using fingerprints, which

consist of a finite bit string. The measure of similarity between two molecules is usually

calculated using the Tanimoto coefficient, as defined in equation 2.5:

Similarity =
NA∩B

NA +NB −NA∩B
(2.5)

where NA and NB are the numbers of bits in bit strings A and B, respectively, and

NA∩B is the number of bits which are common between the two bit strings A and B.

The measure of similarity is between 0.0 and 1.0, where 1.0 indicates strict equivalence

of the bit strings. Several fingerprints exist, each one encoding the chemical informa-

tion differently. The MACCS fingerprint [29] and the extended-connectivity fingerprints

(ECFP) [30] are broadly used fingerprints. The MACCS fingerprint contains 166 bits

and is used for substructure search. Each bit position specifically encodes a common

functional group. ECFP, in contrast, are topological circular fingerprints, which are not

predefined and can represent a large number of different molecular features or substruc-

tures.

Ligand-based approaches are suitable for quickly retrieving analogs of known active

ligands. Thus, these approaches are very helpful when no structural information about

the target is known (Table 1). An illustration of the use of ligand-based approaches in

an FBDD project is “SAR by catalog”, which will be described later in this chapter.

Another recent application is the deconstruction-reconstruction approach [9], which is

illustrated with SCUBIDOO and will be further detailed in chapters 5, 6 and 7.

2.3.3 Synergy of in silico methods

Structure-based approaches are more widely used in the drug discovery pipeline in com-

parison to ligand-based ones. However, these approaches are applicable in synergy to

produce more robust outcomes [108, 109].

Ligand-based approaches can be utilized to pre-filter chemical libraries before structure-

based approaches, such as docking, are applied. I illustrate this scenario in chapter

6, where we identified derivative products from SCUBIDOO based on known active

scaffolds extracted from a database of known PIM-1 kinase inhibitor.

Another recent study by Martiny et al. [88], to which I contributed, highlighted how

ligand- and structure-based approaches can be used in concert in order to predict the
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inhibition of cytochrome P450 (CYP) 2D6. In this case, ligand-based methods are used

to select, for a given targeted ligand, the most similar molecule among a set of known

active ligands. Once the closest active is identified, the protein conformation associated

with it is then selected as receptor for further docking of the original targeted ligand.

2.4 Experimental Methods

Several biophysical techniques allow for detection of fragment binding to a protein.

Among them, surface plasmon resonance (SPR), isothermal calorimetry (ITC), thermal

shift assay and mass spectrometry (MS) have been successfully implemented in fragment-

based drug discovery [110, 111]. However, since the interactions remain weak, structural

methods such as X-ray crystallography [112] and NMR [113] might be more accurate,

leading to fewer false positives during screening campaigns [17]. These two structural

techniques will determine the precise binding mode of the fragment within a protein

target.

2.4.1 Surface Plasmon Resonance

SPR has become a standard biophysical technique for fragment screening due to the high

sensitivity of the method as well as its cost effectiveness [114–118]. Indeed, only a small

amount of protein is required (approximately 50 μg) for a screening campaign [119].

During an SPR experiment, the protein is tethered on the surface of a biosensor chip

(typically, a glass slide covered with gold) and fragments are passed over it. A beam of

polarized light is directed towards the metal surface and the change in refractive index

is measured. These changes are correlated to the mass of the protein and the fragment.

Binding events as well as kinetic information can be revealed using SPR. A number of

successful SPR-based fragment screens have been reported on different targets, including

the β2-adrenergic receptor [120], BACE-1 [121], MMP-12 [122], thrombin [123] and

chymase [116].

2.4.2 Isothermal Titration Calorimetry

ITC is a biophysical technique that allows to measure precisely, at a given temperature,

the difference in heat between two samples which are mixed together [124–126]. It is

used to determine the thermodynamic profile of a ligand upon binding to a protein. ITC

measures the free energy of binding ∆G (affinity) and the enthalpy ∆H, which can then

be used to calculate the entropy ∆S and the reaction stoichiometry (n). Having access
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to such profiles makes ITC certainly a powerful approach for ligand optimization, since

one can determine the enthalpic and entropic components of the binding energy. This

is extremely valuable in order to focus on fragments that are more enthalpic binders.

Those fragments are believed to be better starting points for optimization than entropic

binders [127]. However, due to the fact that assays require higher protein concentration,

ITC is no yet suited for large scale screening, making it a second or even third screening

technique rather than a primary one [128]. A good illustration of the use of ITC in

fragment optimization is the work of Edink et al. [129]. In this study, the authors

successfully grew a fragment towards an efficient ligand of acetylcholine-binding protein

(AChBP).

2.4.3 Thermal Shift Assay

TSA monitors the change in thermal stability of a protein under various conditions (e.g.

ligand concentration, pH or salts) [130–134]. At a certain temperature, the protein will

unfold and its hydrophobic core will be exposed and gets into contact with a sensitive

fluorescent dye. Ligands that bind to the protein would be expected to increase protein

thermal stability (i.e. the unfolding temperature) [135]. TSA is considered one of

the quickest and easiest methods for fragment screening [25, 107]. Due to the weak

interactions of fragments, the thermal shifts are expected to be small. A fragment

is considered to be a hit when the shift in temperature is above 1◦C (i.e. twice the

standard deviation of the measured melting point). TSA was successfully applied to the

discovery of fragments binding to the Y220C p53 tumor suppressor protein [136]. This

technique was also successfully applied in chapter 6 for the identification of a potentially

fragment-sized PIM1 binder.

2.4.4 High Concentration Screening

Biochemical assays are not the best-suited for fragment screening due to their poor

ability to detect fragments that bind weakly. Screening at high concentrations usually

yields a higher number of false positives due to reactivity, aggregation or interference

with the assays [118, 137–139]. Additionally, high concentrations require high solubility

of the fragments (about 1 mM). Although HCS has limitations, it offers the advantages

of HTS (i.e. mainly high throughput nature, low protein consumption and wide appli-

cability) [117]. Despite the aforementioned limitations, HCS was successfully applied as

primary fragment screening technique to identify inhibitors of beta-secretase (BACE-

1) [140], HSP90 [141], Checkpoint Kinase 2 (CHK2) [142] and B-raf [143]. The latter

24



yielded Vemurafenib three years later, the first FDA-approved drug resulting from an

FBDD effort.

2.4.5 Mass Spectrometry

Electrospray ionization mass spectrometry (ESI-MS) is an analytical method which con-

sists of ionizing a molecule and measuring its mass-to-charge ratio in gas phase in order

to detect its molecular weight. This technique can be applied to detect the binding

of fragments to a protein (i.e. an increase of the mass of the protein), and allows one

to calculate the dissociation constant (Kd) as well as the stoichiometry [144]. ESI-MS

requires only a small amount of protein or ligand and is considered as a fast primary

screening technique [145, 146]. The use of ESI-MS as fragment screening technique is not

as frequent as other methods, but nonetheless success stories exist for Hsp90 [144, 147]

or endothiapepsin [25].

2.4.6 Nuclear Magnetic Resonance

FBDD owes a lot to NMR due to the “SAR by NMR” in 1996 which was the first success

of a FBDD effort [148]. NMR is a powerful technique for 3D structure determination as

well as the measurement of protein-ligand interactions [149, 150]. Briefly, NMR spec-

troscopy rests on the magnetic properties of several atomic nuclei (N,C,H,F) to give fur-

ther information about the chemical environment they belong to. Two main approaches

exist for NMR screening: protein-detected NMR and ligand-detected NMR [151–153].

The protein-detected NMR can detect mM to nM interactions and provides information

about the binding site. However, it requires a large amount of labeled protein (50-200

mg) with high solubility [154]. Ligand-detected NMR can be done using different tech-

niques, most notably saturation transfer difference (STD) [155, 156] and water-ligand

observed by gradient spectroscopy (WaterLOGSY) [157, 158]. In those methods, an

irradiation pulse is applied at the resonance frequency of the biomolecule (STD) or the

water bulk (WaterLOGSY). The relaxation properties of the fragments extracted from

the 1H NMR signals allow to distinguish bound from unbound fragments. NMR is often

used as experimental technique in FBDD and was applied successfully to many targets,

mainly Hsp90 [159], Bcl2 [160], BACE-1 [161], PDK1 [162].

2.4.7 X-ray Crystallography

X-ray crystallography is a diffraction method which can provide very high resolution

data of a macromolecule (crystal) down to atomic level [163–166]. Crystallography is
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essential in the process of ligand optimization and is the pillar of any structure-based

campaign [167, 168]. This technique consists of bombarding the crystal lattice atoms

by X-ray beams. The diffraction information will then be used to generate a three-

dimensional picture of the electron densities. In the context of protein-ligand crys-

tallography, two main approaches are commonly used: soaking and co-crystallization.

Soaking consists of preparing pools of diverse fragments (each pool usually contains up to

10 fragments) and soaking the pools into the apo-protein crystals. Soaking can be done

with single fragment, but fragment pooling is believed to speed up the process. This

approach allows the structural biologist to identify (multiples) bound fragments in the

protein pockets [169]. Within the crystal, the protein ought to have a solvent-exposed or

unhindered binding site. If this is not the case, one can turn to co-crystallization in order

to determine the protein-ligand complex. The latter approach consists of crystallizing

a protein and a fragment. X-ray crystallography offers many advantages, most notably

the protein-ligand structure which can help to a better understanding of the binding

mode. It also gives the possibility to improve a crystallized fragment to a more potent

one using linking, merging or growing approaches (cf fragment optimization). X-ray

crystallography yields ligands with validated binding mode which make this technique

reliable [117] as secondary screening technique.

Nevertheless, a recent study done by Schiebel et al. from the Klebe group suggested

crystallography to be used as a primary screening technique in fragment-based lead

discovery efforts [26]. In a previous paper [25], the authors screened a library of 361

fragments [27] against endothiapepsin using six different biophysical screening methods,

namely fluorescence-based HCS, STD-NMR, RDA, native MS, MST and TSA. The

outcomes showed that the hits mutual overlap was surprisingly low. The authors decided

to have a closer look, and exhaustively soaked all the 361 fragments individually into the

protein. This procedure yielded 71 structures (20% hit rate !). Alarmingly, 31 hits (44%)

were not detected by the six aforementioned screening techniques and only 21 hits (30%)

were detected by one method. Hence, the best combination of two screening techniques

would only have yield a 26% hit rate. While this study surely emphasize the effectiveness

of crystallography, it is important to mention the described effort was an Herculean task.

Indeed, the attempt to crystallize 361 fragments took several months involving many

experts and a frequent access to a synchrotron beam. All those conditions are not yet

within the reach of everyone, but likely with enhancement of synchrotron source this

situation will change.

However, X-ray crystallography is still a low-throughput screening technique, it does not

provide the affinity of crystallized ligands and it is limited to protein targets that are

susceptible to crystallization (GPCRs are not amenable to such screening, as discussed

in chapter 3). X-ray crystallography was implemented in numerous fragment-based
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efforts aiming at different targets: endothiapepsin [25, 27], cyclin dependent kinase 2

(CDK2) [170], aurora A kinase [171], Janus kinase 2 (JAK-2) [172], PIM-1 [173] and

thrombin [174].

2.5 Synergy between in silico and in vitro Methods

Experimental techniques allow to identify fragment hits. Computational approaches

such as docking will help to predict fragment binders, but will ultimately need confir-

mation through experimental assays. In the best course of action, X-ray crystallography

will be used as ultimate step in order the determine the precise binding mode of the

fragment. This will be crucial for a later optimization (i.e. make the fragment bigger

and more potent). Should X-ray determination of the structure fail or be inapplicable,

one can still rely on computational approaches (docking) to predict the binding mode

of the fragment hit. This option is illustrated in chapter 4, where we successfully grew

new potent ligands for the β2AR based on the predicted binding mode of fragments.

Computational approaches can also assist X-ray experiments when preparing the pool

of fragments or help to prepare a fragment library for screening. In both cases, chemoin-

formatic approaches are implemented in order to ensure chemical diversity among the

selected fragments, as well as an estimation of the solubility if it is not available exper-

imentally. Diversity can be defined using standard Lipinski descriptors, any fingerprint

or more complex 3D descriptors such as shape complementarity (ROCS) [175, 176].

2.6 Fragment Optimization

Once the binding mode of a fragment has been described, either experimentally or

computationally, it can be used as starting point for an FBDD effort. Optimization can

then follow, striving at expanding the fragment into a bigger molecule and increasing

its potency and specificity. Three main approaches are conceivable in order to extend

fragments: growing, merging and linking (figure 2.5).

2.6.1 Growing

Fragment growing is the most often applied approach because it is considered more

straightforward and successful than the other techniques [177–179]. Growing aims at

extending a promising fragment (i.e. core fragment, usually the one that makes the

most compelling interactions) by adding new chemical features that will make additional

interactions within the binding site. Ultimately, doing so will improve the initial potency.
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Figure 2.5: Fragment based approaches in drug discovery: growing, linking and merg-
ing.

A compatible candidate for growing should contain reactive chemical features in an

unobstructed site. Depending on the chemical feature, one can then choose an organic

reaction in order to attach another group to the fragment. This scenario is illustrated in

chapter 4, where we successfully grew new ligands for the β2-adrenergic receptor using

reductive amination. One of the key considerations during the growing procedure is

that the binding mode of the core fragment should remain the same, even after several

growing iterations.

Fragment growing strategies have been applied successfully to various targets [118, 180,

181] including BACE1 [182], acetylcholine-binding protein (AChBP) [129], matrix met-

alloproteinases (MMP) [183] and phosphatidylinositol-3 kinases (PI3Ks) [184].

Growing approaches are extensively supported by computers and a lot of software tools

are available, including LUDI [89], SPROUT [185], CONCERTS [186], ReCore [187],

Caveat [188], BREED [189], GANDI [69] and BROOD [190]. However, one of the

main challenges of these programs is to assure synthetic feasibility. Several rules can

be implemented in order to assess whether or not a compound is synthetically feasible,

among them the most often used being BRICS [191], RECAP [192] or an estimation of

the so-called synthetic accessibility [193]. These approaches are based on knowledge of

28



chemical reactions in order to fragment the molecules. However, this does not assure

that the resulting fragments exist. An example of this problem is GANDI. This software

allows to link or grow fragments that were previously docked with SEED. A library of

linkers can be defined, but ultimately the process of joining two fragments together is

based on heavy atom (i.e. non hydrogen) bonds. For instance, if two carbons of different

fragments are in reasonable distance and angles to each other, the two atoms are linked.

Then, a simple minimization usually allows one to see if the generated compound is

energetically favorable. Should this be the case, the problem is still that the created

compound rely on the formation of a C-C bond, which is not the simplest connection to

achieve in organic chemistry. Therefore, even though most of the generated compounds

look appealing in silico, they might still be far from being synthesizable.

In order to bring a solution to this problem, we developed PINGUI, an in silico structure-

based growing workflow based on robust organic reactions and available building blocks.

The creation and application of PINGUI is illustrated in chapter 4.

2.6.2 Merging

Merging fuses two fragments that contain a common chemical feature known to bind in

the same position in a given target. The procedure is far from being easy to achieve,

mainly due to conformational limitations which need to be overcome. However, should

the merging be successful, the lost of translational and rotational degrees of freedom of

the two fragments is usually highly entropically favorable (up to 20 kcal/mol). A recent

study from Hudson et al. [194] illustrates this challenge and also offers guidance on how

merging could be done. The authors observed that the success (or failure) of merging is

correlated to the average distance between the common atoms of the two initial fragments

(i.e. not fused yet). Their analysis estimates that the maximum average distance should

be below 1Å. Moreover, the authors highlight the importance to correctly estimate

the internal strain of the generated molecule. If the two fused fragments are able to

reproduce their initial binding mode, but only with strong conformational constraints,

the generated molecule is likely to fail.

Merging strategies remain rarely applied in FBDD efforts [107], but some success stories

exist for targets including Hsp90 [159], Jun N-terminal kinase 3 (JNK3) [195] and PI3γ

kinase [184].
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2.6.3 Linking

Linking describes the process of joining together two non-competitive fragments (i.e

fragments that bind in two different positions of the binding site) with a linker. Theo-

retically, the generated compound should offer a lower free energy of binding than the

sum of the two initial fragments [107, 196]. The process of linking might be consid-

ered as the most challenging fragment optimization approach. Indeed, it requires to

find a linker which will respect the original conformational constraints of the two initial

fragments while making favorable interactions with the protein. On top of that, the

linker should introduce only little entropic penalty (i.e. avoid too many rotors) and

synthetic feasibility restrictions might arise, limiting the number of compatible linkers

even further.

Albeit being challenging, linking strategies were flourishingly applied to different targets

including thrombin [174], FK506 [11], lactate dehydrogenase [197] or Hsp90 [198].

One way to tackle the aforementioned challenges would be to divide the linking process

into two approaches we are already familiar with: growing and merging. Indeed, linking

could be assimilated as a two-step growing (A towards B and C towards B) coupled

with a merging (A-B with B-C) as illustrated in figure 2.6. Therefore, SCUBIDOO and

PINGUI, which were applied successfully in a growing context, could also be used as a

tool for a linking project.

Figure 2.6: Linking could be assimilated as a 2-step growing A (blue square) towards
B (red triangle) and C (green rectangle) towards B coupled with a merging (A-B with

B-C)
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2.6.4 SAR by Catalog

SAR by catalog consists of searching for similar compounds or compounds that do

contain the fragment of interest in databases of commercially available molecules [199].

This is usually done by similarity search using common fingerprints. Once analogs

have been identified, they can be purchased and tested. This approach can be used to

quickly generate derivatives for a fragment of interest. However, the number of generated

molecules is usually quite limited and this approach relies on already existing molecules.

A good illustration of this approach is the work of Jahnke et al. [200] at Novartis where

they designed new allosteric non-bisphosphonate FPPS inhibitors .

2.7 Conclusions

With currently two approved drug and more than 30 clinical candidates [201], fragment-

based approaches are gaining strong momentum in drug discovery efforts. Success stories

have been flourishing for a wide range of targets including challenging ones such as

membrane receptors (GPCRs). Those campaigns yielded high quality lead compounds

based on the identification of fragments paired with high LE.

This accomplishment rests on the recent progress made in the experimental field, where

fragment screening approaches made considerable leaps forward. Every experimental

method has its pros and cons that must be carefully weighted depending on the target.

Several techniques can be used in parallel to improve the reliability of the prediction. X-

ray crystallography and NMR are still the most reliable techniques which can be used in

the final step, since they allow to depict the fragment binding mode in its environment.

This is crucial for further optimization. Despite many advantages, fragment screening

approaches lack high-throughput format and often require high amounts of fragment

and protein.

This low-throughput nature and compound requirement can be compensated by com-

putational approaches, which allow to virtually screen millions of fragments in a few

hours. Thus, fragment libraries can be pruned in order to select only fragments that are

predicted as binders. This synergy allows to pre-select promising fragments and poten-

tially increase the hit rate in experimental assays. In silico approaches are also powerful

at generating plausible extensions when it comes to the fragment optimization stage

(growing or linking). Several tools were developed in order to assist the optimization,

but they often lack reliable synthetic feasibility filters, thus suggesting molecules that

might be impossible to synthesize with reasonable effort. Moreover, fragment docking

remains challenging because most of the presently available tools were developed for
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drug-like (bigger) compounds. Although several tools were developed to address this

issue, fragment binding mode prediction remains challenging due to the small nature of

fragments that tend to bind in different spots.

To address these two critical problems, I developed two tools in order to contribute to

the fragment elaboration cycle (figure 2.1). PINGUI (chapter 4) is an in silico workflow

aiming at growing fragments in a structure-based fashion combined with an assessment

of the synthetic feasibility. SCUBIDOO (chapter 6) is a free online database currently

containing 21M compounds (most of which do not exist yet) optimized towards high

likelihood of synthetic tractability. Every product in this database is the assembly

of two commercially available building blocks and comes with synthetic instructions.

Docking SCUBIDOO products could be equivalent to docking fragments disguised as

drug-like compounds. This notion will be explained in more detail in chapter 6, 7 and

8.
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”The man who passes the sentence should swing the sword.”

Lord Eddard Stark, A Game of Thrones (1996)



The Chapter 3 is made of two parts. A first part, written by myself, gives an introduction

to the GPCRs. The second part is an article which was submitted to the Journal of

Medicinal Chemistry and it is currently in revision. The authors list is the following

(by contribution order): Sylwia Gawron, Tonia Aristotelous, Florent Chevillard, Paul G.

Wyatt, Andrew L. Hopkins, Peter Kolb, Iva Hopkins Navratilova, Ian H. Gilbert. Sylwia

handled the synthesis part and the overall strategy. Tonia and Paul were responsible for

the SPR measurements. I contributed to the docking part, generation of the pictures

and binding modes analyses.
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Chapter 3

Structure-free optimisation of

fragments for the beta-2

adrenergic receptor

3.1 Introduction to GPCRs

G protein-coupled receptors (GPCRs) are the largest class of membrane proteins in the

human genome. They are involved in many physiological pathways including visual or ol-

factory senses, mood regulation, inflammation and immune system regulation. Because

of this important role they are targeted by approximately 40% of modern drugs [202–

204]. GPCRs are also known as seven-transmembrane domain receptors (7TM recep-

tors), because their structure is composed of seven helices that pass through the plasma

membrane.

GPCRs transmit signals from the cellular environment to the cytoplasm upon ligand

binding. The ligand binding process takes place in the extracellular environment and

will induce conformational changes in the receptor structure that will be translated into a

biological function. Some GPCRs exhibit a basal signaling activity that is modified upon

ligand binding. Agonists increase the basal activity while inverse agonists decrease it.

Ligands that do not alter the basal activity are called antagonists and block the access to

the orthosteric site (i.e. the cavity where the endogenous ligand binds), thus preventing

receptor activation. In an inactive conformation, the intracellular part binds to a nearby

G protein, which consists of three subunits Gα, Gβ and Gγ . When GPCRs are activated,

the intracellular part of the receptor will undergo major changes, prompting the Gα

subunit to exchange guanosine diphosphate (GDP) with guanosine triphosphate (GTP).

This exchange will provoke the dissociation of Gα from the remaining Gβγ complex and
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Figure 3.1: GPCR activation. Reprinted from Nature Publishing Group. Li, J. et al.
The Molecule Pages database. Nature 420, 716-717 (2002). All rights reserved.

the receptor (figure 3.1). Gα will trigger downstream cascades, resulting in different

biological signals involving other cytoplasmic proteins.

The β-adrenergic receptors (βAR) are an important subfamily of the GPCR and by

extension, relevant drug targets. βAR have three subtypes β1, β2 and β3. Activation

of the β2AR triggers bronchodilation, and agonists are crucial drugs for the treatment

of asthma. On the other hand, blocking the activation of the β2AR results in nullifying

the effect of the endogenous ligand epinephrine, which is involved in the fight-or-flight

response or more commonly known as stress response. Antagonists are medically used

to prevent tachycardia, cardiac arrhythmia or hypertension.
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GPCR ligands are identified using experimental assays, which can be divided in different

categories, namely receptor binding assays, G protein-dependent functional assays, G

protein-independent functional assays and receptor dimerization assays. Each category

will be briefly discussed below.

Receptor binding assays are used to identify GPCR ligands in a receptor-containing

membrane environment [205]. These assays can be used to determine the interactions

between a receptor and its ligand, namely the dissociation constant or the affinity. Such

assays are cell-free methods, which means they do not involve any downstream signaling

after the receptor. Consequently, the limit of these methods is that they do not provide

information about the efficacy profile of the ligand (agonist, inverse agonist or antag-

onist). Radioligand binding assays consist of displacing the binding of a radiolabeled

(3H or 125I) ligand to the receptor by a non-labeled compound. Such methods are high

throughput, but they do rely on the availability of radioligand (often expensive) and

generate radioactive waste.

G protein dependent functional assays analyze the biological response within a cell after

ligand binding. As mentioned earlier, upon ligand binding, the receptor will undergo ma-

jor conformational changes, which will activate the coupled G proteins. Once activated,

G proteins will triggers additional downstream signals. Several assays were developed

to measure G protein activation or G protein-mediated signals, namely GTPγS binding

assays, cAMP assays and Ca2+ or IP1/3 accumulation assays (figure 3.2).

• GTPγS binding assays measure the amount of non-hydrolyzable GTP analogue to

the Gα subunit [206].

• cAMP assays measure the intracellular concentration of cAMP and rely on the

activity of adenylyl cyclase, which is regulated by Gαs or Gαi/o proteins [207].

The activation of Gαs stimulates adenylyl cyclase activity, yielding an increased

level of cellular cAMP, while the activation of Gαi/o yields a decrease of cAMP

level.

• Ca2+ or IP1/3 accumulation assays rely on the activation of Gαq or Gαi which

activates phospholipase C (PLC), which in turn hydrolyzes phosphatidylinositol

biphosphate (PIP2) to form inositol triphosphate (IP3). IP3 activates the IP3

receptor, resulting in an outflow of Ca2+ from the endoplasmic reticulum (ER) to

the cytoplasm and thus an increasing intracellular Ca2+ concentration [208]. IP3

is quickly hydrolyzed to IP2 and then to IP1.

GPCRs may signal independently of G proteins. In order to monitor this, one needs

to make use of internalization assays which rely on the desensitization of GPCRs [209].
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Figure 3.2: G-protein-dependent assays. Reprinted from Nature Publishing Group.
Zhang, R. et al. Tools for GPCR drug discovery. Acta Pharmacologica Sinica (2012)

33: 372–384. All rights reserved.

During this process, GRKs phosphorylate activated GPCRs. The newly phosphorylated

GPCR will bind to cytosolic β-arrestins, thus preventing the activation of the G protein.

G protein independent functional assays consist of different methods, one of the most-

often used is the β-arrestin recruitment assay [210]. The β-arrestin pathway is distinct

from G protein pathway, meaning that each pathway could be modulated via ’biased

ligands’ [211]. Such ligands are pharmaceutically crucial, since they could potentially

give more insights into the functional selectivity of GPCRs. Indeed, this could help

to understand and potentially avoid side effects by activating (or suppressing) specific

pathways [212].

GPCRs can form dimers or oligomers with other GPCRs [213] and the dimerization pro-

cess can be monitored using various techniques. Among those techniques, the Foerster

resonance energy transfer (FRET) approach is widely applied [214–216]. FRET tech-

niques rely on the energy transfer between two chromophores (an acceptor and a donor).

The donor will transfer energy when an acceptor is in close vicinity. In a GPCR context,

donor and acceptor chromophores are fused to the C-terminus of GPCRs, and energy

transfer will be observed when donor and acceptor are brought close to each other (i.e.

dimerization). Dimerization of GPCRs has a crucial impact on receptor pharmacology

and signaling [217]. Thus, ligands targeting dimers or blocking dimer formation may

have very specific therapeutic effects [218].

Despite being important drug targets, crystal structures of GPCRs have been rare.

This can be explained by the difficulty of stabilizing the receptor in a membrane-like

environment. Furthermore, GPCRs are oscillating between inactive and active state

conformations and contain highly flexible intracellular and extracellular loops (ICL and

ECL respectively), hampering the crystallization process even more [219].
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In 2007, Cherezov et al. were the first to successfully crystallize human GPCRs, with the

β2AR in an inactive conformation [220]. To do so, they engineered a β2AR structure by

replacing the highly flexible ICL3 with T4 lysozyme [221], allowing to reduce conforma-

tional heterogeneity. This breakthrough opened many doors in both experimental and

computational fields. For instance, many opportunities flourished in structure-based ap-

proaches such as docking, with the possibility to virtually screen the β2AR with a better

accuracy than the current receptor models. This was quickly accomplished by Kolb et

al. [222] in 2009, with the discovery of novel chemotypes binding to the β2AR as well as

a high-affinity inverse agonist (Ki = 9 nM). A year later, the high affinity ligand was

crystallized [223] and the structure revealed that the predicted binding mode was very

close to the resolved one (RMSD = 0.9 Å).

However, inactive structures do not give information about the activation of the recep-

tor, which is also critical for a better understanding of GPCRs. The gap was filled in

2011 by Rasmussen et al. [224] with the resolution of an active-like conformation of the

β2AR in complex with an agonist (BI-167107). In this case, the challenge was to mimic

the activated G protein binding to the intracellular part. This was achieved by engi-

neering a nanobody (Nb80) acting as a surrogate of Gα. In a companion manuscript,

Rosenbaum et al. showed that even when bound to a covalent agonist, the β2AR crys-

tallizes in an inactive conformation [225]. This indicated that G protein or nanobody

interaction is required to stabilize the active conformation. These studies were followed

by the determination of active conformations in complex with three different agonists,

including epinephrine [226], an improved nanobody (Nb6B9), as well as a covalent ligand

complex [227].

With the knowledge of snapshots of both active and inactive conformations of the β2AR,

insights into the activation mechanism started to be revealed. The biggest difference was

observed in the cytoplasmic part, where the extremity of helix 6 shifted 11 Å outwards

in order to accommodate the activated G protein. Interestingly, no such drastic changes

were observed in the binding site. The major change is manifested mostly in His2966.58

(figure ). In the active receptor conformation, His2966.58 is part of a large polar network

involving the catechol moiety of the ligand, a water molecule, Tyr3087.35, Ser2045.43

and Asn2936.55. This polar network is located close to the orthosteric site, making

it smaller in the active conformation. In the inactive conformation of the receptor,

the aforementioned polar network is not so extended, resulting in an outward shift of

His2966.58[226, 228], resulting in a larger orthosteric site (Figure 3.3).

In parallel, other members of the GPCR family were successfully crystallized, including

the turkey β1AR [229], adenosine A2A [230], dopamine D3 [231], CXCR4 [232], histamine

H1 [233], M2 muscarinic receptor [234] or more recently OX2 orexin receptor [235].
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Figure 3.3: Polar network involved in the activation of the β2AR. The receptor in its
active is depicted in white carbons, while the corresponding residues of the receptor in

its inactive conformation are depicted in green carbons.

Despite the fact that a sizeable number of GCPR structures have been crystallized

in both active and inactive conformations, the mechanism of activation remains poorly

understood [226]. Every new structure solved can be seen as another snapshot of a stable

conformation which brings a new piece to the big puzzle that is the GPCR family. In

the future, diversity of the yet-to-be crystallized ligands should be emphasized in order

to adress a maximum of key residues that could be involved in GPCR activation. Such

tasks can be assisted by in silico techniques and will be illustrated in chapter 7, where

we started to generate tailored molecules that could bind to a multitude of polar residues

in proximity of the β2AR orthosteric binding site.

3.2 Abstract

Fragment-based drug discovery is making a major impact in the development of new

therapeutic agents. Generally this requires co-crystal structures of the protein and

fragment to guide the ligand optimisation. This is as there are multiple possible vectors

along which the fragment can be optimised and it is difficult to predict the optimal

vectors in the absence of structure. In this paper, we describe a protocol to optimise

fragments in the absence of structure. We have developed a decision tree to guide

optimisation of both the core scaffold and the different possible vectors for substituents.

This was applied to optimisation of fragment hits of the β2-adrenoreceptor (β2AR),

allowing generation of a “virtual” model of the active site. The decision tree provided a
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framework for optimisation of the fragments. Subsequently, it was possible to rationalise

the data by docking the fragments into a crystal structure of the receptor.

3.3 Introduction

Over the past 15 years, Fragment-based Drug Discovery (FBDD) has become an im-

portant and commonly used strategy for discovering small molecule drugs as evidenced

by delivery of drugs into the clinic and others in clinical development [236]. There are

several key benefits of FBDD. Firstly, it is possible to cover chemical space with far fewer

molecules than when using a conventional “lead-like” or “drug-like” chemical library, as

the molecules are much less complex [107]. Analysis by Fink and Reymond [237], sug-

gests that each additional heavy atom in a molecule increases the size of the chemical

space accessible by known synthetic chemistry by 8-fold. It can thus be concluded that

screening a 1000 member library that averages 14 heavy atoms (190Da) would be equiv-

alent to screening a library of over 1018 molecules of 32 atoms (450Da). Secondly, as the

fragments are small, they can often form very ligand-efficient interactions [14] with the

protein target, and it is more likely that they can take up optimum binding interactions

with the binding site [16]. When optimising the compound, it is very important to main-

tain these optimum binding orientations of the ligand to the protein to retain the ligand

efficiency (LE). In the vast majority of cases, this optimisation uses a Structure Based

Drug Discovery (SBDD) approach, relying on repetitive co-crystallisation of ligands as

they are optimised [179]. Unfortunately this limits the scope of FBDD, as many drug

targets cannot be crystallised, or are not amenable to “soaking” or rapid repetitive co-

crystallisation with ligands. Without knowledge of the binding mode of a novel hit, it is

very difficult to prioritise amongst a very large number of possible analogue design ideas,

given multiple vectors which can be optimised. In some cases computational approaches

will be useful in guiding optimisation in the absence of 3-dimensional structures, but

in general modelling methods are much more powerful and predictive when they are

guided by experimental binding modes. In this paper, we describe an approach to frag-

ment optimisation without the structural information available. To facilitate this, we

developed a decision-tree (or work flow) to try and minimise the number of compounds

that we needed to make and to maximise the information from each compound (Figure

3.4). There are two parts to this process: core optimisation and vector optimisation.

During the initial core and vector optimisation, maintaining good ligand efficiency was

a key goal. The fragment hits undergo core optimisation to maximise interaction of

the scaffold. The core can be optimised by scaffold hopping, probing the effect of sat-

uration/ unsaturation on the activity, isosteric replacement of functional groups, and

changing the atoms in heterocycles. Initial optimisation will be driven by a combination
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Figure 3.4: Decision tree

of ligand efficiency as well as overall potency, whilst retaining drug-like physicochemical

properties. Vector optimisation will be achieved by probing each possible vector with a

hydrophobic probe (e.g. a methyl) and a hydrogen-bond donor/acceptor which are also

polar (e.g. a hydroxyl group). Where the fragment hit is binding tightly to the pro-

tein binding pocket, any probe at this position (either methyl or hydroxyl) will reduce

potency. Where the probe has no effect on activity at a position on the fragment, it

implies that such a position is not immediately adjacent to the protein binding pocket,

that this vector points into solvent or that it does not interact directly with the protein.

This case suggests further probing of this position would be valuable to see if additional

interactions can be picked up. Finally, if the probe causes an increase in binding po-

tency, this suggests a favourable interaction with the binding pocket. Further work is

then required to see if this is an optimum interaction or whether there is more scope for

optimisation.

3.4 GPCRs- beta receptor

G-protein coupled receptors (GPCRs) represent the largest family of membrane-bound

receptors. They are key modulators of cellular processes including inflammation, secre-

tion, neurotransmission, cellular metabolism, and growth. In consequence, GPCRs are

one of the most common drug targets among the current pharmacopoeia [238]. The

β1, β2 and β3 adrenergic receptors are class A GPCRs, activated by endogenous ligands

adrenaline and noradrenaline [239]. Drug discovery efforts have produced a number

of clinically relevant agonist and antagonist molecules. For example, agonists of the
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β2AR present in cardiac, respiratory tract smooth muscle and adipose tissue are used

to treat asthma. Historically, GPCR ligands have been discovered by high-throughput

screening of cellular systems [240]. Recently, Surface Plasmon Resonance (SPR) an im-

portant technology for fragment screening [119], has been extended to GPCRs [241].

The advantage of SPR based screening is that it has a potential to identify orthosteric

and allosteric ligands of proteins and can also use protein complexes as targets. This

opens up new possibilities, as crystallography of GPCRs is not yet amenable to the

medium- or high-throughput approaches necessary for ligand design [223? ]. Recently

we demonstrated a FBDD approach to discovering GPCR ligands by SPR screening,

which resulted in highly potent fragments towards the β2AR wild type receptor [120].

In this paper, we report a structure-free optimisation of β2AR receptor ligands using

SPR screening of wild type receptor as the experimental readout.

3.5 Chemistry and Biology

Our starting point as indicated in our original publication was a set of 4-substituted

quinoline analogues (Figure 3.5) [120]. A total of five fragment hits were reported:

fragments A to E with dissociation constants ranging from KD = 0.017 µM to KD =

22 µM. These were active through binding to the orthosteric pocket. Functional studies

indicated that these acted as antagonists through binding to the orthosteric site. A

similar chemotype has also been reported by Christopher et al [242]. Compounds were

synthesised using 4-chloro quinoline derivatives which reacted with amines in presence

of K2CO3 as a base in DMF (Figure 3.6). Compounds were assayed using SPR; this

was a powerful and rapid way to screen a focused set of compounds, giving information

including binding affinity, and “on-” and “off-rates” (Table 3.15). It is important to note

the SPR assays were conducted at 10◦C to increase stability of the receptor on the sensor

surface. Affinities may appear to be higher and off-rates slower at lower temperatures,

however the data collected using SPR were used for compound ranking. Compounds

generally had a moderate residence time and the compound with highest affinity (24)

had the longest residence time.
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Figure 3.5: The initial hits against the β22AR

Figure 3.6: Synthesis of the quinolines

Figure 3.7: Scaffold Optimisation
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3.6 Results and Discussion

3.6.1 Core Optimisation

First, core optimisation was undertaken (Figure 3.7). Starting with the undecorated

quinoline core (1) the isoquinolines (2 and 3), the azaindole (5), and the pyridine scaf-

folds (4 and 6) were prepared. Comparing the KD values for the compounds it can be

seen that compounds 1, 2 and 5 have the highest KD values of 0.34 µM, 0.52 µM and

0.60 µM respectively (Figure 3.7), with very similar ligand efficiencies. To investigate

the influence of the second fused aromatic ring the pyridine scaffolds (4 and 6) were syn-

thesised. In the case where the pyridyl nitrogen was para to the piperazine (compound

4), the second aromatic ring improved the binding affinity and ligand efficiency, suggest-

ing that it is involved in an important interaction here. However, when the nitrogen was

ortho to the piperazine ring (6) the ligand efficiency was more similar to compound 1.

Interestingly looking at the Ligand Lipophilicity Efficiency (LLE) values, the presence

of the second aromatic ring in the quinolones appears not be driven solely by lipophilic

interactions. It was decided to pursue the quinoline scaffold, which had the best ligand

efficiency and a good LLE (higher than 5). This scaffold also had more options for

vector optimisation and there was commercial availability of substituted quinolines. To

optimise the vectors, we substituted as many positions as possible around the quinoline

ring with a methyl group. Additional substituents, such as F, Cl and CF3 were used as

well to provide more information. Attempts to substitute hydroxyl groups proved syn-

thetically challenging in most vector directions. Table 3.8 presents the activity for the

derivatives with vectors located at different positions around the quinoline ring. We can

conclude that when the substituent at R1 is Me or CF3 (7 and 10), a 5-10-fold increase

in binding affinity was observed when compared to unsubstituted quinoline (1). In the

case of compound 7 there was an increase in ligand efficiency and LLE, whereas with

compound 10 the increase in binding affinity was countered by the increase in number

of heavy atoms, leading to a slight drop in ligand efficiency. There was also a drop in

LLE of compound 10, suggesting that some of the activity may be driven by increased

lipophilicity of the ligand. The increase in binding affinity might suggest a lipophilic

pocket in the active site. Compounds 8 and 9 are the isoquinoline analogues of the

scaffold. When substituting quinoline with isoquinoline, affinity and LE were improved.

This additional binding was not driven primarily by non-specific lipophilic interactions

since the LLE increases. Compounds 8 and 9 both have a substituent in the R1 position

and a change of the position of the nitrogen. We can see a small rise in binding affinity

when R4 is substituted with small and hydrophilic fluorine as seen in compound 9. Com-

pound 9 is the most potent compound from the series with a KD of 0.0024 µM and LE

of 0.58. Comparing compounds 10 and 11, we can observe that Me in R2 caused a very
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Figure 3.8: The binding affinity and ligand efficiency of analogues with different
vectors.

small increase in affinity and ligand efficiency. However, a methoxy (MeO) in the R2

position caused a drop in both affinity and ligand efficiency (compound 16). Therefore, if

there is any steric space available around the R2 position, it is probably limited. When

R3 is substituted with CF3, a drop in affinity and ligand efficiency was observed (13

and 14), suggesting that there is little room for substituents at this position. Likewise,

when R4 is Me (12), we observed a drop in affinity and ligand efficiency, suggesting that

substituents at this position are not tolerated.

When R1 is OH, as in compound 15, the compound showed a similar binding affinity and

ligand efficiency to compound 1 and reduced affinity and ligand efficiency compared to

compounds 7 and 10. In compound 15, the hydroxyl may of course be in the alternate

“pyridone” tautomeric form. We were interested to understand the effect of the R1

substituent on the pKa of the quinoline nitrogen and the effect, if any, this would have

on activity. The pKa values were calculated using Jaguar pKa [243]. The data is shown

in Figure 3.9. This assumes that the compounds are planar and the piperazine nitrogen
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Figure 3.9: Calculated pKa values of key functional groups.

is conjugated with the quinoline ring. Docking (see later) suggests that the piperazine

ring may be slightly twisted out of plane, which probably reduces the basicity of the

quinolone nitrogens. However, it can be concluded that the pKa of the nitrogen in the

quinoline ring does not have influence on the binding affinity. Comparing compounds 7

and 11, there is no significant difference in affinity, despite a change in pKa from 7.3 to

1.6.

Table 3.10 shows data when the piperazine moiety was modified. Some interesting

points can be deduced here. Comparing compounds 17 and 18, there is a 100-fold drop

in binding affinity on methylating the piperazine NH. Compound 18 will be predomi-

nantly protonated at physiological pH and so potentially is an H-bond donor. Possibly

either the steric bulk of the methyl substituent provides a steric clash with the receptor

or the presumed equatorial orientation of the methyl on the piperazine nitrogen prevents

H-bond formation (with Asn3127.39 – see docking studies later). The docking studies

results suggest the latter, where there is a hydrogen bond predicted between the equato-

rial hydrogen and Asp1133.32 for compounds 10 and 11. Comparing 17 with 19 and 20,

both the hydrogen bond donor and positive charge have been removed and there is an

even larger drop in binding affinity. In lactam 23, the H-bond is retained, but the basic

centre removed. Here there was a 25-fold loss in binding affinity compared to compound

17. All this data suggests that both the H-bond donor and basic group are required

for strong binding. When R6 and R7 were substituted with Me (compound 21) both

affinity and LE decreased dramatically - this might suggest steric clashes. Compound

22 lost both LE and affinity, with affinity decreasing around 10-fold; this supports the

hypothesis that there is a limited steric space around the piperazine part of the molecule

which can tolerate only one methyl. We also tested some of the quinoline compounds

with dimethyl amino pyrrolidine at position 4 rather than the favoured piperazine (Ta-

ble 3.11). We can see that this substitution was beneficial for both ligand efficiency and

affinity. Compound 25 was one of the most potent compounds from the series with KD

0.005 µM. Whilst this compound does not have an explicit hydrogen to form an H-bond

48



Figure 3.10: Modifications to the piperazine ring.

on the dimethylamino group, it is presumably protonated at physiological pH, forming

a H-bond donor, predicted to H-bond to Asp1133.32. Further the N-methyl makes a

lipophilic interaction with Trp1093.28 (explained in the docking section).

3.6.2 Docking

Subsequent to the chemistry work, a docking study was undertaken in order to correlate

the predicted binding modes with the SAR observed in the β2AR SPR assay. Given

the number of molecules and the high fidelity of pose prediction that we were able

to achieve in the past [222], docking can be considered the method of choice in this

context. There is a crystal structure of the β2AR (PDB 2RH1) with carazolol bound [221,

226] (Figure 3.12, Numbering of residues is according to Ballesteros-Weinstein [244]).

Carazolol is a high affinity inverse agonist of the β-adrenergic receptors and binds into the

orthosteric pocket of the receptor, which is a binding pocket for the derivatives described

in this paper, as shown by the pharmacology assays described in Aristotelous et al [120].

The compounds were docked into the classical, orthosteric pocket of β2AR using Fast

Exhaustive Docking (FRED) [58, 81] (see Figure 3.12 for a map of the β2AR orthosteric

pocket). Test calculations were also performed with the β2AR in an active conformation

(PDB 4LDL) and yielded differing poses, which is consistent with expectation for inverse

agonists or antagonists. The poses of the compounds were scored and the best-ranking

poses compared to the findings from SPR assays to rationalise and explain the binding
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Figure 3.11: Modifications to the piperazine.

affinities obtained. Using this information, it was possible to compare our “virtual

image” of the binding site obtained by SPR experiments with the protein structure.

The two binding site images overlapped to a high degree. The docking campaign also

suggested possible future work which should further improve the affinity of the fragments.

Analysis of the top ranked poses of the compounds revealed a number of key interactions

with the binding site. Compound 1 (the undecorated 4-piperazine quinoline scaffold) was

used as a reference compound, when analysing the docking (Figure 3.13 and 3.16). Key

compounds are discussed in the main text, while the remaining molecules are examined

in the SI.

• The basic nitrogen of the piperazine is in close proximity to the side chain car-

boxylic acid of Asp1133.32 (2.6Å) which will give a charge-assisted H-bond (a salt-

bridge).

• The rest of the piperazine fits into a narrow pocket forming lipophilic interactions

with the side chains of Trp1093.82, Ile1694.61, Phe1935.32 and Tyr3087.35.
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Figure 3.12: Coloured map of the binding pocket illustrating carazolol (magenta car-
bons) bound to the β2AR (PDB ID 2RH1). The yellow zone is lined by residues
Asp1133.32 and Asn3127.39; the green zone is bordered by Ile1213.40, Val1173.36,
Phe2085.47, and Phe2826.44; the red one is formed by Ser2035.42, Ser2045.43, and
Ser2075.46; and finally, the blue zone is lined by Thr1955.34, Tyr1995.38, Phe2906.52

and Asn2936.55

• The quinoline moiety binds to a cavity/ surface bounded by Val1143.33, Thr1955.34,

Tyr1995.38, Phe2896.51, Phe2906.52 and Asn2936.55 (blue zone in Figure 3.12).

• The quinoline nitrogen could potentially form a H-bond interaction with Ser2075.46

(Figure 3.13 and 3.16). When docked as the protonated form of the quinoline,

compound 1 had a very similar binding mode to that of the un-protonated form

(when it acted as an H-bond acceptor from Ser2075.46). In general the binding of

the compounds did not seem to correlate with the pKa of the quinolone nitrogen.

In addition, the isoquinoline analogues (8 and 9) both are very potent, but cannot

make this interaction. Therefore we can conclude that this interaction was not

particularly important, perhaps due to the penalty for desolvation of the quinoline

nitrogen on binding.

• An examination around the quinoline binding site showed that the protein binding

site is mostly hydrophobic. At the bottom of the pocket there are polar residues

Ser2034.42, Ser2045.43 and Ser2075.46 (red zone in Figure 3.12). On the front there

is a small lipophilic pocket lined by residues Ile1213.40, Val1173.36, Phe2085.47 and

Phe2906.52 (green zone in Figure 3.12). Vector R1 points in this direction and

when the substituent is lipophilic we observed an increase in affinity.
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Figure 3.13: Undecorated 4-piperazine quinoline scaffold (compound 1, green car-
bons), R3-decorated scaffold (compound 13, black carbons) and R1-decorated scaffold
(compound 7, pink carbons) docked into the binding site of β2AR.Compounds 7, 10
and 11 were more potent than compound 1. On docking these into the binding site,
the R1 substituent in compound 7 appeared to have a lipophilic interaction with the
active site as does the hydrophobic substituent at R2 for compound 11. Interestingly
the molecule is predicted to flip around the piperazine axis between compound 1 and
compound 10 (Figure 3.17) and 11. This flip could be caused by the CF3 group forming

halogen interactions with Asn2936.55.

A map showing the different regions of the orthosteric binding site is shown in Fig-

ure 3.12.

Figures 3.13 and 3.18 also show the predicted binding pose of compound 13, which differs

from compound 1 in that there is a CF3 group at the R3 position. In this pose, due to the

steric constraints the CF3 group does not occupy a hydrophobic part of the active site,

but rather points towards the polar atoms of Asn2936.55. This may explain the SPR

data in which affinity drops by around 10-fold when compared to the un-substituted

quinoline (compound 1). When looking at the docking pose, the general orientation of

the scaffold is retained compared to compound 1 (Figure 3.13), and there’s enough space

around R1 to be filled with some other substituents, preferably hydrophobic/ lipophilic

Me/CF3.

Almost all of the synthesised compounds occupy the same space in the pocket, and

the H-bond formed between piperazine and Asp1133.32 anchors the compounds. When

piperazine is substituted with di-methyl-aminopyrrolidine (25), the compound showed
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Figure 3.14: Compound 25 docked into the β2AR structure. (A) The R-enantiomer;
(B) the S-enantiomer.

an improved affinity in the SPR studies. The dimethylamino group is presumably pro-

tonated at physiological pH and can still form a salt-bridge with Asp1133.32. There are

two enantiomers for compound 25. When docked each of the enantiomers has a different

binding mode. The S-enantiomer has a binding mode, where the methyl at R1 fits in the

hydrophobic part of the with Asp1133.32 (Figure 3.14 (B)) pocket and the NH of pyrro-

lidine forms a H-bond. There may also be a lipophilic interaction between one of the

methyl groups in the pyrrolidine part of the molecule and Trp1093.28 A hydrogen bond

interaction was observed between the nitrogen from the quinoline ring and Ser2035.42.

This is a favourable set of interactions. In contrast, the R-enantiomer has the quinoline

ring flipped, causing loss of the critical H-bond with Asp1133.32 and losing the lipophilic

interactions with the binding pocket (Figure 3.14 (A)).

3.7 Conclusion

In this paper we have reported the optimisation of fragment hits of the β2AR. The

basis of this optimisation was a decision tree for core and vector optimisation. The

rationale for this tree was that even small changes in either the core or the vectors can

have a substantial impact on the activity of a molecule, in particular a fragment. This

would then give valuable information on how to optimise a fragment in the absence of

structural information. We were able to demonstrate that this was the case. By careful

53



analysis of the ligand efficiency, this should show whether a substituent was favourable

or non-favourable. In addition, the use of the lipophilic ligand efficiency is helpful in

determining whether the changes are driven by non-specific lipophilic interactions.

In this case, we had the advantage of a starting point with a good ligand efficiency. These

fragments were successfully optimised using this process in the absence of structure.

By careful choice of small substituents, we were able to rapidly understand potential

vector for optimisation of the hits. In this case, there was information available on the

structure of the receptor and a ligand co-crystallised with the receptor. By docking

experiments with the ligands prepared in this project, we were then able to rationalise

the results, which gives added confidence to our decision tree. It can be concluded that

our decision tree approach has helped the optimisation process and it can be used to

grow the fragments further, albeit in this case the starting fragments had an unusually

high potency.
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3.9 Supporting Information

3.9.1 Methods

3.9.1.1 Chemistry

General Methods Chemicals and anhydrous solvents were purchased from com-

mercial sources and were used without further purification. 1H NMR spectra were

recorded on Bruker Avance DPX 500 spectrometer. Chemical shifts (δ) are expressed

in ppm. Signal splitting patterns are describe as singlet (s), broad singlet (bs), dou-

blet (d), triplet (t), quartet (q), multiplet (m) or combinations therof. LC-MS analyses

were performed with either an Agilent HPLC 1100 series connected to a Bruker Dal-

tonicsMicroTOF, or an Agilent Technologies 1200 series HPLC connected to an Agilent

Technologies quadrupole LC/MS, both instruments were connected to an Agilent diode

array detector.

General Procedure All compounds were made using the following general proce-

dure. A mixture of 4-chloroquinoline (0.30 mmol), amine (0.60 mmol) and K2CO3 (0.75

mmol) in DMF (5 mL) was stirred at 120◦C for 16 h. After monitoring the end of the

reaction by LC-MS, the mixture was concentrated in vacuo and the residue was parti-

tioned between EtOAc (20mL) and brine (20 mL) twice. The combined organic layers

were dried over MgSO4 and the solvent was removed in vacuo to afford the compound.

LCMS data were obtained using electrospray and showed final compounds had purity

higher than 95%.

3.9.1.2 SPR methodology

A human β22 adrenoceptor construct containing a FLAG tag at the N-terminus and

histidine 10 (His-10) tag at the C-terminus was generated for baculovirus expression in

Sf9 cells. The receptor was solubilized and purified as described before [245]. SPR assay

for kinetic characterisation validating activity of the β2 adrenoceptor sensor surface

was described previously [120]. The same method was applied in this study. Briefly,

the β2 adrenoceptor was captured via His-10 tag on NTA sensor chip in capture buffer

consisting of 50 mM Hepes pH 7.4, 150 mM NaCl, 50 uM EDTA, 3% DMSO, 0.01% MNG

(lauryl maltose neopentyl glycol) obtaining capture levels 10,000-11,000 RU. Biacore

T100 and T200 were used for all experiments, and in order to increase stability of the β2

adrenoceptor on the surface all experiments were conducted at 10◦C to increase stability

of the receptor on the surface. Solid compounds were solubilized in 100% DMSO and
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then diluted into running buffer to a final DMSO concentration 3%. For kinetic analysis

compounds were screened at 30 – 60 s for association and 60 – 600 s for dissociation

at concentrations adjusted according to the affinities (2-fold or 3-fold dilutions between

300 uM and 0.23 nM – total highest and lowest concentration, the selection of highest

and lowest concentration was adjusted for each compound separately to obtain suitable

concentrations for kinetic fit) at flow rate 30 uL/min. Scrubber 2 software (BioLogic

Software, Australia) was used to fit kinetic data. 1:1 model including mass-transport

limitation was used, affinity was calculated as ratio of calculated parameters for off-

rate/on-rate (ka/kd).

3.9.1.3 Docking preparation

The docking calculations were performed with the β2AR inactive structure in complex

with carazolol (PDB: 2RH1) [220, 221] using FRED [58, 80, 81] and up to 10 poses

were generated for each compound. All ligand, solvent and lipid molecules were re-

moved. All compounds studied through docking were subject to conformer generation

using OMEGA [57], with an RMSD of 0.1Å. The protonation states were defined using

QUACPAC [246]. Binding modes were chosen based on their interaction with Asp1133.32

and lack of interaction violations, e.g. non-interacting hydrogen-bond donors, charge

mismatches and unlikely torsion angles.

3.9.2 Results

3.9.2.1 SPR

3.9.2.2 Docking

The quinoline nitrogen is likely to be a much poorer H-bond acceptor in compound

10, compared to compound 1, due to the electron withdrawing characteristics of the

CF3 group, weakening potential interactions with Asn293. Compounds 10 and 11 differ

only by one methyl and are predicted to bind in the same way. Compound 11 gave

a marginally better affinity (20nM against 70nM) and also is predicted to have higher

lipophilicity (clogP = 3.4 against 2.9). This extra binding energy may well be driven by

lipophilic interactions of methyl with the hydrophobic part of the pocket. The higher

LLE for compound 11 suggests this lipophilic interaction is specific.

In the docking pose of compound 12 (Figure 3.19) we can observe the influence of the Me

substituents at position 8 (R4). In SPR studies we have observed a significant drop in

both affinity ( 10 fold) and ligand efficiency compared to the undecorated quinoline core
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Figure 3.15: Data for key scaffold hops.

Figure 3.16: Undecorated 4-piperazine quinoline scaffold (compound 1), docked into
the binding site of β2AR.

(compound 1). Such a change in affinity can be explained by the docking model. The

Me substituent at position R4 prevents the quinoline from sliding deep into the pocket,

and changes the orientation of the ring in the pocket to the less favourable orientation.

Loss of potency might be due to the lack of interaction with the bottom hydrophobic

part of the binding pocket. The movement of the quinoline core probably reduces the

lipophilic interactions of the phenyl moiety with Tyr199 and Phe193. Potential stacking

interactions with Asn293 are also lost.

The methyl substitutions on the piperazine ring (compound 21, figure 3.20) decreased

the binding affinity to the receptor by more than 1000-fold. In the docking prediction
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Figure 3.17: Compound 10 docked into the β2AR structure. Piperazine forms an
H-bond with Asp113, through the equatorial hydrogen.

Figure 3.18: Compound 13 docked into the β2AR structure.

Figure 3.19: Compound 12 docked into the β2AR structure
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Figure 3.20: Compound 21 docked into the β2AR structure

the disubstituted piperazine is too wide to slide through the narrowest part of the target,

preventing the quinoline moiety molecule from entering into the active site.
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”Growing strong.”

House Tyrell, A Song Of Ice And Fire



The chapter 4 is an article about to be submitted. The submission is bound to a com-

panion paper of our biologist collaborator, where they will describe their new assay. The

authors list is the following (by contribution order): Chevillard F., Rimmer H., Betti C.,

Pardon E., Ballet S., Steyaert J., Diederich W. E., and Kolb P. I was responsible of the

overall growing strategy, creation of the PINGUI workflow, selection of the molecules to

synthesize, online implementation of the PINGUI toolbox (within SCUBIDOO) and the

pictures generation. Helena Rimmer synthesized three compounds (K010) and Cecilia

Betti synthesized five compounds (K011). Helena is second author because she worked

on our initial hit (Z32501319) identified by Peter Kolb. Els Pardon was responsible of

the assays.
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Chapter 4

PINGUI: Binding-site compatible

growing applied to the design of

β2-adrenergic receptor ligands.

4.1 Abstract

Fragment-based drug discovery is intimately linked to fragment extension approaches,

such as growing, merging or linking. These approaches can be accelerated using soft-

wares or computational workflows for de novo design. Although computers allow for

the facile generation of millions of suggestions, this often comes at a price: uncertain

synthetic feasibility of the generated compounds, potentially leading to a dead end in

an optimization process.

In this study we computationally extended, chemically synthesized and experimentally

assayed new ligands for the β2-adrenergic receptor (β2AR) by growing fragment-sized

ligands. Our approach is based on the assumption that each individual building block to

be added should engage in favorable interactions with the protein on its own. In order

to address the synthetic tractability issue, our in silico workflow aims at derivatized

products based on robust organic reactions. Hence, growing is guided by both the

protein structure and synthetic feasibility.

The study started from the predicted binding mode of five fragments. All five fragments

were predicted to bind within the orthosteric site of the β2AR. We suggested a total

of eight diverse extensions aiming to fill the secondary binding pocket (SBP) adjacent

to the orthosteric site. The eight compounds were successfully synthesized and further
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assays showed that four products had an improved affinity compared to their respective

initial fragment.

The described workflow can improve early fragment-based drug discovery projects, espe-

cially in the realm of fragment growing strategies because it suggests extensions that are

very likely to be attachable, making it a useful creative tool for medicinal chemists during

structure-activity relationship (SAR) studies. We made the bulk of the computer-aided

approaches that were used in this study freely accessible online. This toolbox called

PINGUI aims at assisting fragment-based growing projects towards new products which

offer a high likelihood of synthetic tractability.

4.2 Introduction

In the past few years, fragment-based drug discovery (FBDD) has continuously gained

in popularity and has become a dominant approach in order to explore novel chemical

entities [6, 10]. The year 2011 witnessed an important success for this field, with the

first drug (Vemurafenib), originating from a hit found in a fragment-based screening,

reaching FDA approval [143, 247].

Fragments are commonly regarded as attractive alternatives compared to standard com-

pounds contained in the libraries used for HTS campaigns. They are small molecules

(MW < 300 Da) and usually offer better solubility, making them favorable in terms of

ADMET (absorption, distribution, metabolism, excretion and toxicity) properties [22].

Moreover, it’s easier to cover chemical space with fragment-sized molecules: screening

a set of 1’000 fragments is claimed to be equivalent to probing the chemical space of

1’000’000 drug-like molecules [17]. Because of their simplicity and few polar polar in-

teraction points, they also have a higher chance to bind to a given protein with optimal

interactions. However, because they are smaller, fragments usually bind with low affinity

compared to drug-like molecules, resulting in the need for screening at high concentra-

tions. Yet, those that bind do so with high ligand efficiency (LE), defined as the ratio of

Gibbs free energy (∆G) and the number of heavy atoms [14]. Fragments are thus often

considered advantageous starting points for exploratory synthesis campaigns.

Several biophysical techniques can deal with the low affinity and therefore high con-

centration of fragments and allow detection of binding to a protein. Among them,

surface plasmon resonance (SPR), isothermal calorimetry (ITC), thermal shift assays

and mass spectrometry (MS) have been successfully implemented in fragment-based

drug discovery pipelines [110, 111]. However, since the interactions remain weak, struc-

tural methods such as X-ray crystallography[112] and NMR[113] might be preferable, as
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they lead to fewer false positives during screening campaigns [17]. These two structural

techniques can in principle determine the precise binding modes of a fragment within a

protein target, thereby also laying the foundation for subsequent structure-based design

approaches.

When no experimental data is available, the binding mode of a fragment within an

active site can be predicted using in silico methods, most notably docking. It has to

be noted that, because of their propensity to bind in more than one mode, fragment

binding mode prediction remains challenging. Moreover, most of the docking programs

were parametrized and optimized for drug-like molecules, which might lead to a relative

imbalance of the individual terms in a scoring function [22]. Consequently, several pro-

grams have been developed more specifically for fragment docking, including MCSS [103],

SuperStar [104, 105] and SEED [77, 78].

Once the binding mode of a fragment has been determined, either experimentally or com-

putationally, it can be used as starting point for an FBDD project, aiming at expanding

the fragment into a bigger molecule, while concomitantly increasing its potency.

Three main approaches are conceivable in order to extend fragments: merging, linking

and growing (Figure 2.5). Merging concatenates two fragments that contain a common

portion known to bind at the same position in a given target. The linking strategy

describes the process of joining two non-competitive fragments (i.e. fragments that bind

in two different regions of the binding site). Growing is based on only one fragment and

aims at extending it within the binding site, looking for additional interactions that could

improve affinity or selectivity. Growing is the most frequently used approach because it

is considered more straightforward and successful than the other techniques [177, 178].

Growing approaches have extensively been implemented in computer softwares, in-

cluding LUDI [89], SPROUT [185], CONCERTS [186], ReCore [187], Caveat [188],

BREED [189], GANDI [69] and BROOD [190]. However, one of the main challenges of

these softwares is to assure the synthetic tractability of the designed molecules. Several

rules can be implemented in order to assess whether or not a compound is synthetically

feasible, among the most frequently used are BRICS [191], RECAP [192] or an estima-

tion of the so called synthetic accessibility score [193]. These approaches are based on

knowledge of chemical reactions in order to analyze molecules.

Proceeding the other way around is also possible: attaching two available building blocks

using a compatible chemical reaction. Hartenfeller et. al. developed a library of 58 ro-

bust organic reactions [1, 2], based on often-used chemical reactions in the pharmaceuti-

cal field [248]. These reactions are at the core of our PINGUI (Python In silico de Novo

Growing UtIlities) toolbox and define the first step of this study: creating a focused
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library consisting only of building blocks that are compatible with the core fragment for

further synthesis.

Secondly, our approach for fragment growing is based on the assumption that each

individual building block should engage in favorable interactions with the protein by

itself. In the alternative approach, namely pre-attaching extensions to core fragments

and re-docking the resulting compounds, slightly unfavorable extensions might be com-

pensated and thus masked. Within the PINGUI workflow we generate maps containing

a large number of favorable poses for each extension building block. Based on the crys-

tallographic or computed binding mode of the core fragment, building blocks are then

chosen such that reactive groups are within geometrically feasible distances and angles,

therefore allowing bond formation between the core and an already optimally placed

building block to occur. In this way, fragment chemical and positional space is pruned

at an early stage and only optimally positioned fragments with favorable interactions

are retained. Re-docking of the computationally derived products ensures that the ini-

tial assumption (i.e. that each component of a molecule is, when regarded individually,

located in an optimal spot) is still valid. A large deviation from the original (predicted)

binding mode would violate this assumption and lead to the removal of the product

from further consideration. Hence, growing is guided by the protein structure and the

synthetic tractability.

In this manuscript, we describe the design of new ligands of the β2AR by employing

the PINGUI toolbox. Five different fragments were grown and have in common that

they are predicted to bind in the orthosteric site with a reaction-compatible reactive

feature (herein an amine) near the SBP (Figure 4.1). Therefore, each growth was di-

rected towards the SBP. Experimental results demonstrated that all the eight suggested

molecules were successfully synthesized and half of them had a more favorable affinity

than the initial fragment.

4.3 Methods

4.3.1 The β2AR binding site

The β2AR binding site sits buried in the extracellular part of the receptor with only

a small fraction accessible to solvent [222]. For the sake of this study, we divided the

binding site in two smaller cavities: the orthosteric site and the SBP (Figure 4.1). While

most of the orthosteric site is hydrophobic, important polar residues shape its contour:

Ser2035.42, Ser2045.43 and Ser2075.46 in transmembrane helix 5 (TM5) define the bottom

of the orthosteric site. These serines are involved in receptor activation [224, 225, 228].
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Figure 4.1: Sliced surface side-view of the binding site of the β2AR in its active
conformation (PDB code 2RH1). The orthosteric site is colored in green and the SBP

in blue.

Asn3127.39 and Tyr3167.43 in TM7 and Asp1133.32 in TM3 offer strong electrostatic

points that interact with the amine moieties of most known ligands. The SBP is defined

by a small hydrophobic cavity (Trp1093.28, Phe1935.32 and Ile3097.36) and a number

of more solvent exposed polar residues (Asp192ECL2 and His932.64) which agonists are

known to interact with [224–228].

The difference in the orthosteric site between the inactive and active receptor conforma-

tion is manifest mostly in His2966.58 [226, 228]. In the active-like receptor conformation

(PDB 4LDE), His2966.58 is part of a large polar network involving the catechol moiety

of the ligand, a water molecule, Tyr3087.35, Ser2045.43 and Asn2936.55 [226, 227]. This

polar network is located close to the orthosteric site, making it smaller in the active con-

formation (Figure 4.2). In the inactive conformation of the receptor, the aforementioned

polar network is not so extended, resulting in an inward shift of His2966.58[226, 228].

This shift results in a larger orthosteric site.

4.3.2 Receptor X-ray structures

Docking calculations were performed with the inactive conformation of the β2AR in

complex with carazolol (PDB: 2RH1) [220, 221] and a partially active conformation

in complex with the ligand BI167107 (PDB: 4LDE) [226]. All ligands, solvent, lipid

molecules as well as the T4-lysozyme insertion or the stabilizing nanobody Nb6B9 were

removed. The hydrogens were placed and minimized using the HBUILD module in
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(a) (b)

Figure 4.2: (a) Carazolol (magenta carbons) in complex with the inactive conforma-
tion of the receptor (PDB 2RH1). (b) BI167107 (green carbons) in complex with the

active conformation of the receptor (PDB 4LDE).

CHARMM [249]. CHARMm22 [250] atom types and MPEOE [251, 252] partial charges

were assigned using the program Witnotp (Novartis Pharma AG, unpublished).

4.3.3 Datasets

4.3.3.1 Core fragments

Five fragment-sized ligands with experimentally determined affinity were used as core

fragments (i.e. starting points) in this growing study. Z32501319 (Figure 4.3) was

initially discovered through a docking screen against the β2AR in an inactive conforma-

tion [222] and showed a favorable ligand efficiency (LE) of 0.36. In parallel, four small

fragments (Figure 4.4) with high ligand efficiency that had emerged from an experimen-

tal screen were also selected.

Fragment Z32501319 displayed higher affinity towards the receptor conformation sta-

bilized in an inactive state by the nanobody fusion. We will refer to molecules that

display a similar preference as “inverse agonist candidate” (IAC) to clearly distinguish

them from confirmed inverse agonists from experiments based on signal transduction

assay.

The remaining four fragments had known a preference for the receptor conformation

stabilized in an active state by the nanobody fusion. We will refer to molecules that

display a similar preference as “agonist candidate“ (AC) to clearly distinguish them

from confirmed (partial) agonists from experiments based on signal transduction assay.
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Figure 4.3: Z32501319 was chosen as one of the core fragment for our growing strategy.

Figure 4.4: Four fragments with high LE from an experimental screen were chosen
for further growing.

4.3.3.2 Building blocks

The entire frag now dataset was downloaded from the ZINC database [253] and contained

504’074 fragments.

4.3.3.3 Surrogates

During the first docking stage, all compatible building blocks (i.e. all fragments amenable

to being used as extension of the core fragment) were docked individually in order to

find the ones that are likely to fit the SBP and form favorable interactions (i.e. score).

However, in their unreacted forms, the building blocks will usually possess atom groups

which are not present in the final product. Thus, docking the building block does

not reflect its interaction options once attached. In order to mimic the behavior of

the final product and minimize the occurrence of unlikely interactions, we converted

them to ”surrogates“. We define these surrogates as the final product without the core

fragment. In the specific case presented here, the reaction to be applied to all cores was

reductive amination. Surrogates are thus the reactants minus the ketone or aldehyde

groups, but with an added amine part (Schemes 1 and 2). In this way, no additional

interactions that could influence the placement of the reactant are available. In case of

ketones, where substitution by an amine results in the introduction of a chiral center,

both stereoisomers for the surrogate were generated using flipper [254]. CHARMm22

atom types and MPEOE partial charges were assigned using the program WITNOTP.

Up to 100 conformers were generated for each surrogate using OMEGA [57].
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Figure 4.5: A surrogate derived from an aldehyde defined by the replacement of the
carbonyl by an amine group. R1 = alkyl.

Figure 4.6: A surrogate derived from a ketone defined by the replacement of the
carbonyl by an amine group. This transformation introduces a chiral center, therefore

two surrogates are generated (R and S ). R1 and R2 = alkyl.

Figure 4.7: Reductive amination reaction between a carbonyl and an amine group.
R1, R2 = alkyl and R3 = alkyl, H.

4.3.3.4 Products

For each fragment to be grown, the corresponding products were generated from the

top 500 surrogates with favorable scores and appropriate geometry using PINGUI (see

below). Finally, they were converted into db file format using dbgen as incorporated in

the DOCK package [255].

4.3.4 Chemical derivatization by reductive amination

All the fragments of this study share a common chemical feature: an amine which will

be charged at physiological pH and thus presumably interact with Asp1133.32. This

reactive group can also be harnessed to grow the fragment towards the SBP. The most

straightforward reaction that can be used with such a functional group is reductive

amination (Scheme 3). This reaction involves a primary or secondary amine reacting

with an aldehyde or a ketone in order to create a secondary or tertiary amine. The

SMARTS code for the reaction was extracted from Hartenfeller et al. [1].
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(a) (b)

Figure 4.8: Illustration of the filtering process. (a) Typical poses (i.e. map) after
docking with SEED. (b) The surrogate poses (magenta carbons) were filtered so they
do not overlap with the core scaffold (green carbons) and the charged amine is close to

the one of the core fragment.

4.3.5 Docking with SEED

4.3.5.1 Sampling and scoring

SEED has been developed to exhaustively place small rigid fragments in the binding sites

of proteins. The calculations also take into account the penalty that is incurred upon

binding due to the removal of the water shells of the ligand and protein, respectively.

For each fragment, 106 − 107 individual poses are generated and subsequently clustered

based on geometric and energetic criteria. This yields on the order of hundreds of poses,

clustered into groups of a maximum of five. These maps were used to select poses

with favorable energy and geometrically appropriate orientation with respect to bond

formation.

4.3.5.2 Filtering and ranking

The surrogate library was docked with SEED and only those surrogate poses that did not

overlap with the core fragment were placed in the SBP as illustrated in Figure 4.8 (a).

Then, a filter was applied based on the distance between the amine of the surrogate and

the predicted position of the amine of the core fragment (i.e. the docking pose). This

cut-off was set to 2 Å. Every pose that passed both criteria was then ranked according

to the score calculated by SEED. Only the top 500 surrogates (with no duplicates) were

kept for further processing.
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4.3.6 Docking with DOCK

4.3.6.1 Core fragments

The four AC fragments and the IAC fragment were placed in the binding site of the

receptor active and inactive conformation, respectively, using DOCK 3.6. The predicted

binding modes were kept for further growing and visually examined for plausibility (see

Results).

4.3.6.2 Products

For each core fragment, all 500 derivative products were placed in the binding site of

the β2AR using DOCK 3.6. Product conformations were generated using the pipeline

described in ZINC [255].

4.3.7 Pose minimization: Szybki

Since DOCK does not evaluate intramolecular energy terms, some docked poses might

show unfavorable geometries. In order to ameliorate the clashes of such poses while

keeping the overall binding mode found by DOCK, the poses were minimized using

the force field including the Poisson-Boltzmann model for solvation as implemented in

SZYBKI [87]. All products were then re-ranked according to the score calculated by

SZYBKI and kept for subsequent visual inspection.

4.3.8 Workflow of the growing strategy

Figure 4.9 shows a comprehensive scheme of our growing workflow.

4.3.9 Experimental synthesis

4.3.9.1 K011 derivative products

The secondary amines used in this study were prepared through a reductive amination

between a carbonyl compound (i.e. the aldehyde or ketone corresponding to the fragment

selected) and a primary amine. This reductive amination reaction was performed in two

steps. First, the aldehyde and the amine were mixed together until the imine formation

was completed and subsequently the imine was reduced to its corresponding secondary

amine by means of NaBH4. After an aqueous work-up, the desired products were isolated
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Figure 4.9: The PINGUI workflow

by purification on a reverse-phase (RP) semi-preparative HPLC. The structures of the

desired products were confirmed by 1H NMR and mass spectrometry (MS) analysis.

4.3.9.2 Z32501319 derivative products

All commercially available reagents and solvents were used without further purifica-

tion. Thin layer chromatography was performed on pre-coated plates (silica gel 60 F254,

Merck). Flash column chromatography was performed on pre-packed columns (PF-

30SIHP-JP/ 12G; PF-30SIHP-JP/ 4G; Interchim) using a Büchi separation system. 1H

NMR and 13C NMR spectra were recorded on a Jeol ECA-500 and a Bruker AV II-300

spectrometer. Unless noted otherwise, spectra were recorded at 20◦C. Chemical shifts

(δ) are given in ppm (parts per million). All NMR spectra were referenced to the resid-

ual solvent signal (CDCl3: 7.26 ppm [1H] and 77.16 ppm [13C]). Coupling constants

are reported in Hertz (Hz). Mass spectra were recorded on a double-focusing sector

field spectrometer type AutoSpec (Micromass). Elemental combustion analyses were

recorded on an Elementar vario MICRO instrument.

A solution of the respective aldehyde (1 eq) and amine (1.06 eq) in MeOH (0.1 mol/L)

was stirred at room temperature under an Argon atmosphere for 24 h. NaBH4 (1.6 eq)

was added slowly, followed by further stirring for 10 to 15 min. The reaction mixture

was quenched with 3M NaOH solution and the product extracted with EtOAc. The or-

ganic layer was washed with water, saturated aqueous NaCl, dried over MgSO4, filtered,

and concentrated in vacuo. The crude reaction product was purified by flash column

chromatography.
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Analytical Data of the Compounds K010FC006, K010FC007 and K010FC008 are pro-

vided in SI.

4.3.10 Radio ligand displacement assay

Compounds were examined for their ability to inhibit the binding of [3H]-dihydroalprenolol

([3H]-DHA; 2 nM final) to Sf9 membranes expressing β2AR. 5 μg of total protein were

mixed with either compound, concentrations ranging from 10 −10M to 10−3 M. The

reaction mixtures were incubated for 2h at RT and free radioligand was removed by

filtrating over a Whatman GF/C filter. Filters were dried and 40μl of scintillation fluid

(MicroScintTM-O, Perkin Elmer) was added, radioactivity (cpm) retained on the filters

was determined in a Wallac MicroBeta TriLux scintillation counter. The half-maximal

inhibitory concentrations (IC50) for these compounds were calculated from normalized

dose–response curves obtained using a one site competition binding model (nonlinear re-

gression analyses) of the GraphPad Prism software program. Each assay was performed

in triplicate.

For each compound to test, two comparative assays were performed. A first assay on a

β2-adrenoreceptor-Nanobody fusion locked in its active state by a G protein mimicking

Nanobody called β2AR-Nb80 [224] and a second screen relative to the basal state of

the same receptor called β2AR-Nb69 (Nanobody-enabled activity and efficacy screening

platform for GPCR modulating compounds. Pardon E., Betti C. et al., manuscript in

preparation). Doing so allowed to classify the efficacy of each hit (i.e. agonist, antagonist

or inverse-agonist) [256].

4.4 Results

4.4.1 Creation of the datasets

4.4.1.1 Compatible building blocks

The frag now dataset of the ZINC database [253] was processed employing a python

script written using the rdkit library [257] in order to retrieve all building blocks com-

patible with reductive amination and the core fragments. This yielded 18’785 compatible

building blocks, i.e. aldehydes or ketones.
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4.4.1.2 Surrogates

Every compatible building block was then converted into the corresponding surrogate

by the means of a python script written using the rdkit library. Reaction centers (the

nitrogen of the introduced amine group) of the surrogates were flagged in order to facil-

itate filtering later on. The 18’785 compatible reactants were converted into a new set

of 26’892 surrogates. The increase in number resulted from the exhaustive enumeration

of all possible stereoisomers.

4.4.1.3 Products

The top 500 surrogates were attached to each core fragment according to the reaction

scheme for reductive amination. This yielded equally many (500) derivative products.

4.4.2 Fragment docking

Among the 26’892 surrogates, 15’702 were successfully docked to the SBP of the receptor

in the active conformation (PDB ID = 4lde) yielding a total of 814’369 docking poses.

The same docking procedure was applied for the inactive conformation (PDB ID =

2rh1) and 16’297 surrogates were successfully docked, yielding 1’011’929 poses. These

numbers intuitively make sense, since in the inactive conformation, the entrance of the

orthosteric site (included in the SBP) is wider than in the active conformation.

4.4.3 Prediction of the binding mode of the core fragments

4.4.3.1 AC molecules

The growing procedure started from docked poses of the four AC fragments identified

in the “nanobody screen”. We note that no direct interactions with the polar serines

at the bottom of the orthosteric site were formed in the predicted poses for these com-

pounds. Three of the core fragments contained an acceptor group, but they were too

far (>4 Å) away to form direct polar interactions with the serines: the pyrimidine moi-

ety of Z12370550, the thiazole of Z12370253 and the benzothiophene of Z00064947. All

the charged amines of the core fragments were found to interact with Asp1133.32 and

Asn3127.39. The aromatic moieties of the core fragments made hydrophobic interactions

with Phe2896.51. As shown in Figure 4.10, those fragments were predicted to bind to

the orthosteric site.
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(a) Z00064947 (b) Z02047916

(c) Z12370253 (d) Z12370550

(e) Z12370253

Figure 4.10: (a-d) Prediction of the binding mode of the four agonist core fragments
within the β2AR active conformation. (e) Prediction of the binding mode for Z32501319

after docking to the β2AR structure in an inactive conformation.

4.4.3.2 IAC molecules

The second growing procedure started from the docked pose of Z32501319, which is

consistent with a pose expected for an IAC binder of the β2AR: the charged amine

moiety interacts with Asp1133.32 and Asn3127.39, the indole moiety makes hydrophobic

interactions with Phe2896.51, the methyl on the indole interacts with both Val1143.33

and Val1173.36, and the ether moiety engages Asn2936.55 in a polar hydrogen bond. As

shown in figure 4.10 (e), we predicted Z32501319 to bind to the orthosteric site with

room to grow towards the SBP.

75



(a) (b)

Figure 4.11: Example of a product keeping its orientation relative to the poses of
the constitutive building blocks. Both the core fragment (orange carbons (A)) and
the surrogate (black carbons (B)) are predicted to overlap with the generated product

(green carbons).

Product Core IC50 (core)[µM] IC50 (product)[µM] Improvement

K011FC001 Z12370253 22 53 0.4
K011FC002 Z12370253 22 96 0.2
K011FC004 Z12370550 79 4.5 17.6
K011FC006 Z02047916 34 7.9 4.3
K011FC008 Z00064947 44 11 000 0.004
K010FC006 Z32501319 20.6 0.53 38.8
K010FC007 Z32501319 20.6 1.05 20
K010FC008 Z32501319 20.6 81 0.25

Table 4.1: Summary of the activity of the core fragments and their respective deriva-
tive products.

4.4.4 Structure-based screening of the derivative products

The derivative products of every core fragment were docked and visually inspected in

order to narrow down the number of candidates for possible further synthesis. The

selection of the best derivative products was based on several criteria: docking score,

shape complementarity with the receptor, hydrogen bonds to the receptor, overlap of

the products with the respective core fragment and surrogate (Figure 4.11) and chem-

ical diversity. Eight ligands not violating these criteria were selected and synthesized

(Figure 4.12).

4.4.5 Radio ligand displacement assay

The summary of the radio ligand displacement assay for the eight products is illustrated

in table 4.1. The IC50 curves for four products is illustrated in figure 4.13 and the

remaining one are in the SI.
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Figure 4.12: Eight products were synthesized: five molecules appearing as AC and
three as IAC molecules, respectively.

4.5 Discussion

In the following discussion, only the predicted interactions of the synthesized products in

the SBP will be detailed, as the interactions in the orthosteric pocket remained constant,

as required by our initial hypothesis.

4.5.1 K011FC004

K011FC004 also contains a chiral center and was selected for synthesis because it con-

tains a toluene moiety that can make nice hydrophobic interactions. The R form was

predicted to nicely fill the SBP with hydrophobic contact with Trp1093.28 and Ile3097.36.

On the other hand, the S form is predicted to introduce steric constraints in the SBP

forcing the amine out of range from the vital Asp113. Thus, the S form is left with

two free H bond donors which is highly unfavorable. K011FC004 was tested as racemic

mixture and had an improved affinity (4.5 µM) compared to its initial core fragment

Z12370550 (79 µM). The docking score predicts the R form to be more favorable than

the S form, suggesting that the affinity of the R form could actually be lower than the

one measured.
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(a) K011FC004

(b) K010FC006

(c) K010FC007

(d) K010FC008

Figure 4.13: IC50 curves from radio ligand displacement assay. The green curves
correspond to the assay made on the active-locked conformation of the receptor (Nb80),
while the red curves correspond to the inactive-locked conformation of the receptor

(Nb69).

78



(a) K011FC004 (b) K010FC006

(c) K010FC006 (d) K010FC006

Figure 4.14: Predicted binding mode of the remaining products. (a) K011FC004. (b)
K010FC006. (c) K010FC007. (d) K010FC008.

4.5.2 K010FC006, K010FC007 and K010FC008

The K010 serie aimed to explore different substitution on the benzene ring when posi-

tioned in the SBP, and the importance of the flexible chain between two rigid scaffolds.

Two compounds have in common a long flexible chain (6 rotors), while K010FC008 has

4 rotors.

K010FC006 was tested and had a better affinity (0.53 µM) compared to its initial core

fragment (20.6 µM). This important increase in affinity (40 fold) could be explained by

strong hydrophobic interaction with Trp1093.28 and Ile3097.36.

K010FC007 was tested and had a better affinity (1.05 µM) compared to its initial core

fragment (20.6 µM). K010FC007 contains a trifluoro moiety which is more bulky than

K010FC006. The docking pose suggest that K010FC007 could also make hydrophobic

contacts with Trp1093.28 and Ile3097.36.

K010FC008 was tested and had an decreased affinity (81 µM) compared to its initial

core fragment (20.6 µM). This small decrease in affinity (4 fold) can be explained by

the the size of the extension which introduce more steric constraints in the SBP which

probably disrupt the hydrophobic interaction with Trp1093.28. K010FC008 has two less
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rotors than its two aforementioned analogs, and this could suggest that K010FC008 has

thus less degree of freedom in order to accomodate into the SBP and its interactions are

less optimized.

4.6 Conclusions

Starting from diverse fragments exhibiting activity against the β2AR, we were able to

grow those fragments guided by the protein structure. For several ligands we were able

to improve the initial affinities. The in silico workflow we developed for this purpose

tackles three challenges at the same time. First, the fragments need to be grown towards

a compatible region offering enough space for the addition of another building block.

Secondly, the suggested molecules ought to be very likely synthesizable. Lastly, the

molecules should also have a high probability of being active against the target. PINGUI

does this by focusing on few candidates and pruning search space at an early space.

All the initial fragments in this study had two points in common: they were predicted

to bind in the orthosteric site and they all contain an amine interacting with Asp1133.32.

Thus, an extension of the fragments towards the SBP was feasible. In the interest of

focusing on molecules that are likely to be synthesizable, we used a library of 58 robust

organic reactions [1] and applied them to our fragments. We decided to focus on products

obtained through reductive amination, because the amine was the reaction center and

all the generated products could potentially extend past Asp1133.32 to fill the SBP. All

eight molecules that we suggested were indeed successfully synthesized, highlighting that

reductive amination can be regarded as a robust reaction.

In the interest of increasing the chance of our suggestions being active, our workflow

prioritized extensions that already entertain favorable interactions with the protein. A

two-step docking of first the surrogate and then the resulting product allowed to increase

the robustness of our prediction. If a promising product deviated too much from its

initially predicted position, it was not pursued further. We are aware that there are

retrosynthetic experimental analyses, including X-ray crystallography of the resulting

fragments, that show that such binding mode faithfulness is not always the case [258].

However, one can afford to be more elitist in this approach, as combinatorics works in our

favor by generating way too many solutions that need to be pruned. Moreover, docking is

notorious for producing many false positives [259, 260], and applying stringent selection

criteria oftentimes improves true positive rates. In our hands, these considerations

allowed us to significantly improve half of the original fragment binders. It is difficult

to assess whether this is better or worse than what a human medicinal chemist might
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have achieved. However, when one takes a look at current literature examples, an

improvement rate of 50 % seems higher than what is usually reported.

The presented workflow is not strictly automatized, because it relies on spatial reasoning

abilities during the evaluation of the poses. However, since most of the growing steps rely

on computational approaches, we decided to make them freely available to the public.

Thus, we created PINGUI, a toolbox that we hope will help medicinal chemists as an

idea generator in fragment-based ligand discovery project. PINGUI is available online

and is implemented alongside the SCUBIDOO database [261]. PINGUI features many

options that were instrumental in this project, namely displaying the growing vectors

for any given fragment, the creation of customized derivative libraries or deconstructing

a molecule into smaller fragments based on known reactions. The last feature allows

to fully utilize a construction/deconstruction approach that can be very helpful in an

FBDD project.

As with SCUBIDOO, we do not see the utility of this approach so much in the prob-

ability that it will yield a highly potent compound, but rather in providing medicinal

chemists with creative suggestions. Hence, we believe that PINGUI is best employed

at the very early stages, when SAR needs to be generated quickly and with limited

synthetic efforts. We also think that it will enable researchers who are not dyed-in-

the-wool organic chemists (such as ourselves) to develop and synthesize comparatively

simple substances, thereby speeding up research and potentiating the availability of

pharmacologically active chemical matter.
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4.7 Supporting Information

4.7.1 Radio ligand displacement assay

The IC50 curves from the radio ligand displacement assay of compounds K011FC001,

K011FC002, K011FC006 and K011FC008 are gathered in picture 4.15

4.7.2 Discussion

4.7.2.1 K011FC001

K011FC001 exists in two enantiomers. The S form was predicted to make mostly apolar

interactions in the SBP, with the trifluoro moiety interacting with Ile3097.36, Ile942.65 and

Trp1093.28 (Figure 4.16). The charged amine makes polar interactions with Asp1133.32

and Asn3127.39. Interestingly, the R form keeps the overall binding mode except for

the amine which flips, thus breaking the polar bond with Asp1133.32. Thus, the R form

presents an unsatisfied hydrogen bond donor. K011FC001 was tested as racemic mixture

and had a lower affinity (53 µM) compared to its initial core fragment Z12370253 (22

µM). The docking predictions scored the S form more favorable than the R form, hence

the affinity of one enantiomer could potentially be lower then the apparent IC50 of 53

µM. However, because of the low affinity, we decided not to attempt purification of the

individual enantiomers.

(a) K011FC001 (b) K011FC002

(c) K011FC006 (d) K011FC008

Figure 4.15: IC50 curves from radio ligand displacement assay. The green curves
correspond to the assay made on the active-locked conformation of the receptor (Nb80),
while the red curves correspond to the inactive-locked conformation of the receptor

(Nb69).
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(a) (b)

Figure 4.16: Prediction of the binding mode of K011FC001 using docking. (a) Sliced
view of the binding site. The S form (black carbons) interacts with Asp1133.32 and
Asn3127.39 while the R form (grey carbons) can not. (b) Side view from the SBP
highlighting the hydrophobic interactions of the trifluoro moiety of the S form with
Ile3097.36, Ile942.65 and Trp1093.28. Polar interactions of the charged amine with

Asp1133.32 and Asn3127.39 are represented in yellow dashed lines.

4.7.2.2 K011FC002

K011FC002 contains a chiral center too, and was selected for synthesis because it con-

tains a hydroxy moiety that was predicted to make a hydrogen bond with Tyr3167.43

(figure 4.17), albeit from the opposite side of the nitrogen compared to adrenaline. This

motif was quite frequent among all the suggested products, and since no publicly known

active molecules contain it, we wanted to explore its pharmacological relevance. The

hydroxy moiety of the R form was predicted to form a hydrogen bond with Tyr3167.43,

while the furan makes hydrophobic contacts with Ile3097.36. On the other hand, the S

form is predicted to lose all key polar interactions: the charged amine as well as the

hydroxy group are too far from Tyr3167.43 and Asp1133.32. Thus, the S enantiomer is

left with two free hydrogen bond donors which is highly unfavorable. K011FC002 was

tested as racemic mixture and had a lower affinity (96 µM) compared to its initial core

fragment Z12370253 (22 µM). As before, the docking score predicts the R form to bind

with a more favorable affinity than the S form, suggesting that the affinity of the R form

could actually be lower than the one measured.

4.7.2.3 K011FC006

K011FC006 was selected because the initial core fragment was predicted to flip its bind-

ing mode therefore interacting in the SBP with Trp1093.28 and Ile3097.36. K011FC006

contains only hydrophobic moieties except for the charged amine. K011FC004 was tested

and had an better affinity (7.9 µM) compared to its initial core fragment Z12370550 (34

µM). This slight improvement for this product could be explained by a better desolvation

due to its hydrophobic nature.
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(a) (b)

Figure 4.17: Prediction of the binding mode of K011FC002 using docking. (a) Sliced
view of the binding site. The S form (black carbons) makes polar interactions with
Asp1133.32, Asn3127.39 and Tyr3167.43 while the R form (grey carbons) can not. (b)
Side view from the SBP highlighting the hydrophobic interactions of the furan moiety
of the S form with Ile3097.36. Polar interactions of the charged amine with Asp1133.32,

Asn3127.39 and Tyr3167.43 are represented in yellow dashed lines.

(a) K011FC006 (b) K011FC008

Figure 4.18: Predicted binding mode of the remaining products. (a) K011FC006. (b)
K011FC008.

4.7.2.4 K011FC008

K011FC008 was selected due to the small size of its extension (only four new het-

eroatoms) in comparison to the other products and also because it did not contained

an aromatic moiety. K011FC008 showed an important fall in affinity (250 fold) which

could partially be explained by the lack of strong hydrophobic contacts with Trp1093.28

or Ile3097.36. Furthermore the ether moiety introduces two free lone pairs that will

induce a small desolvation penalty.
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”There is a beast in every man and it stirs when you put a sword in his hand.”

Ser Jorah Mormont, Game of Thrones, season 3 episode 3 (2013)



Chapter 5

SCUBIDOO
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SCUBIDOO: A Large yet Screenable and Easily Searchable Database
of Computationally Created Chemical Compounds Optimized toward
High Likelihood of Synthetic Tractability
F. Chevillard and P. Kolb*

Department of Pharmaceutical Chemistry, Philipps-University Marburg, 35032 Marburg, Germany

*S Supporting Information

ABSTRACT: De novo drug design is widely assisted by computational
approaches that enable the generation of a tremendous amount of new
virtual molecules within a short time frame. While the novelty of the
computationally generated compounds can easily be assessed, such
approaches often neglect the synthetic feasibility of the molecules, thus
creating a potential hurdle that can be a barrier to further investigation.
Therefore, we have developed SCUBIDOO, a freely accessible database
concept that currently holds 21 million virtual products originating from
a small library of building blocks and a collection of robust organic
reactions. This large data set was reduced to three representative and
computationally tractable samples denoted as S, M, and L, containing
9994, 99 977, and 999 794 products, respectively. These small sets are
useful as starting points for ligand identification and optimization
projects. The generated products come with synthesis instructions and alerts of possible side reactions, and we show that they
exhibit drug-like properties while still extending into unexplored quadrants of chemical space, thus suggesting novelty. We show
multiple examples that demonstrate how SCUBIDOO can facilitate the search around initial hits. This database might be a useful
idea generator for early ligand discovery projects since it allows a focus on those molecules that are likely to be synthetically
feasible and can therefore be studied further. Together with its modular building block construction principle, this database is also
suitable for structure−activity relationship studies or fragment-growing strategies.

■ INTRODUCTION

Chemical space is vast. The question is how to navigate it in
order to identify ligands that can serve as modulators for
pharmaceutically interesting targets. It seems likely that
chemically not-yet-realized molecule sets hold many potent
ligands for a variety of targets. At present, the in silico realm is
the only place where we can hope to enumerate molecules that
might be stable under ambient conditions. Such efforts have
been undertaken, pioneered by Lederberg.1 Currently, the most
advanced development comes from the Reymond lab with their
chemical universe database GDB,2 which in its current
incarnation enumerates virtual molecules containing up to 17
heavy atoms.
However, for all such virtual databases, the critical point is

the actual synthesis of the generated molecules. Despite
following strict chemistry rules, such molecules might turn
out to be unsynthesizable with reasonable effort. This becomes
a barrier in the initial stages of a lead-finding project, where a
quick go/no-go decision is desired. In addition, automation of
synthesis protocols is a currently intensively investigated topic
of research,3−5 and new open-innovation initiatives have arisen
aiming at discovering novel chemical entities.6 Thus, providing
suggestions for further synthetic developments could improve
such protocols even more.

Another problem of such enumerated databases is their sheer
size: GDB currently holds 166 billion molecules,7 which
basically is computationally intractable except for ultrafast two-
dimensional methods. For structure-based methods, such as
docking, this is unfeasible at the moment.8

In order to advance on both topics, we have created the
Screenable Chemical Universe Based on Intuitive Data
OrganizatiOn (SCUBIDOO) and made it freely available to
the general public. The current version was obtained by
exhaustively reacting a set of building blocks with 58 highly
reliable reactions. Such an approach is not completely novel9−15

but has rarely been carried out entirely outside of an industrial
framework.16 The set of 58 reactions is the work of Hartenfeller
et al.17 and represents the most commonly used reactions in the
pharmaceutical field. The authors compared their collection
with a study by Roughley and Jordan18 and showed that the 58
reactions cover 48.3% of the 7315 reaction steps described in
this review. In a later publication, the authors investigated the
coverage of chemical space afforded by their 58 robust reactions
when applied to 26 043 common molecular building blocks.12

They generated a limited number of one-step synthesis
products by combining every building block with a maximum

Received: April 13, 2015
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of 20 reaction partners for each reaction. This protocol yielded
a data set of 1 696 226 closed-source products and revealed that
they were able to successfully reconstruct known ligands and
sample the chemical space of bioactive compounds in a wide
range of target families. Furthermore, they suggested that there
is still a vast amount of unexplored bioactive space, which could
contain “low-hanging fruit”.
Going beyond this study, with SCUBIDOO we have now

started to exhaustively react building blocks with each other in
order to completely cover the chemical space thus accessible.
This exhaustiveness comes at a price, however: even when
starting with a relatively modest number of building blocks
(∼8000), this exhaustive reaction scheme yields a large number
of lead-like molecules (more than 21 million) in the end. This
is desired in the sense that the larger this number is, the greater
is the amount of chemical space we can cover. However, many
millions of virtual compounds make the utility for computa-
tional approaches dubious again. To address these divergent
tendencies, we make use of stratified sampling to provide a
representative subset of the database. Consequently, a user of
our freely accessible database can obtain primary ligand
candidates from a small and processable sample through virtual
screening, pick those that can be synthesized with relative ease,
and advance from hits efficiently by searching all analogues in
SCUBIDOO. Since every molecule in the database comes with
synthesis instructions, information about potential side
reactions, and alternative synthetic pathways, it represents a
fast and efficient way to start on a new target. SCUBIDOO can
thus help to probe this unexplored potentially bioactive space
more intuitively.
Moreover, we think that SCUBIDOO will help to fight

“molecular obesity”,19 defined as the steady increase in the
molecular size of drug candidates during medicinal chemistry
development, since it facilitates starting a ligand discovery
project focused on fragment considerations. Of course, the
database as such can never be complete, but the concept is
amenable to expansion.
In this article, we describe the development of the

SCUBIDOO concept and a first database of 21 million
compounds. We then show that the obtained database contains
products comparable to currently existing drugs as well as
databases of lead-like molecules of similar size. Still,
SCUBIDOO extends into different quadrants of chemical
space, as we demonstrate through principal component analysis
(PCA). Moreover, we show the usefulness of SCUBIDOO
through several examples in which we embark from close
analogues of drug candidates or ligands and harvest even closer
analogues or existing active compounds within a few mouse
clicks. We also show that in those cases where synthetic
information was publicly available, the reactions used to obtain
these molecules match the ones suggested in SCUBIDOO.

■ METHODS
Reactions. The list of 58 reactions is provided in SMARTS

notation in the study of Hartenfeller et al.17 and in Table S1 in
the Supporting Information.
Data Sets. Reactants: Building Blocks. Any product in

SCUBIDOO is generated by combining a maximum of two
building blocks. The initial set of 18 561 building blocks was
downloaded from the ChemBridge Web site.20 By means of a
Python script written using the RDKit library,21 routine filters
were then applied to the building blocks to strip counterions
and remove duplicates. In order to avoid overly complex

reaction products that might necessitate more complex
synthesis strategies, the reactant library was also pruned to
narrow the range of generated products. The following criteria
were used in the filters:

• MW ≤ 250 Da. Products will thus mostly be below 500
Da.

• Number of rotatable bonds ≤ 2. Since a reaction can
introduce one or even two new rotatable bonds, this filter
restrains the products to a low number of rotors (with a
maximum of 6). Doing so makes the use of structure-
based strategies such as docking more reliable, since the
estimation of the binding energy of molecules with a high
number of rotors is prone to fail.22

• Number of chiral centers ≤ 1. This filter was introduced
with one goal: to facilitate synthesis. Since some of the
58 reactions introduce a chiral center into the resulting
product, this limit on the number of chiral centers yields
products with a maximum of three chiral centers.

Reactants: Analysis of Reagent Classes. In a recent study,
Goldberg et al.23 highlighted the importance of building block
libraries in the interest of improving compound quality. They
also introduced a classification of building blocks into 23
reagent classes based on functional groups. We used this class
attribution in the analysis of the composition of the
ChemBridge data set in this study, employing a Python script
written using the RDKit library. Every building block was
assigned to at least one reagent class but could belong to several
classes. Using the SMARTS-encoded reagent class definitions
as provided by the authors,23 we reduced the list of 23 reagent
classes to 22 by merging the benzaldehyde and heterocyclic
benzaldehyde classes into a single aromatic aldehyde class. The
list of 22 reagent classes is available in Table S2 in the
Supporting Information. We note that this classification was
done only to investigate the diversity of the library and had no
influence on the reactions that each fragment was able to
undergo.

Products: Screenable Chemical Universe. The filtered
building blocks were then exhaustively reacted against each
other via the 58 reactions using an in-house Python script
written using the RDKit library. This procedure can be divided
into three loops: the first one over all of the building blocks
(B1), the second one over all of the reactions, and the third one
over all of the building blocks (B2) (Figure 1). All of the
products were charge-neutralized in order to simplify
subsequent steps. Duplicate products were filtered according
to their isomeric canonical SMILES notation and the reaction
involved in the synthesis. We deliberately wanted to keep track

Figure 1. Schematic depiction of the creation of the SCUBIDOO
database. B1 and B2 are building blocks which are then connected by
all compatible reactions.

Journal of Chemical Information and Modeling Article
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of multiple synthesis routes for the same product in order to
display them on the subpage of each product as alternative
synthetic routes. This is valuable information for chemists and
increases the chances of synthesizing a particular compound.
Afterward, the products were filtered using the PAINS filter
level A24 in order to get rid of compounds that have a high
chance of generating artificial results during follow-up biological
assays. Stereoisomers were generated using f lipper25 in order to
enumerate all possible products in cases where a reaction
introduced a new chiral center.
Representative Samples: Stratified Balanced Sampling.

Since the present version and therefore also all future larger
versions of SCUBIDOO are too big to be rapidly processed
with structure-based approaches, we reduced it to three
representative samples of different sizes (S, M, and L). This
provides users with optimal sets for different applications. This
procedure was done using the cubestratif ied26 algorithm of the
balancedSampling package27 within the R statistics environ-
ment.28 The stratified balanced sampling approach is a popular
algorithm used for population surveys, allowing extraction of a
representative sample. The algorithm consists of two stages
(Figure 2). In the first stage, stratif ication, the studied set is
divided into subgroups called strata. In this study, the strata are
defined by the reactions, and each product is assigned to exactly
one stratum. In a second step, balanced sampling29 is applied
within each stratum in order to select representative products.
This selection is based on auxiliary variables defined as chemical
descriptors (here, molecular weight, logP, number of H-bond
donors, number of H-bond acceptors, and topological polar
surface area were used) and aims to reflect the overall
composition of each stratum. Furthermore, the sample size of
each stratum is proportional to its total size. It is important to
mention that balanced sampling does not guarantee that all of
the strata defined initially are present in the final sample in
cases where the strata sizes vastly differ. This algorithm is
exceptionally fast even for huge amounts of data30 and is thus
well-suited for the processing of our screenable chemical
universe (and its future larger incarnations).
DrugBank. DrugBank version 4.1 was downloaded from its

Web site31 for comparison purposes. Only approved and
experimental drugs with molecular weights lower than 500 Da
were kept. This led to a data set of 1510 molecules.
ZINC: Lead-like Subset. The lead-like data set was

downloaded from ZINC.32 Since this data set is quite large
(more than 6 million compounds), a sample of 10 000
compounds was randomly selected using the sample function
within the R statistics framework.

PDB: Ligands. All of the ligands present in the Protein Data
Bank (PDB) were downloaded from its Web site.33 The ligands
were then filtered according to molecular weight (≤500 Da)
and the number of rotatable bonds (≤6) in the interest of
narrowing down the ligands to molecules close to the products
of SCUBIDOO. This yielded 17 140 ligands.

Analogues of DB08235. The five analogues of DB08235
were prepared for docking using OMEGA,34 with a maximum
of 1000 conformers. The protonation states were defined using
QUACPAC.35

Ligand-Based Application: Similarity Screening. A
ligand-based screening strategy was applied in order to
retrospectively assess the usefulness of SCUBIDOO. Two
data sets were used in this comparison: DrugBank and all of the
ligands extracted from the PDB. Each of these data sets was
compared to the three samples of SCUBIDOO using FCFP4
fingerprints.36 For each product in each sample, the most
similar drug or ligand according to the Tanimoto coefficient
was retrieved. All pairs with a Tanimoto score higher than 0.6
were visually inspected in order to identify the representative
examples described in this article.

Synthetic Accessibility. To assess the synthetic feasibility
of the products within SCUBIDOO with an alternative method,
the synthetic accessibility (SA) score37 was computed for each
of the products using an RDkit-based Python script. SA score
estimation is based on fragment contributions and a complexity
penalty (chiral centers, weight, large rings). SA scores range
between 1 and 10, with 1 indicating a simple molecule that
should be easy to make and 10 representing a complex
molecule that is likely to be hard to synthesize.

Principal Component Analysis (PCA). DrugBank, the
lead-like subset of ZINC, and the SCUBIDOO S sample were
compared using the PCA function as implemented in the R
statistics environment. The descriptors used were molecular
weight, logP, number of H-bond donors, number of H-bond
acceptors, number of rotatable bonds, topological polar surface
area, and the Bertz index,38 which estimates the molecular
complexity.

Web Interface. The database is freely accessible at www.
kolblab.org/scubidoo. All of the chemical descriptors shown for
each molecular entity are computed using the RDKit library.
The partition coefficient, logP, is predicted using Crippen’s
approach.39 TPSA represents the topological polar surface area
of the molecule.40 Two different searches are available: by
product or by building block. These are described in more
detail below:

Figure 2. Stratified balanced sampling algorithm.
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Product Search. One can search for a product in
SCUBIDOO using either its ID or its SMILES string. A
comprehensive array of information is displayed when the
product is retrieved: molecular descriptors, synthetic route,
building blocks involved in the formation of the product,
possible side reactions, and alternative synthetic routes. An
alternative synthetic route is defined as a possibility to obtain a
given product using a different reaction or a different pair of
building blocks. A simple color classification has been
implemented in order to quickly make the user aware of
potential problems. Red products are ones that still contain
reactive features (i.e., an electrophile and a nucleophile) and
thus have the potential to react further. Orange products are
ones for which the building blocks used in the synthesis are
involved in more than one reaction (i.e., side reactions might
occur). Green products are compounds that do not fall into the
two aforementioned categories. Reactive features are retrieved
using a Python script written using the RDKit library.
Nucleophiles are defined as amines, alcohols, and thiols,
while electrophiles were defined as acids, halides, and carbonyls.
All of the functional groups are encoded as SMARTS and are
provided in Table S3 in the Supporting Information.
Building Block Search. A building block search also displays

a multitude of information: molecular descriptors, the top four
analogue building blocks along with their Tanimoto scores
using MACCS fingerprints, and all of the products in
SCUBIDOO based on this building block grouped by reaction.
For the latter option, the user has the possibility to download
the selected products in SMILES format.

■ RESULTS

Creation of the Data Sets. Filtering of the Building Block
Library. The initial library contained 18 354 building blocks. In
a first filtering stage, all of the counterions were stripped and
duplicates were removed, yielding 14 831 building blocks. Then
only building blocks with molecular weights lower than 250 Da
were kept, leaving 13 678 entities. Removing building blocks
with three or more rotatable bonds reduced the library to 8006

entities. Applying a last filter allowing zero or one chiral centers
resulted in a final building block library of 7805 molecules.

Creation of the Product Database. The 7805 building
blocks were reacted against each other, generating 17 538 385
products. The computational part was carried out on a cluster
of 192 CPUs and took less than 12 h. Duplicate products were
removed, yielding 14 215 760 products. Then the PAINS filter
level A was applied, leading to a reduction to 14 072 131
products. Afterward, stereoisomer generation was carried out,
giving rise to a final database of 21 035 460 products.

Creation of Representative Samples. The 21 million
products were reduced to three representative samples of
different sizes (S, M, and L) using the stratified balanced
sampling algorithm. All of the products were regrouped into
strata by reactions, leading to 45 strata, i.e., 13 reactions never
occurred. The never-occurring reactions are based on building
blocks that are not present in the currently used library. The list
of reactions that are not present in SCUBIDOO is provided in
Table S4 in the Supporting Information. Next, during balanced
sampling, the representative products for each stratum were
selected using chemical descriptors (molecular weight, logP,
number of H-bond donors, number of H-bond acceptors, and
topological polar surface area) as auxiliary variables. In the end,
the S, M, and L samples contained 9994, 99 977 and 999 794
compounds, respectively. For analysis, only the S sample was
used. Only the L sample contained at least one representative
of each reaction; the S sample was missing four reactions and
the M sample two reactions.

Analysis of the Data Sets. Analysis of the ChemBridge
Building Block Library. The breakdown of the ChemBridge
building block library by reagent class is displayed in Figure 3.
The most frequent reagent classes, which are primary,
secondary, and heterocylic aromatic amines, heterocyclic
acids, and aryl halides, are consistent with the most frequent
reactions used during the creation of SCUBIDOO. Indeed, the
Schotten−Baumann amide, Buchwald−Hartwig, reductive
amination, and Negishi reactions, which are the top four
reactions employed in SCUBIDOO, require the aforemen-
tioned reagents.

Figure 3. Frequencies of reagent classes in the ChemBridge building blocks data set.
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Frequencies of the Reactions. During the first stage of
stratified balanced sampling, all of the products from

SCUBIDOO were regrouped by reaction in order to define
the strata. To ensure that the frequencies of the reactions

Figure 4. Relative frequencies of the reactions used in SCUBIDOO (blue) and the S sample (red). Only reactions employed at least 50 000 times are
represented here.

Figure 5. Relative frequencies of the descriptors molecular weight (upper left), logP (upper right), number of rotatable bonds (lower left), and
number of H-bond acceptors (lower right) in SCUBIDOO (blue) and the S sample (red).
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within the entire population and within the S sample were of
similar distribution, we plotted the reaction frequencies as a
histogram (Figure 4). It is intriguing that almost 75% of the
generated products of SCUBIDOO are based on four chemical
reactions: Schotten−Baumann amide (33.3%), Buchwald−
Hartwig (17.5%), reductive amination (13.6%), and Negishi
(10.5%). This partitioning is of course related to the
distribution of reagent classes observed in the previous section.
It is also similar to the findings of Hartenfeller et al.12 and lines

up with the study of Roughley and Jordan,18 where these four
reactions are among the top six reactions used in the
pharmaceutical field. In contrast, the popular Suzuki coupling
is underrepresented here. This is due to the fact that only a few
boronic acids (97) were present in the initial building block
library.

Chemical Properties. In the second stage of stratified
balanced sampling, the representative products of each stratum
were selected using auxiliary variables (i.e., molecular

Figure 6. Principal component analysis of DrugBank (orange-yellow), the lead-like subset (green), and the S sample (red). The first principal
component explains 34.9% of the total variance, and the second explains 28.3%. The two principal components thus cover 63.2% of the total
variance. The marginal histogram on each axis represents the density distribution of each data set according the same color code.

Figure 7. (a) Tanimoto score distributions of the 9994 products in the S sample compared with the 1540 compounds of DrugBank using (a)
MACCS keys and (b) FCFP4 fingerprints.
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descriptors). For the purpose of comparing SCUBIDOO to the
S sample, the distributions of these auxiliary variables for each
data set were plotted as histograms (Figure 5). The
distributions of the two data sets are similar, indicating that
the representative sample respects the heterogeneity of the
initial population.
Diversity and Novelty. Analysis of the space spanned by the

aforementioned physicochemical properties (Figure 6) using
the two main principal components depicts the S sample as
overlapping with the property regions of known drugs and lead-
like compounds. This suggests that many of the generated
products are in principle drug-like. However, despite this
overlap, there are also many molecules from the S sample that
are located within regions where known drugs and lead-like
compounds are absent, indicating the existence of potentially
chemically novel compounds. The composition of features of
each plane is provided in Table S5 in the Supporting
Information.
We also compared the S sample against DrugBank in more

detail. For each product from the S sample, the distance to the
nearest drug was calculated using MACCS keys41 and FCFP4
fingerprints employing the Tanimoto coefficient. We used two
different fingerprints for this comparison because we wanted to
obtain two different opinions on similarity. The MACCS
fingerprint contains 166 bits and is used for substructure
searching. Each bit position specifically encodes a common
functional group. In contrast, FCFP4 fingerprints are
topological circular fingerprints, which are not predefined and
can represent a large number of different molecular features.
Therefore, these fingerprints highlight how particular features
of known drugs are retrieved within SCUBIDOO products.
Tanimoto score frequencies are plotted in Figure 7.
Interestingly, the distribution for MACCS keys similarity is
centered around a Tanimoto score of 0.7, suggesting that the S
sample contains both similar and dissimilar products in
comparison with known drugs. We treat 0.7 as a cutoff
between similar and dissimilar compounds for MACCS keys, as
it was shown to have discriminative power in an earlier study.42

In the case of FCFP4 fingerprints, the distribution is centered
around 0.4, which is also known as a good discriminative
cutoff.43 This maximum at a lower value is expected, as FCFP4
fingerprints are stricter in terms of Tanimoto score when
dealing with bigger molecules. The fractions of dissimilar
products obtained using two different fingerprints can be
interpreted as hints that SCUBIDOO contains novel chemical
entities in comparison with known drugs.
Synthetic Accessibility. To obtain a second computational

assessment of the ease of synthesis of the products within
SCUBIDOO, the SA score was computed for each product.
The distribution of SA scores, plotted in Figure 8, is centered
around of value of 3 with the vast majority (96%) lying below
an SA score of 4, indicating easy-to-make products rather than
overcomplex molecules.
Application: Retrospective Studies. In order to

exemplify how SCUBIDOO might be useful in a ligand
discovery context and to demonstrate several usage scenarios,
retrospective similarity screening campaigns are presented here.
The main goal is to show how SCUBIDOO can be used to
retrieve known drugs or highly similar analogues. Table 1 lists
all of the examples that were analyzed. The first example is
meant to be comprehensive in order to demonstrate how to use
SCUBIDOO step-by-step. Only examples 1, 2, and 3 are

described here. The remaining examples are provided in the
Supporting Information.

Example 1: DB08235. Ligand-Based Strategy. In the
similarity screen between DrugBank and the S sample, a
close match was identified between the experimental drug
DB08235 and SCUBIDOO product S10143065 (Figure 9),
with an FCFP4 Tanimoto score of 0.69. Both molecules have
an amide group attached to an indole moiety. DB08235 is an
experimental drug that was identified as an inhibitor of the
Arp2/3 complex44 and may be utilized as potential anticancer
agent. A one-click search in SCUBIDOO’s Web interface
retrieved information for S10143065. It is predicted to be
synthesizable using a Schotten−Baumann amide reaction
between the two building blocks 4029192 and 4089476
(Scheme 1). Building block 4089476 is particularly interesting
here, as it contains the indole moiety. We then looked for every
product in SCUBIDOO made from building block 4089476
using a Schotten−Baumann amide reaction, since this reaction
introduces an amide bond, and 4460 derivative products were
retrieved and compared to DB08235 using FCFP4 fingerprints.
This search identified five products with Tanimoto scores
above 0.84 (Figure 10). Among those, two very close analogues
of DB08235 were present. Indeed, products S00003866 and
S00021706 contain an isoxazole moiety and a thiazole moiety,
respectively, which are very close to the thiophene moiety of
DB08235. This application shows that after a molecule in the S
sample that is similar to a given drug is identified, we can use
the synthetic information on the product of interest to quickly
screen the entire SCUBIDOO data set using a building block
identifier and a reaction. A full search of the entire library would
have taken several hours, as opposed to the few minutes for
screening of the S sample and the 4460 derivatives of the
original “hit”. Therefore, we were able to efficiently analyze the
analogues based on building block 4089476 and retrieve five
products that are more similar to the drug than the initial hit
found in the S sample. This example also illustrates how
SCUBIDOO can be used for structure−activity relationship
(SAR) studies or to generate suggestions for fragment-growing
strategies.

Structure-Based Assessment of DB08235 Analogues. The
five analogues of DB08235 were then docked into the Arp2/3

Figure 8. Distribution of SA scores for all of the products contained in
SCUBIDOO.
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complex using FRED.45 The crystal structure is available in the
PDB (ID 3DXK). The predicted binding mode for product
S00021706, illustrated in Figure 11, overlaps perfectly with the
cocrystallized ligand DB08235. The same binding mode was
also retrieved for the remaining four analogue products. This
can be taken as a hint that the two close analogues might
exhibit similar biological activities, as they scored favorably in
this orthogonal screening method. Another way to look at this
result is that if S00021706 had been suggested as a potential
ligand in an unbiased docking screen, one would have been able

to readily retrieve the other analogues quickly, leading to
potentially biologically active compounds.

Example 2: DB01097. After screening of the DrugBank
against the M sample, a close match was identified between
leflunomide (DB01097) and product S00134656 (Figure 12)
with an FCFP4 Tanimoto score of 0.67. They both contain
building block 3001678. Focusing on this building block,
similar to the procedure of example 1, led to the identification
of the closest product to leflunomide in the entire SCUBIDOO
database, S00131967, with an FCFP4 Tanimoto score of 0.68.
The only difference between S00131967 and leflunomide is
that the benzene ring is replaced by a pyridine ring. However,
the isoxazole ring, which is the active part and is opened upon
administration,46 is identical. S00131967 is predicted to be
synthesizable using a Schotten−Baumann amide reaction. This
reaction was also applied to synthesize leflunomide.47

Example 3: H50. In the comparison of the ligands from the
PDB against the M sample, a similarity appeared between the
fibrillogenesis inhibitor H5048 (Figure 13a) and product
S03544112 with an FCFP4 Tanimoto score of 0.84 (Figure
13b). Product S03544112 is predicted to be synthesizable using
a Suzuki coupling between the building blocks 4003301 and
6644827. Suzuki coupling was also applied to synthesize H50.49

In this case, the two molecules do not share a common building
block. Exploring the analogues of building block 4003301 led to
the boronic-acid-containing building block 3200974, which is
more similar to the initial H50, as only a chlorine is replaced by
a fluorine. The derivatives of building block 3200974 obtainable
by Suzuki coupling were then compared to H50, and product
S02142952 (Figure 13c) was identified as a closer analogue,
with an FCFP4 Tanimoto similarity score of 0.93. Furthermore,

Table 1. Summary of the Hits Found within SCUBIDOO after Similarity Screening against DrugBank and the PDB Based on
the FCFP4 Fingerprints

exa ref IDb hit IDc sim (FCFP4)d reactione ref setf sampleg

1 DB08235 S00003866 0.96 amide DrugBank S
2 DB01097 S00131967 0.68 amide DrugBank M
3 H50 S02142952 0.93 Suzuki PDB M
3 H50 S02148982 0.94 Suzuki PDB M
4 4K6 S07366028 1 amide PDB S
5 F8E S13393814 1 Buchwald−Hartwig PDB L
6 RM8 S01918821 1 amination PDB L
7 1DZ S16929461 1 N-arylation PDB L

aExample. bReference ID (drug or PDB ligand). cSCUBIDOO ID. dTanimoto similarity score using the FCFP4 fingerprints. ePredicted reaction.
fReference data set. gSCUBIDOO sample.

Figure 9. Molecules mentioned in example 1: (a) DrugBank
compound DB08235 and (b) its closest similar product in the S
sample, S10143065.

Scheme 1. Route for Obtaining S10143065 (right): The Schotten−Baumann Amide Reaction between the Two Building Blocks
4089476 (left) and 4029192 (middle)
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the derivatives of building block 4003301 were compared to
H50, leading to yet another close analogue, product S02148982
(Figure 13d), with a similarity score of 0.94.

■ DISCUSSION AND CONCLUSIONS
We have presented a freely accessible database concept
currently holding 21 million screenable chemical products,
each coming with synthesis information allowing an estimation
of how readily it might be obtained. All of the reactants used for
the creation of this database are publicly available, and the

reactions employed are among the most popular ones in the
pharmaceutical field. The products are accessible using an
intuitive Web interface, complete with synthesis instructions.
SCUBIDOO is unique because it not only provides reaction
suggestions but also clearly specifies potential side or alternative
reactions and even reactive groups that could interfere during
synthesis. Such warnings can help chemists as decision tools
during synthesis planning and protecting group design.
Moreover, since SCUBIDOO is a Web-based application,
gathering of feedback from the scientific community is possible
and will be applied to refine the products and reactions in
future versions. This will benefit the community by making the
set of reactions and the alerts in SCUBIDOO even more
robust.17

It is clear that the diversity of the initial building block library
has a large impact on the generated products. Therefore, future
versions or derivative libraries will originate from new building
blocks and increase the diversity. Conversely, in order to
broaden the library more, it could be interesting to ensure that
the building block library provides some heterogeneity within
the reagent classes. This will enhance the diversity of the
generated products and allow the use of the set of 58 reactions
at its full potential. As a possible future development of their
work,23 Goldberg et al. suggested an open-innovation approach
where ideas for novel structures to synthesize could be accessed
from external sources. SCUBIDOO fits right into this context.
SCUBIDOO is not so much a database as it is a concept of

how to enter chemical space. Along those lines, the PCA
analysis suggested a share of novelties within SCUBIDOO that
can be assumed to be “low-hanging fruits” as described by
Hartenfeller et al.12 More precisely, such chemical scaffolds
undescribed for a particular target can be used as starting points

Figure 10. (a−e) Molecular analogues of DrugBank compound DB08235 found in SCUBIDOO.

Figure 11. Docking: predicted binding mode of product S00021706
(green carbons) compared to the crystallized ligand DB08235 (gray
carbons). The protein is shown in white cartoon representation, and
H-bonds are indicated by yellow dashed lines.

Figure 12. (a) DrugBank compound DB01097 (leflunomide). (b) Its closest similar product in the S sample, S00134656 (Tanimoto score = 0.67).
(c) Its closest similar product in all of SCUBIDOO, S00131967 (Tanimoto score = 0.68).
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for ligand discovery projects. Once such a “fruit” is identified,
SCUBIDOO allows users to rapidly explore the tree around
this point in order to harvest close analogues. This analogy is
illustrated in the retrospective studies, where we identified
existing active molecules within SCUBIDOO starting from the
samples. Whenever possible, we retrieved information about
the original synthesis, which matches the category of
SCUBIDOO well. In a prospective screening setting, where
such suggestions might come from docking, SCUBIDOO can
be used in a straightforward manner to assemble a tailored
library. Since this method also proceeds via a close look at the
fragment composition, it fits right in with the ALTA approach,
which we have described earlier.50 Additionally, in cases where
only analogues of active molecules were retrieved within the
samples, a second, refined, search at the building block level
allowed us to retrieve the initial active molecule or a very close
analogue in all cases discussed here. Retrospective binding
mode analysis showed that the small chemical differences
should not affect the ligand−protein interactions.
While the size of this database is relatively small compared

with those of other virtual chemical space libraries,15 navigating
through 21 million entities already presents a challenge. In
order to provide an entry point, SCUBIDOO was reduced to
three different representative samples denoted as S, M, and L,
containing 9994, 99 977, and 999 794 compounds, respectively.
The representative samples were extracted using a stratified
balanced sampling algorithm, which is a well-known algorithm
for population surveys. Its application to a large molecule set
allowed us to obtain samples respecting the heterogeneity of
the initial set. This is essential in order to use the database in an
efficient fashion in future screens. We are aware that 21 million
products is far from covering chemical space. Nevertheless, we
think that concomitant with future expansion of our database,
such reduction steps need to be applied in order to keep the
data computationally tractable. To the best of our knowledge,
this is the first application of balanced sampling for this
purpose.
A typical application protocol might start with screening of

the SCUBIDOO sample of a user’s choice using a ligand-based
strategy, a structure-based strategy, or both. The second step
would then involve a focused search around the candidate hits
found during the first screening, this time extracting molecules
from the entire database.
Furthermore, SCUBIDOO can also be employed as a

growing strategy within a fragment-based project or as an SAR
tool. Indeed, any SCUBIDOO product is the assembly of two
building blocks (or fragments). If one of those building blocks
shows promising interactions with a given target, SCUBIDOO
lets users quickly retrieve all of the derivatives of this building

block. All of these products can then be downloaded in
SMILES format for further investigation.
While the retrospective assessment shows the existence of

known active molecules within SCUBIDOO and the SA scores
suggest that most of the products fall on the side of relatively
facile synthetic realization, the next step will be to validate
products experimentally. We think that this database has the
potential to go in the direction of one of the expected
breakthroughs in future de novo design, as stated by
Schneider:51 “reliable prediction of the synthesizability of new
chemical entities and suggestion of short synthesis routes and
reactions, directly coupled to integrated synthesis-and-test plat-
forms”. After the recent publication of the “synthesis machine”,5

it is not ludicrous to think that the first brick of such a workflow
might be a database based on the SCUBIDOO concept.
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Results

Application: retrospective studies

In this section the examples which are not fully described in the paper are presented (cf Table 1).

Example 4: 4K6

Screening the ligands from the PDB against the S sample allowed to show that 4K6 is present in this

sample under the ID S7366028 (Figure S1). 4K6 is an inhibitor of factor IXa which was recently

crystallized. Product S7366028 is predicted to be synthesizable through an amide formation, which

is also the case for 4K6.1

∗To whom correspondence should be addressed
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Figure S1: 4K6

Example 5: F8E

Matching the ligands from the PDB to their close counterparts in the L sample yielded a close

match between F8E,2 which is a Tau-Tubulin Kinase 1 inhibitor, and product S13392303 (FCFP4

Tanimoto = 0.91). These molecules share the same building block 4036676. After comparing the

derivatives of 4036676 reactive in a Buchwald-Hartwig reaction, we were able to retrieve product

S13393814 (FCFP4 Tanimoto = 1), which only differs from F8E by a substitution between a chlo-

rine and a bromine (Figure S2). Product S13393814 was then docked within Tau-tubulin kinase 1

receptor using GOLD.3 Two water molecules occupy the binding site and were kept for the dock-

ing process. The binding mode found for product S13393814 overlaps with the crystallized F8E

and all the polar interactions were recapitulated (Figure S3).

Example 6: RM8

Screening the ligands from the PDB against the L sample yielded another close match between

RM8,4 which is an acidic mammalian chitinase inhibitor, and product S03114005 (FCFP4 Tani-

moto = 0.84). These molecules share the same building block 3020388. Derivatives of building

block 3020388 pointed us towards RM8 itself, present under the ID S01918821 (FCFP4 Tanimoto

= 1).

2
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(a) F8E (b) S13392303 (c) S13393814

Figure S2: (a) F8E. (b) Its closest similar product S13392303 in the L sample (FCFP4 Tanimoto =
0.91). (c) Its closest similar product S13393814 in SCUBIDOO (FCFP4 Tanimoto = 1).

Figure S3: Docking: predicted binding mode of product S13393814 (orange carbons) compared
to the crystallized ligand F8E (grey carbons). Protein in white cartoon representation. H-bonds are
indicated by yellow dashed lines.

3
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(a) RM8 (b) S03114005

Figure S4: (a) RM8. (b) Its closest similar product S03114005 in the L sample (FCFP4 Tanimoto
= 0.90).

Example 7: 1DZ

Finally, the comparison of the PDB against the L sample identified 1DZ, which is a PPI inhibitor,5

and product S16936876 as a close match (FCFP4 Tanimoto = 0.83). These two molecules do not

share a common building block. However, exploring the analogs of building block 7278181 led to

building block 7253309, contained in the initial 1DZ. The derivatives of building block 7253309

amenable to N-arylation on a heterocycle were then screened against 1DZ and 1DZ was retrieved

under the ID S16929461.

(a) 1DZ (b) S16936876

Figure S5: (a) 1DZ. (b) Its closest similar product S16936876 in the L sample (Tanimoto = 0.83).
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”Opportunities multiply as they are seized”

Sun Tzu



The chapter 6 is a scaffold of an article. I was responsible of the overall strategy, ligand

based approach, docking screening with OpenEye tools, visual inspection and selection

of the fragments to optimize. Christof Siefker handled the TSA and the crystallization of

fragment 4012413. Helena Rimmer synthesized the fragment 4012413 and is currently

working on derived products. Corey Taylor helped with the docking screening with

DOCK (results not shown here) and evaluation of the poses from FRED screening.
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Chapter 6

Design and identification of novel

ligands for the PIM1 kinase

6.1 Introduction

Proviral integration Maloney (PIM) kinases belong to the family of protein serine /

threonine kinases and consists of three members (PIM1, PIM2 and PIM3). PIM kinases

are involved in cell proliferation and survival, and has been shown to be overexpressed

in a variety of tumors, namely pancreatic, prostate and colon [262–269]. PIM1 is mainly

expressed in hematopoietic cells [270] and has been shown to be overexpressed in a wide

range of human leukemias. Thus PIM kinases are particularly important therapeutic

targets in oncology [271].

Given the relevance of these targets, we began a fragment-based ligand discovery cam-

paign focusing on PIM1 using computational approaches as first screening technique.

A recent study has shown that de novo fragment growing strategies were successfully

applied in the identification of low nanomolar PIM kinase inhibitors [271]. The authors

designed their two initial compounds with previously published structures as starting

points [272]. They assumed that the compounds were able to interact with the catalytic

Lys67 and also hypothesized that they might be involved in a salt bridge with Asp128

and/or Glu171. Docking predictions suggested that the S -isomers made direct inter-

actions to Asp128 and Glu171, while the R-isomers did not. Assays revealed that the

S -isomers were 5-20-fold more active. Thus the authors suggested that a direct bind-

ing to Asp128 and/or Glu171 could be necessary to achieve a higher affinity. Later on,

crystal structures revealed that interactions with Lys67 were correctly predicted but one

of the compounds did not make direct interactions to Asp128 and Glu171. Instead the
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compound made mediated interactions to those residues via a water molecule, highlight-

ing that a direct interaction to Asp128 and Glu171 was not strictly necessary to achieve

a leap in affinity.

In our study, we applied a two-step computational strategy in order to design novel

ligands for the PIM1 kinase. The first step consists of identifying fragments which make

compelling interactions with Glu121 and/or Lys67. The second step consist of growing

the fragment into a larger product that could interact with Asp128 and/or Glu171.

To do so we made use of structure-based and ligand-based approaches in synergy with

the SCUBIDOO database [261]. This database currently holds 21 M virtual products

that are the assembly of two available building blocks. Products were created using a

collection of robust organic reactions [1, 2]. This bipartite product philosophy fits nicely

with our strategy, where a first building block needs to entertain favorable interactions

with Glu121 and/or Lys67, while the second one should interact with Asp128 and/or

Glu171.

This study will first presents how to use SCUBIDOO and provide to the scientific commu-

nity a detailed guide of different scenarios. Three fragments were identified for further

optimization, each using a different strategy. One was found using ligand-based ap-

proaches (similarity search), one was identified using structure-based techniques (dock-

ing) and the last one was discovered when trying to improve the hit from docking (analog

search). Each of the three fragments was then grown using a particular chemical reac-

tion. Doing so, allows one to help validating the synthetic feasibility of SCUBIDOO

products by using different reactions. Ensuring chemical reaction diversity allows us to

synthesize diverse compounds which should increase our chance to identify PIM1 in-

hibitors. Finally, we will highlight how one can make use of in silico screening in order

to identify fragments with favorable ligand efficiency (LE). This will be illustrated with

our ongoing results where one of the three initial fragment, identified through docking,

was tested in a thermal shift assay (TSA) and showed a positive shift. This first exper-

imental clue, was quickly followed by a second clue, a successful attempt to crystallize

the fragment with PIM1. The structure of the complex should be solved in the near

future (August 2016). If the predicted binding mode aligns with the crystal structure,

this will confirm that the fragment is a hit and that we could optimized into a better

ligand for the PIM1.
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Figure 6.1: PIM1 crystal structure. The hinge region is colored in blue, the DFG
motif in green and the glycine rich loop in red.

6.2 Methods

6.2.1 The PIM1 binding site

The PIM1 binding site consists of three main regions highly conserved among the kinase

family: the hinge region, a glycine-rich loop and the DFG motif (Figure 6.1). The

binding site can be regarded as a cave, with the “ceiling” (glycine rich loop) and the

“floor” being mostly hydrophobic. In between stands the hinge region containing the

conserved Glu121 which is known to interact with ATP via an H-bond between the

backbone carbonyl and the adenine moiety. The catalytic Lys67 is an important residue

which has been shown to be involved in the inhibition of PIM1 [273–276]. Some inhibitors

are also known to form a salt bridge with Asp128 or Glu171 [275–278] which is located

below the hinge, in a more solvent-exposed region (Figure 6.2).

6.2.2 Bi-partite product philosophy

Any product in SCUBIDOO is the assembly of two building blocks (chapter 5). Thus

any product can be divided in two fragments A and B. For the remaining applications

of SCUBIDOO, A will be defined as the key fragment, the one that makes the most

compelling interactions and thus the fragment we want to optimize (growing). B will

be the fragment attached (extension) to A that can be assimilated as additional steric

or polar constraints (the less important part of the product).
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Figure 6.2: PIM1 key residues targeted by our growing strategy.

6.2.3 Growing strategy

Structure-based and ligand-based strategies were applied in order to identify A fragments

that could interact with at least the conserved carbonyl of Glu121 or the catalytic Lys67.

A perfect scenario would be interactions with both residues. For further consideration,

A fragments should also contains reactive features (i.e. chemical features compatible

with the organic reactions) pointing towards the solvent so one can attach B extensions

that are likely to interact with Asp128 or Glu171.

6.2.4 Receptor preparation

Docking calculations were performed with the “DFG in” conformation (active) of PIM1

in complex with two high affinity inhibitors (PDB: 3BGP and 3VBV) [270, 279], the

latter inhibitor being used in our fragment growing strategy. All ligands and solvent

molecules were removed. The hydrogens were placed and minimized using the HBUILD

module in CHARMM [249].

6.2.5 Active and decoy sets

All the molecules with a reported activity against PIM1 were downloaded from ChEMBL [280]

and any molecule with a measured Ki lower than 10 µM was selected as active. This pro-

cedure yielded 730 active compounds. The decoys were generated using the DUD-E [281]

web service, yielding 47’092 decoys.
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6.2.6 Libraries preparation

The active and decoy sets, the S sample and all the derivative libraries (i.e. the derived

products from a same building block) mentioned in this study were prepared for docking

according to the same protocol:

• Compounds were protonated at physiological pH (pH = 7.4) and the most likely

tautomer was assigned using QUACPAC [246].

• In case any protonated tertiary amines were present, both enantiomers were gen-

erated using flipper [254].

• Up to 500 conformers were generated for each molecule by means of OMEGA [57].

6.2.7 Docking

All products from the SCUBIDOO samples and the derivative libraries were docked

with FRED [58, 80–82] which is described in chapter 2. The exceptions are the derived

products of building block 5175110, which were docked using HYBRID. HYBRID shares

the same algorithm with FRED with the exception that a component in the scoring

function takes into account the 3D overlap with a reference crystal ligand. This feature

is extremely useful in a fragment growing context, since products overlapping with the

core fragment (i.e. the A fragment) will be scored higher than non overlapping one.

SZYBKI [87] was used as a refinement approach in order to minimize the poses found

and remove clashes (internal or external).

6.2.8 Chemical descriptors

Chemical similarity was based on the Tanimoto score of the FCFP4 fingerprints [30],

which were computed using the RDKit library [257].

6.3 Results

6.3.1 Evaluation of PIM1 structures by means of enrichment calcula-

tions

The 102 crystal structures of PIM1 available in the protein data bank (PDB accessed in

April 2015) were visually inspected in order to select a pool of diverse structures. This
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was done by choosing crystal ligands that offer chemical diversity, thus different binding

modes and therefore interact with different regions of the binding site. Ten structures

were selected for further evaluation using enrichment calculations. This procedure aims

at evaluating the discrimination power of a receptor by docking a set of known active

ligands and a set of decoys (i.e. non-active). The more the receptor is able to retrieve

active ligands in the top ranked molecules, the higher the enrichment, and thus the more

reliable the receptor should be.

The enrichment results are summarized in table 6.1. Overall the results suggest a strong

discriminative power (AUC > 0.69) for 9 receptors out of 10. Only 2XIY did perform

relatively poorly with an AUC of 0.639. A comparison of 2XIY and 3BGP (AUC =

0.814) binding sites is illustrated in figure 6.3. Interestingly, in comparison to 3BGP,

Asp186 in 2XIY is shifted towards Lys67 in order to accommodate an H-bond. This

bond obstructs Lys67 in comparison to 3BGP, decreasing its polar surface area, thus

increasing the polar constraints for any ligand to form an H-bond with Lys67. This

could explain why the enrichment results are less robust with 2XIY, because it is harder

for the ligands to interact with the catalytic Lys67, which is know to be crucial in the

binding of many ligands [273–276].

Receptor (PDB) AUC

3BGP 0.814
3F2A 0.794
4K18 0.792
4DTK 0.752
4K1B 0.752
3VBV 0.747
3C4E 0.742
2BIK 0.699
2J2I 0.690
2XIY 0.639

Table 6.1: Enrichment of a divers set of PIM1 structures.

6.3.2 Ligand-based approach

The S sample and the Chembridge building blocks library (i.e. the library used to create

SCUBIDOO) were screened against the active set using the FCFP4 fingerprints in order

to identify products that were similar to known active ligands. This procedure yielded

building block 5175110, which happens to be a crystallized ligand (PDB code = 0FK,

3VBV). A close inspection of 0FK’s binding mode (Figure 6.4) revealed a phenol moiety

pointing towards the solvent and interacting with a water molecule. Derived products of
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Figure 6.3: Comparison of PIM1 crystal structures 2XIY (black carbons) and 3BGP
(white carbons).

Figure 6.4: Fragment 0FK (green carbons) crystallized in the PIM1 binding site (PDB
3VBV). Water molecules are represented in blue spheres and H-bond are represented

as dashed yellow lines.

5175110 suggested that the phenol could be used for further growing with a Mitsunobu

phenol reaction. Thus this building block was selected for further growing.
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Figure 6.5: SCUBIDOO workflow for docking application.

6.3.3 Structure-based approach

A typical workflow for the use of SCUBIDOO in structure-based ligand discovery efforts

is illustrated in figure 6.5. Each step will be detailed below.

6.3.3.1 Step 1: sample docking.

The S sample was docked in the binding site of PIM1 using FRED. The top 500 molecules

based on the score were visually inspected, in order to identify low-hanging fruits (i.e.

products containing building blocks that make compelling interactions with the protein).

6.3.3.2 Step 2: identification of low-hanging fruits.

Compound 3178025 is a typical low-hanging fruit (Figure 6.6) containing both a building

block making compelling interactions and a building block which do not. The compelling

building block (fragment A) contains a triazole moiety engaging the catalytic Lys67

via a H-bond and it also contains a phenylamine moiety which engages in favorable

interactions with the carbonyl of Glu121. The second building block (fragment B)

contains a protonated amine interacting too closely with Asp128 (distance N...O = 2 Å)

thus clashing with the receptor. It also contains a free H-bond donor group (pyrrole)

which is not involved in any interactions, thus penalizing the resulting compound even

more.
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Figure 6.6: Low-hanging fruit (product 3178025) identified in the virtual screening
of the PIM1 with the SCUBIDOO S sample.

6.3.3.3 Step 3: deconstruction of the low-hanging fruits.

Compound 3178025 was deconstructed in order to identify the reaction and building

blocks necessary for its predicted synthesis. It was predicted to be synthesized using

building blocks 4002721 and 4012414 via Negishi coupling. Building block 4012414 was

selected for the next step, due to its nearly optimized interactions with the conserved

residues of the binding site.

6.3.3.4 Step 4: construction of the building block derivatives.

The derived products of building block 4012414 based on all reactions compatible with

the aryl halide were downloaded from SCUBIDOO. Five different reactions were thus

investigated: Grignard alcohol, Grignard carbonyl, Suzuki coupling, Negishi, Buchwald-

Hartwig.

6.3.3.5 Step 5a: docking derivatives and selection of the chemical reaction

for growing.

The derived products for each of the five reaction (i.e. five series) were then docked in

the binding site of PIM1. This procedure aimed at selecting which of the five reactions

is compatible with our growing strategy. This selection was based on the evaluation of

the binding mode of the derived products (i.e. can they interact with Asp128), which
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was done visually by inspecting the top 500 molecules based on the score. Each reaction

derivatives will be discussed briefly below.

Suzuki derivatives were too few (97) and were quickly discarded from this study. We

took this decision because none of the generated products where contained a H-bond

donor group which could interact with Asp128. Nonetheless, this allow us to underline

that the library of boronic acids used to create SCUBIDOO is still to poor (only 97

building blocks) and stressed out the importance to repopulate this chemical family in

future versions of SCUBIDOO.

Negishi derivatives were numerous (1514) and showed compelling products able to in-

teract with Asp128. Thus this reaction was kept for our growing strategy.

Buchwald-Hartwig derivatives were plentiful (4662) due to the fact that building block

4012414 contains two reactive features compatible with this reaction (i.e. the aryl halide

and the phenylamine). Only derivatives reacting with the aryl halide were kept, because

they suggested a likely binding mode with Asp128. More interestingly, the substitution

of the chlorine with an amine moiety introduces an H-bond donor group which seems

able to form an internal H-bond with the triazole moiety, thus optimizing the polar

surface area of 4012414. For all these reasons, this reaction was selected for our growing

strategy.

Grignard alcohol derivatives contain a hydroxy group pointing towards an hydrophobic

region of the receptor, thus introducing a free H-bond donor which will penalize the

resulting product due to high desolvation cost that are not compensated upon binding.

The same logic applies to Grignard carbonyl derivatives which increased the polar surface

area with the introduction of a carbonyl moiety. For these reasons, those reactions were

left out from our growing strategy.

6.3.3.6 Step 5b: optimization of the fragment to grow.

While the binding mode of 4012414 suggests that it will interact with both Lys67 and

Glu121, the PSA of the fragment is not fully optimized. Indeed, only one hydrogen

from the amine moiety is involved in a H-bond with the backbone carbonyl of Glu121,

while the remaining hydrogen points towards a hydrophobic region of the receptor.

This free hydrogen is likely to be desolvated without compensation and thus induces an

enthalpy penalty for the overall product. Furthermore, for the Negishi derivatives, the

triazole moiety contains a nitrogen which is not involved in any polar interactions. In

order to remove this ’unnecessary’ nitrogen we looked for analogs of 4012414 within the

Chembridge library and identified 4012413, which answered our problem perfectly: the
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triazole moiety was replaced by a diazole group. Thus, in order to start our growing

strategy from pre-optimized fragments, we decided that the Negishi derivatives would be

based on 4012413 and the Buchwald-Hartwig derivatives would be grown from 4012414.

6.3.3.7 Step 5c: selection of the products for synthesis

The derived products for the three A fragments 4012413, 4012414 and 5175110 (figure

6.9) were then docked in the binding site of the PIM1. The selection of the final products

was based on the aptitude of satisfying a consistent binding mode for a given fragment

A, as well as the faculty to interact with Asp128 or Glu171. This procedure was done

visually by inspecting the top 500 molecules based on the score and repeated for each

fragment A.

• 5175110: nine products were proposed for synthesis using Mitsunobu phenol reac-

tion and all of them contained a protonated amine that is predicted to interact

with Asp128. A suggestion for synthesis is illustrated in figure 6.7, where it can be

seen that the pose of the suggested product overlaps nicely with the crystal ligand

(i.e. OFK), thus preserving its initial binding mode.

• 4012414: 25 products were suggested for further synthesis using Negishi reaction,

as they were deemed likely to interact with Asp128 or Glu171.

• 4012413: eight products were proposed for synthesis. This series contains only

molecules predicted to form an internal H-bond between the triazole moiety and

the amine group introduced by the Buchwald-Hartwig reaction.

6.4 Discussion

We have introduced the first application of SCUBIDOO in a ligand discovery effort

focusing on PIM1. This work lays the foundations of how to use SCUBIDOO and is also

an opportunity to learn about the database concept. Both ligand-based and structure-

based approaches were used in concert in order to identify three fragments to grow and

quickly design derived products for synthesis.

A ligand-based screening was applied in order to identify whether some known actives

were similar to the building blocks used to create the database. The similarity search

allowed us to identify a perfect match between building block 5175110 and a crystallized

ligand (0FK). This building block was then computationally grown using the crystallized

ligand as reference and by making use of the derived products present in SCUBIDOO (i.e.
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Figure 6.7: Illustration of a derived product of 5175110 (cyan carbons) using the
Mitsunobu phenol reaction. The crystallized ligand (OFK) is colored with magenta
carbons. Water molecules are represented as blue spheres and H-bond are represented

with yellow dashed lines.

Figure 6.8: Illustration of a derived product from 4012414 (yellow carbons) using the
Buchwald-Hartwig reaction. The generated product contains an amine moiety which
might form an intramolecular H-bond with the triazole. H-bond are represented with

yellow dashed lines.
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Figure 6.9: Illustration of the derived products from the three fragments used in our
growing strategy.

pre-compiled growing). Nine products were suggested for synthesis via the Mitsunobu

phenol reaction. The synthesis of the derived products is in progress.

In parallel, a structure-based strategy was applied by docking the S sample of SCU-

BIDOO into the PIM1 binding site. Several low-hanging fruits were identified and

deconstructed, leading to the identification of building block 4012414 which made com-

pelling interactions with the receptor. A quick similarity search allowed us to identify

building block 4012413, a close analog of 4012414, but with optimized PSA. Dozens of

derivatives were suggested for these two building blocks, and derivatives of 4012413 were

scheduled for synthesis first, because 4012414 derivatives were considered more risky (i.e.

all suggested products rely on a internal hydrogen bond, which might be unfavorable).

Interestingly, our strategy led to the identification of an active fragment (4012413),

through an in silico screening. It was identified by exploiting the bipartite product

philosophy. In this case, a low-hanging fruit was identified with one ’half’ of the product

making compelling interactions (fragment A), while the remaining part (fragment B)

made suboptimal interactions. Derived products of the fragment A were then extracted

from SCUBIDOO and docked into PIM1 in order to suggest molecules with a optimized

extension (fragment B) for further synthesis. The synthesis of the derived compounds is

in progress. However, 4012413, the base fragment itself was synthesized, tested using a

thermal shift assay (shift of + 1.8◦C), which could be taken as a first experimental hint

that this fragment could bind to PIM1. The first attempt to crystallize this complex

was successful, which could be taken as a second experimental hint. Crystals will be

solved in the near future in order to hopefully validate the predicted binding mode

of this fragment and give more insights for further optimization of this novel scaffold

(i.e. the closests analog in PIM1 binders has a Tanimoto distance of 0.22 using ECFP4

fingerprints).

Even though synthesis results are in progress, this study already offers a silver lining. A

fragment hit was identified using docking, as part of a bigger ’non-optimized’ molecule.

This can be seen as a camouflage, where we actually docked an efficient fragment dis-

guised as a drug-like molecule. This could bring an alternative to the fragment docking
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field, which remains challenging at many levels. One challenge is the number of poses

that can be generated, due to the fact that fragments are small chemical entities that can

bind at multiple different spots in multiple different fashions. On the top of that, possi-

ble interactions with water have to be taken into account and current docking program

tools often do it implicitly (i.e. it is still one of the main challenge of docking tools).

One could significantly reduce this number when disguising a fragment as a drug-like

molecule, since one will add steric or polar constraints to the fragments. Such constraints

will reduce the number of possible conformations that are energetically favorable when

docked into a receptor, and thus reduce the number of generated poses.

In a drug discovery effort, this can be helpful. Indeed, a fragment will never be used as

a drug by itself, simply because it is quite likely to be unspecific and exhibits only low

affinity. Fragments are thus extended into bigger molecules to solve those problems and

this process introduces new steric and/or polar constraints. Thus, docking SCUBIDOO

products is somehow equivalent to docking fragments with additional steric and/or polar

constraints that were assigned more or less randomly. The more derived products, the

more likely we map the fragment constrained space delimited by the receptor. Thus, if

derived products maintain consistent binding modes for their fragment A, one can take

that as a hint that the fragment A is likely to have a favorable LE.

This notion is quite an important discovery and will need further examples in order to

be validated. We started to do so in the following chapter, where I will describe the first

large scale application of SCUBIDOO.
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”So many vows... they make you swear and swear. Defend the king. Obey the king.

Keep his secrets. Do his bidding. Your life for his. But obey your father. Love your

sister. Protect the innocent. Defend the weak. Respect the gods. Obey the laws. It’s too

much. No matter what you do, you’re forsaking one vow or the other.”

Ser Jaime Lannister, A Clash of Kings (1998)



The chapter 7 is a scaffold of an article. I was responsible of the overall strategy,

docking screening, visual inspection, selection of the fragments to optimize, purchasing

the building blocks. Taros (Anna Karawajczyk) handled all the synthesis part.
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Chapter 7

Tailored combinatorial synthesis

guided by combinatorial growing

7.1 Introduction

Computational approaches play a crucial role in de novo design, helping to generate

millions or even billions of virtual compounds within a short time frame. The enumerated

in silico compounds allow computational or medicinal chemists alike to explore new

sectors of the chemical space. While the novelty of the generated compounds can easily

be assessed, the synthetic feasibility is often neglected [261], thus creating a hurdle

that can be a barrier to further investigation. In order to circumvent this problem,

we created SCUBIDOO (chapter 5), a database containing 21M virtual products which

were optimized towards high likelihood of synthesizability. These virtual products are

the assembly of two commercially available building blocks and were created using a

collection of 58 robust organic reactions [1, 2]. SCUBIDOO aims at exploring new

quadrants of the chemical space, which contain molecules that are, in principle, easier

to synthesize than molecules with no predicted synthetic routes.

However, the synthetic feasibility of SCUBIDOO virtual products still needs to be vali-

dated in order to justify this database as a useful tool for ligand discovery efforts. With

the recent publications of the “synthesis machine” [282], it will also be interesting to

demonstrate that SCUBIDOO could be coupled with such automated robotic synthesis,

in order to synthesize novel products at a large scale (i.e. more than 100 products). The

challenge will then be to avoid usual combinatorial chemistry, but do tailored combina-

torial synthesis that provide a divers set of molecules that will enhance the chance to

identify novel ligands for a given target.
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In this study, we adapted the previous strategy where we designed potentially novel

ligands for the PIM1 kinase (chapter 6) at a larger scale. We created a more elaborated

“divide and conquer” strategy, where 240 virtual products were suggested for synthesis

as likely novel ligands for the β2AR. In a first step (i.e. division), the binding site

was divided in three regions: the orthosteric site, the secondary binding pocket (SBP)

and the tertiary binding pocket (TBP). Two strategies were then defined aiming at

growing a fragment from the orthosteric site towards the SBP (strategy 1) or towards

the TBP (strategy 2). The second step (i.e. conquest of the orthosteric site) consisted

of identifying 10 A fragments (5 for each strategy) which make compelling interactions

with the orthosteric site, and find organic reactions compatible with each strategy). In

the last step (i.e. conquest of the SBP and TBP), 48 B fragments (24 for each strategy)

were selected so they are compatible with the defined organic reactions (i.e. compatible

with growing) and offer divers binding modes.

This study strives to illustrate how SCUBIDOO can assist tailored combinatorial syn-

thesis with the support of docking and combinatorial growing. 10 A fragments (5 + 5)

were identified for further growing and were combined with 48 B fragments (24 + 24)

using two different organic reactions, yielding 240 products (2 x (5 x 24)). The diver-

sity of the A and B fragments was assisted by a polar fingerprint of the binding site

(defined by listing all the polar residues present). The selection of the fragments and

resulting products was guided by docking. The two organic reactions (amide formation

and reductive amination) were selected due to their compatibility with the fragment

growing strategies, but also because they represents half of the virtual products within

SCUBIDOO. 127 products were successfully synthesized (53%), with an high synthesis

success rate (82%) for the amide pool and a lower one (20%) for the reductive amination

pool. Those preliminary results suggest that products from SCUBIDOO are amenable to

automated robotic synthesis, and that the knowledge gathered at each iterative synthesis

cycle could improve the overall synthesis success rate in the long run.

7.2 Methods

7.2.1 The beta-2 AR binding site

The β2AR binding site was previously described in the chapter 4 (PINGUI). In this

study, we extended the binding site description towards three smaller cavities (figure

7.1): the orthosteric site, the secondary binding pocket (SBP) and the tertiary binding

pocket (TBP).
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Figure 7.1: Sliced surface view of the binding site of the receptor in its active con-
formation (PDB code 2RH1). The orthosteric site is colored in red, the SBP in green

and the TBP in blue.

7.2.2 Receptors preparation

Docking calculations were performed with the inactive conformation of the β2AR in

complex with carazolol (PDB: 2RH1) [220, 221] and the active conformation in complex

with a high affinity agonist (PDB: 4LDL, ligand = XQC) [226]. All ligands, solvent,

lipid molecules as well as the T4-lysozyme insertion or the stabilizing nanobody Nb6B9

were removed. The hydrogens were placed and minimized using the HBUILD module

in CHARMM [249].

7.2.3 Libraries preparation

The S sample and all the derivative libraries mentioned in this study were prepared for

docking according to the same protocol:

• Compounds were protonated at physiological pH (pH = 7.4) and the most likely

tautomer was assigned using QUACPAC [246].

• If any protonated tertiary amines were present, both enantiomers were generated

using flipper [254].

• Up to 500 conformers were generated for each molecule by means of OMEGA [57].
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7.2.4 Docking

All products from the samples and the derivative libraries were docked with FRED and

HYBRID [58, 80–82] which is described in chapter 2 and 7. SZYBKI [87] was used as a

refinement approach in order to minimize the poses found and remove clashes (internal

or external).

7.2.5 Chemical descriptors

Calculator Plugins from ChemAxon [283, 284] were used for logD prediction and cal-

culation. Chemical similarity was based on the Tanimoto score of the FCFP4 finger-

prints [30], which were computed using the RDKit library [257]. Chemical descriptors

used for the PCA analysis were computed using the RDKit library.

7.2.6 Datasets

The β2AR antagonist (204) and agonist (206) sets were downloaded from the GPCR

Ligand Library (GLL) [285]. The drug-like subset was downloaded from ZINC [253]

and contained 17’900’742 compounds. The ether pool comes from SCUBIDOO and was

suggested as a third (backup) pool for synthesis.

7.2.7 Principal Component Analysis (PCA)

The ether, reductive amination and amide pools were compared to the antagonist and

agonists sets using the PCA function as implemented in the R statistics environment.

The descriptors used were molecular weight, logP, number of H-bond donors, number

of H-bond acceptors, number of rotatable bonds, number of chiral center, topological

polar surface area, fraction of aromatic ring and the Bertz index [286], which estimates

the molecular complexity.

7.2.8 Synthesis

The 24 position Mettler-Toledo Miniblock contains 1 plate with 24 wells, each well is

filled with one B building block. 1 plate is attributed for each of the 5 A fragment to

grow, thus yielding 120 products (figure 7.2). This procedure is repeated twice, one for

reductive amination and one for amide formation. The total procedure should yield up

to 240 products (without stereoisomers taken into account).
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7.2.8.1 1.5 g scale Boc-protection

Equipment required and reaction conditions: 3 necked round bottomed flask,

magnetic stirrer and dry reaction under nitrogen.

Procedure: In a three necked round bottomed flask was placed the appropriate

aminoacid (1.5 g, 1.0 eq) and diluted with 20 mL of MeOH. To the reaction mixture was

added triethylamine (1.1 eq) and Boc-anhydride (2.0 eq) dissolved in 5 mL of MeOH

was added dropwise over 5 minutes. The reaction was stirred at room temperature for

2-3 hours (starting material consumption was monitored by TLC).

Work up: The reaction mixture was evaporated to dryness. Crude was redissolved

in EtOAC and washed twice with NaHCO3. The aqueous layer was acidified with 10%

HCl until pH = 2 and extracted three times with EtOAC. The combined organic layers

were dried over MgSO4, filtered and concentrated in vacuo to yield the corresponding

Boc-protected aminoacids with moderate to excellent yields (38% - 92%).

7.2.8.2 40 mg scale amidification products

Equipment required and reaction condition: 24 position Mettler-Toledo Miniblock,

magnetic stirrer and dry reaction under nitrogen.

Procedure: In a Mettler Vial were placed a previously prepared solution containing

40 mg of the corresponding Boc-protected aminoacid (1.0 eq) in 2 mL of DMF, DIPEA

(5.0 eq), HOBt (1.5 eq), EDC*HCl (2.0 eq). Then the corresponding amine was added

(1.0 eq). The reaction mixtures were stirred at room temperature overnight. Reaction

conversion was confirmed through UHPLC check of some representative samples.

Work up: The reaction mixture was evaporated to dryness. Crude product was

purified by preparative HPLC (gradient, Acetonitrile: water with 0.1% Formic acid,

2-98%). Fractions containing pure product were combined and evaporated to dryness in

Mettler Vials.

7.2.8.3 De-Boc

Equipment required and reaction condition: 24 position Mettler-Toledo Miniblock,

magnetic stirrer and dry reaction under nitrogen.
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Procedure: Into a Mettler Vial containing the Boc-protected amidification product

was added 0.5 mL of 1,4-dioxane and 0.5 mL of 4N HCl in dioxane. The mixtures were

stirred at room temperature overnight. Reaction conversion was confirmed through

UHPLC check of some representative samples.

Work up: The reaction mixture was evaporated to dryness. Crude product was

purified by preparative HPLC (gradient, Acetonitrile: water with 0.1% Formic acid,

2-98%). Fractions containing pure product were analysed by UHPLC and some of them

by 1HNMR in selected cases.

7.2.8.4 30 mg scale reductive amination products

Equipment required and reaction condition: 24 position Mettler-Toledo Miniblock,

magnetic stirrer and dry reaction under nitrogen.

Procedure: In a Mettler Vial was placed the appropriate amine (30 mg, 1.0 eq) and

diluted with 2 mL of dry DCE. To this solution was added appropriate aldehyde (0.9 eq)

and acetic acid (1.5 eq). The reaction was stirred at room temperature for 20 minutes

and then sodiumtriacetoxyborohydride (1.5 eq) was added. The mixtures were stirred

at room temperature overnight. Reaction conversion was confirmed through UHPLC

check of some representative samples.

Work up: The reaction mixture was washed with 1 mL of water and the organic layer

was evaporated to dryness. Crude product was purified by preparative HPLC (gradient,

Acetonitrile: water with 0.1% Formic acid, 2-98%). Fractions containing pure product

were analyzed by UHPLC and some of them by 1HNMR in selected cases.

7.2.9 Selection strategy

Several criteria had to be taken into account for the 240 compounds selection. Each

criterion will be illustrated and more thoroughly explained in the Results section. The

list below was the pillar that defined our “divide and conquer” strategy and should be

regarded as a general guideline.

• Which part of the binding site should be aimed for ? Which residues ?

• Which reactions should be applied ?
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Figure 7.2: Parallel synthesis illustration. One plate containing 24 B building blocks
(within the yellow rectangle) is reacted against one A fragment yielding 24 products.
This procedure is repeated five times, one for each A fragment to grow (within the blue

circle).

• Which 5 A building blocks ?

• Which 24 B building blocks ?

• Safeness, boldness and recklessness of the suggestions

• Chemical diversity and novelty

• Price and availability

7.3 Results

7.3.1 Binding site partitioning

As mentioned earlier, the binding site was divided in three sub-cavities: the orthosteric

site, the SBP and the TBP (figure 7.1). This partitioning fits nicely with the SCU-

BIDOO philosophy which is based on bi-partite products, and one can imagine each

sub-cavity being filled with one building block. Thus, we decided to applied two dif-

ferent strategies: one aiming at filling the orthosteric site and the SBP (a follow up

application of PINGUI), and the second one aiming at filling the orthosteric site and

the TBP.

7.3.2 Polar residue fingerprint

All polar residues of the binding site were exhaustively enumerated in order to create

a polar map of the possible interactions (figure 7.3). This map can be seen as a simple

fingerprint encoding the polar residues in the binding site (figure 7.4). Hydrophobic
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Figure 7.3: 2D depiction of the beta-2 AR binding site with all polar residues.

Figure 7.4: Polar fingerprint of the beta-2 AR binding site.

residues were omitted because they are generally involved in non-specific interactions [3]

and we wanted to focus mainly on specific (i.e. polar) interactions. During the selections

of the products, this fingerprint was utilized to suggest divers compounds (i.e. we tried

to interact with as many polar residues as possible).

7.3.3 Identification and selection of the A fragments to grow

A typical workflow for the use of SCUBIDOO in structure-based efforts is illustrated in

figure 6.5 in chapter 6. Each step will be detailed below.
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Figure 7.5: Low-hanging fruit identified in the virtual screening of the beta-2 AR
with the SCUBIDOO S sample.

7.3.3.1 Step 1: sample docking.

The S sample was docked in the binding site of the receptor in its active and inactive

conformation using FRED. For each docking run, the top 500 molecules based on the

score were visually inspected, in order to identify low-hanging fruits (i.e. products con-

taining building blocks that make optimized interactions with the protein). Compound

18806850 is a typical low-hanging fruit (figure 7.5) containing both an optimized and

unoptimized building block. The optimized building block contains a protonated amine

moiety interacting with the crucial Asp1133.32 and it also contains a triazole moiety

which engages in favorable interactions with Asn2936.55 and Ser2075.46. The unopti-

mized building block contains an acid moiety which is not involved in any interactions,

thus penalizing the resulting compound.

7.3.3.2 Step 2: deconstruction of the low-hanging fruits.

Each low-hanging fruit was deconstructed in order to identify the reaction and building

blocks necessary for its predicted synthesis. This procedure allowed to identify building

blocks compatible with reductive amination or amide formation that could be starting

points (Fragments A) in our combinatorial growing. For instance, compound 18806850

was predicted to be synthesized using building blocks 5130031 and 4012456 via reductive

amination. Building block 4012456 was selected for the next step, due to its most

favorable interactions with the orthosteric site.
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7.3.3.3 Step 3: selection of the organic reactions

Two organic reactions were selected, one for each growing strategy. Reductive amination

was applied to fill the orthosteric site and the SBP, because it showed positive results

in PINGUI. Amide formation was used to explore the orthosteric site and the TBP.

7.3.3.4 Step 4: construction of the building block derivatives.

The derived products of each promising building block based on reductive amination or

amide formation were downloaded from SCUBIDOO.

7.3.3.5 Step 5: docking derivatives.

The derived products were then docked into the binding site of the receptor in its active

and inactive conformational state. Five A fragments were selected for each reaction,

yielding ten A fragments for the combinatorial growing. The selection of the A fragments

was based on the propensity of matching a consistent binding mode among the different

derivatives. This procedure was done visually by inspecting the top 500 molecules based

on the score and repeated for each A fragment.

7.3.3.6 Step 6: mini SAR around the A fragments.

For each reaction, in order to facilitate the next step (i.e. selection of the 24 B), the

five A fragments were also selected based on their binding mode (i.e. as dissimilar as

possible) and similarity (i.e. two pharmacophores at the same distance) as illustrated

in figure 7.7 and 7.6.

For the reductive amination derivatives, the pharmacophores were defined by an amine

and an aromatic moiety separated by two carbons (i.e. epinephrine-like). Such phar-

macophore filters are important to ensure the amine to be located in the same position.

Thus extensions that will be attached (24 B), should also be located in the same site.

Only compound E in figure 6.7 differs within the pool, but the position of the amine was

predicted to be in the same vicinity as the other fragments (figure 7.8). Compounds 1

to 3 represent a range of variations of the pyridine / pyrimidine scaffolds, with a simple

methyl (compound 1) mostly doing hydrophobic contacts, a hydroxy moiety (compound

2) predicted to interact with Ser2075.46 and a hydroxy with an aromatic amine moiety

(compound 3) predicted to interact with both Ser2075.46 and Ser2035.42.
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Figure 7.6: (a-e) Five fragments were selected for combinatorial growing in the
reductive-amination pool. (f) Epinephrine.

For the amide pool, the pharmacophore aimed to reproduce the beta-hydroxy motif

but replacing it with a ketone group, thus losing the donor property. Among the 5 A

fragments, subtle difference were taken into account for the selection of divers yet close

molecules:

• Variation of the distance between the amine and the ketone moieties: two carbons

for compounds 4140254 and 4027710 and three carbons for the remaining ones.

• Variation on the cycle size (from 5 to 7 atoms).

• One primary amine (4045566) and four secondary amines were selected.

7.3.4 Identification and selection of the B building blocks to attach

For a given reaction pool, the 24 B building blocks were selected in order to create a

cocktail of safe, bold and reckless chemical features.

The safe building blocks were selected by applying the concept of molecular obesity [3]

in a reverse-engineering strategy. Molecular obesity works by adding some grease (i.e

hydrophobic moieties) to a potent molecule in order to improve its potency via hy-

drophobic interactions and a higher MW which will decrease the desolvation penalty.

In the context of this study, the main goal was to identify fragments with high ligand

efficiency and then optimize them into high affinity ligands. Thus, in order to increase
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Figure 7.7: (a-e) Five fragments were selected for combinatorial growing in the amide
pool. (f) JSZ, an high affinity inverse agonist.

the chance of identifying efficient fragments, one needs to attach some grease to them so

they are more likely to show up in the assays. Safe extensions were thus defined when

no polar atoms were present, as illustrated in figure 7.8.

Bold building blocks were defined as those containing one polar atom predicted to be

involved in a polar interaction. In a similar fashion, reckless building blocks contain

two or more polar atoms. The assumption being that polar interactions are hard to

form because they are highly directional. Thus the more polar interactions need to be

satisfied, the more likely the compound is to fail as active ligand (i.e. each unsatisfied

polar atom induces desolvation penalty, free H-bond donors induce a higher penalty).

Building blocks were selected so they map to as many polar interactions as defined

by the binding site fingerprint. Doing so allows one to explore which residues might

be implicated (or not) in the activation of the receptor as well as ensuring chemical

diversity among the suggested molecules.

7.3.4.1 Amination

The 24 B building blocks of the reductive amination pool are illustrated in SI 7.5. For

this pool, it was difficult to find safe extensions. Thus we made use of the in house

library of Taros and selected 8 buildings blocks that were attached to the A fragments

using PINGUI (chapter 4). Among the 24 suggested building blocks, 7 were selected

as safe extensions (ID = 4004292, 4004691, 5100225, TCR00002575, TCR00002580,

TCR00002587 and TCR00002670), 15 as bold and 2 as reckless (ID = 4002557, 4301989).
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Figure 7.8: Illustration of molecular obesity with a safe (hydrophobic) building block
which keeps a consistent binding mode among 4 A fragments (white carbons).

An example of a safe B building block is illustrated in figure 7.8, where the chloro-

benzene keeps a consistent binding mode with 4 of the 5 A fragments (i.e. the ones that

share a common pharmacophore).

7.3.4.2 Amide formation

The 24 B building blocks of the amide pool are illustrated in SI 7.5. 5 were selected as

safe (ID = 4002741, 4002969, 4006408, 4028089, 4028827), 14 were selected as bold and

5 were selected as reckless (ID = 4040087, 4031726 (internal H-bond), 4037223, 4045370,

and 4045452).

7.3.5 Analysis of the generated products

7.3.5.1 Principal Component Analysis

Analysis of the space spanned by the aforementioned physicochemical properties (Fig-

ure 7.9) using the two main principal components depicts the suggested products as

overlapping with the property regions of known agonists and antagonists of the β2AR.

Interestingly, the amide pool overlaps with a region of known antagonists where no ag-

onists are present. This could suggest that the amide pool contains products with an

antagonistic profile. This is supported by the fact that the amide pool explores the TBP

which is do not exist in the active conformation of the β2AR. The reductive amination
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Figure 7.9: PCA of the amide pool (orange), amination pool (light green), ether pool
(blue), 206 know agonists (green) and 204 known antagonists (red) of the β2AR.

pool offers similar behavior and overlaps with a region of known agonists where no an-

tagonists are present. This could suggest that the reductive amination pool contains

products with an agonistic profile. This is supported by the fact that many agonists

from the β2AR interact with the SBP, highlighting the likely role of this pocket in the

activation of the receptor.

7.3.5.2 Novelty

Each product of the amide and the reductive amination pools were compared with the

GLL (206 agonists and 204 antagonists) and the ZINC drug-like set in order to retrieve

the closest analog based on the ECFP4 fingerprints. Both pools are dissimilar to know

actives (Tanimoto distribution centered around 0.17 and 0.21 for the amide and the

reductive amination pools respectively) suggesting that the suggested compounds con-

tains novel scaffolds that could provide new insights in the β2AR activation mecanism.

When compared to know molecules (i.e. drug-like set) no matches with a Tanimoto

similarity of 1 were retrieved, highlighting that all the suggested compounds are truly

novel chemical entities.
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(a) (b)

Figure 7.10: ECFP4 Tanimoto score distributions of the amide and the reductive
amination pools compared with (A) the GLL and (B) the ZINC drug-like set.

7.3.6 Synthesis

After completion of the allocated synthesis, purification and structural characterization

activities for the project, a total of 127 final compounds have been delivered (53%

synthesis success). 102 are part of the amide pool (82% synthesis success), while 25

belongs to the amination pool (20% synthesis success). The purity and amount of the

synthesized compounds is gathered in figure 7.11.

The high synthesis rate (82%) of the amide pool is quite remarkable considering that this

was a 3-steps reaction (boc - coupling - deboc). Interestingly, all five attempts to grow

building block 4028089 failed, while only one attempt to grow building block 4033241

(i.e. a close analog of 4028089) failed. This result is quite odd given how close the two

building blocks are (MACCS Tanimoto = 0.94) and thus one could have expect similar

synthetic yield.

On the other hand, the synthesis rate of the amination serie was quite low (20%). This

could be explained by the fact, that all the fragments to grow (i.e. the five A fragments)

are primary amine. During the reductive amination, the aldehyde (i.e. any of the 24

B fragments) was added slowly so it can react and form the final product, which is

a secondary amine. However, secondary amines can still react under reductive amina-

tion conditions and form tertiary amines. In case were both primary and secondary

amines are present, primary amines should be favored for coupling, because they have

an higher basicity than secondary amines. The difficulty of separating secondary and
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purity(amide) 4027710 4140254 4004817 4088025 4039700
4002741 90 95 99 98 99
4002969 99 95 99 99 0
4006408 85 90 94 99 97
4012266 80 95 82 99 90
4040087 0 0 0 99 96
4028089 0 0 0 0 0
4028827 85 77 99 99 99
4031726 95 90 99 99 0
4033241 0 95 95 95 95
4034924 95 99 99 99 99
4036481 99 0 0 0 0
4037223 80 90 91 99 95
4039430 99 89 99 99 99
4041020 95 70 99 91 99
4042553 0 99 95 90 60
4043743 99 99 99 99 99
4045304 90 78 81 76 98
4045370 99 99 99 99 99
4045452 99 99 99 99 0
4045507 99 95 99 99 98
4045547 85 95 99 96 99
4045699 99 95 89 99 89
4047495 95 90 99 0 95
4088103 95 99 99 99 90

(a)

purity(amination) 4002492 4002941 4010820 4012456 5510936
3002104 0 92 0 0 0
4002557 0 99 0 0 99
4004292 0 90 0 0 0
4004367 90 0 0 0 0
4004691 0 0 0 0 0
4004767 0 0 0 0 0
4004954 0 0 0 0 0
4009671 0 86 0 90 99
4030187 0 0 0 0 0
4031560 0 76 90 0 0
4034847 90 0 0 0 0
4040086 0 0 0 0 0
4043161 0 95 90 90 99
4301989 0 0 0 0 0
4302044 0 75 0 0 0
5100225 0 94 0 0 0
123-08-0 0 0 0 0 0

TCR00002574 0 0 0 0 0
TCR00002575 0 73 99 99 0
TCR00002580 0 99 99 0 99
TCR00002587 0 0 0 0 0
TCR00002670 0 82 0 95 0
TCR00002673 0 0 0 0 0
TCR00003603 0 0 0 0 0

(b)
amount(amide) 4027710 4140254 4004817 4088025 4039700

4002741 7.4 9.1 16.2 23.2 18
4002969 8 2 8.3 5.6 0
4006408 5.7 5.6 7.5 28 10.9
4012266 21 5.4 23.1 14.8 15.4
4040087 0 0 0 15.7 4.3
4028089 0 0 0 0 0
4028827 10.2 3.9 16.4 20.7 5.8
4031726 3.9 4.2 8.1 8.5 0
4033241 0 7.1 12.7 25.6 5.3
4034924 18.5 21.1 26.8 15.1 6.6
4036481 3.5 0 0 0 0
4037223 11.9 17.1 16.8 8.7 5.9
4039430 10.1 7 6.7 13.6 8.2
4041020 6.4 15.3 11.4 4.9 3
4042553 0 23.9 15.7 20.7 4.5
4043743 7.4 4.7 22.9 8.4 9.2
4045304 5.7 20.3 10.3 24 10.9
4045370 4.8 13 12 19.5 5.7
4045452 4.7 11.9 9.3 1.6 0
4045507 3.5 8.2 9.9 14.1 2.1
4045547 5.4 15.7 6.8 27.2 13.6
4045699 7.5 5.2 11.6 3.2 4.5
4047495 7.6 1.8 19.7 0 5.5
4088103 15.3 22.2 15.5 9.5 3.1

(c)

amount(amination) 4002492 4002941 4010820 4012456 5510936
3002104 0 4.6 0 0 0
4002557 0 6.4 0 0 1.9
4004292 0 0.8 0 0 0
4004367 8 0 0 0 0
4004691 0 0 0 0 0
4004767 0 0 0 0 0
4004954 0 0 0 0 0
4009671 0 21.2 0 2.5 1
4030187 0 0 0 0 0
4031560 0 4.8 1.5 0 0
4034847 2 0 0 0 0
4040086 0 0 0 0 0
4043161 0 5.6 1.3 0.7 2.6
4301989 0 0 0 0 0
4302044 0 3.2 0 0 0
5100225 0 31.4 0 0 0
123-08-0 0 0 0 0 0

TCR00002574 0 0 0 0 0
TCR00002575 0 24.3 1 1.1 0
TCR00002580 0 6.1 0.6 0 0.7
TCR00002587 0 0 0 0 0
TCR00002670 0 7 0 1 0
TCR00002673 0 0 0 0 0
TCR00003603 0 0 0 0 0

(d)

Figure 7.11: Heat map illustrating the purity and amount of the synthesized com-
pounds by Taros. The purity of each product in the amide pool (A) and the amination
pool (B) is expressed in % after LC-MS purification. The amount of each product in

the amide pool (C) and the amination pool (D) is expressed in mg.

teriary amines partially explains the low synthetic yield. Furthermore, most of the sug-

gested products are highly polar hampering the purification process even more, thus

yielding a few (25) purified products.

7.4 Discussion

We have introduced the second application of SCUBIDOO in a ligand discovery effort

focusing on the β2AR. This study is in the continuity of chapter 6 but represents a

leap forward in term of means, since SCUBIDOO was coupled with automated robotic

synthesis which can handle two dozens of synthesis in parallel. Thus, this work enhance
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the previous foundations describing how to use SCUBIDOO, by tackling the challenging

task of suggesting products for tailored combinatorial chemistry guided by combinatorial

growing and docking. The overall workflow can be assimilated as a “divide and conquer”

strategy. The division consists in partitioning the binding site into smaller regions and

map out all possibles polar interactions. The conquest is made of two phases. First,

identify A fragments with consistent binding mode that will be the core of a growing

strategy and find organic reactions compatible with the envisioned growing. Second,

identify extensions (B fragments) that can be combined with A fragments and which

could yield to virtual products with favorable binding modes.

During the division, the binding site of the β2AR was partitioned in three regions: the

orthosteric site, the SBP and the TBP. By making use of the bipartite philosophy (i.e.

every product is the assembly of two building blocks), two different strategies were then

defined. The first one strove to grow fragments from the orthosteric site towards the SBP,

while the second strategy aimed to grow fragments from the orthosteric site towards the

TBP. This division strategy ensures that each region is explored. In order to improve

the exploration of these regions, a polar fingerprint was defined which list all the polar

residues present in those regions. Doing so helps in suggesting chemically divers building

blocks, by ensuring that they interact with different residues. Ensuring such diversity

could also help in identifying new residues involved (or not) in the activation of the

β2AR.

The conquest of the orthosteric site was guided by a structure-based strategy, where

the S sample of SCUBIDOO was docked in the β2AR binding site in its active and

inactive conformations. 10 A fragments were identified with favorable binding mode in

the orthosteric site and compatible for further growing. Among those 10 A fragments,

5 fragments were compatible with reductive amination and allowed one to grow the

fragments towards the SBP, while the 5 remaining fragments were compatible with

amide formation and thus growing towards the TBP was feasible. Chemical diversity was

ensure within the reductive amination pool, so those fragments are likely to interact with

Ser2075.46 and Ser2035.42 with different chemical interactions (charged amine, hydroxy,

amine, aromatic nitrogen). The amide pool consists of close analogs with subtle changes

(size of the ring varies from 5 to 7, distance between the amine and the acid moiety varies

from 2 to 3 atoms) in order to increase the chance of the ketone group to interact with

Asn3127.39. Finally for each pool, a pharmacophore was defined to increase the chance

of the reactive group (i.e. where the growing occurs) to be located in the same region.

Doing so, allow the extensions attached to the core fragments to have more chance to

have a consistent binding mode among each other, and thus increase our chance to

identify bioactive compounds.
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The conquest of the SBP or TBP was also guided by docking. For each A fragments to

grow, the derived products based on the reaction of interest were docked in the β2AR

binding site. For each pool (i.e. reductive amination or amide formation), a consensus

of the best top 500 of the B fragments yielded the final 24 B fragments for tailored

combinatorial synthesis. This selection was also guided by a classification of the B

fragments into three categories: safe, bold and reckless. This classification relies on the

number of H-bond interactions to satisfy. After the experimental assays, we aspire to

show that the ’safe’ series yield a higher hit rate than the ’bold’ or ’reckless’ series.

The automated robotic synthesis yielded 127 products out of 240 (53% synthesis success

rate). 102 products came from the amide pool (82% synthesis success) while only 20

products came from the reductive amination pool (20% synthesis success). In both case,

we learned a lot and already plan to implement new warnings within SCUBIDOO in

order to facilitate next synthesis.

As instance, for the amide pool, the presence of an amine group and an acid moiety

within each A fragment, make them likely to react with their self under amide formation

conditions. Thus, our chemist collaborator suggested a Boc protection (and deprotec-

tion) in order to synthesize the products. We plan now to implement a new visual

warning in the database for such building block reacting under those conditions. This

will be coupled with a new tables suggesting potential protection groups and should help

to improve the experience of future users.

Furthermore, with the reductive amination pool, we highlighted that our products were

highly polar which complicated the purification step, yielding a low synthetic success

rate (20%). Thus more rigorous filters (solubility or logD) could be applied earlier on,

in order to increase the synthesis rate. It has to be noted that a real chemist would

have probably obtain an higher synthesis rate if he would have tried to synthesize each

product individually. This would have require several iterations for each compound,

and probably different reaction conditions. This would have take probably months and

several organic chemists to do so. In our scenario, the synthesis and purification was

achieved within a few days, and only two iterations.

With a 53% synthesis success and a lot of lessons learned, this study suggests that SCU-

BIDOO is amenable to be integrated to automated robotic synthesis. Every synthesis

attempt is prone to improve the knowledge contained within the database and thus

increase the synthesis success rate over time. 50% of the virtual products within SCU-

BIDOO are made from either amide formation or reductive amination. One could thus

argue that, even though 240 products were suggested for synthesis, these 240 virtual

products could actually represent a larger fraction within the database.
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Chemical similarity analyses showed that all the suggested compounds were truly novel

chemical entities, thus demonstrating how SCUBIDOO can explore new quadrants of

the chemical space. Further comparisons to known actives of the β2AR, highlighted than

the amide pool could contain molecules with an antagonistic profile, while the reductive

amination pool could contain molecule with agonistic properties. This speculation still

needs validation, that will come with further experimental assays (planned for September

/ October 2016).

The assays of the 127 products will help to hopefully identify novel ligands for the β2AR

and validate our aforementioned assumption. Furthermore, we plan to make the dataset

available (activities, synthetic yields, purity) since this pool could be a wonderful source

of informations for QSAR or QSPR models. Indeed, all molecules are close to each

other and such interconnected datasets could allow the scientific community to create

and validate more accurate local models with high discriminative power.

7.5 Supporting Information

7.5.1 B building blocks for the reductive amination pool
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7.5.2 B building blocks for the amide pool
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”The disease is where the drugs are not.”

Fire in the blood (2013)



Chapter 8

Perspectives

8.1 Preamble

In the course of the previous chapters, we first developed an in silico workflow aiming

at growing fragments towards synthetically feasible products (chapter 4). The synthesis

success highlighted the applicability of the organic reactions set compiled by Hartenfeller

et al. [1, 2]. We then decided to fully utilize this set and created SCUBIDOO, a database

of virtual products generated by combining commercially available building blocks with

the reaction set (chapter 5). This database concept was then applied in two different

ligand discovery efforts, one focusing on PIM1 inhibitors (chapter 6) and the other on

β2AR ligands (chapter 7). The initial goal of these two endeavors was to demonstrate

the synthetic feasibility of SCUBIDOO products and the applicability of the database

to fragment-based ligand discovery efforts. However, along the way we started to learn

how to use SCUBIDOO and uncovered some unexpected strategies, which I think could

be supportive for fragment-based ligand discovery efforts in general, and most notably

for the field of fragment docking. Four noteworthy discoveries will be further detailed

below:

• The bipartite product philosophy and its application to docking.

• Molecular obesity applied to fragment rescue.

• Tailored combinatorial synthesis guided by combinatorial growing and docking.

• Creation of the ’loser bracket’ to rescue optimal chemical moieties identified

through docking.

I will finish with a last paragraph on SCUBIDOO’s future, in order to discuss the

perspectives.
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8.2 Bipartite products and docking disguised fragments

Docking of fragments remains challenging. As we have learned from experimental ap-

proaches, fragments can bind to multiple sites in a receptor. Computational approaches

reflect that, by usually providing diverse solutions for a given fragment. Program tools

for docking are reliable to predict the correct binding modes. However, their weakness is

the scoring phase (and thus ranking) and the fact that they do not take into account wa-

ter molecules which play a crucial role upon binding (e.g. mediated water interactions.

This makes the process of identifying correct binding modes harder, as we discussed in

chapter 2.

As illustrated in chapters 5, 6 and 7, SCUBIDOO could help to suggest more reliable

docking poses for fragments, by means of the bipartite product philosophy : “any product

is the assembly of two building blocks”. Thus, docking products from SCUBIDOO can

be considered equivalent to docking one fragment disguised as a drug like compound (i.e.

a sort of camouflage). In other words, even a docked product with some unfavorable

interactions (i.e. a rotten fruit) could actually hide an optimal fragment (i.e. a tree).

Indeed, if half of the product shows compelling interactions (i.e. high LE), the second

half doesn’t really matter and could be assimilated as steric or polar constraints that

can be optimized later on (exploration of the tree: figure 6.5).

In a drug discovery context, this could be helpful. A fragment on its own will never be

used as a drug, simply because it is likely to be unspecific and exhibit a low affinity.

Fragments are therefore usually extended into larger molecules to solve these problems

and this process introduces new steric and/or polar constraints. SCUBIDOO natively

answers this problem, because all the virtual products are fragments extended with

additional steric and/or polar moieties (i.e. already-grown fragments).

Furthermore, docking a fragment with additional constraints considerably reduces the

number of enumerated poses. In an early fragment-based ligand discovery effort, this

could help to prune all possible binding modes to the more plausible ones. For instance,

if the predicted binding mode of a A fragment on its own is unreliable (i.e. several

different suggestions), one can turn to derivatives of fragment and dock them. Then,

if the derived products maintain consistent binding mode for the A fragment, one can

take it as hint that the fragment is more likely to have a reliable binding mode. This

scenario is illustrated in chapter 7, where the 10 A fragments for growing were selected

based on the docking poses from their derivatives.

Docking bipartite derivatives makes the visual inspection more friendly and to a certain

extent more reliable than standard drug-like molecules. When dealing with derivatives

from the same fragment A, one generally expects the fragment A to bind to the same
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region (i.e. same binding mode). If not, one could assume that the initial binding mode

is not consistent, thus the fragment A binding mode is not trustworthy enough and one

could quickly discard such a fragment. On the other hand, if it preserves a persistent

binding mode, one could take that as a hint that it could bind efficiently at this position.

In addition, it facilitates the visual inspection, because one only has to focus on half of

the product.

8.3 Reverse engineering via molecular obesity

We learned in chapter 4 that suggesting hydrophobic extensions to our initial fragments

was more likely to yield a leap in affinity. This is also a good illustration of molecular

obesity. Indeed, we added a bit of ’grease’ (i.e. hydrophobic moieties) to our fragments,

and by doing so, we increased the molecular weight without increasing the PSA. From

an entropic point of view, the resulting product will be easier to desolvate. Since it is

known that desolvation plays an important role in binding [124], this aligns with the

improved affinities for the products. The downside for this study was that we didn

not learn that much about important residues that might be involved in the activation

of the β2AR. Indeed, most of the extensions were making non-specific interactions. In

summary, this study stressed that an ’easy’ way to improve the affinity of a fragment is

to extend it by means of hydrophobic moieties.

This strategy could also be applied retroactively, in a reverse engineering fashion. Thus,

in order to increase the chance of identifying fragment hits, one could test fragments

extended with hydrophobic moieties. In the context of bipartite products, this means

that half of the product makes optimized interactions (specific head) while the remaining

half makes likely non-specific interactions (unspecific tail). This could also help to rescue

fragments from both in vitro and in silico screenings, and thus allow one to identify

fragments that would not have been picked up if tested/screened on their own.

At the moment, rescuing fragments with the help of molecular obesity is purely spec-

ulative, but we have taken measures so we could hopefully validate this hypothesis. In

chapter 7, 240 molecules were designed so that they bind to the β2AR. 120 molecules

were synthesized by means of reductive amination and among those molecules, 35 ’safe’

molecules consist of one specific head and one unspecific tail. We aspire to show that the

’safe’ series yield a higher hit rate than the ’bold’ or ’reckless’ series. The seven ’obese’

building blocks which yielded the 35 ’safe’ molecules are illustrated in figure 8.1.
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Figure 8.1: Unspecific or ’safe’ building blocks selected for the reductive amination
series. The carbonyl moiety will disappear during the reductive amination reaction.

We can then ask ourselves from what would be a valuable unspecific building block

library be made? This might be too early to tell, but based on our recent experience we

can already point out important trends:

• unspecific building blocks are fragment-to-grow and reaction dependent. Indeed,

an unspecific library designed for reductive amination applied to a fragment with

an amine moiety won’t work for a fragment without such a moiety.

• unspecific building blocks should contain at least one aromatic moiety.

• The reactive center and the hydrophobic moiety could be linked with an alkyl chain

(i.e. flexible). The distance between the reactive center and the aromatic moiety

should vary in order to increase the number of rotors, and thus the conformational

space that can be covered by the product. This should increase the chance for the

aromatic moiety to accomodate to the receptor constraints.

• The aromatic moiety should be decorated with a wide range of groups at any posi-

tions. Some variation should be introduced for the derivatives containing halogens.

For instance, chlorine should be prioritized over fluorine due to its aptitude to en-

gage in halogen bonds. Since halogen bonds are specific and highly directional,

they could be used to explore dipole partners (e.g. carbonyl) more cheaply than a

H-bond donor group, due to lower desolvation penalty.

In the future, unspecific building blocks will be flagged in SCUBIDOO in order to provide

users with the possibility to screen pre-compilated ’obese’ fragments. A new subset of

the database will be created, containing every polar building block with extended non-

specific moieties.
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8.4 Tailored combinatorial synthesis guided by combina-

torial growing

Combinatorial synthesis allows one to synthesize as many products as possible, going out

from a few initial building blocks. This procedure was common several decades ago [287–

289] and massively failed when applied to drug discovery efforts [290]. One of the reason

was the challenging task of selecting the best compounds library for synthesis and follow

up assays. Such task should rely in computational approaches and, years later, we had

the opportunity to try to tackle such challenge. We illustrated this scenario in chapter 7,

where we are synthesizing up to 240 molecules with only 58 building blocks (10 A +

48 B). As of right now, no similar scientific work has been reported in the literature.

The main challenge in our study was to define where and how to start. In the following

paragraphs, I will describe the pillars that I think are crucial to build efficiently large

scale applications of tailored combinatorial synthesis.

In a drug discovery project, products originating from combinatorial synthesis, will

usually be tested against the target of interest. In a bipartite product context, the main

challenge is then to find the combination of building blocks (A and B) which might yield

the highest synthesis rate and also the highest experimental hit rate. This task on its

own is quite a dilemma. Indeed, one can imagine that providing B suggestions for a

single A is straightforward. However, if the same suggested Bs are kept and applied to

a different A, the resulting products might not preserve the same binding mode, and

thus might be more likely to fail in the assays. The selection of the A fragments is thus

critical and can be assisted by computational approaches. Three crucial elements ought

to be taken into account during the selection process: position of the reactive center,

presence of rotors and chemical diversity.

The reactive center (i.e. the chemical feature involved in the organic reaction) must

be considered as an anchor point. A fragments should to have their anchor points in

close vicinity to each other, so the B building blocks are attached in the same region

of the binding site, and are thus more likely to preserve the same binding mode (figure

7.7). One way to ensure that could be by filtering the building blocks with a common

pharmacophore. For instance, in chapter 7 the A fragments were selected so they have

two carbons between the amine and the aromatic moiety (figure 7.8).

Inclusion of rotors in the products can be profitable. According to the bipartite nature

of the product, if two bulky moieties are linked together with a flexible chain, this should

give more chance to the product to adapt to the receptor constraints. Indeed, the more

rotors a molecule has, the more of the conformational space has to be sampled, and thus

the more versatile the molecule might. However, such procedure will yield additional
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entropic penalties, since every rotor frozen upon binding will count for approximately 1

kcal/mol.

Chemical diversity should be assessed within the pool of A and B fragments to ensure

a wide variety amongst the generated products. Doing so might increase the chance of

finding hits later on, since the focus is on several residues rather than only a few. This

stage could be referred to the “don’t put all your eggs in one basket” stage. Addition-

ally, the pool of B fragments should contain at least 20% of unspecific building blocks

(hydrophobic), in order to yield about 20% ’obese’ products. Doing so could increase

the chance to identify hits in the experimental assays.

We are currently witnessing the ’rise of the automated synthesis machines’ [291]. This

technology is not yet within the reach of most of academic institutions. However, its

mechanism (bipartite product) could be applied to small scale ligand discovery efforts.

For instance, in chapter 4, three derivatives were synthesized for compound Z32501319,

thus four building blocks were ordered. In an optimal bipartite product scenario, with

four building blocks (2 A + 2 B), one could synthesize four products (2*2). The differ-

ence is even more striking if we start from six building blocks (3 A + 3 B), this could

yield 9 products (3*3), etc... The underlying assumption is that if the A fragments are

similar to each other, the reaction conditions should be comparable. Thus the reactions

could be done ’in parallel’ once a robust protocol has been established. Such mechanism

might also generate products more cheaply (each building block is used several time for

different products synthesis).

Products resulting from tailored combinatorial synthesis offer the advantage to be lo-

cated in the same region of chemical space, because they are derivatives from the same

scaffold (i.e. analogs). This represents a huge opportunity in the QSAR/QSPR field.

Such interconnected datasets with associated measured affinity (or reaction yield or sol-

ubility) could allow one to create and validate more accurate local models with high

discriminative power.

8.5 Exploiting the ’loser bracket’

We highlighted that virtually screening SCUBIDOO samples allow one to identify

promising fragments that can then be further explored. Usually, when visually in-

specting the products from a docking run, one quickly discard fragments that contain

unfavorable moieties (i.e. unfavorable interactions). However, a fragment often contains

one or more chemical features and can thus be decomposed into smaller moieties. Thus,

for a fragment, if one moiety happen to be unfavorable even though another one is
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compelling, the fragment will be discarded. In some special case, this can be frustrating

if we discard an nearly perfect interaction.

For instance in chapter 7, product 18815102 was identified while inspecting the derivative

products of building block 4091032. This product was also made using building block

5130031 which contains an acid moiety. This acid feature makes a very compelling

interaction between His93 and Trp313, acting like a ’bridge’ between those two residues

(Figure 8.2). This moiety seems to fit perfectly to this region of the SBP, however the

thiophene is clashing with the receptor which is highly unfavorable. Instead of getting

rid of this fragment, we decided to give the acid moiety another chance and created

the ’loser bracket’ which contain all the fragments that were too disappointing to not

explore more deeply.

In order to explore the acid moiety lead, all building blocks containing an acid moiety

associated an amine or an carbonyl (i.e. compatible with reductive amination) were

extracted from the Chembridge library. This procedure yielded 139 building blocks

and all carbonyl moieties were transformed in their amine “surrogates”, as explained in

PINGUI (chapter 4. The resulting “surrogates“ were then docked into the SBP region

of the β2AR binding site. Unfortunately, no “surrogates“ were found to form the bridge

between His93 and Trp313 while interacting with the conserved Asp113. Given the low

number of building blocks, this is not surprising. This also stress that one way to improve

SCUBIDOO would be to implement more building blocks in the initial library (discussed

in SCUBIDOO future). This will increase the chance to find more selective fragments

for such interactions, and also increase the number of selected products coming up from

the ’loser bracket’. The identification of this acid moiety is now the pillar of a new

project aiming at designing selective ligands of the β2AR against the β1AR (which will

be not described in this manuscript).

Figure 8.2: Fragment falling to the loser bracket
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8.6 SCUBIDOO future

While our ongoing endeavors intend to validate the synthetic feasibility of SCUBIDOO

products and its applicability to ligand discovery efforts, the next logical step will be to

increase its size. Indeed, in chapter 7 we saw some limitations of the current database,

when suggesting (too few) unspecific building blocks for the reductive amination prod-

ucts or our incapacity to rescue compelling chemical moieties coming out from the ’loser

bracket’. The former was bypassed by using building blocks from the Taros library and

by generating new products with PINGUI. The size of the database can be increased

using three parameters: the number of initial building blocks, the number of organic

reactions and the number of building blocks allowed for combination.

The initial building blocks library can be expanded by implementing new vendors. At

present, SCUBIDOO version 2 implements the Sigma Aldrich building blocks catalog.

This library contains about 25’000 building blocks and its combination with the 58

organic reactions yielded more than 300’000’000 virtual products. We were also recently

contacted by Enamine (www.enamine.net) who would like to collaborate with us in order

to implement their building blocks library (more than 100’000) into SCUBIDOO as well

as some in-house organic reactions. Such implementation should yield billions of virtual

products. We plan to make this new database version available in early 2017. Ideally,

additional building blocks libraries will be implemented regularly in order to provide the

users with more ideas to start with.

Hartenfeller et al. [1, 2] did an unprecedented job when they implemented their set

of 58 organic reactions. They took great care to select often-used chemical reactions

in the pharmaceutical field [248]. But as stated by the authors, this reaction dataset

is prone to improvement which can be facilitated by community feedback. We hope

to participate in such efforts with our ongoing applications, which already allowed us

to learn from the reactions by adding more incompatibility warnings in the database

(discussed below). Another way to improve this set will be to increase the number of

reactions (which we will do in collaboration with enamine), thus taking into account

more complex (multi-step) synthetic routes, less ’trendy’ reactions or even implement

metabolism reactions.

Although SCUBIDOO was built on a bipartite product philosophy, one could imagine

the combination of three building blocks or more in order to increase the sheer size of

the database. Indeed, many building blocks contain two reactive features, which thus

opens doors to tripartite products (or more). Two major complications might arise from

such combinations: combinatorial explosion and over-sized products. Combinatorial ex-

plosion should be avoid, because it will generate more chemical noise which will possibly
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make the identification of high LE fragments more difficult (i.e. tripartite product syn-

drome). Secondly, the combination of three building blocks will inevitably yield bigger

compounds, beyond the Lipinski frontier. Post filtering is still an option, but the result-

ing products will still suffer the tripartite product syndrome. SCUBIDOO should focus

on helping with the identification of high LE fragments rather than providing users with

unexploitable virtual products. Thus, if bigger products are needed, one can turn to

PINGUI in order to incrementally build new virtual products. However, tripartite prod-

ucts could allow one to explore ’linking + merging’ scenarios with SCUBIDOO (chapter

2). Indeed, such products could be the fruits resulting from a linking strategy, where the

same building block is grown twice (each time in a different directions) and the resulting

products are then merged as illustrated in figure 2.6.

One of the next challenges for SCUBIDOO will be the implementation of an efficient

similarity search tool. As mentioned above, with the expected growth of the database,

one will need to be able to parse billions of compounds within a few seconds. With the

current ligand-based techniques, this is unrealistic. In order to circumvent the problem,

one would have to rely on efficient organization of the data. The key will be to perform

the search at a building block level, in order to narrow down the comparison to only

a few thousand compounds. Such searches are in the range of seconds on a single

CPU. We already took small steps in this direction. For instance PINGUI allows one

to perform similarity search against the ChemBridge building blocks library (i.e. the

one used for SCUBIDOO creation). One can then identify similar building blocks for

a given target, and download their derivatives (i.e. even more analogs). Furthermore,

PINGUI provides a tool to deconstruct molecules based on chemical reactions. Such

deconstruction predicts the building blocks that were likely utilized for the synthesis of

a given target. With those two combined tools, users should be able to perform similarity

searches and identify resulting analogs within a few mouse clicks.

The combinatorial synthesis project yielded 127 products with soon associated activity

against the β2AR, but also synthesis yield and purity. We plan to make these data

and the one associated with the future project publicly available. Ideally, we would

like to invite the scientific community to a QSAR and a QSPR challenge, similar to the

solubility challenge [292, 293]. The goal will be to predict the affinities against the β2AR

and the synthetic yields for 20% of the products (external test set), by learning from the

remaining 80% (training set). The external test set will remain unknown until the end of

the challenge. Other properties might be measured afterwards, such as solubility or logP

and should be implemented in the challenge too. Measured affinities will also be utilized

in order to create subsets specific to certain targets. Indeed, if a building block is found

to be active against a given target, all its derivatives as well as close analogs should be

’packed’ together in order to facilitate the probing of the target’s ’active’ chemical space.

157



Such building blocks could be flagged in the database in order to provide users with a

starting kit for relevant pharmaceutical targets.

Further improvements are needed in the direction of simplifying the synthesis process.

Additional warnings are needed to guide the users to select more reliable products. For

instance, in chapter 7 for the amide formation series, the initial A fragments contained

an amine and an acid moiety (figure 7.7). Under Schotten-Baumann amide reaction

conditions, such building blocks are highly likely to react with themselves. Thus, one

first needs to protect the amine moiety with a Boc group, apply the amide formation

reaction and finally deprotect in order to obtain the product. In order to make such

processes more obvious, additional warnings combined with a protecting group library

will be added to the database.

As mentioned earlier, ’obese’ extensions will be flagged in order to provide the user with

the possibility to screen products with a specific head and an unspecific tail. Thus,

for each polar building block, a new derivative library will be created containing only

unspecific extensions. An additional subset which contains a representative portion of

all those derivatives will also be made available for download. Ultimately, one could also

think about synthesizing such a subset and make it available for experimental screening,

in order to increase the chances to identify fragment with favorable LE.

With the expected increased size of the database, more filters and user options, the

hardware should keep up the pace so SCUBIDOO can always offer its service at reason-

able speed. I was recently awarded with an Amazon grant for SCUBIDOO (AWS cloud

credits for research). This grant will allow us to transition to faster and more scalable

hardware. It should facilitate the deployment of SCUBIDOO 2, which will contain more

than 300 M virtual products but also the next versions that will likely contain billions

of chemical entities.

Last, but not the least, what does SCUBIDOO aspire to be? The core concept, which

is its accessibility, should remain the same: any user with internet-access should be able

to benefit from the database. Further tools will be implemented in order to allow one to

process more requests from the server side. In addition, with the first large application

we ambition to demonstrate how SCUBIDOO could be applied in synergy with auto-

mated synthesis robots, thus illustrating how we could quickly come up with hundreds

of suggestions and synthesize them when starting a new drug-discovery effort. Follow

up assays will hopefully validate our computational assumptions. Upon successful com-

pletion, this collaboration will then apply the same strategy to other challenging targets

in the field of neglected diseases (Chagas’ disease, malaria, tuberculosis), Parkinson’s

disease or Alzheimer’s disease. We would also like SCUBIDOO to support open source
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initiatives in the field of drug discovery, such as open source pharma (OSP). Such initia-

tives aim at delivering drugs at affordable prices to anyone. In this context, SCUBIDOO

could help to explore cheap chemical space where one could extract diverse and afford-

able products. This will allow one to start a new drug discovery effort focusing on a

neglected target, with minimal investment.
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Krotzky, Maren Kuhnert, Wibke E Diederich, Andreas Heine, Lars Neumann,

Cedric Atmanene, et al. One question, multiple answers: Biochemical and bio-

physical screening methods retrieve deviating fragment hit lists. ChemMedChem,

10(9):1511–1521, 2015.

[26] Johannes Schiebel, Nedyalka Radeva, Stefan G Krimmer, Xiaojie Wang, Martin

Stieler, Frederik R Ehrmann, Kan Fu, Alexander Metz, Fransiska U Huschmann,

Manfred S Weiss, et al. Six biophysical screening methods miss a large proportion

of crystallographically discovered fragment hits: A case study. ACS Chem. Biol.,

2016.
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[34] Caren Hasler and Yves Tillé. Fast balanced sampling for highly stratified popula-

tion. Comput. Stat. Data Anal., 74:81–94, 2014. doi: 10.1016/j.csda.2013.12.005.

[35] Chunquan Sheng and Zhang Wannian. Fragment informatics and computational

fragment-based drug design: An overview and update. Med Res Rev, (6):1292–

1327, 2012.

[36] Gregg Siegal, Eiso Ab, and Jan Schultz. Integration of fragment screening and

library design. Drug Discov. Today, 12(23-24):1032–1039, 2007.

[37] Gergely M. Makara. On sampling of fragment space. J. Med. Chem., 50(14):

3214–3221, 2007.

[38] Li Di and Edward H. Kerns. Biological assay challenges from compound solubility:

strategies for bioassay optimization. Drug Discov. Today, 11(9-10):446–451, 2006.

[39] Christopher a. Lipinski, Franco Lombardo, Beryl W. Dominy, and Paul J. Feeney.

Experimental and computational approaches to estimate solubility and permeability

in drug discovery and development settings, volume 64, pages 4–17. Elsevier B.V.,

2012.

[40] Junmei Wang and Tingjun Hou. Recent advances on aqueous solubility prediction.

Combinatorial chemistry & high throughput screening, 14(5):328–338, 2011.

[41] Florent Chevillard, David Lagorce, Christelle Reynès, Bruno O Villoutreix,

Philippe Vayer, and Maria Miteva. Multimodel Protocol Based on Chemical Sim-

ilarity In silico Prediction of Aqueous Solubility : A Multimodel Protocol Based

on Chemical Similarity. Mol. Pharm., 9(11):3127–3135, 2012.

[42] John B Jordan, Leszek Poppe, Xiaoyang Xia, Alan C Cheng, Yax Sun, Klaus

Michelsen, Heather Eastwood, Paul D Schnier, Thomas Nixey, and Wenge Zhong.

Fragment based drug discovery: practical implementation based on 19f nmr spec-

troscopy. J. Med. Chem., 55(2):678–687, 2012.

[43] Clifford T Gee, Edward J Koleski, and William CK Pomerantz. Fragment screen-

ing and druggability assessment for the cbp/p300 kix domain through protein-

observed 19f nmr spectroscopy. Angew. Chem. Int. Ed. Engl., 54(12):3735–3739,

2015.

163

http://www.antongrafstrom.se/balancedsampling


[44] Miguel Garav́ıs, Blanca López-Méndez, Alvaro Somoza, Julen Oyarzabal, Claudio

Dalvit, Alfredo Villasante, Ramón Campos-Olivas, and Carlos González. Discovery
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